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Granularity measures and complexity measures of
partition-based granular structures

Matthew X. Yao
Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200

University Avenue West, Waterloo, ON N2L 3G1, Canada

Abstract

Granular computing is an emerging field of study in which the complexity of
problem solving is reduced through granulation. Researchers have proposed
various granularity measures of partitions to quantify the effects of gran-
ulation with respect to simplification. However, two important issues still
remain and require careful investigation. The first issue is that a partition
is only a simple two-level granular structure, which may not be sufficient
for the full scope of granular computing. The second issue is a clarification
of the differences between granularity and complexity. Although they are
related to each other, they represent different things. To address the two
issues, this paper makes three contributions. First, we extend the partition
granulation scheme into multilevel granular structures based on progressive
partitioning. Second, we propose a complexity measure of a partition that
incorporates both the block-level interactions (interactions within a block)
and the partition-level interactions (interactions between blocks of the par-
tition). Third, we generalize the complexity measure to multilevel granular
structures generated from a progressive partitioning process.

Keywords: Granularity Measure, Complexity Measure, Granular
Structure, Granular Computing, Progressive Partitioning

1. Introduction

Granular computing is a problem solving technique in which a complex
problem is subdivided into smaller components or granules to facilitate in-
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formation processing [1, 2, 8, 10, 11, 20, 23, 25, 28]. An overarching theme
of granular computing is that decomposing a large amount of data into a
smaller number of chunks would reduce the complexity of the analysis. Each
chunk can then be further decomposed into smaller chunks. The repeated
subdivision of the data would result in a hierarchical structure, providing
a mechanism for complexity reduction. Although the hierarchical nature of
granular computing and the resultant reduction of complexity have been ac-
cepted, there is still a lack of comprehensive theoretical or empirical studies
on the notion of the complexity of granular structures.

This paper investigates measures of complexity of granular structures in
an attempt to establish a sound basis for supporting granular computing.
To contextualize our current study, we first invoke Simon’s famous parable
of two watchmakers. In 1962, Simon [26] published a seminal paper on hi-
erarchy (i.e., a multilevel structure) as the architecture of complexity. He
used two watchmakers, Hora and Tempus, to demonstrate his idea. Hora
hierarchically organizes a watch as subassemblies of about ten elements or
sub-subassemblies whereas Tempus does not use such an organization. With
a hierarchical organization, Hora only needs to consider interactions of ele-
ments inside the same subassembly and does not need to consider interactions
with elements in different subassemblies. In contrast, Tempus must consider
the interactions between all elements. If both watchmakers must put down
their assembly and start from scratch when interrupted, then Hora is able
to assemble watches at a much faster rate than Tempus. From this para-
ble, we can draw two important implications for granular computing. One
is that a hierarchy may be a useful granular structure to support granular
computing [31, 33]. The other is that the complexity of granular structure is
determined, to some degree, by the interaction of elements and granules. We
review existing studies and propose new complexity measures of a granular
structure based on these two observations.

Influenced by the theory rough sets proposed by Pawlak [18], many studies
on granular computing consider partitions as granular structures [30]. A very
important concept is the granularity of partitions that reflects a coarsening-
refinement relation on partitions. Researchers have proposed numerous gran-
ularity measures of partitions [4, 5, 12, 14, 15, 16, 21, 27, 29, 34, 35, 36]. As
shown by the left branch of Figure 1, a measure of the granularity of a par-
tition is defined based on the granularity of a set. The latter is defined, in
turn, based on the cardinality of a set or the number of pairs in a set, as indi-
cated by the dashed lines. Feng et al. [7] defined a measure of the granularity
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of a partition based on the cardinality of a set X, namely, |X|. Beaubouef
et al. [3], Düntsch and Gediga [6], Miao and Wang [17], Wierman [27], and
Yao [29] have used the Shannon entropy to define granularity measures of
a partition. These measures can be expressed in terms of the Hartley [9]
entropy log |X| of a set X. Miao and Fan [16], Liang and Shi [13], Qian and
Liang [21], and Liang et al. [14] introduced granularity measures based on
the number of pairs in a set, as given by

(|X|
2

)
and log

(|X|
2

)
, respectively, in

Figure 1. By summarizing these measures, Yao and Zhao [34] derived a gen-
eral class of granularity measures based on the expectation of granularities of
all the blocks within a partition, as given by the first box in the left branch
of the figure, namely, G(π) =

∑
X∈π p(X)m(X), where π denotes a partition

and p(X) is the probability of the block X in the partition π.

Measures of a partition π

Granularity of a partition
G(π) =

∑
X∈π p(X)m(X)

Complexity of a partition
C(π) = c(π) +

∑
X∈π c(X)

Granularity
of a set m(X)

Complexity of a set c(X)

|X| log |X| (|X|
2

)
log
(|X|

2

)

Figure 1: Granularity and complexity measures of a partition

A granularity measure of a set may also be used to define a complexity
measure of the set, which depends on only the cardinality of the set. By
partitioning a set, we do not need to consider the interaction of elements
in different blocks. The complexity of a partition comes from two sources:
the interaction of elements within a block as determined by size of the block
and the interaction of blocks of a partition as determined by the number
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of blocks in a partition. Since the granularity measures do not consider
the number of blocks, they are significantly different from the complexity
measures of a partition. For this reason, this paper introduces a class of
complexity measures of a partition based on complexity measures of a set.
This class is shown in the first box in the right branch of Figure 1, namely,
C(π) = c(π) +

∑
X∈π c(X).

The proposed complexity measures of a partition are defined by using a
granularity/complexity measure of a set. As shown in Figure 1, existing gran-
ularity measures of a set consider only independence or pairwise interactions
of elements in a set. They do not account for the fact that the complexity of
a system could also be related to higher order interactions. To account for
the various degrees of interaction, in this paper we introduce an i-th order
complexity measure to capture interaction of i elements within in the set.
By summing the complexity of 1, . . . , k order interactions, we introduce a
cumulative k-th order complexity measure.

A partition is a special type of two-level granular structure. Blocks in
a partition can be further subdivided into finer levels of abstraction. A
process of repeated subdivision or progressive partitioning would necessitate
a hierarchical multilevel structure. The proposed complexity measure of a
partition is generalized to be applicable to hierarchical granular structures.
This is done through a recursive summation adhering to the progressive par-
titioning. Figure 2 provides an overview of the proposed class of complexity
measures granular structures. The bottom level with dashed boxes represent
examples of complexity measures of a set. The third level represents gran-
ularity measures of a set. In general, these can be defined by functions of
the number of elements, pairs, triplets, etc. in the set. The second level con-
structs the i-th order complexity measure of a set based on the granularity
measures of a set. The first level defines cumulative k-th order complexity
measures by summing the various possible orders of interaction, including
independence, pairwise interactions, triplet interactions, and so forth.

When using granular structures, it is necessary to consider both the struc-
tural and semantic information. The structural information is application
independent, whereas the semantic information is application dependent.
Although semantic complexity is important, we cannot study it without
the context of an application. Thus, we restrict the present study to the
structural complexity of partition-based granular structures. Figure 1 and
Figure 2 outline the contributions of this paper in the context of existing
research, namely, to propose a class of complexity measures of a partition
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Figure 2: Cumulative k-th order complexity measures

and to generalize these measures to be applicable to hierarchical granular
structures generated from progressive partitioning. To achieve these goals,
the rest of the paper is organized as follows. Section 2 introduces the con-
struction of hierarchical granular structures derived through progressive par-
titioning. Section 3 introduces the complexity measure of a set in the context
of granularity measures of a set. Sections 4 and 5 discuss methods of quanti-
fying partitions, including granularity measures of partitions and the newly
proposed complexity measures of partitions. Finally, Section 6 is the exten-
sion of the complexity measure to a hierarchical granular structure induced
by progressive partitioning, enabling the complexity measure to be used for
quantifying multilevel structures.

2. Partitions and hierarchical granular structures by progressive
partitioning

A partition of a universal set provides the simplest granular structure
consisting of only two levels. Through a progressive partitioning process, it
is possible to obtain a multilevel hierarchical granular structure.
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2.1. Partitions
The granulation of an information system involves subdividing or group-

ing certain elements together into smaller chunks of information referred to as
granules. Because the granulation depends on the needs and goals of the user,
the data can be grouped in any number of ways to help facilitate analysis.
One special case of granulation which has been studied by many researchers
is based on partitions or equivalence relations. In a partition based granular
computing model [30], a universal set U is divided into smaller non-empty
subsets called blocks. Each element from the original set is a member of only
one block and all blocks are pairwise disjoint.

Definition 1. A partition of a finite set U is a family of subsets of U , π =
{X1, . . . Xm}, if and only if:

(i) Xi 6= ∅,

(ii)
m⋃

i=1

Xi = U,

(iii) Xi ∩Xj = ∅, where i 6= j.

Each subset Xi is called a block of the partition.

There is a one-to-one correspondence between the set of all partitions of U
and the set of all equivalence relations on U . If E ⊆ U ×U is an equivalence
relation on U , namely, E is reflexive, symmetric, and transitive, then the
family of equivalence classes of E is a partition U/E = [x]E | y ∈ U , where
[x]E = {y ∈ U | xEy} is the equivalence class containing x ∈ U . Conversely,
given a partition π, an equivalence relation can be defined by xEπy if and
only if x and y are in the same block of π.

In the context of granular computing, each block of a partition may be
interpreted as a granule. Since each element or piece of information is con-
tained in only one subset, a partition is often considered to be one of the
simplest granulation schemes. Consequently, partition based granular com-
puting has been studied by many researchers in the context of rough set
theory [18, 27, 30].

2.2. Progressive partitioning
To further decompose or granulate a problem, a partition can be refined

through further subdivisions of its blocks. Each further subdivision of a block
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also adheres to the properties of a partition. When a block is subdivided,
the resulting sub-blocks are a partition of the original block. Thus, every
refinement of a partition is also a partition of the original partition. The
process of refining a partition successively is referred to as progressive or
recursive partitioning. The result is a multilevel granular structure that is
more suitable for representing the various levels of detail required in granular
computing.

It is helpful to think of the progressive refinement as a tree structure. The
root node is the original information, and every level consists of a refinement
of the previous level. An example of such a structure is shown in Figure 3.
The multilevel structure preserves the relationship between successive refine-
ments and allows for the creation of functions to search for appropriate levels
of granularity. In this case we could define a look-up function to progress up
the tree into coarser granulations (less detail) and a look-down function to
progress down the tree for finer granulations (more detail).

{a, b, c, d, e, f, g}

{a, b, c, d}

{a, b, c}

{a, b} {c}

{d}

{e} {f, g}

{f} {g}

Figure 3: Tree representation of a granular structure from progressive partitioning

In order to clearly and explicitly represent different types of granules
produced in a progressive partitioning process, we introduce the notions of
granules and granular structures. There are two types of granules for forming
a granular structure. A simple granule is a nonempty subset of a universal
set and a composite granule consists of other granules (either simple or com-
posite). A composite granule contains structural information regarding its
constituent granules. Formally, we define atomic (i.e., simple) and composite
(i.e., non-atomic) granules recursively.

Definition 2. Let U be a finite and non-empty universal set. The family of
granules can be constructed recursively with the following rules:

(i) An atomic granule g is any non-empty subset of U , that is, ∅ 6= g ⊆ U ;
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(ii) A non-atomic granule is a finite non-empty set G of granules, that is,
each element of G is either an atomic granule or a non-atomic granule.

By definition, a composite granule contains granules that, in turn, may
contain smaller granules. A composite granule in fact represents a hierarchi-
cal structure with multiple levels of granules. In this paper, we will refer to
a granule as a granular structure and use these terms interchangeably. In
many situations, we are interested in the family of all elements of U that
appear in all atomic granules used to form a granule.

Definition 3. Given a granule G, the set of elements that appear in G is re-
cursively defined as follows: for an atomic granule g and a composite granule
G,

(i) e(g) = g, g ⊆ U,

(ii) e(G) =
⋃

F∈G
e(F ). (1)

Definition 4. A granule G is called a nested granule if (i) G is an atomic
granule, or (ii) G is composed of a family of nested granules and the sets
of elements of granules of G are pairwise disjoint, that is, for F, F ′ ∈ G, if
F 6= F ′, then e(F ) ∩ e(F ′) = ∅.

The atomic granules are the smallest components of U and cannot be
further decomposed. The progressive partitioning process creates a nested
structure as the atomic granules and nested granules are contained within
larger nested granules. The nested structure highlights the hierarchical na-
ture of the partition-based structures. By moving up and down the various
levels of this progressive partitioning, the data can be viewed at different
resolutions. In order to show the granular structure in a similar form, we use
a dot-representation of a composite granule as a unit which is then connected
to its constituent granules. Figure 4 shows an example of the nested granular
structure resulting from progressive partitioning, which corresponds to Fig-
ure 3. An internal dot node represents a nested granule, where the contents
of the granule at that level are not of interest and consequently hidden. If
further detail is required, one can move down a level to unpack and observe
the contents within the nested granule. The leaf nodes represent atomic
granules that are subsets of U .
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•

•

•

{a, b} {c}

{d}

{e} •

{f} {g}

Figure 4: A dot-representation of the nested granular structure of Figure 3: G =
{{{{a, b}, {c}}, {d}}, {e}, {{f}, {g}}}

A partition is a special case of a composite granule, as shown in Figure 5.
It can be seen that a partition is a two-level granular structure, namely, the
level of the family of blocks represented by the dot and the level of individual
block represented by subsets of U .

•

{a, b, c, d} {e} {f, g}
Figure 5: Granule structure induced by a partition: π = {{a, b, c, d}, {e}, {f, g}}

In developing granularity and complexity measures of granular structures,
it is of interest to discuss the meaning and implications of independence and
interaction between elements of a set. An element or granule is said to
be independent of another element or granule if they can be considered in
isolation. A pair of elements or granules are dependent if they must be con-
sidered in tandem because of their interactions. In general, a set of elements
or granules are dependent if any one is related to the rest. The complexity
of any natural or artificial system is determined by how individual compo-
nents of the system interact with each other. Systems with independent
(non-interacting) elements are simpler, and systems with highly interacting
components are complex. In reality, while some components are highly de-
pendent, some other components are only loosely dependent. By exploiting
the weaker dependencies, we may decompose a complex system into subsys-
tems, so that we do not need to consider the minor interactions between
elements in different subsystems. In this way, we may turn complexity into
simplicity.
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The earlier mentioned parable of two watchmakers is a good example
to show how to reduce complexity of any natural or artificial system. If
we have a watch which is subdivided into various subassemblies, we only
need to consider the interaction of elements in the same subassembly and
the interaction of subassemblies, and we do not need to consider interactions
between elements in different subassemblies. Since the number elements in
each subassembly and the number of subassemblies are small, we reduce the
complexity of watchmaking. We may use software system development to
further illustrate this point. Consider a large software system which is divided
into numerous subroutines. Naturally, if subroutines are fully independent
of one another, the code is less complex than if each subroutine was required
to interact with numerous other subroutines. It is not surprising that large
software systems are organized into hierarchical structures in order to reduce
its complexity.

In forming granular structures, dependent elements must be placed in the
same granule and elements in different granules are independent. Thus, we
choose the notion of interactions as a basis for our study of complexity of a
granular structure. We propose a family of complexity measures which covers
the spectrum of independence and varying levels of dependence. One may
select a specific complexity measure from the class according to the actual
levels of dependence for a particular application.

2.3. Deriving multilevel granular structures in information tables
A commonly used representation of data in rough set theory and granular

computing is the information table [19, 32]. An example of an information
table from Quinlan [22] is presented in Table 1. The information table con-
tains information about various objects, in this case, people, with regards
to certain attributes, in this case, height, hair colour, and eye colour. The
objects in the information table can be partitioned based on any one of the
attributes, for example, partitioning the people based on their height pro-
ducing the sets of short and tall people, respectively.

Besides being useful for creating a single partition, the attributes of an in-
formation table can be used to create a multilevel granular structure through
a progressive partitioning. Each block of a partition can be further refined
using the other attributes. An example of a hierarchical multilevel structure
induced by such a progressive partitioning is shown in Figure 6. In this ex-
ample, we form a multilevel structure by partitioning the information table
in the following order of attributes: height, eye colour, and hair colour. We
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Table 1: Information Table Example

Object Height Eyes Hair Class

a short blue blond +
b short brown blond -
c tall blue red +
d tall blue dark -
e tall blue dark -
f tall blue blond +
g tall brown dark -
h short brown blond -

stop the progressive partitioning if a set of objects have the same class label.
Note that the figure represents the multilevel structure for this progressive
partitioning scheme only. It is also possible to progressively partition with a
different order of attributes.

The decision tree given in Figure 6 can be used to derive a set of classifi-
cation rules. For example, “if height is short and eye colour is blue, then the
class is +.” Naturally, the complexity of the tree determines the complexity
of the set of classification rules. As an application, the proposed measures
of complexity may be applied in machine learning and data analysis for con-
structing a suitable decision tree.

3. Granularity and complexity of a set

According to Definition 2, an atomic granule is a subset of a universal
set and a composite granule is a set of granules. By the fact that a granular
structure is recursively defined by sets of granules, a study of granularity
measures and complexity measures of a granular structure necessarily stems
from a study of the corresponding measures of a set. There can be two
categories of granularity and complexity measures, depending on whether el-
ements in a set are assumed to be independent or interdependent. This leads
to the two classes of independence-based and interaction-based measures. If
the elements are assumed to be independent, the granularity and complexity
measure become the same and will depend only on the number of elements
within the set. If elements are assumed to be interdependent, a complexity
measure must also take into consideration the interactions of elements.
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All:
{a, b, c, d, e, f, g, h}

short:
{a, b, h}

short & blue:
{a}

short & brown:
{b, h}

tall:
{c, d, e, f, g}

tall & blue:
{c, d, e, f}

tall & blue & red:
{c}

tall & blue & dark:
{d, e}

tall & blue & blond:
{f}

tall & brown:
{g}

Figure 6: Progressive partitioning of the information table in Table 1.

3.1. Granularity and complexity measures assuming the independence of el-
ements

A granule is a cluster of individuals or a chunk of information that can be
studied as a single unit. Intuitively speaking, the concept of the granularity
of a granule is used to describe our perception of the sizes of granules. That
is, a measure of granularity should reflect the sizes of different granules. We
can order granules according to their granularity.

In a set-theoretic setting, we use a finite set of objects to represent an
atomic granule and use a set of granules to represent a composite granule.
A larger set has more elements and, thus, has a larger granularity. This
relationship immediately suggests the use of the cardinality (i.e., the number
of elements in a set) for defining a simple granularity measure m1(X) of a
set X ⊆ U :

m1(X) = |X|, (2)

where | · | denotes the cardinality of the set. The measure m1 simply counts
the number of elements of in a set. Based on the cardinality of a set, more
granularity measures have been proposed by researchers to capture various
semantics interpretations of granularity.

One type of granularity measures of a set is derived from an information-
theoretic consideration. A subset X of a finite universal set is viewed as
possible alternatives or choices. For an element randomly picked from X,
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we have limited information about whether it is a specific element. There
is more uncertainty when the element is picked from a larger subset com-
pared to when the element is picked from a smaller subset. The information
uncertainty of X is defined by:

mh(X) = log(|X|), (3)

which is the Hartley entropy [9] of the set X. It is used as a measure of the
nonspecificity inherent in the set X. When X = {x} is a singleton subset, we
have log(|{x}|) = 0, that is, we are sure that the element is x if it is picked
from {x}. When X = U , we have the maximum value, indicating that we
are most unsure about which one is the element randomly picked from U .
This offers a very interesting interpretation of granularity. A set of a larger
granularity leads to a higher nonspecificity when we choose an element from
the set.

By definition, we have 1 ≤ m1(X) ≤ |U | and 0 ≤ mh(X) ≤ log |U |
for a non-empty subset X of U . In some situation, it may be more conve-
nient to use a normalized measure. By normalization, we have the following
normalized measures:

m1(X) =
|X|
|U | ,

mh(X) =
log |X|
log |U | . (4)

The values of the two normalized measures are in the unit interval [0, 1].
It is interesting to note that measures mh, m1, and mh are all monotonic

increasing transformations of the cardinality of a set. This class of granularity
measures of a set is systematically studied by Yao and Zhao [34].

Consider now the connection of the granularity of a set and the complexity
of a set. It is reasonable to assume the complexity of a set also depends on
the number of elements in the set. In other words, a granularity measure may
serve as a measure of the complexity of a set. At the same time, we must
point out an assumption implicitly made. When measuring the granularity
of a set by a monotonic increasing transformation of the cardinality of a set,
we simply count the number of elements in a set. In the context of measuring
the complexity of a set, this is based on an assumption that the elements of
the set are independent. If elements are interdependent, simply counting the
number of elements may not be sufficient.
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3.2. Complexity measures assuming the interdependence of elements
If we assume that elements in a set are independent, the complexity of the

set only depends on the number of elements in the set. In other words, the
granularity measure m1 of a set can be used as a measure of the complexity
of the set:

c1(X) = m1(X) = |X|. (5)
If the elements in the set are dependent, we must consider the interactions
of elements. The simplest type of interaction is pairwise interaction. Miao
and Fan [16] and Qian and Liang [21] used the number of pairs in a set to
define the granularity of a set. This gives the following measure of pairwise
complexity of a set:

c2(X) =

(|X|
2

)
=
|X|(|X| − 1)

2
. (6)

The measure c2 is a monotonic increasing transformation of the cardinality of
the size. Although one may interpret c2 as a measure of granularity [21, 34],
it may be more meaningful to interpret c2 as a measure of complexity, rather
than a measure of granularity. In other words, we use the number of elements
in a set to quantify the granularity, which is a measure of the first-order,
element level complexity. The number of pairs in a set is a measure of the
second-order, pairwise complexity.

If X contains three or more elements, we may consider interactions of
three elements. The number of triplets in X contributes to a measure of the
complexity of the third order:

c3(X) =

(|X|
3

)
=
|X|(|X| − 1)(|X − 2|)

3× 2
. (7)

By following the same ideas, we can have a measure of i-th order complexity,
where 1 ≤ i ≤ |X|.
Definition 5. For a finite set X, a measure of i-th order complexity is given
by:

ci(X) =

(|X|
i

)
=

|X|!
i!(|X| − i)! . (8)

That is, ci(X) is the number of i elements in X. It is assumed that
(|X|
i

)
= 0

if |X| < i. The normalized measure of ith order complexity is given by:

ck(X) =

(|X|
i

)
(|U |
i

) (9)
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and is bounded by the interval [0, 1].

In defining a measure of i-th order complexity, we only consider the inter-
action of exactly i elements. For a given set, we may argue that its complexity
is determined jointly by the number of elements (i.e., first-order complexity),
the pairwise interactions (i.e., the second-order complexity), triplet inter-
actions (i.e., third-order complexity), and so on. Therefore, a complexity
measure must account interactions for all orders up to a number k, in order
to fully quantify the complexity arising from all possible interacting elements.
By summing up complexity measures of orders from 1 to k, we define a cu-
mulative complexity measure ck1(X) for all orders of interaction.

Definition 6. A measure of cumulative complexity of orders 1 to k is defined
by:

ck1(X) =
k∑

i=1

ci(X) =
k∑

i=1

(|X|
i

)
. (10)

The measure ck1(X) represents the total complexity of the set with respect to
interactions from 1 to k elements.

The cumulative complexity measure Ck(X) for 1 ≤ k ≤ 3 are:

c11(X) = c1(X) = |X|, (11)

c21(X) = c1(X) + c2(X) =
|X|(|X|+ 1)

2
, (12)

c31(X) = c1(X) + c2(X) + c3(X) =
|X|(|X|2 + 5)

6
. (13)

It is interesting to note that all are monotonic increasing transformations of
the cardinality of X. While c11 is the granularity of X, c21 and c31 reflect the
complexity of X. In general, we do not have a simple formula to compute
the cumulative complexity of a set. In real world applications, it may be
sufficient to use the cumulative measures of a small k.

In order to understand the physical meaning of the cumulative complexity
measure, we may consider X to be the set of components or parts of a
system. A system with more interacting parts is considered complex for
two main reasons. First, a system with more parts is more complex than
another system with less parts. Secondly, the interaction between various
parts further increases the complexity. Whereas current studies consider
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only independence or pairwise interactions, the newly proposed complexity
measure accounts for all orders of complexity. We consider the interaction-
based measures of a set to be the complexity measures of a set.

4. Granularity measures of a partition

A partition is set of subsets that represents a structured subdivision of a
universal set. Each block is an atomic granule and the partition is a com-
posite granule. For a partition, measures of granularity and complexity are
closely related. Measures of granularity of a partition have been studied by
many researchers [4, 16, 21, 27, 29, 34]. Current granularity measures fall un-
der two categories: information-theoretic measures and pairwise interaction-
based measures. They can be unified within a family of expected granularity
measures [34].

4.1. Information-theoretic measures
One common type of granularity measures are the information-theoretic

granularity measures, which use the Shannon and Hartley entropy as a basis.
Consider a partition π = {X1, . . . , Xn}. The partition has a probability dis-
tribution P (π) = (p(X1), . . . , p(Xn)) where p(Xi) = |Xi|/|U |. The Shannon
entropy of the partition is defined as:

H(π) = −
n∑

i=1

p(Xi) log(p(Xi))

= −
n∑

i=1

|Xi|
|U | log

( |Xi|
|U |

)
. (14)

It represents the amount of information generated by a given probability
distribution [24]. For any block of the partition π, the Hartley entropy [9] is
defined as:

H0(Xi) = log |Xi| (15)

and measures the non-specificity of a set, which is the granularity measure
mh of a set.
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The Shannon entropy of a partition can be rearranged in terms of the
Hartley entropy as follows:

H(π) = −
n∑

i=1

|Xi|
|U | log

( |Xi|
|U |

)

= log |U | −
n∑

i=1

|Xi|
|U | log(|Xi|). (16)

It has been used as a measure of granularity of a partition by many authors [4,
3, 6, 17, 27]. Miao and Wang [17] and Düntsch and Gediga [6] first used the
Shannon entropy as a measure of roughness or granularity and Wierman [27]
was the first to call it a granularity measure.

Although the full Shannon entropy of a partition has been considered as
a granularity measure, from Equation (16) it can be seen that log |U | is the
constant Hartley entropy H0(U), independent of the partition. As a result,
some authors [29] have used only the second term in Equation (16) as a
granularity measure Mh(π):

Mh(π) =
n∑

i=1

|Xi|
|U | log |Xi| =

n∑

i=1

|Xi|
|U | mh(Xi), (17)

which is the mathematical expectation of mh. The value of Mh is bound
within the limits of 0 and log |U |, which represent the finest (singleton blocks)
and coarsest (one block) partitions, respectively. The information-theoretic
class of granularity measures do not consider interactions between the ele-
ments of a block or between the blocks themselves, which makes them un-
suitable as a measure of complexity.

4.2. Pairwise interaction-based measures
The pairwise interaction-based measures of granularity are built upon the

idea of counting the number of interacting pairs of elements of U under a
partition [34].

Let π = {X1, . . . , Xn} be a partition of the universal set U and Eπ be
the corresponding equivalence relation. Miao and Fan [16] proposed the
following interaction based granularity measure:

M1(π) =
|Eπ|
|U × U | =

∑n
i=1|Xi ×Xi|
|U × U | =

n∑

i=1

|Xi|
|U |
|Xi|
|U | =

n∑

i=1

|Xi|
|U | m1(Xi),

(18)
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where U×U is the Cartesian product of U and U . The numerator is the num-
ber of pairs in the equivalence relation and the denominator is the number of
all pairs in the coarsest equivalence relation U × U . The maximum value of
the measure is therefore 1. Equivalently, the measure M1 can be interpreted
in terms of the partition. The term |Xi ×Xi| corresponds to the number of
possible pairwise interactions between elements in the block Xi, where the
order of the two elements in a pair is considered. The term |U × U | is the
number of pairwise interactions in the coarsest partition {U}. A coarser re-
lation allows for a larger number of interactions, so the granularity measure
increases with the coarsening of partitions.

We have two interesting observations of the measure M1. First, we can
re-express M1 as follows:

M1(π) =

∑n
i=1|Xi ×Xi|
|U × U |

=
1

|U × U |
n∑

i=1

2

( |Xi|(|Xi| − 1) + |Xi|
2

)

=
1

|U × U |
n∑

i=1

(
2

(|Xi|
2

)
+ |Xi|

)

=
1

|U × U |
n∑

i=1

(2c2(Xi) + c1(Xi))

=
1

|U × U |
n∑

i=1

(
c2(Xi) + c21(Xi)

)
. (19)

That is, M1 can be written as a combination of both c1 and c2, which is
related to cumulative complexity of orders 1 to 2. Second, the measure M1

is similar to the information-theoretic measure Mh in the sense of mathe-
matical expectation. The term c1(Xi) = |Xi|/|U | depends only on the num-
ber of elements within block Xi. Therefore, the measure M1 is not a fully
interaction-based measure.

Qian and Liang [21] proposed a true interaction-based granularity mea-
sure Mq, called the combination entropy. They used combinations to repre-
sent the possible number of pairwise interactions:

M2 (π) =
n∑

i=1

|Xi|
|U |

(|Xi|
2

)
(|U |

2

) =
n∑

i=1

|Xi|
|U | c2(Xi), (20)
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which is a mathematical expectation of c2(Xi). The combination entropy is
bounded by 0 and 1, that is, 0 ≤Mq(π) ≤ 1.

4.3. A class of expected granularity measure
Let π = {X1, . . . , Xn} denote a partition of a finite and nonempty universe

U . In order to see the connection between the three measures, Mh,M1

and M2, we first consider the notions of measures of the granularity and
complexity of a block of π or a subset of of U . Given two subsets A,B ⊆ U
with A ⊆ B, the granularity of the smaller set A is less than or equal to the
granularity of the larger set B. The size of a set as defined by its cardinality
provides a good measure of the granularity of the set. In fact, any positive
monotonic increasing transformation of the cardinality of the block Xi may
serve as a measure of granularity [34].

The partition π defines a probability distribution P (π) = (p(X1), . . . , p(Xn)),
where p(Xi) = |Xi|/|U |. The three measures of granularity of a partition,
discussion in the last subsection, can be expressed as mathematical expecta-
tions as follows:

Mh(π) =
n∑

i=1

p(Xi)mh(Xi),

M1(π) =
n∑

i=1

p(Xi)m1(Xi),

M2(π) =
n∑

i=1

p(Xi)c2(Xi), (21)

where the corresponding three measures the granularity and complexity of a
set are given by [34]:

mh(Xi) = log(|Xi|),

m1(Xi) =
|Xi|
|U | ,

c2(Xi) =

(|Xi|
2

)
(|U |

2

) . (22)

That is, the granularity of a partition is given as the expectation of the
granularity or complexity of all blocks of the partition.
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By generalizing these measures, Yao and Zhao [34] introduced a family
of expected granularity measures:

Em (π) =
∑

X∈π
p (X)m (X) =

n∑

i=1

p (Xi)m (Xi) , (23)

where m (Xi) is a measure of granularity or complexity of a subset of U . It
is required that the measure of granularity for a subset of U is a positive
monotonic increasing transformation of its cardinality. We can obtain many
different measures as special cases of the family of expected granularity mea-
sures. For example, if we use the cardinality of a block and the number of all
pairs produced by a block, respectively, as measures of the granularity of a
block, that is, m1(Xi) = |Xi| and c2(Xi) =

(|Xi|
2

)
, we have two new measures

of the granularity of a partition:

M1(π) =
n∑

i=1

p(Xi)m1(Xi) =
n∑

i=1

p(Xi)|Xi|,

M2(π) =
n∑

i=1

p(Xi)c2(Xi) =
n∑

i=1

p(Xi)

(|Xi|
2

)
. (24)

They are, respectively, the average block size and the average number of
pairs in a block induced by the partition π. Semantically, they capture dif-
ferent aspects of a partition; the former does not consider interaction of
elements within a block and the latter considers pairwise interactions of ele-
ments within a block.

4.4. Axiomatic characterization of a measure of granularity and the implica-
tions for defining a complexity measure

Several authors have investigated an axiomatic foundation for measuring
the granularity of a partition by suggesting properties that must be satis-
fied [21, 27, 34]. They discussed the rationale behind a measure of granular-
ity based on two key notions, namely, a refinement-coarsening relation and
size-isomorphism on the family of all partition Π on U .

Definition 7. A refinement-coarsening relation � on the family of all par-
titions Π of a set U is defined as follows:

π � π′ ⇐⇒ Eπ ⊆ Eπ′ . (25)
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Equivalently, π is a refinement of π′ or π′ is a coarsening of π if every block
of π is a subset of a block of π′.

Definition 8. A partition π is size-isomorphic to another partition π′, if
there exists a bijection f : π −→ π′ such that ∀X ∈ π, |f (X) | = |X|.

The refinement-coarsening relation is a partial ordering of partitions, that
is, � is reflexive, anti-symmetric, and transitive. A measure of granularity
must reflect the refinement-coarsening relation such that a refined partition
has a lower granularity and coarsened partition has a higher granularity.
When defining the refinement-coarsening relation, the composition of blocks
in π and π′ must be examined in terms of set inclusion. Consider two par-
titions on a universal set U = {a, b, c, d, e, f}, π = {{a, b}, {c, d, e, f}} and
π′ = {{a, c}, {b}, {d}, {e}, {f}}. It is reasonable to say that π′ has a smaller
granularity than π. However, since π′ is not a refinement of π, we cannot use
the relation � to reflect comparison of granularity. Therefore, we must have
an element-independent relation between partitions. For this purpose, Wier-
man [27] proposed the notion of size-isomorphisms in Definition 8 by con-
sidering only the structure of partitions, instead of individual elements. The
size-isomorphism relation ∼= is an equivalence relation on partitions which
means a measure of granularity must have the same value for partitions
of the same structure. In the previous example, π′ is size-isomorphic to
π′′ = {{a, b}, {c}, {d}, {e}, {f}} and π′′ � π. If π′ and π′′ have the same
granularity and the granularity of π′ is less than that of π, then the granu-
larity of π′′ is less than that of π.

In summary, according to the refinement-coarsening relation and the size-
isomorphism, a granularity measure must satisfy at least the following two
properties:

π � π′ =⇒ M(Eπ) ≤M(Eπ′),

π ∼= π′ =⇒ M(Eπ) = M(Eπ′). (26)

The first property states that a refined partition has a lower granularity.
The second property states that two partitions having the same structure
must have the same granularity. All of the previously discussed granularity
measures of a partition satisfy these two requirements.

As mentioned in the introduction, the present study considers only the
structural complexity of granular structures. Two size-isomorphic partitions
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have the same structural complexity. However, they may have different se-
mantic content. As pointed out by a reviewer of this paper, “in data analysis
or decision making, two granularity structures with size-isomorphisms may
yield completely different results.” In practice, it is necessary to combine
the structural complexity and the semantic content into a common frame-
work. While structural complexity can help us identify simple structures,
the semantic content is important for deriving useful results.

5. Complexity measures of a partition

This section examines measures of complexity of a partition. The results
provide a basis for introducing a family of complexity measures for a special
type of hierarchical granular structures induced by progressive partitioning.

5.1. From granularity measures to complexity measures
Studies on measures of the granularity serve a starting point for defining

complexity of granular structure in general and partitions in specific. A
question that naturally arises is whether the refinement-coarsening and size
isomorphic relations are good criteria for defining a measure of complexity.
When it comes to complexity induced by a partition, the notion of size-
isomorphism is still applicable. Two partitions with the same structure must
have the same complexity. On the other hand, the refinement-coarsening
relation is no longer appropriate. The complexity of a partition may not be
the same as its granularity.

Consider the two extreme cases of partitions, namely, the coarsest parti-
tion {U} and the finest partition {{x} | x ∈ U}. For {U}, we have only one
block, which is easy to process. However, we have |U | number of elements
to process in the single block, which is complex to process. In other words,
{U} is simple in terms of the number of blocks, but is complex in terms of
number of elements within the block. For the finest partition, all blocks are
singleton subsets, each of which is easy to process. However, the number of
blocks are the maximum among all possible partitions, which is complex to
process. That is, the finest partition is complex in terms of the number of
blocks and is simple in terms of number of elements within each block. The
numbers of blocks and the number of elements in the blocks both contribute
to the complexity of a partition. In general, the complexity of a partition is
a balance of these two sources of complexity. The complexity of a partition
decreases with subdivisions of U , but increases as the blocks of the partition
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approach singleton subsets. Since measures of granularity only consider the
elements within the blocks, the granularity monotonically decreases as the
partition is refined towards singleton blocks. They therefore do not reflect
the nature of complexity. In this vein, it is challenging to define a relation
for characterizing the complexity partitions, as there is still a lack of ac-
cepted definition and interpretation of the complexity of partitions. In the
rest of this paper, we attempt to provide a partial solution to this important
problem.

When proposing a measure of complexity of a partition, measures of gran-
ularity of a partition do provide useful hints. First, while the information-
theoretic measure does not consider interaction between different elements in
a block, the interaction-based measure considers only pairwise interaction.
The complexity may be caused by higher order interactions, for example,
triplet interactions, which these measures do not account for. A measure
of complexity measure may need to consider higher level interaction. Sec-
ond, measures of granularity do not consider the number of blocks or the
interaction between blocks. A measure of complexity may need to consider
interactions between blocks of a partition. Third, a partition is only a two-
level granular structure. In general, we need to consider multilevel granular
structures induced by progressive partitioning. These observations motivate
the introduction of measures of granular structures based on results from
measures of granularity of a partition.

A partition is a basic element for interpreting a hierarchical granular
structure produced by progressive partitioning. As a prerequisite for study-
ing the complexity of multilevel granular structures, we first examine the
complexity of a partition as a two-level granular structure shown in Figure 5.
As a basis for determining a complexity measure of a partition, we must
first consider a meaningful understanding of complexity that a complexity
measure will reflect.

The two-level interpretation of a partition suggests that the complexity
of a partition has contributions from both levels. At the partition-level, a
partition is a set of blocks where each block is considered as one element. The
partition-level describes the structure of the partition. A larger number of
blocks can have more interactions and is consequently more complex. Since
the partition is a set of blocks, we can use the complexity measure of a
set ci(π) to measure the i-th order interactions between the blocks in the
partition. At the block-level, the complexity of any block is also determined
by the number of possible interactions within the block. If we consider the
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block as a set, the complexity of any block X ∈ π can also be measured by
the i-th order complexity measure ci(X) of a set.

Definition 9. Suppose c is a complexity measure of a set. A complexity
measure C of a partition π = {X1, . . . , Xn}, induced by c, is defined by:

C(π) = c(π) +
∑

X∈π
c(X). (27)

In c(π), the complexity measure of c is applied to the partition π as a set of
blocks.

The granularity of a partition depends on the granularity measure of a
set. Similarly, the complexity measure of a partition depends on the com-
plexity measure of the set. However, the measures are applied differently.
Whereas the granularity of a partition is the expectation of the granularity
of its comprising blocks, the the complexity of a partition considers a com-
bined contribution from the two levels of the partition. By definition, the
meaning of the proposed measure of complexity depends on the meaning of
the complexity measure c of a set. Although different complexity measures
may be uniformly represented as positive monotonic increasing transforma-
tions of the cardinality of a set, they have different interpretations. In turn,
they lead to different interpretations of complexity measures defined by Def-
inition 9.

The complexity measures mh and m1 consider only the number of ele-
ments in a set. In some sense, they implicitly assume that elements in a set
are independent. If the elements in the set are assumed to be independent,
then these measures can also serve as the first-order complexity measure of
a set. On the other hand, measures c2 and c2 consider the number of pairs
produced by a set and implicitly assume that the elements of a set have
pairwise interaction. As such, these measures can be used to quantify the
second-order complexity of the set. These measures reflect different sources
of complexity, resulting from either the size of the set or from the number of
interacting pairs within a set. Beyond second-order measures, higher-order
measurements can also be used to measure the complexity of the partition.
For cumulative complexity measure ck1 of a set given by Definition 6, a cu-
mulative complexity measure of a partition would be:

Ck
1 (π) = ck1(π) +

∑

X∈π
ck1(X) =

k∑

i=1

(|π|
i

)
+
∑

X∈π

k∑

i=1

(|X|
i

)
, (28)
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which is simply an example of the class of complexity measures defined by
Definition 9.

In the rest of this section, we use several examples to study the meaning
of different complexity measures.

Example 1. Consider the first-order complexity measure of a set X, ch(X) =
mh(X) = log(|X|), used as an information-theoretic measure of granular-
ity. For the universe, we have ch(U) = log(|U |). For a partition π =
{X1, . . . , Xn}, according to Definition 9, the complexity of the partition can
be computed as:

Ch(π) = log(|π|) +
∑

X∈π
log(|X|) = log(|π|) +

n∑

i=1

log(|Xi|), (29)

where |π| is the number of blocks in π. For the coarsest partition {U}, we have
Cm({U}) = log(|{U}|) + log(|U |) = log(|U |), which is in fact the granularity
of the universal set U . That is, the coarsest partition has the same complexity
as the set U itself. This is reasonable, if we treat the coarsest partition as
U . For the finest partition, we have Ch({{x} | x ∈ U}) = log(|{{x} | x ∈
U}|) +

∑
x∈U log(|{x}|) = log(|U |). Again, it has the same complexity as the

universe U . This result is consistent with the common practice of treating
the finest partition as U .

Given a universe U with |U | > 2, suppose we partition U into two blocks
π = {X1, X2}. The complexity of π is computed as:

Ch(π) = log(|π|) + log(|X1|) + log(|X2|)
= log(2) + log(|X1|) + log(|X2|)
> log(|U |).

That is, according to the complexity measure, the partitioning of U into two
blocks in fact increases the complexity. This is consistent with the assumption
that elements in U are independent. In other words, if elements are indepen-
dent, granulation does not provide any advantage with regards to complexity
reduction.

Example 2. Consider a first-order complexity measure of a set X, c1(X) =
m1(X) = |X|. The complexity of U is given by C1(U) = |U |. For a partition
π = {X1, . . . , Xn}, the complexity of the partition can be computed as:

C1(π) = |π|+
∑

X∈π
|X| = |π|+

n∑

i=1

|Xi| = |π|+ |U |, (30)
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which is greater than the complexity of U . For the coarsest partition, the
complexity is C1({U}) = |{U}| + |U | = 1 + |U |, which is greater than the
complexity of U . This reflects the fact that U is only a single-level gran-
ular structure, while {U} is a two-level granular structure. The latter is
more complex than the former. For the finest partition, the complexity is
Cm1({{x} | x ∈ U}) = |{{x} | x ∈ U}|+∑x∈U |{x}| = 2|U |. This complexity
measure is a sum of the cardinality at two levels of the partition under the as-
sumption that all elements are independent. The measure clearly shows that,
when elements are independent, partitioning the universe in fact increases
the complexity. That is, one can simply consider elements in U one-by-one,
instead of clustering them into groups.

Example 3. Consider a second-order complexity measure of a set X, c2(X) =(|X|
2

)
, where

(|X|
2

)
= 0 if |X| < 2. It is a measure that accounts for pairwise

interactions within a set. For the universe, we have c2(U) =
(|U |

2

)
. For a

partition π = {X1, . . . , Xn}, the complexity of the partition can be computed
as:

C2(π) =

(|π|
2

)
+
∑

X∈π

(|X|
2

)
=

(|π|
2

)
+

n∑

i=1

(|Xi|
2

)
. (31)

For the coarsest partition, we have C2({U}) =
(|{U}|

2

)
+
(|U |

2

)
=
(|U |

2

)
, which is

the same as the complexity of U . For the finest partition, we have C2({{x} |
x ∈ U}) =

(|{{x}|x∈U}|
2

)
+
∑

x∈U
(|{x}|

2

)
=
(|U |

2

)
, which is again the same

complexity of U . Given a universe U with |U | > 2, suppose we partition U
into two blocks π = {X1, X2}. The complexity of π is computed as:

C2(π) =

(|π|
2

)
+

(|X1|
2

)
+

(|X2|
2

)

=

(
2

2

)
+

(|X1|
2

)
+

(|X2|
2

)

<

(|U |
2

)
.

According to this complexity measure, the partitioning of U into two blocks
decreases the complexity. If the elements of a set are assumed to have pair-
wise interaction, then subdivision of U provides advantages with regards to
complexity reduction.
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Examples 1 to 3 demonstrate that the complexity of a partition is a
multifaceted notion, depending on the processing elements under different
assumptions. If elements and blocks of a partition are assumed to be in-
dependent, using a partition indeed leads to an increase of complexity. On
the other hand, if the elements and blocks of a partition are assumed to
be pairwise dependent, the introduction of partition results in complexity
reduction. The complexity of a partition is a balance of the partition-level
and block-level complexity. A finer partition will have a higher partition-level
complexity and a lower block-level complexity. In the case of independence, a
partition of U reduces the block-level complexity, but increases the partition-
level complexity through the creation of non-interacting blocks. In the case
of pairwise interaction, a partition of U reduces the number of possible inter-
actions by isolating related elements into their respective blocks. Although
the partition-level complexity is increased, it can be outweighed by the reduc-
tion of the block-level complexity. An interaction-based complexity measure
enables us to search for the right level of granularity that produces the least
complexity in processing.

6. Complexity measures of granular structures induced by progres-
sive partitioning

A partition is a special type of granular structures. To quantify the effect
of the numerous components in a partition, an interaction-based complexity
measure was proposed in the last section to account for the different orders
of interactions between blocks and between elements within a block. By ex-
tending the same argument, we can study complexity measures of a granular
structure in general.

6.1. Complexity measures for nested granular structures
A partition is a two-level granular structure. Given a complexity measure

of a set, in Definition 9 we define the induced complexity of a partition by
summing the two components in Equation (27). The two terms in the equa-
tion correspond to the two levels. For a general granular structure, we need
to consider multiple levels. According to the recursive definition of a multi-
level granular structure in Definition 2, we can apply the complexity measure
of a set recursively to compute the complexity of a granular structure.
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Definition 10. Suppose c is a complexity measure of a set. A complexity
measure of a granular structure, as given by Definition 2, can be recursively
defined based on c as follows: for an atomic granule g and a composite granule
G,

C(G) = c(g), G = g ⊆ U is an atomic granule,

C(G) = c(G) +
∑

F∈G
C(F ), G is a composite granule, (32)

where c(G) is applied to G by treating G as a set of granules.

According to the definition, the complexity of a composite granule is the
sum of the two sources of complexity given by a granule. The first term,
c(G), is the complexity of the granule G as a family of granules. The second
term,

∑
F∈GC(F ), is the total complexity of all granules in G. That is,

the complexity of a granule combines both types of complexity. By using
this general definition, we can obtain various complexity measures of the
complexity of a granular structure by using different complexity measures of
the complexity of a set.

We have shown that the number of interactions of different orders con-
tribute to the complexity of a set. By considering all orders of the possible
interactions in a granular structure with respect to a cumulative complexity
measure of a set, we can have a complexity measure that offers a holistic view
of the granular structure. With respect to the i-th order interaction complex-
ity and cumulative order k complexity, we have two families of complexity
measures of a granular structure.

Definition 11. Let ci(X) =
(|X|
i

)
denote the complexity measure defined by

the number of interactions of exact i elements in a set. A complexity measure
of a granular structure, induced by ci, is defined as follows: for an atomic
granule g and a composite granule G,

Ci(G) = ci(g) =

(|g|
i

)
,

Ci(G) = ci(G) +
∑

F∈G
Ci(F ) =

(|G|
i

)
+
∑

F∈G
Ci(F ), (33)

where ci(G) is the complexity of G as a set of granules.
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Definition 12. Let ck1(X) =
∑k

i=1 ci(X) be the cumulative k-th order (k ≥
1) complexity measure of a set X. The complexity of a granule, induced by
ck1 is recursively defined as: for an atomic granule g and a composite granule
G,

Ck
1 (g) = ck1(g) =

k∑

i=1

ci(g) =
k∑

i=1

(|g|
i

)
,

Ck
1 (G) =

k∑

i=1

Ci(G) =
k∑

i=1

(
ci(G) +

∑

F∈G
Ci(F )

)

=
k∑

i=1

(|G|
i

)
+
∑

F∈G
Ck

1 (F ). (34)

Example 4. When interactions are considered, a decomposition of U can
be shown to reduce its complexity. Consider the example shown in Figure 4,
that is, a composite granule G = {{{{a, b}, {c}}, {d}}, {e}, {{f}, {g}}}. We
can calculate the values of different complexity measures as follows:

C1
1(U) = C1(U) = 7,

C1
1(G) = C1(G) = 16,

C2
1(U) = C1

1(U) + C2(U) = 7 + 21 = 28,

C2
1(G) = C1

1(G) + C2(G) = 16 + 7 = 23,

C3
1(U) = C2

1(U) + C3(U) = 28 + 35 = 63,

C3
1(G) = C2

1(G) + C3(G) = 23 + 1 = 24.

If the elements of the granule are assumed to be independent, measured by C1
1 ,

it can be seen that subdividing the granule into more blocks actually increases
the complexity. If the elements are assumed to have pairwise interactions,
measured by C2

1 , subdividing the granule reduces the complexity. If the el-
ements have triplet interactions, measured by C3

1 , the complexity is further
reduced.

Definition 10 gives rise to a family of complexity measures generated by
complexity measures of a set. We can generate many specific measures of
complexity. Consider the information-theoretic measure of granularity as a
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measure of complexity ch(X) = mh(X) = log(|X|). For an atomic granule g
and a composite granule G, we have:

Ch(g) = ch(g) = log(|g|),
Ch(G) = ch(G) +

∑

F∈G
Ch(F )

= log(|G|) +
∑

F∈G
Ch(F ). (35)

When G is a partition, we obtain Equation (29) as a special case.
We now examine properties of specific types of complexity measures. In

C1 we do not consider any interaction between different elements or granules
in a granule, namely, all components of a granule are independent. It can
be easy verified that the granule U has the minimum value of C1. This
suggests that further decomposition of U into smaller granules will increase
the complexity, which is consistent with the assumption of independence.
That is, under the independence assumption, U is the only structure that we
need when considering individual elements separately and we do not need to
consider other granules.

Consider a universe U and a partition π = {X1, . . . , Xn}. The cumulative
k-th order complexity of U is:

Ck
1 (U) =

k∑

i=1

(|U |
i

)
. (36)

The cumulative k-th order complexity of the partition is

Ck
1 (π) =

k∑

i=1

(|π|
i

)
+

k∑

i=1

|π|∑

j=1

(|Xj|
i

)
. (37)

The size of the granules and the number of granules is highly coupled in
a partition. Some observations can be made regarding the nature of the
complexity of a partition as measured by Ck

1 , k ≥ 2. The first term represents
the contribution to the complexity from the interaction between blocks of the
partition and the second term represents contribution from the interactions
within each block for all blocks. As the number of blocks increases, the
average size of the blocks decreases. When |π| ≥ 1, we have |Xi| < |U |. It
follows that in each block we do not have some higher order interactions as
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we do in U . In addition, we do not need to consider interactions of objects
in different blocks. In other words, any interaction considered by the second
term in Ck

1 (π) is considered by Ck
1 (U), but the reverse is not true. Therefore,

for k ≥ 2, we have the following inequality:

k∑

i=1

(|U |
i

)
>

k∑

i=1

|π|∑

j=1

(|Xj|
i

)
. (38)

The quantity,
k∑

i=1

(|U |
i

)
−

k∑

i=1

|π|∑

j=1

(|Xj|
i

)
, (39)

is the reduction of complexity at the level of individual blocks. On the other
hand, a partition also introduces complexity at the partition level, as given
by the first term in Ck

1 (π), namely,
∑k

i=1

(|π|
i

)
. Therefore, whether a partition

increases the overall simplicity is determined by a trade-off of the reduction
and the increment of complexity.

The discussion suggests that we can re-express the comparison of the
complexities of U and π,

k∑

i=1

(|U |
i

)
>

k∑

i=1

|π|∑

j=1

(|Xj|
i

)
+

k∑

i=1

(|π|
i

)
, (40)

equivalently as follows:

k∑

i=1

(|U |
i

)
−

k∑

i=1

|π|∑

j=1

(|Xj|
i

)
>

k∑

i=1

(|π|
i

)
. (41)

The left hand side is the reduction of complexity and the right hand side is
the increment of complexity. By using a larger number of smaller blocks, we
have a higher reduction and a higher increment. By using a lower number of
larger blocks, we have a lower reduction and a lower increment. The combined
results is undetermined, that is, may be either favourable or unfavourable.
The coarsest and finest partitions represent two extreme cases. According to
measure Ck

1 , their complexities are given by

Ck
1 ({U}) = 1 + Ck

1 (U),

Ck
1 ({{x} | x ∈ U}) = Ck

1 (U) + |U |. (42)

31



They are, in fact, greater than the complexity of U . The finest partition has
a higher complexity than that of the coarsest partition, which is the reverse
order given by the granularity of partitions. To have the complexity lower
than the complexity of U , we need to use a partition that is somewhere in
the middle.

A nested granular structure is obtained by progressive partitioning. The
analysis of the complexity of a partition can be extended to a granular struc-
ture. As the complexity of each granule composing the nested granular struc-
ture decreases with decomposition or subdivision, the overall complexity of
the nested granular structure will also decrease. According to the measure
Ck

1 (G), when higher degrees of interaction or dependency are considered, it is
highly possible to construct a multilevel granular structure with a complexity
less than the complexity of U . That is, we use granular structures when we
decompose larger granules into smaller granules in order to eliminate higher
order dependency. The analysis is consistent with the argument given by
Simon [26] regarding the use of hierarchical systems to reduce complexity.

6.2. Axiomatic characterization of a measure of complexity
The multilevel granular structures induced by the progressive partition-

ing necessitate additional considerations. The definition of size-isomorphism
of partitions can be generalized to nested granular structures given by Defi-
nition 4. However, a mapping between two blocks cannot easily generalized.
We recast the definition of size isomorphism in terms of a bijection over the
set of objects, which allows us to generalize to the case of multilevel struc-
tures.

Definition 13. A partition π is isomorphic to another partition π′, written
π ∼= π′, if we can obtain π from π′ by a bijection f : U −→ U , and vice versa.
That is, two objects f(a) and f(b) are in the same block of π if and only if a
and b are in the same block of π′.

The atomic granules which make up a nested granule form a partition of
U . In order for two nested granular structures to be isomorphic, the corre-
sponding two partitions must be isomorphic according to Definition 13. In
addition, the two trees expressed as a dot-representation such as that shown
in Figure 4 must be isomorphic, that is, the two trees have the same structure.
The definition of two isomorphic nested granular structures immediately fol-
lows.
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Definition 14. A granular structure G is isomorphic to another granular
structure G′, written G ∼= G′, if we can obtain G from G′ by a bijection
f : U −→ U , and vice versa. That is, the partition formed by atomic granules
in G is isomorphic to the partition formed by the atomic granules in G′ and
the two trees of G and G′ are isomorphic.

•

•

•

{a, b} {c}

{d}

{e} •

{f} {g}

•

{b} •

{c} {d}

•

{a} •

{e} {f, g}

Figure 7: Two isomoprhic nested granular structures G (left) and G′ (right)

Example 5. Consider a universal set of objects U = {a, b, c, d, e, f, g}. Fig-
ure 7 shows an example of two isomorphic granular structures. It can be
seen that we can obtain G′ = {{{{a, b}, {c}}, {d}}, {e}, {{f}, {g}}} from
G = {{b}, {{c}, {d}}, {{a}, {{e}, {f, g}}}} by using the bijection F (a) =
f, F (b) = g, F (c) = e, F (d) = a, F (e) = b, F (f) = d, F (g) = c, and vice
versa. The leaf nodes of G form a partition {{a, b}, {c}, {d}, {e}, {f}, {g}}
that is, according to Definition 13, isomorphic to the partition {{b}, {c}, {d}, {a}, {e}, {f, g}}
formed by the leaf nodes of G′ under the bijection F . Furthermore, the struc-
ture of the two granules are the same. In defining the isomorphic relation
between granules, the order of granules are not important, that is, the order
of subtrees is not important.

If two granular structures are isomorphic to each other, that is, they
have the same structure, then they must also have the same complexity. A
complexity measure must satisfy the following requirement:

G ∼= G′ =⇒ C(G) = C(G′). (43)

The complexity measures introduced in this paper are based on the structure
of a granule, and do not depend on the the names of the elements within the
granules. For an atomic granule, the complexity is measured solely by the
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number of elements contained inside. For a composite granule, the complex-
ity is measured by the number of granules and their respective structures. A
bijection f which defines isomorphic granules can be viewed as the renam-
ing of elements and granules while preserving the structure. Therefore, all
complexity measures satisfy the requirement given by Equation (43).

When studying a granularity measure of a partition, we also use a refinement-
coarsening relation on partitions. As discussed earlier, the refinement-coarsening
relation does not reflect our perception of the complexity of partitions. Thus,
we need to introduce a “equally or less complex than,” or equivalently, “not
more complex than” relation �c. The relation �c would allow for a partial
ordering of various granular structures. Accordingly, a granule that is less
complex than another granule would have a lower complexity value. In other
words, we would have the following property of the complexity measure:

G �c G′ =⇒ C(G) ≤ C(G′). (44)

In conjunction with the isomorphic property, these two properties would form
an axiomatic basis for defining a complexity measure of a granular structure.

Like the refinement-coarsening relation �, the relation �c is reflexive
and transitive. However, unlike �, it is difficult to define �c based on the
structures of granules. As shown by different cumulative orders of complexity
measures, the complexity of granules is a multi-faceted notion. It may be
impossible to define �c in general. However, it may be possible to define
�c under a specific interpretation of complexity. This will be an interesting
future research topic.

7. Conclusion

Granular computing is an interdisciplinary field that is growing in pop-
ularity. A common granulation scheme that researchers have studied is
partition-based granular computing. The present work addresses two main
deficiencies with current studies. Firstly, researchers have focused on the
partition as a two-level structure. The concept of partition-based gran-
ular structures is introduced to account for multilevel structures induced
through progressive partitioning or refinement. The nested granular struc-
ture arises from the hierarchy of composite granules, which are composed of
either atomic granules or composite granules. Secondly, a complexity mea-
sure is introduced to account for the complexity arising from the structure
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of a partition. Current studies consider only what is contained in individual
blocks. The newly proposed measure considers the complexity arising from
two sources, from the contents of each block and from the structure itself.
Thus, we consider interactions between elements of a block and also between
blocks of a partition. Whereas previous studies consider granularity mea-
sures of a partition as the expected granularity of its blocks, the proposed
complexity measure considers the cumulative complexity arising from the
blocks and the structure through summation. By increasing the number of
blocks, the complexity of each block is increased, but the complexity result-
ing from the structure is increased. An avenue for future research is to study
the axiomatization of specific classes of complexity measures.

The focus of this paper was to develop the theoretical foundation for the
development of a newly proposed complexity measure. A main objective is
to draw attention to the differences between the two notions of granularity
and complexity of granular structures. While the former has been exten-
sively studied, this paper is the first study of the latter. As such, the present
work is focused on a theoretical investigation only. The proposed measures
are applicable to any methods of granular computing where the complexity
is of a main concern. While the general ideas are application independent,
the choice of a particular k in the cumulative k-th complexity is application
dependent. In order to avoid unnecessary distractions from focusing on any
particular applications, we only consider simple examples to illustrate the
computation of the values of the proposed measures. As a natural exten-
sion of this work, future work will include an experimental evaluation of the
proposed complexity measures in various applications.
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