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Abstract—Multiple attribute decision making (MADM) problem often consists of quantitative and qualitative attributes which can be assessed by numerical values and subjective judgements. Subjective judgements can be evaluated by linguistic variables, and both numerical values and subjective judgements can be accurate or uncertain. The evidential reasoning (ER) approach provides a process for dealing with MADM problems of both a quantitative and qualitative nature under uncertainty. The existing ER approach considers both benefit and cost attributes in the evidence combination process. In this paper, deviated interval and fixed interval attributes are introduced into ER based MADM approach and the frames of discernment for representing these two kinds of attributes are given. The transformation rules from the assessment values of deviated interval attributes to belief degrees in the ER structure are then studied. An ave-entropy based weight assignment method considering the risk preference of decision maker is also shown to deal with uncertain assessment situation, such as belief distribution with qualitative attribute and uncertain utility function. Some programming models to generate interval weights and utilities are constructed. The rationality and efficiency of the methods in supporting MADM problems are discussed. Two case studies are provided to demonstrate the applicability and validity of the proposed approaches and the potential in supporting MADM under uncertainty.
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1. Introduction
Multiple attribute decision making (MADM) problems often include both quantitative and qualitative attributes. The Evidential reasoning (ER) approach[1-6] is well suited in dealing with MADM problems where ambiguity, incompleteness and fuzziness are involved in. The unique characteristic of the ER approach is that it can represent uncertainty and ignorance in a MADM problem in a systematic and consistent way.
In recent years, the ER approach has been developed in many applications, for instance, R&D projects assessment[3], consumer preferences extraction[10], data classification[11], medical quality assessment[12], fault diagnosis[71-74], belief rule-based inference[13-15,48,49], system reliability prediction[16], failure mode and effects analysis[17], the performance of VMI alliance[4], life cycle assessment[9], optimal power system dispatch[18], urban bus transit network assessment[19] and so on.
In a MADM problem, benefit and cost attributes are always considered. It is well-known that benefit attribute (BA) is that the higher value an attribute is assessed to, the better it is considered. On the contrary, cost attribute (CA) is just on the opposite compared with BA. These two kinds of attributes are very common in real world. In addition to the BA and CA, there are other four kinds of attributes in real life MADM problems, which are deviated attribute (DA), deviated interval attribute (DIA), fixed attribute (FA) and fixed interval attribute (FIA)[54,57]. FIA means that there exists a desired interval value, if the distance between an assessment value and the desired interval value is small, it is assumed to be better, no matter whether the value is larger or less than the desired interval value. In the life cycle assessment (LCA) of a product, e.g., a mobile phone, the designed life length for it is a FIA because it should neither be too short nor too long. If the life length is too short, it may have no competitiveness in the market; while it is designed for an extremely long life length, the R&D cost would increase greatly, and it’s also not necessary because customer want to exchange for a new mobile phone when the old one has been used for a period of time. In the case study of [19], ‘employees per bus’ and ‘passengers carried per bus’ are just two FIAs because they are regarded to be good neither with a too small nor too large value. The well-known ‘asset-liability ratio’ is a typical FIA because it is supposed to be appropriate between 40-60%. When the value is lower than the interval, the utilization rate of funds is low; while the risk is high if the value is larger than the interval. In fault diagnosis of industrial equipment, a fault model of equipment can be reflected by a given historical sampling data set (HSDS for short). The smaller distance between a testing sample and the HSDS of a certain fault model, the more probable that this testing sample points to this fault model, namely, this fault model perhaps happens[71-74]. DIA is just opposite to FIA in the sense that the larger the distance between the assessment value and the undesired interval value, the better the value is considered. In an earthquake, ‘the longitude and latitude’ is a DIA because the farther the distance from the epicenter area, the safer it is. ‘The travel time’ in a city is also a DIA because we should avoid the rush hour to save the travel time no matter by car or bus. It can be seen that there are a lot of such two kinds of attributes in real life problems. In the previous studies, the ER approach has not yet been explored to take into account these attributes. The existing researches on these four kinds of attributes are mainly focused on the normalization of the values of these attributes. For example, Hwang summarized the methods to normalizing the values of BA and CA in [26]. In [54], the concept of DIA was proposed and the normalization process of it was given, while the normalization method of FIA was presented in [55]. In [56] and [58], the normalization process of FA which is a special case of FIA was discussed. Zhou et al provided the transformation methods from the values of FA to belief distributions in [59], but only complete assessment is considered. In summary, the above studies have not been devoted to coping with decision making problems under ignorance and fuzziness. In this paper, the frames of discernment of DIA and FIA are proposed in the ER framework. Then the evidence transformation rules from values of DIA to belief degrees on evaluation grades of the general frame of discernment are studied.
[bookmark: OLE_LINK17][bookmark: OLE_LINK18][bookmark: OLE_LINK11][bookmark: OLE_LINK12][bookmark: OLE_LINK13][bookmark: OLE_LINK14][bookmark: OLE_LINK15][bookmark: OLE_LINK16]There are different kinds of techniques to represent uncertainties in MADM problems, for example, interval value[19-24], fuzzy number[4,25], belief distribution in the ER approach and so on. As we all know, entropy method[26-28,47,60-63] for assigning attribute weight is a data-driven objective approach. In the traditional entropy method, the values of all attributes are assumed to be precise values that can be transformed to entropies no matter the attributes are quantitative or qualitative ones. When the decision situation is uncertain and the quantitative attributes are assigned with interval or fuzzy values, how can the entropy method be applied to generate the objective weights in an appropriate way is significant. Some studies have been devoted to it[27,60,75]. Moreover, when qualitative attributes are assessed by subjective judgments such as belief distributions, the method for measuring the discrepancy among the distributions of all alternatives on a certain attribute will lead to the credibility of the generated weights. The kernel of the problem lies in that how to tackle with uncertainties and ignorance included in the assessment to quantitative or qualitative attributes when we generate the objective weights of attributes. The ER approach has been studied in situations of fuzziness, uncertainties and ambiguities to dealing with different real life MADM problems. For example, the situation of interval uncertainty[21,29], fuzzy evaluation grade[30], interval value[19,20], interval belief degree[20], interval weight[31], fuzzy utility[4], interval difference[32] and interval reliability[9] have all been discussed. How to obtain the attribute weights from these different types of uncertain information still needs to be discussed. In this paper, an ave-entropy based weight assignment process from uncertain and incomplete subjective judgments is studied.
Furthermore, the objective weight assignment methods focus on the differences among alternatives and generate attribute weights from data alone without requiring any preference information from the DMs[33]. Utility represents the degree of preference that a decision maker (DM) considers the value of an option. In a utility function, the subjective judgment of DM is taken into account. Different types of utility function may be constructed to show the attitude of different DMs towards risk. There are three basic types of utility function which are risk taking, risk neutral and risk averse respectively. In real group MADM problems, the utility of an evaluation grade estimated by a group of experts is not a crisp value in general. Some studies have focused on the risk preferences of different DMs in generating utility function. For instance, Zhou discussed how to generate a general assessment under fuzzy utilities[4,25], but the weight assignment method is FAHP which is a subjective process. In this paper, the dissimilarity of risk preferences among different DMs is considered in generating the attribute weights.
The main contributions of the paper can be summarized as follows:
(1) The frames of discernment of DIA and FIA are proposed respectively in the ER based MADM framework. The equivalent rules between assessment values of DIA or FIA and evaluation grades in the frame of discernment are presented.
(2) Transformation rules from values of DIA to belief degrees on evaluation grades of the general frame of discernment are constructed.
(3) An ave-entropy based weight assignment process considering the risk preference of DM is shown to tackle with MADM problems where uncertain subjective judgments such as belief distributions are included.
[bookmark: OLE_LINK10]The remainder of this paper is organized as follows. Section 2 is a brief introduction about the ER approach. In Section 3, the frames of discernment of DIA and FIA are firstly constructed, and then the extended transformation rules for DIA are given. In Section 4, ave-entropy based weight assignment process based on uncertain and incomplete subjective judgment considering the risk preferences of DMs is proposed. Section 5 presents two case studies to illustrate the approaches in Sections 3 and 4. This paper is concluded in Section 6.

2. Preliminaries
There are many MADM approaches such as AHP[34,52], TOPSIS[26,50,51], ELECTRE[35-37] and PROMETHEE[38,39]. Different from these MADM methods, the ER approach is specifically effective in the situation where uncertainties, ignorance or incompleteness are included. The ER approach was proposed by Yang et al.[1] in 1994 based on the general framework of Dempster-Shafer (D-S) theory[7] and decision theory for the combination of uncertain and incomplete subjective assessments. To facilitate data collection in real decision situations, Yang proposed the rules for the transformation of different sets of linguistic evaluation grades associated with different qualitative attributes and certain values associated with quantitative attributes to a set of common evaluation grades[2]. In [5], an updated ER algorithm was proposed to deal with the irrationality of the original ER framework, referred to as the ER recursive algorithm where L-1 calculation steps are needed for the combination of L basic attributes. Based on the recursive algorithm, the analytical ER algorithm was then proposed[6] in which only one step of calculation is needed to generate the combined performance of assessment. The ER approach has now been developed to the ER rule[8,9] where both weight and reliability of attribute and DM are considered.
Suppose N evaluation grades are involved in the assessment to a qualitative attribute, represented by , where the subscript  represents the nth grade. In general,  is supposed to be worse than , or denoted by  where  represents “prefer to”. If the utility of  is represented by , then  which means that  is assumed to be larger than  if  is preferred to .Then the frame of discernment is defined as follows:
                                                           (1)
It should be mentioned that the frame of discernment for each qualitative attribute may be different or unique for the purpose of original data collection. In other words, the number of evaluation grades to assess a qualitative attribute may be more or less than N. Suppose the general frame of discernment contains N evaluation grades, then the evaluation grades related to each qualitative attribute should be interpreted and transformed to the general framework of discernment according to specific rules[2]. For each quantitative attribute, the values corresponding to all the N evaluation grades in the general frame of discernment should be firstly determined, and then the numerical assessment value could be transformed to belief degrees on the evaluation grades in Eq.(1). When a CA is assessed, a smaller value is projected to a better evaluation grade, which means that a small value for a cost attribute is more preferred. For a BA, a large value is projected to a better evaluation grade.
Let  be the set of attributes for the assessment, and the relative weight of  is denoted by  such that  and .  represents the lth assessed alternative, where  indicates the number of assessed alternatives. The belief degree that  be assessed to  on evaluation grade  is denoted by  (abbreviated by ) such that  and . The subscript ,  and  represent the nth grade, the ith attribute and the lth alternative respectively.  (abbreviated by ) is supposed to be the incompleteness of  being assessed to , also called the degree of global ignorance. After the transformation of each attribute from the original value to belief degree, we will have the distribution for  as follows:
                            (2)
If  contains at least two evaluation grades for which the belief degrees are not zero, the assessment is uncertain. In the ER approach, each attribute is assigned with belief degrees on one or several linguistic evaluation grades as denoted by Eq.(2) so that uncertainty and ambiguity for assessing both quantitative and qualitative attributes can be taken into account simultaneously. In [5] and [6], ER algorithms are proposed in recursive and analytical forms respectively for the aggregation of belief degrees of all L attributes for . Each attribute is considered to be a piece of evidence with its weight . After the aggregation of L attributes, a distributed assessment for  on the general level can be presented as follows:
                                  (3)
In Eq.(3),  is the total belief degree that  be assessed on . The combined belief degree presents a panoramic view about the total assessment to an alternative explicitly. It has been proved that even if there exits only one incomplete assessment attribute, the total belief degree will be incomplete as well[5]. So the information contained in the original data could be preserved after the combination process of all attributes.

3. Transformation rules for DIA and FIA
In this section, the frames of discernment of DIA and FIA are to be constructed firstly, and the transformation rules from assessment value to belief degrees assigned to evaluation grades on the frame of discernment for DIA is analyzed.
Definition 1 Suppose  is the worst interval value for attribute  corresponding to the worst evaluation grade . The subscript  and  represent ‘Worst’ and the ith attribute respectively.  is a DIA if the larger the distance between an assessment value and , the better the assessment value, no matter whether it is larger than  or smaller than .
The distance between an assessment value and the worst interval value of a DIA measures the performance of an alternative on the attribute. If the value of a DIA is larger than , it is assumed to be better when it increases. On the contrary, if the value is less than , it is assumed to be better when the value decreases. If the value is located in the worst interval value, it is assumed to be the worst. A special case is that the worst interval value becomes a crisp value that reduces to the DA.
Definition 2 Suppose  is the best interval value for  corresponding to the best evaluation grade . The subscript  and  represent ‘Best’ and the ith attribute respectively.  is a FIA if the smaller the distance between an assessment value and , the better the assessment value, no matter whether it is larger than  or smaller than .
For a FIA, it is assumed to be best if the assessment value is located between  and . When , it reduces to the FA.
The details of DIA and FIA can be referred to [57]. When an attribute is quantitative, the value assigned to it may be precise or uncertain. If an assessment is uncertain, the representation on  may be several crisp values, an interval value, several interval values, fuzzy numbers and so on. In the following, we will discuss the transformation rules of crisp value for quantitative DIA to belief degrees on the frame of discernment. Firstly, the frames of discernment of DIA and FIA will be constructed.

3.1 Frames of discernment of DIA and FIA
The frame of discernment of DIA is constructed and denoted by Eq.(4) as follows:
                                              (4)
where  and () are the worst and best evaluation grade respectively, and . Here, a set of assessment values of DIA  related to the evaluation grades in Eq.(4) should firstly be identified according to a real decision situation which is denoted by Eq.(5) as follows:
                                                  (5)
Compared with BA or CA as Eq.(1) denoted, when confirming the corresponding values of a quantitative attribute to evaluation grades in the frame of discernment, 2N-1 values need to be identified for DIA while only N values are to be confirmed for BA or CA. The relationship between the values of DIA and the frame of discernment is shown in Fig.1.
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Fig. 1. Relationship between DIA Values and the Frame of Discernment
Hypothesis 1: The difference between  and  () is supposed to be the same as the difference between  and , so the preferences between the worst interval value for DIA is symmetrical.
It is a basic and important task for a DM to provide the rules linking the evaluation grades with the particular values of each attribute. If the rules are not extracted scientifically or objectively, the assessment result will not be convincing or rational.  is the worst possible interval value of  that is equal to the worst evaluation grade ,  and  are the smallest and largest possible value which represent the best feasible value of attribute  corresponding to . From Fig.1, we will have the following equivalent rule:
 is equivalent to  when 
 is equivalent to  when                             (6)
Eq.(6) can also be interpreted from the utility aspect that
 
                                     (7)
From Eq.(6) and Eq.(7), we will also have the following rule:
                                            (8)
It is obvious that , and the utility between every two adjacent evaluation grades may be linear or nonlinear. Here, we assume that the utility is piecewise linear. If  is an accurate assessment value for , then  is called the right value of  when , and when ,  is called the left value of . The right values and left values relative to the worst interval value  may be non-symmetrical because the difference between  and  is not necessarily the same as the difference between  and . The assessment to a DIA  could be represented by the following expectation:
                       (9)
The calculation of  (abbreviated by ) which is the belief degree that  be assessed to  on  will be discussed in the next subsection. It could also be denoted by Eq.(2) where
 ,
                                          (10)
In Eq.(10),  and  are the belief degrees of evaluation grade  and   which corresponding to left value  and right value  respectively considering the relationship in Fig.1. From the equivalent rules of Eq.(6) and Eq.(8) for DIA, Eq.(10) is generated from Eq.(9).
Similarly, the frame of discernment of FIA could be denoted as follows:
                                           (11)
There are  corresponding values to be identified for FIA. The corresponding relationship between the values of FIA and the frame of discernment should be given by the DM which is shown in Fig.2.
h-B,i  h+B,i
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Fig. 2. Relationship between Values of FIA and the Frame of Discernment
Hypothesis 2: The difference between  and  () is supposed to be the same as the difference between  and , so the preferences between the best interval value for FIA is symmetrical.
The equivalent rule for FIA is as follows:
 is equivalent to  when  
 is equivalent to  when                             (12)
Here,  is the best possible interval value of  corresponding to ,  and  are the smallest and largest possible value which represent the worst feasible values of  corresponding to  and . Similar to DIA, the difference between  and  is not necessarily the same as the difference between   and   which means the right values and left values relative to the best interval value  may be non-symmetrical. If the utility function is supposed to be piecewise linear[2] in each evaluation grade interval , it could be depicted in Fig.3. The utility is linearly decreasing between  when , whereas linearly increasing when . So given the equivalent rule as Eq.(12), we could get the utility of any value between  and .
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Fig. 3. Utility Function of FIA when DM is Risk taking
As described in [57], FIA and DIA are the extensions of CA and BA respectively. So only half of the identified values corresponding to evaluation grades exist in CA or BA. Then a FIA could be denoted by the expectation as Eq.(9) or by Eq.(2) where
 ,
                                          (13)
In Eq.(13),  and  are the belief degrees of evaluation grade  and   which corresponding to left value  and right value  respectively considering the relationship in Fig.2.
After setting the frame of discernment and equivalent rules between assessment values of DIA or FIA and evaluation grades in the frame of discernment, we should calculate the belief degrees assessed to the attribute on all evaluation grades in the frame of discernment for the purpose of combining all the attributes in the ER framework. In [2], the transformation rules that values of quantitative and qualitative BA to belief degrees are proposed, whereas the method about interval value of quantitative BA transformed to belief degrees is given in [19] and [20]. Here, we will discuss the situation where the assessment to a quantitative DIA is an accurate value.

3.2 Transformation rules for DIA
When the assessment to  is a crisp value represented by  as mentioned in [2], three cases may appear. Here,  is interpreted as the reliability or confidence of getting the crisp value . It may be affected by the condition to acquire the assessment information or the reliability of the equipment for getting assessment data[9]. When , it means the reliability or confidence that the data we get is not 100%, then the assessment to  is incomplete. A special case is that  which means the assessment is complete. It is assumed that the utility function of  is piecewise linear between every two adjacent evaluation grades[2], which could be represented by Fig.4. For instance, the utility function is linearly decreasing with the assessment to  in interval  when , and linearly increasing in  when . It attains to the maximum utility at both  and  represented by  and , and the minimum value  between  and . If the DM is risk taking, the curve of utility function is convex.
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Fig. 4. Utility Function of DIA when DM is Risk taking
① In the first case,  is just exactly assessed on an identified value  in Eq.(5) corresponding to an evaluation grade in Eq.(4), then we will have
 
           (14)
② In the second case, the assessment to  is larger than the worst value of  that is just located between  and   which is depicted in Fig.5, or denoted as follows:
, and                            (15)
Here,  is preferred to . Then according to [2], we will have
                                         (16)
where
,                                     (17)
 is the belief degree that  be confirmed to  and . Since in this case,  is equivalent to , the belief degrees assessed to  could be denoted by
             (18)
where
,                                          (19)
③ In the third case, the assessed value of  is less than , and it is located between  and  , or denoted as follows:
, and                               (20)
It is depicted in Fig.6. Then we will have the expectation represented by Eq.(16) and Eq.(17) where  is preferred to . The belief degrees assessed to  in this case could then be denoted by
                   (21)
where 
,                                            (22)
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Fig. 5. Accurate Right Value for DIA
H-N-n+1      H-N-n    …………….     H1

hn,i    hj  hn+1,i    …………….     hN,i

Fig. 6. Accurate Left Value for DIA

If the utility function is not piecewise linear, the transformation rules will be more complex. Just as mentioned in [2], the assessment of a quantitative attribute may not always be certain. In this case, the assessment may be several crisp values with given probabilities as follows:
                                               (23)
where  is the probability of  been assessed to the jth possible value, and  is the number of possible values assessed to . In this case, the adjacent values of  may be actually located in two adjacent evaluation grade intervals  and ; meanwhile, an evaluation grade interval may also include two or more possible quantitative values assessed to . The transformation rules for DIA and FIA in this situation can be extended according to the rules for BA in [2].
After the transformation of assessment values to belief distributions according to the rules given in this section for DIA and FIA together with the rules in [2] for BA and CA, the ER approach can then be used to aggregate the belief distributions of multiple kinds of attributes represented by Eq.(2) to generate a general assessment represented by Eq.(3). Since attribute weights are an important factor in the aggregating process of the ER approach, the weight assignment method under subjective assessments is discussed in Section 4.

4. Entropy-based weight assignment under subjective assessments
As we all know, the objective methods to determine attribute weights use the assessed values of attributes on different alternatives. When there exist a lot of qualitative attributes which are presented by uncertain and incomplete subjective judgments such as belief distributions, attribute weights should better be generated by objective method. Otherwise, two kinds of subjective judgments including the subjective belief distributions denoted by Eq.(2) and the subjective judgments for assigning weights are involved in a decision process. To reduce the influence of excessive subjective judgments to the final result, the subjective belief distributions assessed on qualitative attributes along with the numerical values on quantitative attributes can be used to generate the attribute weights. So only one kind of subjective judgment is contained under this circumstance. Here, we will discuss how to use the entropy method to generate relatively rational weights from uncertain and incomplete subjective judgments. Strictly speaking, when the entropy method is used to calculate weights from subjective judgments, the generated weights should not be called ‘objective weights’. Absolutely ‘objective weights’ can only be titled when all attributes are assessed from objective numerical values.

4.1 Literature review
Just as Fu[53] said, different sets of attribute weights may generate different solutions to a decision problem. In general, weight assignment methods can be categorized into three types: subjective, objective and hybrid[32,33,45,64]. Subjective methods depend on the preference of DMs whose knowledge backgrounds may be different, such as AHP[34,52], GAHP[3,4,25] and Delphi method [65,66]. When a DM is not capable of providing subjective judgments on the importance of attributes on account of some reasons, it may not be used. Objective methods such as the Principal Component Analysis[67], Entropy method[26-28,47,60-63], CRITIC method[46,47,69], standard deviation (SD) method[45,47], correlation coefficient and standard deviation integrated (CCSD) method[53,64], and multiple objective programming model[68] generate attribute weights from the differences among the assessment information of alternatives through each attribute. They reflect the discriminating power[53] or contrast intensity[46] of each attribute on all alternatives. It is not applicable when only one alternative is assessed. Furthermore, the weights are changeable when different sets of alternatives are assessed. Hybrid methods[28,70] can reflect both the preferences of DMs and the intrinsic features contained in the assessment information.
In recent years, many methods have been proposed to determine weights, especially based on subjective judgments. In [63], although the assessments of qualitative attributes were transformed to scores, uncertainties were not fully discussed in the assessment. Wu et al[27], Chen et al[60] , Zhang et al[75] proposed entropy based objective weighting methods, but they are applicable when the judgment provided by the DM is intuitionistic fuzzy matrix. Just as demonstrated above, the entropy, CRITIC, SD and CCSD methods are entirely or partly based on the differences among alternatives on a specific attribute. When the attributes are all quantitative, the objective methods can be easily applied, e.g., [46,47,61,64]. Otherwise, subjective judgments on qualitative attributes should be transformed to accurate or interval values according to the preferences of DMs. Different preferences of DMs will probably lead to various results. The existing objective methods rarely handle different risk preferences of DMs[32]. From the above analysis, we can see that when the original assessments contain uncertainties and ignorance, how to generate a relatively rational objective weights need to be further studied.

4.2 The entropy method
A MADM problem which includes S alternatives and L attributes can be represented by the matrix in Eq.(24). In Eq.(24), each row represents the assessments to all the L attributes on a specific alternative, while each column indicates the assessments to an attribute on all S alternatives.
         (24)
The value of  is denoted by  when  is a quantitative attribute; otherwise, Eq.(2) can be used to represent  when  is a qualitative attribute. The entropy method[26,28] consists of the following three steps:
(1) Linear proportional transformation or standard 0-1 transformation:
For a BA,  or ; while for a CA,  or .
(2) Normalization of the assessment value for :
                     (25)
where .
(3) Calculating the entropy and weight of 
The entropy of  derived from all S alternatives is measured by
                     (26)
The denominator  is used to limit  to . It is well known that an attribute with higher entropy will contribute less to the final solution, so the weight of  is generated as
                        (27)
where .
The above process assumes that all the attributes are assigned with accurate numerical values. When a quantitative attribute is assigned with interval value or a qualitative attribute is given a belief distribution denoted by Eq.(2), how could the entropy method be used to generate relatively rational weights is significant.

4.3 Ave-entropy based weight assignment under subjective assessments
When  is a qualitative attribute with the assessment represented by Eq.(2), how to quantify the incompatibility of S alternatives on  and then apply the entropy method to generate the weight? There are two different processes to obtain the attribute weights based on the assessments of Eq.(24) provided that subjective belief distributions are given to qualitative attributes.
The 1st way is to directly measure the dissimilarity of any two belief distributions on  and   for a certain qualitative attribute , represented by  , followed by the calculation of the entropy and weight of . There are some existing methods to calculate the dissimilarity of two belief distributions. Smets (1990, 1994) introduced pignistic probability function[40,41] to measure the evidence distance. When belief degrees are only given to single evaluation grades presented by Eq.(2), it reflects the maximum difference between the belief degrees of two evidences assigned to the same evaluation grade. Fu et al. (2010) developed compatibility measure between two belief distributions based on pignistic probability function[42], then the concept was improved to dissimilarity measure that the utilities of evaluation grades are considered[43]. Chen et al. (2017) used pignistic probability function to determine alliances where the judgments of DMs are similar to some extent[44].
The 2nd way is to transform  into a definite value through utility function[2,6] with the help of  as follows:
                   (28)
)                    (29)
                                        (30)
,  and  are the measurements of the utility of  on  denoted by . Then  can be used to calculate the discrepancy of  on all S alternatives. If  is incomplete such that , we will have , . Then the method for measuring the entropy of interval utility will lead to the rationality of the generated weights.
In [45], minimal satisfaction is used to deal with the incompleteness contained in the subjective assessment. According to the method, let  be the minimal satisfaction of  on  compared with other S-1 alternatives such that  and . The process of generating the weight of  using this method can be summarized as follows:
         (31)
where , and  such that .
Compared with Eq.(31), we propose that  be used to calculate the entropy of . We call it average utility based entropy weight assignment (ave-entropy) method. The specific steps of the process are shown as follows.
(1) The first step is to transform  to  for  on all S alternatives by Eqs.(28)-(30).
(2) Secondly,  is normalized by  to satisfy the condition that . If the standard 0-1 transformation is conducted before the normalization, , where . 
(3) Thirdly, the normalized average utility  is used to calculate the entropy of  by Eq.(26) as follows: , which is then applied to generate the weight of  by Eq.(27).
The process of the method is given in Eq.(32) as follow.
 (32)

Property 1 (Inoperative) When the belief distributions assigned to an attribute on all S alternatives are the same, the weight of the attribute generated by Eq.(32) is 0.

Property 1 is obvious because when , we have  from Eqs.(28)-(30). Since , we have . Then from Eq.(26) and (27), we have , . In this case, the pignistic probability distance of  and  is 0. So the attribute can be deleted from the assessment which will lead to the simplification of the complex assessment model. Thus, entropy can be interpreted as the similarity of different alternatives on an attribute. Furthermore, if the belief distributions to an attribute on all alternatives are very close with each other, the attribute can also be deleted because the importance of it is not obvious in the assessment. So a ‘threshold’ value can be set in a real life MADM problem. An attribute will only be involved in an assessment process if the dissimilarity value of the attribute from all alternatives extends the ‘threshold’ value. Otherwise, it will be deleted in the specific assessment problem. A special case is that we could not differentiate any discrepancy from the assessment to all alternatives for each attribute. It will lead to the weights of all L attributes be the same although it rarely happens in real MADM problems.
Here, we take a numerical example that contains 5 alternatives and 6 attributes to illustrate the method by Eq.(31) and Eq.(32). The belief degrees are shown in Table 1. From Table 1, we can see that for a specific attribute ,  and , and the ignorance contained in the assessment increases from  to . Take  for example, the belief degree that  be assessed to  on evaluation grade  is , while . And the incompleteness of  being assessed to  is . Intuitively,  should be assigned with the largest weight because the discrepancies among  to  for  are considerably large since the consistency between  and  () for  is zero. In other words, the dissimilarity measure[53] between the distributions of each pair of alternatives for  represented by   is 1. While the assessments to  from  to  are more consistent because the ignorance contained in the assessment is 0.9 that will lead to its smallest weight.

Table 1 Belief degrees that 5 alternatives be assessed to 6 attributes
	
	a1
	a2
	a3
	a4
	a5

	e1
	(H1, 1)
	(H2, 1)
	(H3, 1)
	(H4, 1)
	(H5, 1)

	e2
	(H1, 0.8;H, 0.2)
	(H2, 0.8;H, 0.2)
	(H3, 0.8;H, 0.2)
	(H4, 0.8;H, 0.2)
	(H5, 0.8;H, 0.2)

	e3
	(H1, 0.6;H, 0.4)
	(H2, 0.6;H, 0.4)
	(H3, 0.6;H, 0.4)
	(H4, 0.6;H, 0.4)
	(H5, 0.6;H, 0.4)

	e4
	(H1, 0.4;H, 0.6)
	(H2, 0.4;H, 0.6)
	(H3, 0.4;H, 0.6)
	(H4, 0.4;H, 0.6)
	(H5, 0.4;H, 0.6)

	e5
	(H1, 0.2;H, 0.8)
	(H2, 0.2;H, 0.8)
	(H3, 0.2;H, 0.8)
	(H4, 0.2;H, 0.8)
	(H5, 0.2;H, 0.8)

	e6
	(H1, 0.1;H, 0.9)
	(H2, 0.1;H, 0.9)
	(H3, 0.1;H, 0.9)
	(H4, 0.1;H, 0.9)
	(H5, 0.1;H, 0.9)



The utilities of the five evaluation grades are set to be risk aversion such that  ,, ,  and . Figs.7 to 12 show the generated weights of the 6 attributes by Eq.(32), Eq.(31) and the standard deviation (SD) method[47] when  is given a very little change from 0, 0.001, 0.01, 0.02, 0.05 to 0.1 provided that the utilities of other four evaluation grades remain the same. From Fig.7 to Fig.12, the horizontal axis represents the belief degree of , i.e.  denotes ,  denotes ,  denotes , and so on; while the vertical axis represents the weights generated by Eq.(32) (the curve of ‘Ave’), Eq.(31) (the curve of ‘Min Max’) and SD method respectively.
From the curve of ‘Min Max’ in Fig.7, we can see that when the minimal satisfaction approach is used, the generated weights of the 6 attributes are equal if we set , which is . Although the utility of  increases steadily from Figs.7 to 12, the difference among the relative weights of the 6 attributes is not obvious until  (Fig.11) when Eq.(31) is applied. When the utilities of the five evaluation grades are set to be risk taking, i.e.  ,, ,  and , the generated weights of the 6 attributes by Eq.(31) are also equal. It seems unreliable that different risk preferences of DMs do not affect the attribute weights. When the SD method is used, the weights of the six attributes remain the same from Figs.7 to 12, which imply that the utility of evaluation grade has no influence on the generated weights. It is also not convincing.

Fig. 7. Attribute weights when u(H1)=0


Fig. 8. Attribute weights when u(H1)=0.001


Fig. 9. Attribute weights when u(H1)=0.01


Fig. 10. Attribute weights when u(H1)=0.02


Fig. 11. Attribute weights when u(H1)=0.05


Fig. 12. Attribute weights when u(H1)=0.1

In contrast, when Eq.(32) is used to calculate the entropy of , the difference among the weights (the curves of ‘Ave’ in Figs.7-12) of  to  is obvious. Specifically, from Fig.7 to 12,  which is given the belief degree of  and  is always assigned with the largest weight, while the generated weight of  which is given the belief degree of  and  is the smallest. From Fig.7 to 12, the standard deviations of the six attribute weights are shown in Table 2.

Table 2 Standard deviations of the six attribute weights
	u(H1)
	0
	0.001
	0.01
	0.02
	0.05
	0.1

	Ave
	0.1671
	0.1667
	0.1649
	0.1638
	0.1618
	0.1604

	Min Max
	0
	0.0034
	0.0209
	0.0336
	0.0575
	0.0796

	SD
	0.1027
	0.1027
	0.1027
	0.1027
	0.1027
	0.1027



It can be seen that with the value of  increases, the standard deviation decreases from ‘Ave’. which means the difference among the weights of the six attributes becomes small. Since the generated weights of the 6 attributes change steadily from Fig.7 to 12, the following property of ave-entropy process is presented.

Property 2 (Continuous): The generated weights of attributes change steadily with the change of the utility of evaluation grade when the process of Eq.(32) is applied.

The proof of Property 2 is shown in the Appendix. Property 2 gives us a further insight into the ave-entropy weight assignment process. If the generated attribute weights change obviously when the utility of an evaluation grade is given a very little change, the method will not be reliable. Here, another example which contains 5 alternatives and 16 attributes is given to illustrate Property 2. The belief degrees are shown in Table 3.
Table 3 Belief degrees that 5 alternatives be assessed to 16 attributes
	
	a1
	a2
	a3
	a4
	a5

	e1
	(H1, 1)
	(H2, 1)
	(H3, 1)
	(H4, 1)
	(H5, 1)

	e2
	(H1, 0.9;H, 0.1)
	(H2, 0.9;H, 0.1)
	(H3, 0.9;H, 0.1)
	(H4, 0.9;H, 0.1)
	(H5, 0.9;H, 0.1)

	e3
	(H1, 0.8;H, 0.2)
	(H2, 0.8;H, 0.2)
	(H3, 0.8;H, 0.2)
	(H4, 0.8;H, 0.2)
	(H5, 0.8;H, 0.2)

	e4
	(H1, 0.7;H, 0.3)
	(H2, 0.7;H, 0.3)
	(H3, 0.7;H, 0.3)
	(H4, 0.7;H, 0.3)
	(H5, 0.7;H, 0.3)

	e5
	(H1, 0.6;H, 0.4)
	(H2, 0.6;H, 0.4)
	(H3, 0.6;H, 0.4)
	(H4, 0.6;H, 0.4)
	(H5, 0.6;H, 0.4)

	e6
	(H1, 0.5;H, 0.5)
	(H2, 0.5;H, 0.5)
	(H3, 0.5;H, 0.5)
	(H4, 0.5;H, 0.5)
	(H5, 0.5;H, 0.5)

	e7
	(H1, 0.4;H, 0.6)
	(H2, 0.4;H, 0.6)
	(H3, 0.4;H, 0.6)
	(H4, 0.4;H, 0.6)
	(H5, 0.4;H, 0.6)

	e8
	(H1, 0.3;H, 0.7)
	(H2, 0.3;H, 0.7)
	(H3, 0.3;H, 0.7)
	(H4, 0.3;H, 0.7)
	(H5, 0.3;H, 0.7)

	e9
	(H1, 0.2;H, 0.8)
	(H2, 0.2;H, 0.8)
	(H3, 0.2;H, 0.8)
	(H4, 0.2;H, 0.8)
	(H5, 0.2;H, 0.8)

	e10
	(H1, 0.1;H, 0.9)
	(H2, 0.1;H, 0.9)
	(H3, 0.1;H, 0.9)
	(H4, 0.1;H, 0.9)
	(H5, 0.1;H, 0.9)

	e11
	(H1, 0.08;H, 0.92)
	(H2, 0.08;H, 0.92)
	(H3, 0.08;H, 0.92)
	(H4, 0.08;H, 0.92)
	(H5, 0.08;H, 0.92)

	e12
	(H1, 0.06;H, 0.94)
	(H2, 0.06;H, 0.94)
	(H3, 0.06;H, 0.94)
	(H4, 0.06;H, 0.94)
	(H5, 0.06;H, 0.94)

	e13
	(H1, 0.04;H, 0.96)
	(H2, 0.04;H, 0.96)
	(H3, 0.04;H, 0.96)
	(H4, 0.04;H, 0.96)
	(H5, 0.04;H, 0.96)

	e14
	(H1, 0.02;H, 0.98)
	(H2, 0.02;H, 0.98)
	(H3, 0.02;H, 0.98)
	(H4, 0.02;H, 0.98)
	(H5, 0.02;H, 0.98)

	e15
	(H1, 0.01;H, 0.99)
	(H2, 0.01;H, 0.99)
	(H3, 0.01;H, 0.99)
	(H4, 0.01;H, 0.99)
	(H5, 0.01;H, 0.99)

	e16
	(H1,0.001;H,0.999)
	(H2,0.001;H,0.999)
	(H3,0.001;H,0.999)
	(H4,0.001;H,0.999)
	(H5,0.001;H,0.999)



The generated weights based on the data in Table 3 when we set  ,, ,  and  are shown in Fig.13. The meanings of the horizontal and vertical axes in Fig.13 are the same with Figs.7 to 12. We also calculate the weights of the 16 attributes shown in Fig.14 when we set  provided that the utilities of other four evaluation grades remain the same. The results in Figs.13 and 14 show that although the utility of  changes very little, the generated weights change a lot when Eq.(31) (the curve of ‘Min Max’) is used. The ave-entropy method (the curve of ‘Ave’ in Figs.13 and 14) seems more rational because it gives us a continuous change related to the utility of evaluation grade.


Fig. 13. Attribute weights using Eq.(31) or Eq.(32) when u(H1)=0


Fig. 14. Attribute weights using Eq.(31) or Eq.(32) when u(H1)=0.001

Fig.15 shows the sensitivity analysis conducted on the change of number of alternatives for ave-entropy based on Table 1. Here, ‘2 alternatives’ refers to the weights are generated by only  and  in Table 1. ‘3 alternatives’ means the weights are calculated by ,  and , while ‘4 alternatives’ represents  is not considered in the calculation process. From Fig.15, we can see that with the number of alternatives increases from 2 to 5, the differences among the weights of the 6 attributes decrease. When only  and  are considered, i.e. the 2nd and 3rd column in Table 1, the difference between the weight of  and  is 0.454 which is relatively large although the dissimilarity between the belief distribution of  and  for  and  has not such obvious difference. According to [53], the dissimilarity measure between  and  for  represented by  is 0.45 provided that the DM is risk aversion as the above defined, while . So with the number of alternatives increase, the method seems more rational.


Fig. 15. Sensitivity analysis on the number of alternatives

4.4 Consideration of risk preference of DM
In group decision making, different utility functions may be estimated by DMs depending on their different preferences which would derive from their discrepancy on backgrounds or value judgments[4,25]. And it may be also changed with the time variable. Three different types of utility function depending on the preference of DM towards risk are shown in Fig.16. In Fig.16, the horizontal axis represents the 5 evaluation grades which are , , , , , while the vertical axis indicates the utility of evaluation grade such that .


[bookmark: OLE_LINK19][bookmark: OLE_LINK20]Fig. 16. Three different types of utility function depending on the preference of DM towards risk

A unique utility function which only represents one kind of risk preference will lead to the irrationality of the generated weights. For this reason, the generated objective weights are better to be assigned with interval values provided that different types of utility function are considered and assumed to be constraints. To capture the difference on risk preference of DM, the utility of  is assumed to be interval values[4,25] as follows:
                         (33)
Therefore, to handle the risk preference of different DMs, the following optimization model is constructed to calculate the maximum and minimum value of :




Eqs.(28), (29), (30)
The above programming model that could be computed by Excel contains  variables which are . Let  and  be the optimized values of the objective function in <Model 1>. So the right and left extensions of  are obtained considering the preference discrepancy of different DMs.
Take the case in Table 1 for example, the utility intervals are assumed to be between risk taking and risk aversion such that , , , , . The generated interval weights from <Model 1> are shown in Table 4 and Fig.17.

Table 4 Interval weights considering the risk preference of DMs
	
	

	wi-
	wi+

	e1
	1
	0.469
	0.626

	e2
	0.8
	0.202
	0.278

	e3
	0.6
	0.11
	0.157

	e4
	0.4
	0.045
	0.073

	e5
	0.2
	0.01
	0.019

	e6
	0.1
	0.002
	0.005




Fig. 17. Interval weights considering the risk preference of DMs
Given that the weights are calculated by the ave-entropy method and the utility estimation may be fuzzy, the combined utility assessed on  could be generated by the following two programming models according to Wang[20], Guo[31] and Zhou[25]’s models.








The analytical algorithm to generate  can be related to [6]. From <Model 2> and <Model 3>, the overall maximum and minimum expected utilities can be generated as  and . Then the utility interval assessed on  can be denoted by .
In summary, the ER approach with multiple kinds of attributes and objective weight assignment process is shown in Fig.18.
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Fig. 18. ER approach with multiple kinds of attributes and objective weight assignment

Fig.18 provides us a complete process to tackling with a MADM problem including both quantitative and qualitative attributes. Three steps are involved in the decision making process. Step 1 is the acquirement of assessment values on both quantitative and qualitative attributes, followed by the transformation of assessment values to the belief degrees on the general frame of discernment. For a quantitative BA or CA with certain value or a qualitative attribute assigned with belief distribution, the transformation rules in [2] can be used. If a quantitative attribute is assessed by interval value, we can apply the method in [19] or [20] to transform the interval value to belief distribution. Otherwise, transformation rules proposed in Section 3 can be used for FIA and DIA. Step 2 is the generation of attribute weights from the assessment values of both quantitative and qualitative attributes which is discussed in Section 4.3. Step 3 is the aggregation of attribute values from the transformed distributions in step 1 and the generated attribute weights in step 2 by the ER approach or Models 1 to 3 provided in Section 4.4. Next, we will give two case studies to illustrate the whole decision making process.

5. Case study
In this section, two examples are provided to illustrate the approaches proposed in this paper. In the first case, FIA and DIA are contained in the assessment process, while weight assignment method is included in the second case.

5.1 House selection problem including DIA and FIA
The first case is a selection process of buying a house. A person is going to buy a house in a city for his family in China. There are many factors to be considered, including price, position of building, safety, area of housing, reputation of developer, storey of house, school district, suitability of living, brand of elevator, distance to gas station or high voltage transmission line. Since quality of house is highly related with reputation of developer, it is not listed again. In Table 5, 10 attributes are shown. Among these attributes, ‘area of housing’ and ‘storey of house’ are two FIAs to the person. Since the house is bought for his family including his wife, child and him, he feels that 120 to 125 square meters is the best size because if area is more than 144 square meters, price will be higher and tax will be doubled to 4% in China. On the other hand, if area is too small, it is not suitable to live for a family of three people although it is cheaper. ‘Storey of house’ is another FIA for him because he likes the 9-10th floor the most. If floor is too high, he will feel nervous because he has acrophobia, while there may not be good sunshine if floor is too low. So a house will be less satisfied no matter whether floor is more or less than the 9-10th floor. ‘Distance to gas station or high voltage transmission line’ is a DIA because gas station is a potential hazard and high voltage transmission line has the risk of radiation. It is safer to be far away from them no matter to what direction considering the longitude and latitude. The houses he is going to choose are from two 18-floor buildings in different locations of the same city. Four evaluation grades are included in the assessment, which are Best (H4), Good (H3), Average (H2), Worst (H1). The assessed values about the two houses are shown in Table 5.
Table 5 Attribute structure and assessed values on the two houses
	Type of attribute
	Symbol
	Attribute
	House A
	House B

	CA
	e1
	Price (CNY)
	1,050,000
	880,000

	qualitative
	e2
	Position of building
	G
	A

	qualitative
	e3
	Safety
	B
	A

	FIA
	e4
	Area of housing (square meter)
	133
	110

	qualitative
	e5
	Reputation of developer
	A
	G

	FIA
	e6
	Storey of house
	5th
	12th

	qualitative
	e7
	School district
	A
	G

	qualitative
	e8
	Suitability of living
	B
	G

	qualitative
	e9
	Brand of elevator
	G
	G

	DIA
	e10
	Distance to gas station or high voltage transmission line (km)
	0.9
	1.5



It is clear that e1, e4, e6 and e10 are four quantitative attributes in the attribute structure. The assessment criteria which reflect the values of the four quantitative attributes corresponding to the four evaluation grades are shown in Table 6.

Table 6 Attribute values of quantitative attributes corresponding to the four evaluation grades
	
	B(H4)
	G(H3)
	A(H2)
	W(H1)

	Price (CNY)
	No more than 800,000
	900,000
	1,000,000
	More than 1,100,000

	Area of housing
	120-125 square meters
	110 square meters or 130 square meters
	100 square meters or 135 square meters
	Less than 90 or more than 144 square meters

	Storey of house
	9-10th floor
	13th floor or 7th floor
	15th floor or 3th floor
	1st or 18th floor

	Distance to gas station or high voltage transmission line
	More than 1 km
	0.7
	0.5km
	Less than 0.3km



From Table 6, the frames of discernment of the four quantitative attributes are constructed. For instance, the frame of discernment for ‘area of housing’ is shown in Fig.19. Since e4 is a FIA, utility between every two adjacent evaluation grades are linear increase when the value is between 90 and 120 square meters, while linear decrease when the value is more than 125 square meters. So we can transform any value to the belief degrees on its evaluation grades in Fig.19.
(Best IntervalValue)
W(H1-)      A(H2-)     G(H3-)      B(H4)   G(H3+)   A(H2+)     W(H1+)
90        100        110      120  125  130     135      144
h1,4     h2,4       h3,4        h4,4     h5,4      h6,4      h7,4



Fig. 19. Relationship between values of e4 and its frame of discernment

Based on Table 6, the assessed values of the four quantitative attributes could be transformed to belief degrees on the four evaluation grades which are shown in Table 7.
Table 7 Belief degrees of attributes after transformation
	Type of attribute
	Attribute
	House A
	House B

	CA
	Price (CNY)
	(W,0.5; A,0.5)
	(G,0.8; B,0.2)

	qualitative
	Position of building
	(G,1.0)
	(A,1.0)

	qualitative
	Safety
	(B,1.0)
	(A,1.0)

	FIA
	Area of housing (square meter)
	(A,0.6; G,0.4)
	(G,1.0)

	qualitative
	Reputation of developer
	(A,1.0)
	(G,1.0)

	FIA
	Story of house
	(A,0.5;G,0.5))
	(G,0.67;B,0.33)

	qualitative
	School district
	(A,1.0)
	(G,1.0)

	qualitative
	Suitability of living
	(B,1.0)
	(G,1.0)

	qualitative
	Brand of elevator
	(G,1.0)
	(G,1.0)

	DIA
	Distance to gas station or high voltage transmission line (km)
	(G,0.33;B,0.67)
	(B,1.0)



The weights of attributes in this example are supposed to be equal. Then the aggregated belief degrees for the two houses can be generated by applying the ER algorithm, which are shown in Table 8.

Table 8 Combined belief degrees assigned to the two houses
	
	B(H4)
	G(H3)
	A(H2)
	W(H1)

	House A
	25.91%
	32.61%
	37.08%
	4.41%

	House B
	12.74%
	70.43%
	16.83%
	0



Suppose the utility of the four evaluation grades are u(H1)=0, u(H2)=0.3, u(H3)=0.7, u(H4)=1, then the utilities of the two houses are 0.5986 and 0.6709 respectively.

5.2 SRDPA problem with ave-entropy weight assignment
In this subsection, a strategic R&D project assessment (SRDPA) problem adapted from [3] is solved by the ave-entropy method to illustrate its validity. The assessment is in the period that the R&D process has been finished and already in market considering the life cycle of a project. It is hoped that the final generated score to a product on the general level could reflect the performance of completion.

5.2.1 Description of the SRDPA problem
SRDPA problem is in essence a MADM problem which is characterized by many qualitative and quantitative attributes whose values may be precise, fuzzy or incomplete. In this SRDPA problem, the performance of four R&D projects denoted by  for a car manufacturer is assessed on 3 general attributes, which are decomposed into 8 second level attributes and 17 third level attributes that are shown in the first three columns of Table 9. Among the 17 basic attributes, some reflect the content of life cycle sustainability assessment (LCSA) to certain degree. For example, “economy (e124)” is the cost spent on designing, manufacturing and using a product[3]. It almost covers the stages of life cycle cost (LCC) for a product in the LCSA framework except the raw material acquisition and waste management phases. “Quality of production (E1)” is the overall satisfaction generated from the stated characteristics, which means how the consumer’s demand could be satisfied by the features of a product[3]. It accords with the stakeholder of consumer in the social life cycle assessment (SLCA) structure associated with LCSA framework.
Five evaluation grades are defined to assess the four projects as follows:
                     (34)
For illustration purpose, Best is represented by A, Good by B, Average by C, Poor by D and Worst by E. Then
                             (35)

Table 9 Attribute framework and belief distributions of four projects in the SRDPA problem
	General attributes
	Criteria in the second level
	Factors in the lowest level
(contents of assessment)
	Type of project

	
	
	
	Light Trailer (a1)
	Heavy Trailer
(a2)
	MPV
(a3)
	SRV
(a4)

	Quality of production
E1
	Scale and importance of project
E11
	workload e111
	D(1.0)
	D(1.0)
	A(0.33)
B(0.67)
	A(1.0)

	
	
	origin of person
e112
	B(0.15)
C(0.70)
D(0.15)
	B(0.15)
C(0.70)
D(0.15)
	B(0.15)
C(0.70)
D(0.15)
	B(0.15)
C(0.70)
D(0.15)

	
	
	importance of project
e113
	A(0.45)
B(0.165)
C(0.165)
E(0.22)
	A(0.83)
B(0.085)
C(0.085)
	A(0.2)
B(0.4)
C(0.4)
	A(0.70)
B(0.15)
C(0.15)

	
	Content of technique
E12
	advance of critical techniques e121
	B(0.67)
C(0.33)
	A(0.67)
B(0.33)
	A(0.4)
B(0.5)
C(0.1)
	A(0.6)
B(0.3)
C(0.1)

	
	
	ratio between quality and price e122
	A(0.56)
B(0.22)
C(0.22)
	A(0.25)
B(0.67)
C(0.08)
	A(0.3)
B(0.7)
	A(0.1)
B(0.4)
C(0.5)

	
	
	reliability of product e123
	H(1.0)
	H(1.0)
	H(1.0)
	H(1.0)

	
	
	economy e124
	A(1.0)
	B(1.0)
	A(0.4)
B(0.6)
	B(0.7)
C(0.3)

	
	Theoretical value and level of innovation
E13
	theoretical standard of project e131
	A(0.11)
B(0.45)
C(0.33)
D(0.11)
	A(0.42)
B(0.50)
D(0.08)
	A(0.5)
B(0.5)
	A(0.8)
B(0.2)

	
	
	degree of innovation
e132
	B(0.05)
C(0.275)
D(0.225)
E(0.45)
	B(0.125)
C(0.415)
D(0.29)
E(0.17)
	A(0.1)
B(0.1)
C(0.35)
D(0.25)
E(0.2)
	B(0.1)
C(0.2)
D(0.1)
E(0.6)

	
	
	ratio of individual design e133
	B(1.0)
	B(1.0)
	B(1.0)
	B(1.0)

	Process control
E2
	Quality of project E21
	A(0.44)
B(0.56)
	A(0.83)
B(0.17)
	A(0.5)
B(0.4)
C(0.1)
	A(0.5)
B(0.5)

	
	completion time for a project E22
	B(1.0)
	A(1.0)
	A(1.0)
	A(1.0)

	
	Investment E23
	A(1.0)
	A(1.0)
	A(1.0)
	A(1.0)

	Added value by project
E3
	Project team
E31
	documents of rules and regulations established about project group e311
	A(0.22)
B(0.11)
C(0.335)
D(0.225)
E(0.11)
	A(0.33)
B(0.21)
C(0.335)
D(0.125)
	A(0.2)
B(0.2)
C(0.4)
D(0.2)
	A(0.2)
B(0.2)
C(0.4)
D(0.2)

	
	
	routine operational management documents e312
	A(0.11)
B(0.33)
C(0.56)
	A(0.25)
B(0.58)
C(0.17)
	A(0.3)
B(0.5)
C(0.2)
	A(0.1)
B(0.5)
C(0.4)

	
	
	management documents about R&D process of products e313
	A(0.22)
B(0.11)
C(0.56)
D(0.11)
	A(0.33)
B(0.58)
C(0.09)
	A(0.6)
B(0.3)
C(0.1)
	A(0.4)
B(0.4)
C(0.2)

	
	Continuity of technique
E32
	accumulation and continuity of technique
	A(0.67)
C(0.22)
E(0.11)
	A(0.92)
E(0.08)
	A(0.7)
C(0.2)
E(0.1)
	A(0.7)
C(0.3)


*Quantitative attributes are in italic type.

In Table 9, 17 basic attributes in the assessment framework are split into two parts: 10 qualitative attributes and 7 quantitative attributes which are in italic type. Eq.(34) or (35) is just the frame of discernment on the general level. For each qualitative attribute, the number of evaluation grades are not all consistent with Eq.(35) for the convenience of original data collection. The original assessment information consists of both numerical values on the 7 quantitative attributes and belief distributions on the 10 qualitative attributes whose evaluation grades may be more or less than 5. In the last 4 columns of Table 9, belief distributions that each project be assessed to all the 17 attributes are presented. They are already the transformed belief distributions from original information provided by experts according to specific rules. For example, we can see that “Ratio between quality and price (e122)” associated with “Content of technique (E12)” for light trailer is evaluated to be Best with a belief degree of 0.56, to be Good with a belief degree of 0.22, to be Average with a belief degree of 0.22. The above statement could be represented by the following expectation:
S(e122 (a1))={(Best, 0.56),(Good, 0.22),(Average, 0.22)}
Note that the total belief degree for the statement of e122 on light trailer sums to 1, which means that the assessment is complete. But it is not always the case. The assessments to “Reliability of product (e123)” on all the four projects are completely ignorant because the original information provided by experts is ‘unknown’[3]. So both complete and incomplete assessments are included in Table 9. The DM wants to obtain a rank order of the four projects by aggregating the distributed assessments on 17 attributes.

5.2.2 Generating weights using different methods
The ave-entropy method is used to generate the weights of attributes. In the first situation, the utilities of the five evaluation grades are assumed to be risk neutralness, such that,, ,  and . Since the assessment to e112, e123, e133 and E23 on the four projects are the same, these four attributes have no effect in the ranking and comparison of the four projects. So we set the weights of these four attributes to be 0 in the SRDPA problem. The belief distributions that each attribute be assessed on all the four projects should be transformed to average utilities by Eqs.(28)-(30) first. Take e122 for example, , , , .
Secondly, average utilities are tackled with standard 0-1 transformation method by the equation that . So the maximal and minimal value of an attribute be assessed on all the four projects will be given the value of 1 and 0 respectively. Take e122 for example, , , , . Then the normalized average utilities can be get by . For instance, , , , .
Thirdly, Eq.(26) is used to generate the entropy of each attribute from the normalized average utilities of each attribute on all the four projects. Take e122 for example, .
Finally, the attribute weights could be obtained by Eq.(27) that are shown in the 5th column of Table 10. We also calculate the weights of the 17 attributes by SD, CRITIC and CCSD which are shown in the last three columns of Table 10.  is directly used to generate weights with no normalization for SD, CRITIC and CCSD because . The 6th column in Table 10 presents the weights generated by GAHP method in [3].

Table 10 Generated attribute weights by Eq.(32) and several other methods
	Attributes in three levels
	Serial number
	Attribute weights

	
	
	Ave-entropy
	GAHP
	SD
	CRITIC
	CCSD

	E1
	E11
	e111
	1
	0.1177
	0.0257
	0.2468
	0.268
	0.3057

	
	
	e112
	2
	0
	0.0278
	0
	0
	0

	
	
	e113
	3
	0.08
	0.0607
	0.0869
	0.0758
	0.0967

	
	E12
	e121
	4
	0.118
	0.0201
	0.0678
	0.0738
	0.0124

	
	
	e122
	5
	0.0493
	0.041
	0.0541
	0.0773
	0.0786

	
	
	e123
	6
	0
	0.0575
	0
	0
	0

	
	
	e124
	7
	0.0732
	0.0336
	0.0887
	0.1576
	0.132

	
	E13
	e131
	8
	0.0528
	0.0316
	0.0834
	0.0676
	0.0306

	
	
	e132
	9
	0.0812
	0.0524
	0.066
	0.0557
	0.075

	
	
	e133
	10
	0
	0.0453
	0
	0
	0

	E2
	E21
	E21
	11
	0.1145
	0.1779
	0.031
	0.0298
	0.0416

	
	E22
	E22
	12
	0.0483
	0.0787
	0.079
	0.0527
	0.0506

	
	E23
	E23 
	13
	0
	0.1051
	0
	0
	0

	E3
	E31
	e311
	14
	0.0607
	0.0331
	0.0413
	0.0292
	0.0448

	
	
	e312
	15
	0.0684
	0.0399
	0.0435
	0.0305
	0.0427

	
	
	e313
	16
	0.0502
	0.0434
	0.0721
	0.0487
	0.0429

	
	E32
	E32
	17
	0.0856
	0.1263
	0.0394
	0.0332
	0.0465



5.2.3 Comparison of several methods
Fig.20 shows the weights generated by ave-entropy, GAHP in [3], SD, CRITIC and CCSD. The horizontal and vertical axes represent the number of the 17 attributes and the weights of the 17 attributes respectively. From the SD, CRITIC and CCSD methods,  is assigned with the weight of 0.2468, 0.268 and 0.3057 respectively which are much larger than the other 16 attributes. The reason lies in that the three methods are all based on standard deviation which is determined by the divergence of distributions on projects. Since the distributions that  be assessed on the four projects are quite different compared with other 16 attributes,  is given more importance. Comparatively, the ave-entropy method and GAHP creates relatively well-distributed weights. e112, e123, e133 and E23 are assigned with the weight of 0 by ave-entropy, SD, CRITIC and CCSD because the distributions of each of the 4 attributes on these 4 projects are the same. So these four attributes are not included in generating the weights by the four methods. It should be mentioned that e112, e123, e133 and E23 may not always be given the weight of 0 if some other projects are assessed because there perhaps exist some differences among other projects on any of the four attributes. And when some other projects are assessed, an attribute except e112, e123, e133 and E23 may be given the same distribution. So the attribute weights may change when different projects are assessed.
The comparisons of the five methods are shown in Table 11. Abnormal weights means that the weight of at least one attribute exceeds the rational times of other attributes. On the contrary, well-distributed weight means the difference between each pair of attributes is not extremely large. A special case is that all attributes have the same weight which we call ‘the best well-distributed weight’. However, the best well-distributed weight for 17 attributes which is 1/17 is not reasonable because we can at least distinguish one attribute which is more important than the other ones. Among these five methods, only the CCSD method includes an optimization method. Since in the GAHP method[3,4,25], a group of DMs are required to provide subjective judgments on the comparison between every two attributes, the generated weights involve a high extent of subjectivity even if there is no qualitative attribute in the attribute structure. Compared with the GAHP method, the subjectivity contained in each of the other four methods is much lower because only the utilities of evaluation grades should be estimated by DMs. In both the GAHP and the ave-entropy method, the risk preference of DM is considered which lead to several constructed programming models. So these two methods are particularly applicable and effective when a group of DMs are involved in a decision making problem.


Fig. 20. Weights generated by Ave-entropy, GAHP, SD, CRITIC and CCSD 

Table 11 Comparison of several methods
	Property                   Method
	Ave-entropy
	GAHP
	SD
	CRITIC
	CCSD

	Abnormal weights on e111
	
	
	√
	√
	√

	Consideration of the utilities of evaluation grades
	√
	
	√
	√
	√

	Well-distributed weights
	relatively
	relatively
	
	
	

	Considering the risk preference of DM
	√
	√
	
	
	

	Including the optimization process
	
	
	
	
	√

	The extent of subjectivity
	little
	high
	little
	little
	little

	The extent of sensitivity to discrepancies
	moderate
	none
	high
	high
	high

	Practicability in consideration of alternative number
	≥2
	≥0
	≥2
	≥2
	≥2



For a more comprehensive view of the results, the comparisons of the attribute weights in the general level from the five methods are also presented by Fig.21. Compared with the weights by GAHP in [3], we can see that the dissimilarities of the attribute weights in the general level are more obvious by the other four methods. From this point of view, the weight of general level attribute is sensitive to the discrepancies of basic attribute on different alternatives when ave-entropy, SD, CRITIC or CCSD is used. Considering that Ave-entropy, SD, CRITIC and CCSD are based on the discrepancies on different alternatives, these four methods are applicable when at least two alternatives are contained. Comparatively, GAHP can be used even if no alternative is involved in.


Fig. 21. Comparison of the attribute weights on the general level among the five methods

In the second situation, suppose that , , , , . So nonlinear programming <Model 1> is applied to calculate the interval weights of the 17 attributes. The generated interval weights represented by  are shown in Fig.22. From Fig.22, we can see that different risk preferences do influence the attribute weights to some extent.

 
Fig. 22. Interval weights generated considering the risk preferences of DMs

5.2.4 ER modeling framework for SRDPA
Fig.23 shows the general distributions from the weights calculated by the five methods on light trailer. The horizontal and vertical axes represent the evaluation grade and belief degree respectively.

 
Fig. 23. The general distributions on light trailer from five different generated weights

The average utilities and rank orders of the four R&D projects on the overall performance and the three first level attributes are generated and shown in Table 12.

Table 12 Average utilities and rank order of the four R&D projects on major attributes
	Attribute level
	Methods
	Average utility and rank

	
	
	Light Trailer
	Heavy Trailer
	MPV
	SRV

	
	
	Utility
	Rank
	Utility
	Rank
	Utility
	Rank
	Utility
	Rank

	General assessment
	Ave-entropy
	0.6180
	4
	0.7412
	3
	0.7950
	2
	0.8082
	1

	
	GAHP
	0.7556
	4
	0.8556
	1
	0.8221
	2
	0.8221
	2

	
	SD
	0.5137
	4
	0.5796
	3
	0.8219
	2
	0.8817
	1

	
	CRITIC
	0.5714
	4
	0.5730
	3
	0.8222
	2
	0.8549
	1

	
	CCSD
	0.4798
	4
	0.4883
	3
	0.8052
	2
	0.8575
	1

	

	Quality of production
	Ave-entropy
	0.5673
	4
	0.6570
	3
	0.7710
	2
	0.7961
	1

	
	GAHP
	0.6439
	4
	0.6878
	3
	0.6969
	1
	0.6898
	2

	
	SD
	0.4816
	4
	0.5119
	3
	0.8038
	2
	0.8785
	1

	
	CRITIC
	0.5580
	3
	0.5377
	4
	0.8120
	2
	0.8488
	1

	
	CCSD
	0.4500
	3
	0.4318
	4
	0.7942
	2
	0.8541
	1

	

	Process control
	Ave-entropy
	0.8278
	4
	0.9722
	1
	0.8920
	3
	0.9100
	2

	
	GAHP
	0.8796
	4
	0.9820
	1
	0.9289
	3
	0.9408
	2

	
	SD
	0.7623
	4
	0.9956
	1
	0.9829
	3
	0.9858
	2

	
	CRITIC
	0.7715
	4
	0.9924
	1
	0.9700
	3
	0.9750
	2

	
	CCSD
	0.7848
	4
	0.9878
	1
	0.9514
	3
	0.9595
	2

	

	Added results
	Ave-entropy
	0.6340
	4
	0.8081
	1
	0.7759
	2
	0.7198
	3

	
	GAHP
	0.6997
	4
	0.8707
	1
	0.8169
	2
	0.7927
	3

	
	SD
	0.6121
	4
	0.7982
	2
	0.8067
	1
	0.7374
	3

	
	CRITIC
	0.6176
	4
	0.8030
	2
	0.8060
	1
	0.7393
	3

	
	CCSD
	0.6177
	4
	0.7958
	1
	0.7751
	2
	0.7156
	3



From Table 12, it is clear that the four projects were ranked in the original assessment by GAHP as follows: Heavy TrailerMPVSRVLight Trailer; while they are ranked with the ave-entropy weights as: SRVMPVHeavy TrailerLight Trailer. Compared with the rank in [3], the difference on the general level lies mainly in “Quality of production” whose weight is 0.5723 from the ave-entropy method. So although heavy trailer ranked the first on “Process control” and “Added results”, the average utility of it on “Quality of production” is much less than MPV and SRV which leads to its lower general result. From Table 9, we can see that the higher weight of “Quality of production” compared with 0.4 in [3] results from the high discrepancy of the distribution to e111 on the four projects. Fig. 23 shows that the combined ‘unknown’ belief degree is 0 except GAHP. This is mainly caused by the fact that the only distribution which contains ignorance (e123) is given the weight of 0 by ave-entropy, SD, CRITIC and CCSD considering that the distributions of e123 on the four projects are the same. From Table 10 in [3], it revealed that the assessment to e123 is completely unknown which leads to its unknown belief degree of 1 on the four projects. Although Table 12 shows that the rank orders in the general level from ave-entropy, SD, CRITIC, CCSD are the same, the difference on the combined belief degrees is obvious which is depicted in Fig. 23. For example, when assessing light trailer, the belief degree on ‘poor’ is extremely high by SD, CRITIC and CCSD. Comparatively, ave-entropy and GAHP provide a relatively distributed belief degrees on all the evaluation grades. Besides, the combined belief degrees can also be generated from the interval weights in Fig. 22 based on programming models in [31]. It needs to be mentioned that if the value of  is used to generate weights by SD, CRITIC and CCSD, the weights are well-distributed, especially for SD that  is given the minimum weight of 0.0672 and  is given the maximum weight of 0.0856. In this case, it seems a little unreasonable since all the attributes are given the similar weights by SD. By CRITIC and CCSD, the maximum and minimum weights are ,  and ,  respectively which seems more reasonable. Since  is already the dimensionless value, whether it should be transferred to  still needs to be discussed.
In real SRDPA problems, the generated performances from subjective and objective weights which are generated by the judgments of DMs and the discrepancy of assessment on different projects respectively should be considered simultaneously for a more rational result. Nevertheless, the method in Section 4 provides us a way to generate attribute weights when the assessments are given by belief distributions, together with the consideration of risk preferences of DMs.

6. Conclusions
In this paper, the ER approach was firstly extended for solving DIA and FIA. The frames of discernment and equivalent rules of DIA and FIA were presented. Then, we studied the transformation rules for DIA from both accurate and uncertain values to belief degrees on evaluation grades in the frame of discernment. Secondly, an ave-entropy based weight assignment process is shown to dealing with MADM problems which contain uncertain and incomplete subjective judgments assessed on qualitative attributes. The risk preference of DMs is considered to construct entropy method based programming models. It is hoped that the extension of the ER approach in this paper can contribute to widening its applications in real life problems. It should be noted that the difference between  and  is not necessarily the same as the difference between  and , so non-symmetrical preferences between the worst interval value for DIA can be modeled instead of symmetrical preferences. FIA can also be modeled non-symmetrical preferences for the same reason. Furthermore, utility function may be nonlinear between every two adjacent evaluation grades. So how to transform assessment value in these two situations will be studied in the future. Just as Diakoulaki and Deng said, there is no single method that can guarantee a more accurate set of attribute weights than others[46,47]. So the ave-entropy method is absolutely not suitable for any MADM problems, such as the case of interval belief degree or interval value assessment which will be further studied.
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Appendix
Proof of Property 2
Suppose the utility of  increases a value  which is very small. Then . The utilities of the  evaluation grades will change to . There are three possible scenarios.
(1) When , from Eqs.(28)-(30), we have
 
 
 
 
 
 
It is clear that when  is very small, .
Then
 
From Eq.(26), we have
 
 
From Eq.(27), we can conclude that the change of  is little provided that  is small enough.
(2) When , from Eqs.(28)-(30), we have
 
 
 
Similarly, when  is very small,  which will lead to the very little change of .
(3) When , we have
 
It is similar with the first scenario.
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Weight of attribute
Ave-entropy	E1	E2	E3	0.57227473426902631	0.16283961037524258	0.264885655355731	GAHP	E1	E2	E3	0.3957	0.36170000000000002	0.24260000000000001	SD	E1	E2	E3	0.69377806256564245	0.10991060678131964	0.19631133065303757	CRITIC	E1	E2	E3	0.77580618164983461	8.2515217330259266E-2	0.14167860101990587	CCSD	E1	E2	E3	0.73093479484131152	9.2196416565765882E-2	0.17685227159615818	General attribute
Weight of attribute
wi-	e111	e112	e113	e121	e122	e123	e124	e131	e132	e133	E21	E22	E23 	e311	e312	e313	E32	0.10409207718322445	0	5.2982561417495959E-2	0.10413748334432689	4.4915227827867943E-2	0	5.1863274043090955E-2	4.7484693960620931E-2	6.4951492587650192E-2	0	5.3856052614865486E-2	4.2623916892769897E-2	0	5.2101370497497371E-2	6.0956546879891924E-2	4.5061789867499126E-2	7.5341335024667583E-2	wi+	e111	e112	e113	e121	e122	e123	e124	e131	e132	e133	E21	E22	E23 	e311	e312	e313	E32	0.13251868148296225	0	0.11775613830529759	0.13278624381995394	5.6281792139179887E-2	0	8.2436719263921709E-2	5.8625715380740934E-2	0.12080736866757938	0	0.16202673670680892	5.4829464459149789E-2	0	6.7964472343162774E-2	7.225740452264641E-2	5.5822367422836028E-2	0.11075893446073322	Serial number of the third level attirbute
Inteval weight of attribute
Ave-entropy	worst	poor	average	good	best	unknown	5.9630000000000002E-2	0.18833900000000001	0.221752	0.28090300000000001	0.24937599999999999	0	GAHP in [3]	worst	poor	average	good	best	unknown	4.6754999999999998E-2	2.3071999999999999E-2	0.152864	0.334644	0.40210200000000001	4.0562000000000001E-2	SD	worst	poor	average	good	best	unknown	3.5000000000000003E-2	0.44900000000000001	0.1424	0.17349999999999999	0.2001	0	CRITIC	worst	poor	average	good	best	unknown	2.5426000000000001E-2	0.42595499999999997	0.103032	0.12862899999999999	0.31695800000000002	0	CCSD	worst	poor	average	good	best	unknown	4.3271999999999998E-2	0.55706	8.2036999999999999E-2	7.2512999999999994E-2	0.245118	0	Evaluation grade
Belief degree
