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Abstract

Network data streams are unbounded sequences of complex data produced at high rate which represent complex
systems that evolve continuously over time. In this scenario, a problem worthy of being studied is the analysis of the
changes, which may concern a complex system as a whole or small parts of it. In this paper, these are distinguished into
macroscopic changes and microscopic changes: macroscopic changes have impact on a substantial part of the network,
whereas microscopic changes concern variations occurring in specific portions of the network. The algorithm we
propose, called KARMA, combines the frequent pattern mining framework with an automatic time-window detection
approach. In this way, it is able to detect changes on the frequent subnetworks mined from different time-windows:
network changes are then represented as variations of structural regularities frequently observed over the stream.
KARMA takes an holistic perspective, in which the two kinds of change are related each other. This is the main
novelty with respect to the recent studies, which do not simultaneously extract microscopic and macroscopic changes.
Experiments on several real-world network data streams show the effectiveness and efficiency of our approach in
comparison with competing algorithms and the usefulness of the changes detected.

1. Introduction

Data streams are unbounded and time-ordered sequences of continuously incoming elements, which arrive at a
rapid rate. One of the main characteristics of data streams is that they are often subject to frequent changes of the
probability distribution. The analysis of these changes is attracting growing attention because it gives the opportunity
to follow and understand the variations of the underlying process, adapt tools and services to new demands, as well
as capture and delay undesirable alterations. Applications can be found in many domains, for example in telecommu-
nication networks, where it is important to identify the variations in the use of the infrastructure and anticipate new
demands. Other examples can be found in ecology, where it is important to identify pollution problems in time so
that appropriate actions can be taken or in the context of social networks, where it can be useful to understand the
variations of political and commercial orientation of the users.

Consequently, researchers are required to design techniques able to process data streams, detect a change and
explain the nature of the change [1]]. The task is not trivial for two main reasons. First, contrarily to other data stream
mining tasks (e.g., anomaly detection), we cannot rely on a reference system, which recognizes rare and sporadic data,
because the change can trigger a new data distribution and thus can be associated to manifestations of the underlying
process. Second, the data produced in the recent streaming environments (e.g., social media, sensor technologies) are
intrinsically complex because they refer to aggregations of multiple entities, which are heterogeneous in nature and
can be inter-connected. So, most of existing works, originally designed for (simple) data streams (e.g., [2,13]) become
inapplicable.

A promising approach for handling complex data streams [4} 15| is the representation in form of evolving network,
considered the natural peculiarity to account for entities of different nature (nodes), which can be related each other
(edges). This solution allows us to represent macroscopic and microscopic changes of the complex data stream, that
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is, variations that regard the complex data as whole and variations that regard only portions. Indeed, the macroscopic
changes can be reflected as changes at the whole structure of the network, while those microscopic correspond to
evolutions of subnetworks, such as changes in the properties of nodes and edges as well as the insertion and deletion
of single nodes and edges.

To give a general idea of the change in network data streams, we report a concrete example in the domain of com-
munication networks, where data streams are produced on the telecommunication transactions (e.g., call data records)
of the users (an illustration is reported in Figure[I). The nodes of the network model users, while an edge reports the
modality of communication (e.g., short messaging, voice call) between two users at a certain time in a geographic
area. In this scenario, the changes can be due to variations of the attitude of the users to communicate or to failures
of the service provider. This means that an edge, which connects two users in a time-point, can disappear in another
time-point or can be replaced by another edge representing a different modality of communication. For instance, some
users, which usually exchange short messages, start to communicate through instant messaging because the service
of short messaging experiences failures. When associated to a few nodes or single subnetworks, these variations can
concern small portions of the geographic area and thus denote microscopic changes, while when they are associated to
the most part of the users, the changes are macroscopic because have impact on a substantial part of the users within
the area.

It is evident that what happens at macroscopic level can be ascribed to a combination of evolutions occurring
on single subnetworks and, conversely, changes occurring on the subnetworks can trigger evolutions of the whole
structure of the network. Clearly, not all the microscopic changes can explain those macroscopic. Indeed, changes
which concern few subnetworks and which happen sporadically could be not interesting compared to those which
occur many times on the same subnetwork or those which involve many subnetworks. To capture this behavior, it
could be helpful to consider the notion of frequency and determine the change of the subnetworks on the basis of the
variations of their frequency.

To identify these variations, we may act directly at the level of the network data, but this is costly because it requires
the analysis of single nodes and edges over the entire stream. Instead, we propose the use of frequent patterns, which
provide an abstract form of the data and allow us to work jointly on microscopic and macroscopic changes. So, single
patterns summarize specific subnetworks (subgraphs) and may be associated to microscopic changes, while sets of
patterns synthesize different subnetworks (even the whole network) and may be associated to macroscopic changes.

In this paper, to detect macroscopic and microscopic changes from network data stream, we propose a method
which combines the time-window model based on landmark windows [6] with frequent subnetworks. The landmark
windows have increasing size and, in this work, are used to collect the data that come one by one in time until a
landmark, that is, a macroscopic change, is detected. So, the method mines frequent subnetworks from the landmark
windows by keeping subnetworks and their frequencies updated. In these terms, macroscopic changes correspond to
the updates on the set of frequent subnetworks, while microscopic changes correspond to the updates of the frequency
of the subnetworks. To quantify the magnitude of the change we use quantitative measures for both kinds of changes.
It is should be noted that this model of analysis complies with the one used to process online data streams and differs
from the analysis of the offline data streams in which the data are collected by windows of regular fixed size and
processed after storage, as in a data warehouse system [7} |8]].

As an example, consider the telecommunication transactions of four users recorded in two hours and suppose the
landmark window covers the time-interval [7:00,7:30] in its initial size (Figure EI) We observe that the status of the
communications generally changes over the considered time-interval [7:00,8:15]. This would denote a macroscopic
change in the modalities of communication of the four users and thus a significant variation in the use or in the offer of
the services of a provider on the geographic area. A closer analysis reveals the presence of different structural varia-
tions concerning several portions of the whole network as the landmark window collects newly incoming transactions.
One of the more evident variations is the one related to the occurrences of “subnetwork 17, it is always present in the
window [7:00,7:30] (out of the three transactions of [7:00,7:30]), while, it disappears in the next three transactions
(out of the six transactions of [7:00,8:15]). So, the corresponding microscopic change lies in the change of the fre-
quency, which is very high when observed in the window [7:00,7:30], while it decreases when observed in the window
[7:00,8:15]. Another change is associated with “subnetwork 2”, which is not present in the window [7:00,7:30], while
it becomes frequent as the window collects the next three transactions. No contribution to the macroscopic change
can be attributed to “subnetwork 3”, which has only one occurrence out of the three transactions of [7:00,7:30] and
continues to have one occurrence in the next three transactions. Besides the numeric variation, we can interpret these
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behaviors with respect to their impact on the telecommunication domain. For instance, “subnetwork 1” may reveal
that the three users (“user B”, “user C”, “user D”) switch from “short messaging” to “instant messaging”, and this
could trigger other changes, for instance, the use of “short messaging” by the users “user A” and “user B”. Obvi-
ously, the size of landmark windows determines the granularity of the changes and, in our approach, many landmark
windows with automatically determined sizes are considered. This means that in the domain of telecommunication
transactions, changes can refer to few hours (as in the example reported in Figure[T)) or to days, weeks etc.

® ® ®

short short
messaging messaging

video short
messaging

(=3
N 7 o VAR NRCN
IR AN N
N 9N
2 N RN

S AEN s /e

messaging messaging messaging X — messaging
subnetwork 1 subnetwork 2 subnetwork 3
7:00 7:15 7:30 7:45 8:00 8:15 t

Figure 1: Representation of the scenario of the telecommunication in the form of evolving network.

The rest of this paper is structured as follows. We introduce and discuss related works in Section 2] Then, the
problem faced in the paper is formally stated in Section 3] In Section ] the proposed computational solution, called
KARMA (networK streAm macRoscopic Microscopic chAnges), is described. We structure it in four main steps and
describe the algorithmic details. The experimental setting is detailed in Section[5] where the results are also reported
and discussed. Finally, in Section|§|, conclusions are drawn and future research directions are identified.

2. Related Work and Contribution

In this section we discuss the recent literature under three different perspectives and emphasize the novelty of the
current paper for each perspective.

The first perspective concerns the problem of change detection. A typical assumption, also considered in this
work, is the absence of any ground truth able to establish which data represent a change and which do not. A different
solution would be based on labeling, but this requires manual intervention, is subjective and is time-consuming due
to the complexity of the network and to the size of the stream. For these reasons, for change detection, unsupervised
techniques are more attractive and viable than supervised ones.

In unsupervised change detection we can identify two main research lines, the first one focuses on the discovery
of variations concerning the network as a whole and thus investigates what we name macroscopic changes in Section
[Il while the second line is addressed to the characterization of variations local to portions of the network and thus
considers what we name microscopic changes in Section[I] Then, we may ascertain that the current studies cover only
some aspects of the problem at hand and that they might be limited to face only sub-problems. As our best knowledge,
there are very few attempts able to provide a holistic way to the problem while detecting both the variations of the
whole network and the variations on local portions [9]. Simultaneously extracting macroscopic and microscopic
changes in the practical scenario of the streaming network data represents the main novelty of the current paper.

One of the major challenges when dealing with data streams, which are typically generated in non-stationarity
environments and characterized by a dynamically changing data distribution, is the phenomenon of the concept drift.
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Widmer and Kubat [[10] introduced the notion of concept drift by distinguishing the real concept drift from virtual
concept drift: the former reflects real changes occurring in the environments, the latter does not occur really in the
environment but, rather, in the description of the environment done with the data streams, which closely concerns the
data distribution. Delany et al. [[L1] and Sun et al. [[12]] revised the notion of virtual concept drift by distinguishing
those sudden (abrupt and instantaneous) from those gradual (moderate and slow). We fully consider this notion since
our method uses a flexible windowing mechanism to catch both sudden and gradual changes.

The second perspective concerns the methodological approach. We resort to the frequent pattern mining frame-
work as solution to generate a summarizing form of the network data stream. We should note that frequent patterns
(subnetworks) are not the primary objective of the paper, but the means to capture two kinds of changes. There are
several works in the literature that use a similar approach: in [13] the authors study the problem of analyzing the
whole evolution of the network and propose a method which creates a graph (i.e. a set of patterns), where conserved
states of the network are the vertices, while the admissible transitions among those states are the edges. The conserved
states correspond to sequences of consecutive time-stamped networks with structural similarity. They are represented
as induced subgraphs whose configuration of the relations (labelled edges) and nodes occurs frequently over the cor-
responding sequence. The transitions are associated to modifications on the nodes of a state and can determine the
migration towards the next state. The paths of the graph of the states represent alternative courses which can charac-
terize the whole evolution. Only those which are considered maximal are retained. Berlingerio et al. [[14] proposed to
extract “Graph evolution rules”, that is, graphs where nodes denote entities and edges are labeled with the time-stamp.
In this way it is possible to model the evolution of the entities. Graph evolution rules are extracted from a sequence
of snapshots of an evolving graph by resorting to frequent pattern mining solutions. Although the problem solved in
this work is similar to ours, this approach is only able to represent insertions and not deletions of nodes/edges. The
notion of “Co-evolution pattern” [[15]] has been introduced to model simultaneously occurring evolutions. It aims at
capturing the change of attributed dynamic graphs at different levels of granularity. An attributed graph is a particular
kind of graph with nodes described by a set of attributes. Thus, a co-evolution pattern represents a subgraph whose
attribute values follow the same evolution. Each subgraph is associated with two kinds of information, that is, the
trend of the attribute values and time-points in which the attribute has that trend. Compared to our work, there are
several differences, the main one is that does not work in the streaming scenario.

Changes in data streams have been recently considered in the algorithm CD-TDS [16], which, similarly to our, ex-
plores the problem at two levels of granularity by defining two different types of change, “local changes” and “global
changes”. The former refer to changes in the distribution of the data and correspond to quantitative variations, that is,
changes of the frequency of individual items. The latter refer to changes in the connections among the data and cor-
respond to structural variations, that is, changes of co-occurrences of items without taking variations of the frequency
into account. Thus, they denote evolutions of different nature, but, contrary to our work, they are not related each
other. In fact, local changes are detected independently from the presence of global changes. In [17] we investigated
the task of characterizing the dynamics by introducing the notion of evolution chains. In that method frequent patterns
represent subgraphs which exhibit frequent label changes. These changes are discovered over consecutive and pre-
defined time-periods and then combined in sequence to model the evolution of the network. More recently, in [18] we
have studied the same problem within a logic programming framework, which enables the integration of background
knowledge on the network and the representation of temporal information associated to the changes. In particular,
we studied the task of capturing variations exhibited by the patterns discovered from a data network over time. Al-
though these two methods capture the whole evolution of the network, they work on local portions of the network by
disregarding changes which can concern its whole structure. Also, they assume that the changes occur necessarily in
pre-defined time-periods, which makes their application rather limited in the case of streaming environments. Nohud-
din et al. [[19] track changes in the trend of statistical parameters of frequent patterns in social networks. The patterns
are mined from descriptive properties of the nodes of the networks and therefore do not provide information on the
structural changes of the network.

Since the aforementioned methods consider evolving networks data which are not necessarily associated to data
streams, the third perspective concerns change detection in the streaming setting. In this field, extensive research has
been done on the problem of anomaly (or outlier) detection, where the task is to identify items, events or observations
of the data stream which do not conform to the expected behavior. Anomalies occur infrequently and appear as abrupt
changes [20]. One of the most recent works is reported in [21]]. It extends the traditional spectral-based method to
address the issue of the scalability of the network stream. In particular, the authors combine the compress sensing
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theory with random projection, to handle large-scale networks as compressed data. Normal behavior is modeled with
the principal subspace, while the anomalies are captured in the residual subspaces.

Another research line focuses on the identification of correlated evolutions. For instance, [22] describe a graph-
theory inspired approach to discover changing components. They report an algorithm to efficiently mine frequent
components by combining the density of the evolutions and the size of the changed subgraphs. A problem which is
more similar to ours has been investigated in [23]], where the aim is to identify “burst areas”, that is, temporal windows
that show significant differences with respect to previous windows (by looking at the snapshots in each window). In
this work, the authors propose working on the counts of the changes that the weights of edges exhibit. The technique
uses a wavelet tree to maintain the counts of the changes. This gives the opportunity to incrementally identify burst
areas of different sizes without necessarily working on the complete representation of the periods involved. The main
difference with respect to our approach is that [23] do not resort to the concept of frequent subnetworks but propose
to define bursts as subgraphs by exploiting the changes of the weights associated to the edges. Finally, the use of
the frequency in the change detection problem has been investigated also for unstructured data. Zhang et al. [24]
propose “scientific evolutionary pathways” to track evolutions of scientific research areas in terms of changes of the
composition of involved terminology and changes of the frequency of involved key-words.

3. Background and problem definition

Before formally stating the data mining problem, we provide the notations for data representation and basic defi-
nitions for the rest of the paper. Then, we describe the concepts of macroscopic and microscopic changes by reporting
the necessary notions. Finally, we provide a formal definition of the problem to be solved.

3.1. Data representation

Let D = (Dy,Dy,...,D,,...) be the time-ordered stream of networks. At each time-point 7;, the stream has a
snapshot of the network D; = (N, E;), where N; and E; denote the sets of nodes and edges observed in 7;, respectively.
For our convenience, we also define the complete set of nodes N = | J; N; and the complete set of edges E = | J; E;.
Since the definition of N and definition of E assume that we know the complete sets of nodes and edges, we consider
them to be “active” sets, that is, sets that are continuously updated and that are defined according to the information
we already have. Intuitively, we can imagine that the stream D records the state of a network defined on the sets (N, E)
and produces an unbounded sequence of time-stamped snapshots of such a network.

We assume that each node and edge is labeled and that two nodes can be linked by multiple labeled edges with
different labels. Labels from the nodes are taken from the set NV, while labels for the edges are taken from the set &.
Therefore each snapshot D; is a labeled multi-graph extensively described by the set D; = {(u,v,e) | u,v € N;,e € &}.
An element (u, v, ) is termed as triple. A triple occurs at the time-point 7; if the snapshot of the network D; includes
it.

A landmark window (or, simply, window) W = [r;,7;] is the sequence of consecutive time-points {7;,...,7;}.
Following [25], a (landmark) window W”’ is successive to another (landmark) window W’ when they share some
initial time-points, that is, W' = [1;,7,] and W” = [1;,7,], with 7; < 7, < 7). For simplicity, we use W to refer
also the sequence of snapshots {D;, ..., D;} observed at the time-points {7;, ..., 7;} respectively. Consequently, the
width |W|, corresponding to the number of time-points in W (|[W| = j — i + 1), is equal to the number of the snapshots
collected in W.

In the following we report an example of time-ordered stream in the context of the telecommunication network.
The example shows a time-ordered stream in which each snapshot registers the state of the network every 15 minutes
(Figure@and Table |I|) Also, the example shows two windows W’ = [7:00, 8:00] and W = [7:00, 8:45] that collect
five and eight snapshots respectively.
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Figure 2: A time-ordered stream in the context of the telecommunication network. Each snapshot registers the state of the network every 15
minutes.

Table 1: The time-ordered stream represented as sets of triples associated to their respective time points.
Ti Di

7-00 {(user_A, user_B, voice_call),(user_A, userB,'instammessaging),

(user_A, user_B, short_messaging)}

7:15 | {(user_A, user_B, instant_messaging),(user_A, user_B, short_messaging)}

7:30 {(user_A, user_B, short_messaging)} w’
7:45 {(user_A, user_B, voice_call),(user_A, user,B,.instam,messaging),
(user_A, user_B, short_messaging)} w’
8:00 0
8:15 {(user_A, user_B, voice_call),(user_A, user_B, instant_messaging)}

8:30 | {(user_A, user_B, instant_messaging),(user_A, user_B, short_messaging)}

8:45 | {(user_A, user_B, instant_messaging),(user_A, user_B, short_messaging)}

3.2. Basics

Let P = {(u,v,e) | u,v € N,e € &} be a pattern expressed as a set of triples, we denote as |P| the length of the
pattern P. The support supw(P) of a pattern P is its relative frequency in a window W, which is computed as the
fraction of the network snapshots collected in W in which P occurs.

D;eW|PCD;
supw(P) = 21€ IV|V| < Dal )

This means that we simplify the mechanism of counting of the occurrences of a pattern P in a snapshot D; by
checking the presence/absence of its triples. The support has values in [0,1].

Let W be a window and P be a pattern. If the support supw(P) in W is greater than or equal to minS UP, then
P is frequent in W. This means that P occurs in at least a set of size minS UP of the snapshots collected in W
(minSUP € [0, 1] is a user-defined threshold). Conversely, if the support supy (P) is less than minS UP, then P is
infrequent

Definition 1 (Subnetwork). Ler P be a pattern and Np = {v € N | A(u,v,e) € PV (v,u, e) € P}) be the set of nodes
involved in P. Then, P is a subnetwork if, for each pair of nodes (a,b) € Np X Np, there exists a path in P that connects
a and b.

Intuitively, the subnetworks correspond to patterns in which it is possible to reach every node from all the other
nodes, therefore they are connected subgraphs. However, in the rest of the paper we use the term subnetworks to
specifically refer to subgraphs represented in form of sets of triples. For brevity, we denote subnetworks which are
frequent patterns as frequent subnetworks.



3.3. Macroscopic changes

As introduced in Section [T} macroscopic changes correspond to changes on the set of the frequent subnetworks
and on the set of the infrequent subnetworks. To handle these sets and efficiently detect the changes, we use a lattice
structure, which is largely used in problems of frequent itemsets mining [26].

A lattice L is a partially-ordered set and, in this work, it is defined according to a generality order > based on
the binary relation of subset-containment between subnetworks. The lattice is organized by levels of generality: given
P and Q two subnetworks, we say that P is more general than Q (P > Q), if P C Q (for instance, P, and P, in Figure
[). More precisely, at the same level of L we have subnetworks of the same length but that are not related by the
generality order >. At the (k+1)-th level there are subnetworks with (k+1) triples which are one more with respect to
the triples of the subnetworks at the k-th level.

The generality order > is monotonic with respect to the support, thus whenever P is infrequent, its more specific
subnetworks (e.g., P4 and Ps) will be infrequent too.

The structure of the lattice depends on N and &€ and does change over time; what changes is the frequency associ-
ated to the subnetworks, as a consequence of the arrival of new snapshots. This results in the update of the set of the
frequent subnetworks and of the set of the infrequent subnetworks: subnetworks which were frequent (infrequent) can
become infrequent (frequent). Therefore, we search for macroscopic changes as variations of the set of the frequent
and of the set of the infrequent subnetworks on two successive landmark windows. To quantify these variations, we
use the following formula (macroChange):

MC(.£/, LN) — |TL" - T[’I + |T£’ - ¢£”|’ )

F o +1F o = F ]

where, given two successive windows W’ and W” and their associated lattices £’ and L”, ¥, and ¥ p» are the
sets of frequent subnetworks identified on £” and L” respectively. The lattices £ and L have the same structure,
but differ on the support values that are computed on the snapshots W’ and on the snapshots W’ respectively. The
set (F p» — F o) comprises the subnetworks which have become frequent in W, while (¥ o — F z) is the set of
subnetworks which have became infrequent in W”'. Intuitively, the macroscopic change is expressed by the differences
between the sets ¥  and ¥ p». The macroChange has values in [0,1].
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Figure 3: a) Representation of the lattice £ of subnetworks arranged by generality order . b) Representation of the macroscopic change between
W’ and W”. The two lines in bold denote the set of frequent subnetworks in W' (¥ = {Py, Py, P2, P3, P4, Ps, Pg, P7}) and the set of frequent
subnetwork in W (Fp» = {Py, P1, P2, P4}). The value of macroChange is computed upon the two differences between the sets ¥, and F
(Fyr —Fypr ={P3, Ps, Pg, P7} and F v — F o = 0 respectively).

As an example, consider the lattice of subnetworks reported in Figure [3] and the snapshots shown in Table [T}
Suppose that their support values in £’ (built on W’ = [7:00, 8:00]) are the following: supy-(P;) = 0.6, supy (P2) =
0.8, supw(P3) = 0.4, supy (Py) = 0.6, supy (Ps5) = 0.4, supw (Ps) = 0.4, supy (P7) = 0.4. Whereas in L’
(built on W = [7:00, 8:45]) the support values are supy~(P1) = 0.75, supw~(P2) = 0.75, supw~(P3) = 0.25,
supwr(Pg) = 0.416, supw~(Ps) = 0.25, supw~(P¢) = 0.166, supy~(P7) = 0.166.

By assuming the threshold minS UP=0.35, we observe that all the subnetworks belong to the set of the frequent
subnetworks ¥’ when considering the snapshots of the window W’. Instead, when considering the snapshots of the
window W”, the subnetworks P, P, P, remain in the set of the frequent subnetworks ¥, while the subnetworks
Ps, Ps, Pg, P7 become infrequent, so the value of macroChange is 0.57, as shown in Figure@

3.4. Microscopic changes

In this work, we suppose that macroscopic changes are triggered by a combination of microscopic changes, which
we formulate by adapting the concept of emerging patterns [27]]. In their classical use, the emerging patterns work
on static data to solve a classification task through a discriminative approach. The patterns whose frequency greatly
differs from classes are considered to be emerging. We use them in a different scenario (that is, evolving data) and for
a new purpose (that is, characterizing the evolution of the network over a stream of snapshots). More precisely, the
emerging patterns model subnetworks whose occurrences change between two successive landmark windows.

Definition 2 (Emerging Subnetworks (ES)). Let W and W”' be two successive landmark windows, supy(P) and
supw»(P) be the support of a subnetwork P in W’ and in W”', respectively. P is emerging if

supw: (P) > minGR supw (P)
supy» (P) supy (P)

where minGR(> 1) is a user-defined minimum threshold.

> minGR, 3)

The formulas reported above allow us to quantify the magnitude of the changes for each subnetwork, that is, at the

microscopic level. While the ratio % (denoted as growth-rate, GRy» yw~(P)) models the increase of the support
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from W’ to W”, the ratio ;Z;l; ‘VVV((?) (GRw» w+(P)) models the decrease of the support from W’ to W”’. According to

Dong and Li [27], we assume that GR(P) = % =0and GR(P) = %0 = +o0o0.
An example of emerging subnetwork in the context of the telecommunication network can be drawn over the
windows W’ = [7:00, 8:00] and W"" = [7:00, 8:45]:

Pg : {(user_A, user_B, short_messaging), (user_A, user_B, voice_call)}
where [supw (Pg) = 0.4] and [supw~(Pg) = 0.166].

Here, the value of the growth-rate GRy» w(Pg) is 2.4 (0.4/0.166). If minGR=1.5, the subnetwork Pg is considered
emerging and it expresses a change in the support of a portion of the whole network. More precisely, it denotes the
same subnetwork (see Definition [T] Figure [35) which has a decreasing number of occurrences from W’ to W”.

3.5. Formal definition of the problem

We can now give a formal statement of the problem of mining macroscopic and microscopic changes:
Given:

e A stream of snapshots of the network D = (D, D5,...,D,,...)

A threshold minS UP € [0, 1], which represents the minimum support value for mining frequent subnetworks

A threshold minMC e [0, 1], which represents the minimum value for detecting macroscopic

A threshold minGR € [1, +o0), which represents the minimum growth-rate for detecting microscopic changes
changes

Find:
e The pairs of successive landmark windows (W’, W”) for which MC(L', L") > minMC, where
— L’ and L” are the lattices generated from W’ and W” (resp.), according to minS UP,

e For each pair of windows (W', W), identified at the previous point, all the emerging subnetworks (according
to minGR) which represent subnetworks.

All the three parameters minS UP, minMC and minGR, operate on the support of the subnetworks. As in many
frequent pattern mining algorithms, the identification of the best values for input parameters is subjective and de-
pends on the desired trade-off between completeness of the extracted knowledge and efficiency of the data mining
process. In the experimental section we will investigate the effect of these parameters on the identified macroscopic
and microscopic changes.



4. The Algorithm

For the problem formalized in the previous section, we propose the algorithm KARMA (Algorithm [T), which
operates by orchestrating the execution of four main procedures.

1.

2.

Procedure 1 (Algorithm |1} lines EH@[) uses two time-window models (landmark window and sliding window)
to handle incoming network snapshots and searches for changes on two successive landmark windows.
Procedure 2 (Algorithm [T] lines [T}f4) initializes the lattice of the subnetworks when the stream analysis starts
(see Figure[d)). Algorithmically, the lattice is initialized by means of a frequent subgraph discovery algorithm
and, upon the extensions of the landmark windows, the lattice is updated and not reconstructed from scratch.
Procedure 3 (Algorithm [T] lines [BH9) concatenates the block IT of newly incoming network snapshots to the
window W’ and updates the support values of the subnetworks. Consequently, it updates the set of the frequent
subnetworks and set of infrequent subnetworks (see Figure fd] a block IT of network snapshots is concatenated
to the window W’).

Procedure 4 (Algorithm([T] lines[TOT9) is in charge of detecting macroscopic changes. This is done by matching
the lattice L', which has been updated with the snapshots of the window W’, against the lattice £, which has
been updated with the snapshots of the window W” = W’ UTI (see Figure i5). If there are not macroscopic
changes (lines [T6T9), KARMA considers the window W” as W’ (W”=W’ U II) and continues to process the
stream D by taking a block I1" of new snapshots (see Figure[c). On the contrary, the set of frequent subnetworks
and the set of infrequent subnetworks change significantly. In this case, KARMA analyzes individually the
subnetworks, in order to detect changes in terms of the support values (microscopic changes, lines [TTI6).
Once the analysis is completed, KARMA delivers the results relative to the (current) landmark windows W’
and W” and restarts by initializing the landmark window W’ with the network snapshots that have caused the
macroscopic changes, that is, the old block II. The new window W” will be created by concatenating a new
block IT’ of network snapshots to the window W’ (see Figure [Ad).

In the following subsections we provide further details on procedure 2, 3 and 4.

Algorithm 1: KARMA

e X N AN R W N -

—
=

[ N L i <
S v ® 9 A U AW N =

inputs : D, minS UP, minMC, minGR
output:Al(?s /* the set of macroscopic changes described in terms of time-windows and emerging

subnetworks */

W’ —0,L «—0,L" 0

MCs <0

W’ « initializeWindow(D)

L' « initializeLattice(W")

while a new block I1 comes from D do

W” «— W ull

L «— updateSupport(L',W")

Fp —{PeL'| supy (P)>=minSUP}
Fpr —{PeL”| supwr(P) = minS UP}

[F g0 =F pr | HF o1 =F gl
MC — == F

if MC > minMC then

ES «— computeEmergingS ubnetworks(¥ p, F r, minGR)
MCs « MCs U {{W',W"),ES)}

W « 11

L« updateSupport( L', 1)

else

WI «— WII
LI «— LII

end

end
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Figure 4: The network stream is analyzed through landmark window models: given an initial time window W’ and the data block II (a), two
successive windows W’ and W’ = W’ U1 are considered (b). If no change is detected between W’ and W”, the extension of the window W’ with
IT is kept (c), otherwise the analysis re-starts with a new landmark window, that is, the window W’ shifted forward (d).

4.1. Construction of the lattice and discovery of frequent subnetworks

To build the lattice there are two options. First, using existing algorithms of frequent subgraph mining. Second,
adapting existing algorithms of frequent pattern mining originally designed for streaming data. We follow the second
alternative since many solutions of frequent subgraph mining proposed in the literature i) are not designed to work on
streaming scenario, ii) could not handle multi-edges networks, that is, network allowing more than one edge among
nodes and iii) consider only frequent subnetworks, while we need to track also those infrequent. Our solution revises
the algorithm proposed in [28]] and extends it to i) handle subgraphs represented as sets of triples (this is necessary
in order to model the network), ii) model streaming data as stream of (sets of) triples, instead of working on classical
itemsets, iii) work on streaming scenario through an efficient computation of the support values without accessing the
lattice, iv) track the frequent subnetworks that at a certain time-point become infrequent and the infrequent subnet-
works that at a certain time-point become frequent. An example of lattice built by KARMA is illustrated in Figure 3}

To implement the lattice formalized in Section we use a set enumeration tree (SE-tree) [29], which is a data
structure that arranges a search space according to a pre-defined order [30]. In this work, we use it to arrange the lattice
over a tree, whose vertices are associated to the elements of the power set of the set of all the triples P(N X N X &) (see
Figure5). The vertices of different levels of the SE-tree are sorted by the generality order (solid arrows in Figure 5p),
as formalized in Section[3.3] The order of the vertices of the same level relies on a preference criteria on triples that
uses the lexicographic order on the labels of nodes and edges. More precisely, the vertices (subnetworks) of each level
of the SE-tree are sorted as follows: given two triples (#;,V;,e;) and (u;, v}, e;), we first consider the lexicographic
order between the labels of the nodes u; and u;, then the lexicographic order between the labels of the nodes v; and v;
and finally the lexicographic order between the labels of the edges e; and e;.

For instance, the subnetworks

Py : {(user_A, user_B, instant_messaging), (user_A, user_B, short_messaging)}
Ps : {(user_A, user_B, instant_messaging), (user_A, user_B, voice_call)}

are sorted in the order “first P4 then Ps” (see Figure ﬂ)) because the label short_messaging of the second triple of Py
lexicographically precedes the label voice_call of Ps.

The procedure of generation of the subnetworks relies on a recursive strategy which works on the vertex of the
k-th level to determine the vertices of the (k + 1)-th level. In particular, it /) follows a depth-first search method and 2)
builds a subnetwork with (k+1) triples, by combining two subnetworks with k triples that meet the established order
(dashed arrows in Figure Bp). To generate a vertex of the level 2, we require only that the two vertices of the level 1
meet the lexicographic order. To generate a vertex of the level (k + 1), successive to the level 2, we require that i) the
two vertices of the level £ have the first k — 1 triples in common and ii) the k-th triples of the two vertices meet the
lexicographic order.

11



Py=0 length=0 S
e 0=

I

P, = {(user_A, P,=(user_A, P;={(user_A,

user B user B user_B, P, = {(user_A. Py =(user_A, P;= {(user_A,

instant messazin;)}- short messaain_z)}: voice CaIl}} length=1 user_B, user_B, user_B.

- T - L I instant_messaging)}  short_messaging)} voice_call)}

i N A - 1 T AT ~ e

P, = {(user_A. P; = {(user_A. P= {(user_A. Pi={ (11531" A, Py = {(user_A. o= {(usﬁ' A
. us ef'—B' i us ef'—B' use{'ﬁB. length=2 user_B. user_B. user_B.
instant_messaging), instant_messaging).  short_messaging), instant ins), instant « ine). short_messaging).
(user_A, (user_A. (user_A. T (user A, T (user_A. T (user_A.
user_B, user_B, user_B, user B. user B. user B.
short_messaging)} voice_call)} voice_call)} short_messaging)} voice_call)} voice_call)}

P;={(user_A, user_B, instant_messaging). P, = {(user_A, user B, instant messaging).
(user_A. user_B. short_messaging). (user_A. user B, short_messaging),
(user_A. user_B. voice_call)} (user_A, user B, voice call)}

length=3

Figure 5: a) Representation of the lattice of subnetworks arranged by generality order >. b) Representation of the SE-Tree used to arrange the
lattice on a tree data structure, each vertex of the SE-Tree is a subnetwork.

For instance, the subnetworks

Py : {(user_A, user_B, instant_messaging), (user_A, user_B, short_messaging)}
Ps : {(user_A, user_B, instant_messaging), (user_A, user_B, voice_call)}

are joined to form the subnetwork
P7 : {(user_A, user_B, instant_messaging), (user_A, user_B, short_messaging), (user_A, user_B, voice_call)}

which is inserted into the SE-Tree in accordance with the preference criteria on the triples (that is, lexicographic order
on the labels).

Each vertex is associated to a list (tid list) that stores the time-points in which the triples of the relative subnetwork
occur together. These lists are used to identify the frequent (infrequent) subnetworks and allows us to avoid re-
scanning the snapshots previously acquired when computing the support. The support values are initialized with the
network snapshots collected in the window W’, whose initial width is fixed by the user (Figure[dd). In particular, the
support of the subnetworks of length 1 is simply computed by counting the number of snapshots in W’ that include
the relative triple, while the support of the subnetworks of length k + 1 (k >1) is determined by computing the set
intersection of the tid lists of the two subnetworks at the level k that have been used for the join. The subnetworks
whose support values exceeds the threshold minS UP are included in the set F ,.. This operation benefits of the
anti-monotonicity of the support, which prevents the exploration of the whole lattice.

During the construction of the SE-tree we do not pose any constraint, the sole condition required is the connect-
edness property of the patterns (see Definition [T). In fact, since we are only interested in sets of triples, in which
where any node is connected to any other node through a path, we pose the constraint to join patterns (vertices of the
SE-tree) if at least one of them is a subnetwork. The rationale immediately follows the property that we can not obtain
subnetworks by joining two patterns that do not represent subnetworks if the patterns have the same prefix. Conse-
quently, patterns which do not represent subnetworks are only kept to “expand” already generated subnetworks at the
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next iterations, and not kept and used for further processing steps (e.g. the identification of macroscopic/microscopic
changes). Although this aspect could be considered as a limitation of the method, it allows us to do not lose subnet-
works which can be obtained from two non-subnetwork patterns and to reduce the size of the lattice (whose size can
be a problem in a data stream environment). Moreover, this choice is in line with papers that deal with the problem of
identifying an incomplete subset of existing subgraphs [31} 32].

An example of the procedure of construction of the SE-tree is reported in the following and illustrated in Figure
[Bb. By supposing the level 1 of the lattice already built (Figure [5] length=1), the subnetworks are taken by pairs, in
order to build the subnetworks of the level 2. The pairs are created by following the preference criteria on the triples,
thus we have (P;,P,),(P1,P3) and (P,,P3). A pair at time is considered: we take P; and P, and generate P4, which
is appended at the level 2 (Figure [5p, length=2). The “append” operation is completed by associating the tid list to
P4 and computing the support by means of the set intersection of the tid lists of P; and P,. If Py is frequent, then it
is stored in the list ¥ o (Definition [3.3), which will be used to detect possible macroscopic changes. Subsequently,
we take P, and P; and generate Ps (Figure Eb, length=2) with the same procedure used for P4. As two vertices
are appended at the level 2, in coherence with the depth-first search, they can be evaluated and joined to build the
subnetworks of the level 3. Thus, we join P4 and Ps, which have the first triple in common, we generate P; and
append it to SE-tree (Figure5p, length=3). The subnetwork P is the sole vertex at the level 3, therefore no operation
can be performed at that level, then we go back to the preceding level (level 2). There, we find the subnetworks P4 and
Ps that have been already evaluated and, since no new subnetwork were generated, we go back to the level 1. There,
we consider the subnetworks that have not been evaluated before, that is, P, and Ps, then we generate Pg and append
it to the level 2. Subsequently, we will consider all the pairs of subnetworks we can create with Pg, that is, (P4,Pg)
and (Ps,Pg), which, recursively, will be evaluated and processed as explained for (P4,Ps). However, the subnetworks
P4 and Pg will be not joined because they have not the first triple in common. The same consideration can be done
also for Ps and Pg.

4.2. Update of the lattice

After the construction and initialization, the lattice £’ is continuously updated in the support values as result of the
analysis of newly incoming network snapshots. To do this, KARMA uses a data block IT that shifts forward along the
stream (sliding window model) and acquires a collection of fixed size of network snapshots (see Figure[dd). The data
block IT is therefore concatenated to the window W’ to build the landmark window W = W’ U I1, which mirrors the
distribution of the occurrences over the network snapshots acquired so far (see Figure 5). Subsequently, KARMA
updates the tid lists of the subnetworks by considering the new occurrences present in the data block IT. Such a
modification leads to new lattice £, which is identical to £ in the structure, but different in the support values of the
subnetworks. In fact, the new occurrences may modify the tid lists of the subnetworks with the effect of increasing or
decreasing the support, or even making frequent (infrequent) subnetworks that were infrequent (frequent).

To efficiently perform such an update, we fully exploit the implementation of the lattice in form of SE-tree and, in
particular, consider the links, due to the generality order, between the subnetworks at the (k+1)-th level and the sub-
networks at the k-th level (dashed arrows in Figure Bp). Indeed, any modification done on the tid list of a subnetwork
is automatically propagated to the subnetworks at the successive level. Procedurally, for each new data block I1, we
only count the occurrences of the triples of the subnetworks at level 1 of the lattice and update the corresponding tid
lists. The tid lists of the other levels of the lattice are updated by following (downwards) the links and performing the
set-intersection of tid lists. This computation allows us to determine the exact values of the support, while avoiding
approximate counts [33]]. Finally, to build the set ¥ ,», we select the subnetworks whose support values exceeds the
threshold minS U P. This operation benefits of the anti-monotonicity of the support, which prevents the exploration of
the whole lattice.

4.3. Detection of macroscopic and microscopic changes

The lattice £ mirrors the magnitude of the changes to the lattice £’ introduced by the snapshots of the data
blocks I1. Thus, we consider the two lattices £’ and £"" and determine the value of MC(L’, L") (defined in Section
[3:2), in order to quantify the change and establish whether macroscopic changes emerge. To compute MC(L', L"),
we need the sets of frequent subnetworks #, and #~, which are generated when acquiring the snapshots of W’ (see
Section[.T)) and when acquiring the snapshots W = W’ UTI (see Section[d.2), respectively.
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Algorithm 2: Detection of emerging subnetworks

1 computeEmergingSubnetworks (¥, ¥ y», minGR)
inputs : ¥, ¥, minGR

output: ES s /* the set of microscopic changes */
2 ESs <0
3 foreach P € (¥ — F ) do
L T
5 if GR > minGR then
6 | ESs < ESsuU({P};
7 end
8 end
9

foreach P € (Fp — Fr») do
' (P)

GR — S0

if GR > minGR then

| ESs«— ESsU({P};
end

—
=]

—
N -

[
w

end

-
£

Determining the value of MC(L’, L") allows us to quantify the variation in the distribution of the occurrences
between the window W’ and the window W” = W’ UII. Such a variation has a two-fold nature: the first type
corresponds to the evolution of subnetworks which were frequent over W’ and which become infrequent over W’ U I1
(IF = F £~1), while the second type corresponds to the subnetworks which were infrequent over W’ and which
become frequent over W’ U I1 (|F o~ — F »|). This clarifies why we revise the whole lattice of the subnetworks.
Indeed, if we had limited the update to the frequent subnetworks only and neglected the infrequent ones, we would
have lost the evolution of infrequent subnetworks that become frequent. We deem these change significant

Not all the values of MC(L’, L) are deemed as interesting, but only those that exceed the threshold minMC.
Therefore when the value is less than the threshold minMC, we assume that no macroscopic change has been detected.
In this case, the analysis continues by keeping the landmark window W’ and processing next data blocks I1. Thus, the
old window W” becomes the new window W’ and the old lattice £ becomes the new lattice £’, as shown in Figure
On the contrary, when the value of MC(L’, L") exceeds the threshold minMC, an alert for network data changes
is raised. This activates a procedure (Algorithm 2) aiming at identifying the subnetworks which exhibit the changes
that motivate the macroscopic change.

This procedure is performed by exploring the two lattices and matching for each subnetwork, the support in £’
against the support in £”. More precisely, it checks whether each subnetwork is frequent (infrequent) in £’ and
is infrequent (frequent) in L. Clearly, the subnetworks which are frequent (infrequent) in £’ and remain frequent
(infrequent) in £ denote no evolution and therefore they are excluded because they are not relevant for the description
of the change.

However, motivating the macroscopic change with subnetworks, whose support, although relatively stable, “crosses”
the minS U P threshold could represent a severe limitation of the approach. Reasonably, in these cases, the subnetworks
do not provide a relevant contribution to microscopic changes. Indeed, the microscopic changes should be ascribed to
subnetworks that specifically exhibit a significant variation of the support. In order to consider this aspect, we evaluate
whether Equation (@) is satisfied, that is, the variation of the support of the subnetworks exceeds the threshold minGR.
Note that Equation (3] takes into account both increase and decrease of the support. The subnetworks which meet
these constraints singularly denote emerged microscopic changes.

The procedure (@) that finds the emerging subnetworks is organized in two steps, described in the following:

1. Algorithm [2| lines the procedure evaluates each subnetwork P € (¥, — ) which is frequent in L
and infrequent in £, and adds to the set of emerging subnetworks only those whose growth-rate GRy» - (P)
exceeds the user defined threshold minGR.

2. Algorithm 2] lines the procedure evaluates each subnetwork P € (¥, — F ) which is infrequent in L
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and frequent in £’, and adds to the set of emerging subnetworks only those whose growth-rate GRy y(P)
exceeds the user defined threshold minGR.

Finally, the analysis re-starts by initializing the window W’ with the network data which have determined the
macroscopic change (i.e., W = II). The lattice does not change, but the support values of the subnetworks are
re-initialized by only considering the occurrences present in the network snapshots of the window W’ (see Figure[Ad).

4.4. Time complexity analysis

We evaluate the time complexity of KARMA by considering the worst-case scenario. As for many frequent
pattern mining algorithms, we will conclude that the worst-case complexity is far not compatible with the real-world
applications. For this reason, we also analyze the average-case time complexity of the algorithm by taking advantage
of previous theoretical results.

Let n be the number of nodes (i.e. n = |N|), m be the number of edge labels (i.e. m = |&|), W’ be the landmark
window and IT be the data block of network snapshots such that W’ = W’ U II. The computational complexity of
KARMA depends on: i) the cost of constructing and updating the lattice of subnetworks over the data stream, ii) the
cost of computing the value of MC, iii) the cost of identifying the emerging subnetworks.

1) Since the algorithm needs to explore the lattice of subnetworks, the total number of frequent subnetworks is
bounded by the cardinality of the power set of all the possible triples P(N x N x &) = 2NHNHEl = 2'm  therefore
oQR™™). Tt is noteworthy that this size is in line with usual worst-case scenario in frequent pattern mining. However,
since we (as all the frequent pattern mining algorithms) use the minimum support threshold, this size is, in practice,
much smaller. Moreover, KARMA is able to generate only (connected) subnetworks. Supposing that each node is
connected to at most other k < n nodes in a network snapshot, then the total number of frequent subnetworks that
can be generated by KARMA is, in the worst-case, O(2"%"). Obviously, this size affects the time complexity. Indeed,
when joining two subnetworks of length i to form a subnetwork whose length is (i + 1), we should compute the
intersection of their respective tid lists of size O(|W”’|), whose cost is O(2"%™), resulting in a total cost of O(2"*™.|W"’|).
However, KARMA adopts a different solution: the intersections are computed for each data block IT and, therefore,
incrementally maintained. Thus, when the new data block IT arrives, the old tid lists are adapted by accounting for the
snapshots of II. As a consequence, the cost of the intersection is O(|I1|), resulting in an overall cost of O™ 1)),
which can be significantly better than O(2"%" - |W”’|) because |I| < |W"’|

ii) The computational cost of computing the value of MC, in theory, is proportional to the size of ¥, (relative
to W) and ¥~ (relative to W’”) because it requires the computation of three cardinalities: |Fp — F |, [Frr — F ol
and |¥|. However, these three cardinalities can be computed avoiding set differences during the update of £’. This
is done by simply counting subnetworks whose updated support “crosses” the minimum support threshold value.
Therefore, the cost of computing the value of MC is O(1).

iii) Since we are only interested in computing the GR of frequent (infrequent) subnetworks that become infrequent
(frequent), the identification of emerging subnetworks has a computational cost that is proportional to new; and to
newis, where news = |Fp» — F i, newis = |Fp — Frrl.

Therefore, the worst-case time complexity of the entire process executed when a new block arrives is:

o 2" 0| + news + newis
N————— —_————

update cost  extraction of emerging subnetworks

Since news + newys << 2™ pecause new; and newys refer to subnetworks contained in the lattice, the final com-
plexity is O(2"%" . |T|) or, in other terms, the time complexity of KARMA is linear in the size of the lattice and linear
with respect to the size of the arriving block.

As we can see, the exponential complexity in the worst-case scenario is rather incompatible with real-world
applications. In fact, the combinatorial explosion of frequent subnetworks can easily violate the streaming constraints
imposed by the problem that KARMA solves. In the average-case scenario, the overall amount of processing that
needs to be done depends on the content of the window W = W’ U II. In fact, each snapshot of the window can
contribute to altering the relative frequencies of subnetworks and, therefore, the update of the lattice.
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A common setting that has been proven useful when studying the average-case is that of the random shopper that
randomly fills any transaction with items. In the case of KARMA, the analysis is based considering two assumptions
also considered in [34]):

e The random shopper assumption. W’ can be seen as a random database of snapshots from nkm triples in which
each snapshot is produced by the same probabilistic source. The fact that a triple belongs or not to a snapshot
can be modeled as an independent random variable which follow a Bernoulli distribution, with 8 € (0, 1). As a
consequence, the probability IP(P) that a snapshot include a subnetwork P exponentially decreases with the size
of the subnetwork (3M > 0 such that P(P) < M - 6.

e The linear frequency threshold assumption. Because the minimum (relative) support threshold minS up € [0, 1]
is constant we have that the corresponding minimum absolute support threshold » grows linearly with respect
to the size of the window. Thus, resulting in r occ minSup - |W"|, when |[W”’| — co.

When these assumptions hold, [34] proved that the number of frequent patterns is polynomial with respect to the
number of items. So, instead of having 02"y frequent subnetworks, KARMA considers only O(c(nkm)*) where
= L%J and ¢ = % in the average-case. The number of frequent (infrequent) subnetworks that become
infrequent (frequent) is still dominated by O((nkm)*), so the cost of computing the value of MC and the cost of
identifying the emerging subnetworks remains unchanged.

Therefore, the average-case time complexity of the entire process executed when a new block arrives is:

O| (nkm)® - |IT| + news + newig
——— —
update cost extraction of emerging subnetworks

This means that the final complexity is O((nkm)® - |[I1]) in the average-case or, in other terms, the time complexity
of KARMA is polynomial in the number of triples with an exponent that depends on the minimum support threshold.
Furthermore, the time complexity is still linear with respect to the size of the arriving block.

This kind of analysis depends on the nature of the data considered and do not depend on a specific frequent pattern
mining algorithm. By doing this kind of analysis the average cost of the KARMA algorithm is asymptotically the
same, regardless of the frequent pattern mining strategy used during the update of the lattice.

In conclusion, considering both the worst-case and the average-case scenario, we can state that KARMA does not
add further time complexity (under the O(-) operator) to that of the classical frequent pattern mining problem, while
addressing a more complex data mining task which comprises that of frequent pattern mining.

5. Experiments

In order to empirically evaluate KARMA, we performed experiments that aim at qualitatively and quantitatively
evaluating the changes expressed by the lattice (representing the whole network) and by the emerging subnetworks.
The experiments are organized along the following perspectives:

o we study the influence of the parameters minGR and minMC on the macroscopic changes, microscopic changes
and running times.

e we present the results of a comparative evaluation between KARMA and the algorithms proposed in Berlingerio
et al. [14]], Loglisci et al. [18] and Koh [[16], which analyze the evolution of the network with frequent pattern-
based methods. The algorithm described in Koh [16]], specifically, works on data streams, similarly to our
approach.

o we argue the usefulness of the proposed solution in real-world applications with three practical scenario.

Additionally, we evaluate the proposed solution with three variants designed by replacing the algorithm of discov-
ery of subnetworks (described in Section4.1)) with a method of subgraph mining [35] and a method of itemset mining
in data stream [36]). The evaluation of these variants is reported as Appendix to this manuscript.
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As we will observe, the experimental results show that KARMA i) requires less time consumption, as compared
to the competitors, ii) is sensitive to the changes of the whole network and iii) identifies the subnetworks that better
express the evolution of the network.

The experiments are run on an Intel i7 64bit @3.4 GHz desktop running Windows. The source code of the
system, the dataset and some resulting subnetworks are publicly available on Bitbuckefﬂ The datasets used have
time-stamped networks and are stored on the desktop machine as data files. They are converted into data streams by
taking the temporal order on the time-stamps as the order of the network data stream. In the following subsections,
we first present the used datasets and then provide details on the four experiments and obtained results.

5.1. Dataset Description

We performed experiments on five real-world network data streams with different characteristics. In Table 2] we
report the basic statistics and network-based indexes computed by considering each dataset as a stream of network
snapshots. More specifically, we report the total number of snapshots and the minimum and the maximum values of
the i) number of nodes, ii) number of edges, iii) node degree, iv) diameter and v) density over the snapshots.

Table 2: Basic statistics and network-based indices of the datasets. Values are aggregated over time-points.

dataset total num- max/min max/min max/min  node max/min max/min density
ber of | number number degree over the | diameter over snapshots
snapshots of  nodes of edges snapshots over the
over the over the snapshots
snapshots snapshots
KEDS 11070 36/2 91/1 40/1 9/1 5/0.079
NODOBO 41344 26/2 2600/1 2076/1 8/1 72.3/0.35
NOAA 7670 1738/1418 3917/2601 8/1 76/44 0.0028/0.0022
WikiTalk 2185 18344/1 28017/1 14400/1 45/1 45/1
MAWI 51809 360/2 343/1 231/1 1/1 5/0.0053

The first dataset (KEDS) concerns the geographic-social-political scenario described on the news reports on the
Gulf region and collects data on the social and political relationships among nations and world-wide organizations.
The process of construction of these data is illustrated in Schrodt et al. [37]], while the dataset is available at http:
//eventdata.parusanalytics.com/data.dir/levant.html. In this work, as in [38]], we consider this dataset
as a network, where nations and world-wide organizations represent the nodes and social and political relationships
correspond to the edges between the nodes. In KEDS, the labels of the nodes and of the edges are 208 and 20,
respectively. The dataset is collected day by day from April 1979 to July 2009, therefore the time-point representation
is in the format year/month/day (one time-point represents one day). The goal is to identify particular variations in
the flow of the news reports and associate them to actual changes in social and political relationships among nations
and world-wide organizations.

The second dataset (NODOBO) concerns a communication network and contains telecommunication transactions
gathered during a study of the mobile phone usage of 27 students of a Scottish state high-school, from September 2010
to February 2011 [39]. The students communicate by phone calls, text messages (sms) and bluetooth connection.
This dataset includes 13035 phone call records, 83542 text message records, 5292103 bluetooth records, and it is
accessible at http://nodobo.com/release.html. In particular, we have information on the duration of the phone
calls, length of the text messages and type of device used in the bluetooth connections. When building the network,
the nodes represent the students, while the edges represent the different modalities of communication. The labels
of the edges are 11: 5 different labels for the communication based on phone calls (short_call, short_medium_call,
medium_call, medium_long _call, long_call); 5 different labels for the communication based the length of text messages
(short_length, short_medium_length, medium_length, medium_long _length, long_length); one label for the presence
of the bluetooth connection. The labels for the calls and the messages were generated by applying an equal-width
discretization technique with 5 bins to the values of the duration of the phone calls and length of the text messages
respectively. One time-point represents a time-interval of five minutes. The goal is to identify changes in the way

"https://bitbucket.org/netminerteam/karmaalgorithm
“https://bitbucket.org/netminerteam/datasets
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communications are performed in terms of frequency, type and size (minutes for calls, length for messages, type of
communication, individuals with who interacting).

The third dataset (NVOAA) was developed in the context of the Reanalysis project by the National Center for
Environmental Prediction and the National Center for Atmospheric Research. The project aimed at providing new
atmospheric analysis by gathering daily measurements of various meteorological quantities (such as, relative humid-
ity and air temperature) by means of geo-localized sensors equally distributed over space [40]. In this work, we
built the network with the measurements of relative humidity of the time-interval January, 1st 1990 - December, 31st
2010, recorded daily on an area that roughly covers North-Central America. The nodes of the network represent
the sensors, while the edges are nominal values denoting the relative humidity values measured on the two linked
sensors. In particular, an equal-width discretization technique with 10 bins was applied to the values of the rela-
tive humidity, in order to map one time-stamped value into one bin. The bins generated by the discretization are
(=00, 10], (10, 20], (20, 30], (30,40], (40, 50], (50, 60],(60, 70],(70, 801, (80, 90] and (90, +c0). Then, the label of an
edge is defined as a string indicating the coordinates (latitude and longitude) of the connected nodes and their bins
of humidity. For instance, to denote the edge between the node 15.0_275.0 (latitude 15.0, longitude 275.0) and the
node 15.0_280.0 (latitude 15.0, longitude 280.0), which have been mapped into the bins (10, 20] and (30, 40] respec-
tively, we use the label bins_(10,20]--(30,40]. The goal is to i) identify substantial meteorological changes of the
geographic area under investigation and ii) find spatial regions from which the meteorological changes may originate
iii) determine the temporal collocation (e.g., days) in which the changes occur. The dataset was downloaded from
https://coastwatch.pfeg.noaa.gov/erddap/griddap/esrlNcepRe.html|on March 21st, 2017.

The fourth dataset (WikiTalk) concerns the network of interactions among the authors of Wikipedia, a free ency-
clopedia collaboratively written by volunteers around the world. Each author possesses a talk page, that (s)he or other
users can edit in order to communicate and discuss updates to various articles on Wikipedia. The dataset is available at
https://snap.stanford.edu/data/wiki-Talk.html. In this work, this dataset forms a network where authors
are represented as nodes and the edit performed by an author towards the wikipedia talk page of another author is
denoted as an edge between two nodes. In WikiTalk, the number of labels of the nodes and of the edges are 1140141
and 1, respectively. The dataset is collected day by day from December 2001 to January 2008, therefore the time-point
representation is in the form year/month/day (one time-point represents one day). The goal is to identify interesting
variations in the flow of informations reported among authors with respect to the content of Wikipedia.

The fifth dataset (MAWI) was developed in the context of the MAWI Project by the Measurement and Analysis on
the WIDE Internet Working Group. The MAWI Project carried out network traffic measurement, analysis, evaluation,
and verification in order to evaluate whether the network behaves as it was designed, and to learn from unexpected
behaviors. In this work we used a portion of the whole dataset provided by the MAWI Working Group, that is only the
traffic data monitored, in form of IPv6 packets sent over the network, by the sampling point D in the interval January,
25th 2005 -January, 31th 2005. The dataset is available at http://mawi.wide.ad. jp/mawi/samplepoint-D/
2005/, In particular, for each packet observed we have information about the source IPv6 address, the destination
IPv6 address and about the communication protocol (e.g.: IPv6, TCP, UDP, ICMP, etc.). When building the network
the nodes represent the IPv6 addresses, while the edges represent the communication protocol between two devices.
The labels of the edges are 2745, they simply represent well-known communication protocols such as ICMP, IPv6
and, in the case of UDP and TCP, the label also includes the port number used during the transmission. For example,
the pair (TCP,80) indicates an HTTP packet. One time point represents a time-interval of five seconds, this leads to a
very high number of snapshots observed.

5.2. Influence of the input parameters

In the first experiment, we test the influence of the input parameters on the running times and quantitative char-
acteristics of the macroscopic and microscopic changes. We manually tuned two input parameters, the minimum
threshold of macroChange (minMC) and minimum threshold of growth-rate (minGR), and collected the results in
terms of the statistics listed in Table El More precisely, we varied, in turn, the value of one threshold and fixed the
value of the other one.
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Table 3: Collected statistics

times Running times (in seconds)

#MCs | Number of detected macroscopic changes (cases in which the
threshold inequality MC > minMC if satisfied)

avg MC | Average MC value of the cases in which the threshold inequality
if satisfied (MC > minMC)

avg GR | Average value of the growth-rate of the emerging subnetworks
for each macroscopic change. This statistic is computed by ex-
cluding emerging subnetworks whose growth-rate is equal to in-
finite

#LES Total number of microscopic changes associated to emerging
subnetworks with value of growth-rate lower than infinite

# JES | Total number of microscopic changes associated to emerging
subnetworks with value of growth-rate equal to infinite

The choice of the appropriate values of the input parameters has no general solution and not always can be
handled with automatic techniques. Very often, it requires preliminary computations, exploratory executions and
background knowledge of the specific domain. On the other hand, the use of parameters is operatively beneficial for
the user because (s)he can focus on the stronger variations while discarding the weaker ones both at the level of the
macroscopic and microscopic changes.

The results are reported in Figures [6] and [7] and are obtained as average on the values resulting from the five
datasets. In this experiment, the initial width of W’ is set to 365, 60, 180, 30 and 60 snapshots for KEDS, NODOBO,
NOAA, WikiTalk and MAWI, respectively.
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Figure 6: Average results produced when tuning minMC (minS UP=0.1, minGR=2). To visualize the results at the same scale, before the average
computation, the original values of #ES for KEDS, NODOBO, NOAA, WikiTalk and MAWT have been multiplied by 107!, 107, 1073, 10~* and
107!, respectively; the values of #JES for NODOBO and WikiTalk have been multiplied by 107> and 107!, respectively; the values of #MCs of
NODOBO and NOAA have been multiplied by 10~'; the values of times for NODOBO, NOAA, WikiTalk and MAWI have been multiplied by
107

Figures [64] and [60] report the statistics concerning macroscopic changes and microscopic changes when tuning
minMC, while figure [bd] reports the running times. As we can observe, the value of minMC affects the results of
the several procedures of the algorithm KARMA. Specifically, when minMC increases, we require that the algorithm
detects macroscopic changes with relatively larger values of M C, which excludes macroscopic changes with relatively
small values of MC. The first result is the increasing tendency of avg MC. The second result is the drop of #MC's,
which is due to the reduced number of operations of re-initialization of the lattice. In such cases, the newly incoming
network snapshots do not provide a number of occurrences sufficient to determine a strong variation of the subnet-
works of ¥ ,» with respect to the subnetworks of ¥ ,.. The third result is the decreasing tendency of the running
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times, explained with the reduced number of executions of the procedure of construction of the lattice (Section [.T))
and procedure of detection of microscopic changes (Section[d.3). Indeed, the algorithm of detection of emerging sub-
networks will be activated only when there is a strong variation between the set ¥y~ and the set 7 . This explains
the drop of #ES and #JES.
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Figure 7: Results produced when tuning minGR (minS UP=0.1, minMC=0.25). To visualize the results at the same scale, before the average
computation, the original values of #£S for KEDS, NODOBO, NOAA, WikiTalk and MAWTI have been multiplied by 1071,1075, 1073, 107* and
1073 respectively; the values of #JES for NODOBO and WikiTalk have been multiplied by 107> and 107"; the values of #MCs of NODOBO,
NOAA and MAWTI have been multiplied by 107'; the values of times for NODOBO, NOAA, WikiTalk and MAWI have been multiplied by 107"

Figures[7a| and [Th]show the effect of the parameter minGR on the macroscopic changes and microscopic changes,
while figure [T reports the running times. ~ As expected, the parameter minGR has effect only on the microscopic
changes, while has no influence on the statistics avg MC. In particular, we observe that the value of # ES (number
of microscopic changes) decreases and the value of avg GR (variation of frequency exhibited by the microscopic
changes) increases when minGR increases. This is not surprising because the strongest microscopic changes are
exhibited by a smaller set of subnetworks. Clearly, the values of # JES do not show any variation since they only take
the emerging subnetworks with infinite growth-rate into account. Accordingly to the study of the time complexity (see
Section[4.4), the procedure to detect emerging subnetworks has small influence on the time consumption, regardless
of the value of minGR. This explains the constant behavior of Figure[7d

5.3. Comparative evaluation

The comparative evaluation has been performed between the algorithm KARMA and the algorithms described
in Berlingerio et al. [14] (afterwards GERM), Loglisci et al. (afterwards RANGER) and Koh [[16] (afterwards
CD-TDS). Since GERM and RANGER work on network data, but not data streams, whereas CD-TDS works on data
streams, but not on network data, some adaptations were necessary. Before analyzing the obtained results, we report
some technical details of the competing algorithms and of the needed adaptations.

GERM discovers patterns, called evolution rules, which characterize the most frequent evolutions of the network
over time. An evolution rule reflects the same evolution in its multiple occurrences over time. In this case, we simulate
the input stream to generate a cumulative graph, which is given as input to GERM.

RANGER discovers two kinds of patterns, that is, change patterns and change chains. While change patterns
capture the same evolution exhibited by different network snapshots between two consecutive windows, change chains
are successions of such evolutions on the analyzed temporal axis and, thus, characterize the most frequent evolutions
over a succession of fixed windows. In this case, we simulate the stream by aggregating data by time window.

CD-TDS detects local changes (changes of the frequency of individual items) and global changes (changes of
co-occurrences of items). To perform a fair comparison, we modified CD-TDS in two directions. First, we used
SE-trees of triple sets, instead of prefix trees of items, in order to make CD-TDS able to handle graph data rather
than transactional data, as in its original version. Second, in the evaluation local changes and global changes are
assimilated to microscopic changes and macroscopic changes, respectively.
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times (s)

As in the previous analysis, we chose to perform the comparative evaluation on the dataset KEDS, because it has
the longest time-interval. The analysis of the results was performed along three dimensions: the running times, the
number of discovered patterns and the average number of windows between two significant changes of the network.
While the number of discovered patterns refers to the topological regularities which exhibit changes, the average
number of windows between two significant changes indicates the number of windows in which macroscopic changes
are identified. To guarantee a fair comparison, we considered the same temporal granularity for all four approaches.
In particular, we considered two reference widths for time-windows: 90 and 180 days. On the basis of such reference
widths we have organized the input data for each algorithm as follows. In our approach, the initial width of W’
coincides with the width of the block and both cover 90 and 180 days, that is, 90 and 180 time-points. In the case of
GERM, the data associated to each time-point are obtained by collecting the edges observed in the periods of 90 and
180 days. For RANGER and CD-TDS, all the windows have a width equal to 90 and 180 days. Experiments were
performed by varying the threshold minS U P, which is common to all four algorithms. We report the averages of the
results obtained with both widths.
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Figure 8: Comparison with three competitors by considering the running times (a), average size of windows separating macroscopic changes (b)
and number of patterns (c) while tuning the threshold minS UP (minGR=2 and minMC=0.1).

In Figure[8q] we can see that the running times of KARMA are significantly smaller than those of the algorithms
GERM and RANGER and are comparable with those of CD-TDS. In particular, there is a difference of (at least) two
orders of magnitude (data are plotted in log scale) with GERM and RANGER. For GERM, times remains unchanged,
since we set the maximum running time for the experiments to 24 hours of uninterrupted execution. This result
is motivated by a different algorithmic choice. More precisely, GERM operates directly on the cumulative graph,
from which it mines frequent subgraphs that express the evolutions. On the contrary, our approach does not look for
changes directly in the network snapshots, but acts on the set of patterns. As for RANGER, we motivate the difference
with the choice of modeling data and patterns with the first-order logic, that, as previously stated, can turn out to be
time-consuming. In the case of CD-TDS, the time consumption is slightly smaller than KARMA, but of the same
order of magnitude, because CD-TDS requires only a local change (variation of the frequency of just an item) to slide
forward the window of the stream.

In Figure [8b] we evaluate the average distance between two macroscopic changes. In the case of GERM, we
consider the average length of the evolution rules, since the rule ends when it is not possible to extend it to other
windows (i.e., it is not possible to match the rule with the new snapshots of the network). Similarly, in the case
of RANGER, we consider the average length of the change chains, since the chain ends when it is not possible to
extend it to other windows (i.e., it is not possible to match the last pattern of the chain with the new snapshot of
the network). In the case of CD-TDS, we consider the average length of the windows when: i) a global change is
detected, that is, when two SE-trees (lattices), built on two time-windows, are significantly dissimilar with respect to
the statistical test defined in Koh [[16] or ii) when a local change is detected. In KARMA, we consider the average
length of the windows when a macroscopic change is detected. By comparing the results (expressed in months), we
can see that the three algorithms have different behavior. As minS UP increases, in KARMA we observe that the
distance between macroscopic changes increases. In RANGER, we see a drop, which is due to the relatively short
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change chains generated from a smaller set of change patterns. As for GERM, the length of the evolution rules remains
quite constant because they cover the same changes which can occur in different sequences of windows. We should
also consider that the experiments of GERM have been interrupted after 24h of execution. As for the comparison
with CD-TDS, we observe that the average distances are comparable, which is quite expected, considering that global
changes (CD-TDS) and macroscopic changes (KARMA) are determined in a different way, but starting from the same
data structures (SE-trees) which potentially express the same information.

In Figure [8d we report the number of patterns which model the changes (plotted in log scale). The number of
evolution rules (in GERM) is several orders of magnitude higher than the number of emerging subnetworks #JES
and #ES. While, the number of change chains and change patterns in RANGER is generally of the same order of
#JES and #ES. The huge number of results produced by GERM is due to the size of the search space in which
the evolution rules are discovered. Indeed, they are built in a combinatorial way by combining all the changes cap-
tured over the complete succession of time-points. On the contrary, the search space of the emerging subnetworks
is built only from the windows in which macroscopic changes are detected. As a confirmation, if we consider sepa-
rately the time-windows on which RANGER discovers changes and we evaluate only the number of change patterns
(#change patterns), this number is comparable with #ES. As for CD-TDS, the number of local changes is generally
larger than microscopic changes of KARMA (more evident on #JES) because CD-TDS identifies any (statistically
significant) variation on the frequency of single items (triples), which is an event more recurrent than the variation of
frequency of subnetworks (triple set). This allows us to clarify that, while the algorithm CD-TDS discovers changes
that regard single edges and nodes, KARMA characterizes the evolution at the level of subgraphs, which, in many
applications, can provide more abstract and more general information.

5.4. KARMA at work

In this section we show the applicability of KARMA for the analysis of a real world network by discussing some
discoveries and commenting their actionability with respect to facts and events occurred in the domain.

The capacity of analyzing complex data in a real-time setting collocates KARMA in the category of tools designed
for problems of monitoring of evolving complex phenomena. Here, we suggest to visualize the changes detected by
KARMA in form of time-series, in order to support a visual inspection by experts. A practical example is illustrated
in Figure [9] which shows a projection of the macroscopic changes as a function of time. The amplitude of the points
of the time-series indicates the number of corresponding microscopic changes, so the higher the amplitude, the higher
the number of involved emerging subnetworks, the higher the impact of the changes on the whole network. Those
points can be of high interest for the monitoring of the phenomena and can suggest some clues for experts. To ease
the inspection, in Figure[9} we highlight the time-point in which the macroscopic change starts.
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Figure 9: Distribution of the microscopic changes #ES discovered from the KEDS dataset as a function of time. The values of the #ES has been
multiplied by 107!

In the domain of KEDS, it is possible to use KARMA to analyze time-lines from news broadcasting web-sites.
Time-lines have become a common solution to explore and navigate (in a simple and effective way) real-world pro-
cesses and phenomena through temporally-related key events [41]. A microscopic change, identified by KARMA,
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may denote a single real-world event by specifying the involved entities, the relationships existing among these entities
and their temporal collocation.

We remind that KEDS collects data on the social and political relationships among nations and world-wide organi-
zations extracted from news reports concerning the Gulf area. By observing Figure[9] we can clearly see three peaks,
each characterized by more than 500 microscopic changes. The first one (begin of 1991) can clearly be associated to
the First Gulf War (Operations Desert Shield and Desert Storm). The second peak corresponds to the Second Intifada
(started in September 2000) and the third peak (late 2001 - early 2002) corresponds to the invasion of Afghanistan
occurred after the September 11 attacks. From the picture, it is also possible to identify other peaks. For example,
there is a peak in 2006 corresponding to the 2006 Lebanon War.

By inspecting the emerging subnetworks of the peak "March 9th 19917, we find the following:

Py: {(iraq,kuwait,fight), (usa,iraq,fight), (ussr,usa,disapprove)}

GRI1990 Dec 12,1991 Jun 71, [1990 Dec 12, 1991 Mar 81(P1) = 2.0
macroChange = 0.88
minSUP = 0.02, minMC = 0.25 and minGR = 2

It participates to a macroscopic change of the network, which starts on March 9th 1991 (the time-point after the
window [1990 Dec 12, 1991 March 8]) and terminates on June 7th 1991. This change is quantified with the value of
0.88 (in the range [0,1]) and, as we remind, it refers to the variation of the set of the frequent subnetworks and variation
of the infrequent subnetworks, which include also the emerging subnetworks. At a microscopic level, the emerging
subnetwork P; has a decrease of the frequency by a factor of 2. We evaluated qualitatively the validity of some
discoveries with available time-line services. As for P, we exploited the Timeline Archive offered by Information
Please encyclopedia and, in particular, one event mentioned in the time-line for ’Persian Gulf War”

1991 Bush wins congressional approval for his position with the most devastating air assault in history against military targets
in Iraq and Kuwait (Jan. 16). He rejects a Soviet-Iraq peace plan for a gradual withdrawal that does not comply with all the UN
resolutions and gives Iraq an ultimatum to withdraw from Kuwait by noon Feb. 23 (Feb. 22). The president orders the ground
war to begin (Feb. 24). In a brilliant and lightning-fast campaign, U.S. and coalition forces smash through Iraq’s defenses and
defeat Saddam Hussein’s troops in only four days of combat. Allies enter Kuwait City (Feb. 26). Iraqi army sets fire to over 500
of Kuwait’s oil wells as final act of destruction to Kuwait’s infrastructure. Bush orders a unilateral cease-fire 100 hours after the
ground offensive started (Feb. 27). Allied and Iraqi military leaders meet on battlefield to discuss terms for a formal cease-fire to
end the Gulf War. Iraq agrees to abide by all of the UN resolutions (Mar. 3). The first Allied prisoners of war are released (Mar.
4). Official cease-fire accepted and signed (April 6). 532,000 U.S. forces served in Operation Desert Storm. There were a total of
147 U.S. battle deaths during the Gulf War, 145 nonbattle deaths, and 467 wounded in action. ”

and one event mentioned in the time-line for ”Iraq”ﬁ

1991 [...] Formal cease-fire is signed. Saddam Hussein accepts UN resolution agreeing to destroy weapons of mass destruction
and allowing UN inspectors to monitor the disarmament (April 6). A no-fly zone is established in Northern Iraq to protect the Kurds
from Saddam Hussein (April 10). UN weapons inspectors report that Iraq has concealed much of its nuclear and chemical weapons
programs. It is the first of many such reports over the next decade, pointing out Iraq’s thwarting of the UN weapons inspectors
(July 30).. "

Thus, P; depicts the scenario successive to the cease-fire (April 6) of the First Gulf war, in which the number of
news reports describing the conflict or state of war diminishes.

3https://www.infoplease.com/history-and-government/1900-1999-ad-world-history/persian-gulf-war-jan-16-1991-april-6-1991
4https://www.infoplease.com/spot/irag-timeline
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Figure 10: Distribution of the microscopic changes #ES discovered from the NODOBO dataset as a function of time. The values of the #ES has
been multiplied by 1073.

As for the analysis of NODOBO, in Figure [T0} we see a succession of points with a decreasing trend, which has
the peak on October 26th, 2010 and the lowest number of microscopic changes on December 6th, 2010. To give a
practical interpretation to this behavior, it is useful to say that in Scottish state high-schools there is a holiday period
which covers the second and third week of October, thereafter the school activities continue. So, the projection of
Figure [T0]reveals that, when the school activities resume, there is high variability (many microscopic changes) in the
modalities of communication, which, as time goes by, tends to decrease. This may provide indications on the use
of mobile phone of the students, which can be exploited, for instance, to plan the school policies and to improve the
mobile network services in the area.

Among the emerging subnetworks associated to the peak, we find the following:

P>: {(student_id14,student_id0,bluetooth),
(student_id18,student_id0,bluetooth), (student_id2,student_id0,high_length)}

GR12010 0ct 25-22:00, 2010 Oct 26-2:551, [2010 Oct 25-22:00, 2010 Oct 26-7:55] (F2) = 2.0
macroChange = 0.94

minSUP = 0.02, minMC = 0.25 and minGR = 2

It is involved in the strongest macroscopic change (quantified as 0.94), which starts on October 26th 2010 at
3:00 (the time-point after the window [2010 Oct 25-22:00, 2010 Oct 26-2:55] and terminates on October 26th 2010 at
7:55. Specifically, P, denotes the doubling (GR=2.0) of the occurrences of the subnetwork {(student_id14, student_id0,
bluetooth), (student_id18, student_id0, bluetooth), (student_id2, student_id0, high_length)} from the window [2010 Oct
25-22:00, 2010 Oct 26-2:55] to the window [2010 Oct 25-22:00, 2010 Oct 26-7:55]. On the contrary, (we verified)
this specific change does not appear in the set of emerging subnetworks discovered between the successive landmark
windows [2010 Dec 05-22:10, 2010 Dec 06-3:05] and [2010 Dec 05-22:10, 2010 Dec 06-8:05], which may indicate
that the interaction among the three students becomes stable, that is, there is no relevant variation on the number of
occurrences in the modalities of communication of those three students.
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Figure 11: Distribution of the microscopic changes #ES discovered from the NOAA dataset as a function of time.

As for the NOAA domain (Figure [TT), there are several macroscopic changes, those which have greater impact
on the network are characterized by more than 150 microscopic changes. In particular, there are two macroscopic
changes with highest number, they start on October 17th, 1995 and August 2008, 9th respectively. We deepened the
microscopic changes corresponding to the two points and spotted several emerging subnetworks in common, two are
listed in the following:

P5: {(10.0_300.0, 10.0_305.0, bins_(70,80]_(80,90]),
(10.0-300.0, 7.5-297.5, bins_(80,90]__(90,+c0),
(12.5.297.5, 7.5.297.5, bins_(80,90]-(90,+c0))}

GR{1995 Feb 02, 1995 Nov 301, [1995 Feb 02, 1995 oct 16](P3) = 1.39
macroChange = 0.66

G R{2008 jun 25, 2008 Sep 221, [2008 Jun 25, 2008 Aug 08](P3) = 1.27
macroChange = 0.51

minSUP = 0.5, minMC = 0.35 and minGR = 1

Pa: {(10.0-295.0, 10.0_300.0,bins_(80,90]_(90,+c0)),
(10.0_300.0, 7.5-297.5,bins_(80,90]__(90,+00)),
(7.5.297.5, 7.5.302.5,bins_(80,90]__(90,+0c0))}

GR{1995 Feb 02, 1995 Nov 301, [1995 Feb 02, 1995 Oct 16](P4) = 1.35
macroChange = 0.66

G R{2008 Jun 25, 2008 Sep 221, [2008 Jun 25, 2008 Aug 08] (P4) = 1.24
macroChange = 0.51

minSUP = 0.5, minMC = 0.35 and minGR = 1

P53 and P4 are both associated to two macroscopic changes of different quantities, they terminate on November 30th,
1995 and September 22th, 2008 respectively.

By mapping the nodes of P3 and P, into a geodesic space, we see they identify two regions (three distant location
per subnetwork), both cover approximately the area of the state of Venezuela and part of the Caribbean sea, where there
are small differences in terms of relative humidity (the edge labels refer to consecutive ranges). This meteorological
scenario becomes less frequent (the growth-rate decreases) over the window [1995 Oct 17, 1995 Nov 30] and [2008
Aug 09, 2008 Sep 22] respectively, which suggests the possibility of a different behavior, in the same geographic area,
occurred before or after those two macroscopic changes. In fact, by inspecting the results, we find a macroscopic
change between the windows [2008 May 11, 2008 Jun 25] and [2008 May 11, 2008 August 08] in which Pj is absent
(no relevant variation), but there is a new emerging subnetwork worthy of being analyzed:
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Ps: {(10.0300.0, 10.0_305.0,bins_(70,80]_(80,90]),
(10.0300.0, .5_297.5,bins_(80,90]__(90,+c0])}

GR2008 May 11, 2008 Jun 25, [2008 May 11, 2008 Aug 8](Ps5) = 2.35
macroChange = 0.62
minSUP = 0.5, minMC = 0.35 and minGR =1

Ps is more general than P3 (according to the generality order >, Section [3)), but, contrarily to Ps, its frequency
increases. Thus, we observe that the decrease of the relative humidity in the region of P3 in the window [2008 Aug 8,
2008 Sep 22] is anticipated by the increase in the region Ps, which is smaller than that of Ps, in [2008 May 11, 2008
Aug 8].

6. Conclusions

In this paper we have investigated the problem of identifying relevant changes in evolving network data, where
the changes can be distinguished in two categories: macroscopic changes and microscopic changes. Macroscopic
changes have impact on a large portion of the network, whereas microscopic changes occur in specific portions of the
networks. This analysis is motivated by typical real streaming network data, where we can observe i) abrupt changes,
which can cause variations of the network both at the macroscopic and microscopic levels, and ii) gradual changes,
which can cause only variations of the network at the microscopic level.

The system presented in the paper, called KARMA, is able to simultaneously extract macroscopic changes and
microscopic changes by exploiting the fact that they are inevitably related each other. Algorithmically, KARMA
is based on the concept of emerging subnetworks, that is, a kind of frequent patterns which represents connected
subgraphs whose support changes over time. Contrary to many data stream mining algorithms for frequent pattern
mining, which work on sliding windows of fixed size, our approach uses multiple windows to avoiding manual
definition of the window size. This allows the system to truly adapt to the (network) data distribution over the stream.

We have evaluated KARMA on real-world network data streams having different properties and generated in
different domains (social, technological and scientific). The experiments have mainly shown i) the efficiency of
KARMA in comparison with competitors, ii) the validity of some discoveries in the domain of the datasets, iii)
usefulness of the changes detected in the study of the domain under consideration.

For future work, we plan to investigate two main research directions: i) use solutions of big data analytics to detect
changes in very large networks, ii) study the periodicity over time of macroscopic and microscopic changes.
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Appendix A. Evaluation of the variants

In this section, we evaluate three variants of KARMA obtained by replacing the algorithm of discovery of subnet-
works described in Section[.T| with the algorithms gSpan and MOMENT.

The algorithm gSpan works on frequent subgraphs, but does not operate in the streaming scenario. It mines
frequent subgraphs by combining the pattern-growth blueprint with the depth-first approach. We use two alternative
gSpan versions. The first implementation is an extension of the native algorithm in that it mines input graphs which
have edges with multiple labels [42] 43]], but it discovers subgraphs which have edges with only one labeﬂ We will
refer to the experimental results of this version as "GSPAN”. In the second version, to overcome the limitation on the
single labeled edges, we use a different representation based on bipartite graphs. More precisely, one partition of the
graphs is built with the node labels, the other one with the edge labels. We will refer to the experimental results of
this version as "GSPAN-BG”.

The algorithm MOMENT works in the streaming scenario, does not analyze network data but itemset-based data
streams and discovers closed itemsets frequent in a window sliding over the stream. The input set of the items is built
with the sets of triples of the network snapshots.

For these comparisons we chose the dataset KEDS because it has the longest time-interval. The variants have
been tested under the perspectives of the running times, distance between consecutive macroscopic changes (that is,
the average number of windows) and total number of microscopic changes (sum of #ES with #JES). While the number
of discovered microscopic changes refers to the topological regularities which exhibit changes, the distance between
consecutive macroscopic changes indicates the number of windows in which macroscopic changes are identified.
Experiments were performed by tuning the thresholds minSUP, minMC and minGR. The initial width of W’ is set to

365. The results are reported in Figures[AT] [A2} [A3]
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Figure A.1: Running times of three different algorithms for mining subnetworks when tuning the thresholds minS UP (a), minMC (b) and minGR
(c). The settings are minGR=2, minMC=0.1 for (a); minS UP=0.1, minGR=2 for (b); minS UP=0.1, minMC=0.1 for (c).

In Figure [AT] (data are plotted in log scale), we can see the running times of KARMA are significantly lower
than those of GSPAN, GSPAN-BG and MOMENT. As for GSPAN and GSPAN-BG, we can motivate this difference
with two factors, i) the use of a canonical labeling system, which does not exclude the generation of subgraphs that
might have already been created, and ii) the mechanism of the computation of the support, which may require the
identification of subgraph isomorphism for exact counting (which is not a required property for the task we consider).
As for MOMENT, times remains unchanged since we set the maximum running time for the experiments to 6 hours of
uninterrupted execution. This result is motivated by the mechanism of updating the support of MOMENT. Indeed, it
scans the incoming transactions singularly, while our approach exploits querying techniques to determine the support
in only one operation.

SThe implementation of the gSpan algorithm to mine graphs with multi-labelled edges is available at the web site
https://www.cs.ucsb.edu/Xyan/software/gSpan.htm
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Figure A.2: Average size of windows obtained between macroscopic changes when tuning the thresholds minS UP (a), minMC (b) and minGR (c).
The settings are minGR=2, minMC=0.1 for (a); minS UP=0.1, minGR=2 for (b); minS UP=0.1, minMC=0.1 for (c).

Figure[A2]reports the average distance between two macroscopic changes. We can see that the values of KARMA
are lower than GSPAN, GSPAN-BG and MOMENT, meaning that our approach is able to detect macroscopic changes
more frequently, and therefore it is more sensitive to the variations of the lattice than the other three versions. As
expected, this result is strictly related to the results of microscopic changes (Figure [A3). Indeed, the difficulty to
detect changes in the lattice (especially for GSPAN and GSPAN-BG) augments the complexity to identify variations
in the sets of (frequent and infrequent) subnetworks. This leads to a lower number of discovered microscopic changes,
which we attribute to the difficulty to capture the variations of the network over the stream (MOMENT), or to the
difficulty to generate subnetworks to model the whole network (GSPAN and GSPAN-BG).
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Figure A.3: Total number of microscopic changes (#ES + #JES) discovered by the variants when tuning the thresholds minS UP (a), minMC (b)
and minGR (c). The settings are minGR=2, minM C=0.1 for (a); minS UP=0.1, minGR=2 for (b); minS UP=0.1, minM C=0.1 for (c).

Figure [A.3] (plotted in log scale) reports the number of the emerging subnetworks (#ES+#JES). We can see that
KARMA discovers a larger set of microscopic changes as compared to the other three variants. As for GSPAN, the
main reason is that the generated subgraphs cannot have pairs of the same nodes connected by different edges, which
reduces the number of potential subnetworks. The explanation for the results of GSPAN-BG can be found in the
bipartite representation, which, although allowing to model multiple labeled edges, does not facilitate the discovery
of microscopic changes. This is because many subnetworks are disconnected (e.g., some edges do not connect two
nodes but only one) and thus they are not considered for the computation of the statistics. As for MOMENT, we
ascribe its behavior to the characteristics of the data stream on which that variant works. Indeed, using a large set of
items to represent a streaming network leads inevitably to producing a stream of very sparse vectors, which tends to
lower the support of the patterns and flatten their variations.
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