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Granularity measures and complexity nicasu.es of
partition-based granular strurcu cc

Matthew X. Yao

Department of Mechanical and Mechatronics Engineerina. ¢ ines ity of Waterloo, 200
University Avenue West, Waterloo, ON V2L ~7'1, Canada

Abstract

Granular computing is an emerging field ¢ study in which the complexity of
problem solving is reduced through _ta.. '~tion. Researchers have proposed
various granularity measures of partiions to quantify the effects of gran-
ulation with respect to simplificar .. 1iowever, two important issues still
remain and require careful inv--ticai'on. The first issue is that a partition
is only a simple two-level granuic structure, which may not be sufficient
for the full scope of granular computing. The second issue is a clarification
of the differences betweer gran. larity and complexity. Although they are
related to each other, they vepr:sent different things. To address the two
issues, this paper mak: s t} ree contributions. First, we extend the partition
granulation scheme inve “ault.level granular structures based on progressive
partitioning. Secor (, we p.opose a complexity measure of a partition that
incorporates both the . 'ack-level interactions (interactions within a block)
and the partitio -1 7el interactions (interactions between blocks of the par-
tition). Third, —e zeneralize the complexity measure to multilevel granular
structures ge teratew ‘rom a progressive partitioning process.

Keywords: - anv arity Measure, Complexity Measure, Granular
Structurr, Granuw.ar Computing, Progressive Partitioning

1. T strod ction

Giro~ar computing is a problem solving technique in which a complex
p:obr w. is subdivided into smaller components or granules to facilitate in-
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formation processing [1, 2, 8, 10, 11, 20, 23, 25, 28]. An ov. arcuing theme
of granular computing is that decomposing a large ar.ou t ot data into a
smaller number of chunks would reduce the complexity ~f 'he analysis. Each
chunk can then be further decomposed into smalle _hun..”. The repeated
subdivision of the data would result in a hierarcl ical st ucture, providing
a mechanism for complexity reduction. Although ti.~ hi-carchical nature of
granular computing and the resultant reductior of <. plexity have been ac-
cepted, there is still a lack of comprehensive theoretic 1l or empirical studies
on the notion of the complexity of granular stru.*ures.

This paper investigates measures of cou. nlexity of granular structures in
an attempt to establish a sound basis fo. supporting granular computing.
To contextualize our current study, we €=-* = oke Simon’s famous parable
of two watchmakers. In 1962, Simon |20, »ublished a seminal paper on hi-
erarchy (i.e., a multilevel structure, au> '~ architecture of complexity. He
used two watchmakers, Hora and Ten »us, to demonstrate his idea. Hora
hierarchically organizes a watch a. s bassemblies of about ten elements or
sub-subassemblies whereas Ter ~s aces not use such an organization. With
a hierarchical organization, Hora . nly needs to consider interactions of ele-
ments inside the same subassembly and does not need to consider interactions
with elements in different subass ‘mblies. In contrast, Tempus must consider
the interactions between ai ~ler.ents. If both watchmakers must put down
their assembly and ste.ct f om scratch when interrupted, then Hora is able
to assemble watches a. - mr ch faster rate than Tempus. From this para-
ble, we can draw t- o impo.tant implications for granular computing. One
is that a hierarchy ma, he a useful granular structure to support granular
computing [31, 7s|. The other is that the complexity of granular structure is
determined, to . ~v ¢ degree, by the interaction of elements and granules. We
review existi.g stua.s and propose new complexity measures of a granular
structure b.<ed on hese two observations.

Influer-2d b, *ae theory rough sets proposed by Pawlak [18], many studies
on grant lar cor. puting consider partitions as granular structures [30]. A very
importan. con-ept is the granularity of partitions that reflects a coarsening-
refin ‘ment relation on partitions. Researchers have proposed numerous gran-
ularn v mee sures of partitions [4, 5, 12, 14, 15, 16, 21, 27, 29, 34, 35, 36]. As
shown py the left branch of Figure 1, a measure of the granularity of a par-
tit.or is defined based on the granularity of a set. The latter is defined, in
turn, based on the cardinality of a set or the number of pairs in a set, as indi-
cated by the dashed lines. Feng et al. [7] defined a measure of the granularity
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of a partition based on the cardinality of a set X, namely, ' X|. Beaubouef
et al. [3], Diintsch and Gediga [6], Miao and Wang [17', v ierman [27], and
Yao [29] have used the Shannon entropy to define gi. nv arity measures of
a partition. These measures can be expressed in t _ims ¢’ the Hartley [9]
entropy log | X| of a set X. Miao and Fan [16], Lia: g and Shi [13], Qian and
Liang [21], and Liang et al. [14]| introduced granula #tv _neasures based on
the number of pairs in a set, as given by ('g‘) and o~ ('gl), respectively, in
Figure 1. By summarizing these measures, Yao aud Z'.a0 [34| derived a gen-
eral class of granularity measures based on the e..nectation of granularities of
all the blocks within a partition, as given .- the f cst box in the left branch
of the figure, namely, G(7) = Y .. p(X)1.* X, where 7 denotes a partition
and p(X) is the probability of the bloc- ¥ i~ lie partition 7.

Measures o,  pr tition 7

Granularity of a partition

G(m) = Xxen P s,

Complexity of a partition

C(m) = e(7) + Lxer o(X)

J

L

( ranular. -
a set m(X)

Complexity of a set ¢(X)

Fig 're 1: Granularity and complexity measures of a partition

A granularity measure of a set may also be used to define a complexity
mea. ure of the set, which depends on only the cardinality of the set. By
partitic...g a set, we do not need to consider the interaction of elements
in direient blocks. The complexity of a partition comes from two sources:
the . "teraction of elements within a block as determined by size of the block
and the interaction of blocks of a partition as determined by the number




of blocks in a partition. Since the granularity measures .'o nut consider
the number of blocks, they are significantly different ro.» the complexity
measures of a partition. For this reason, this paper ‘nt oduces a class of
complexity measures of a partition based on compl-_ity 1.~asures of a set.
This class is shown in the first box in the right br nch o1 Figure 1, namely,
C(r) = o(m) + X yen e X).

The proposed complexity measures of a pa citic . re defined by using a
granularity /complexity measure of a set. As show.iin Tigure 1, existing gran-
ularity measures of a set consider only indepena.ce or pairwise interactions
of elements in a set. They do not account i.~ the f .ct that the complexity of
a system could also be related to higher ¢ der .uteractions. To account for
the various degrees of interaction, in thi~ »~7 . we introduce an i-th order
complexity measure to capture interactic. of ¢ elements within in the set.
By summing the complexity of 1,.. ,» ~der interactions, we introduce a
cumulative k-th order complexity mea. xe.

A partition is a special type o v.™-.evel granular structure. Blocks in
a partition can be further su” “ividcd into finer levels of abstraction. A
process of repeated subdivision o1 progressive partitioning would necessitate
a hierarchical multilevel stricture. The proposed complexity measure of a
partition is generalized tc be apHlicable to hierarchical granular structures.
This is done through a recu. ive summation adhering to the progressive par-
titioning. Figure 2 pre . ide, an overview of the proposed class of complexity
measures granular struc".res The bottom level with dashed boxes represent
examples of comple -ity measures of a set. The third level represents gran-
ularity measures of a sc* In general, these can be defined by functions of
the number of e':m nts, pairs, triplets, etc. in the set. The second level con-
structs the i-tl ~r~er complexity measure of a set based on the granularity
measures of . set. Che first level defines cumulative k-th order complexity
measures b - sy mmr.ng the various possible orders of interaction, including
independe~ e, L wise interactions, triplet interactions, and so forth.

Whe 1 using granular structures, it is necessary to consider both the struc-
tural ana sem .tic information. The structural information is application
inde endet, whereas the semantic information is application dependent.
Alth ugh s>mantic complexity is important, we cannot study it without
th~ context of an application. Thus, we restrict the present study to the
st1 ¢’ ural complexity of partition-based granular structures. Figure 1 and
Figu.~» 2 outline the contributions of this paper in the context of existing
research, namely, to propose a class of complexity measures of a partition
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Figure 2: Cumulative & tn ~raer complexity measures

and to generalize these measures to be applicable to hierarchical granular
structures generated from prog -essive partitioning. To achieve these goals,
the rest of the paper is ¢.~anize | as follows. Section 2 introduces the con-
struction of hierarchica' granu.. . structures derived through progressive par-
titioning. Section 3 in’ rod aces the complexity measure of a set in the context
of granularity meastces o1 ~ set. Sections 4 and 5 discuss methods of quanti-
fying partitions, ir ci.ling granularity measures of partitions and the newly
proposed comple=~*v measures of partitions. Finally, Section 6 is the exten-
sion of the com vley.ty measure to a hierarchical granular structure induced
by progressive pa. ‘tioning, enabling the complexity measure to be used for
quantifying nul ilevel structures.

2. Part tionc and hierarchical granular structures by progressive
parti-ionir g

/ part1 ion of a universal set provides the simplest granular structure
consiy “ine f only two levels. Through a progressive partitioning process, it
it uue “hle to obtain a multilevel hierarchical granular structure.




2.1. Partitions

The granulation of an information system involves ¢ abci--iding or group-
ing certain elements together into smaller chunks of info. ™ .tion referred to as
granules. Because the granulation depends on the ne .us ana joals of the user,
the data can be grouped in any number of ways t» help ‘acilitate analysis.
One special case of granulation which has been st1dic ? 'y many researchers
is based on partitions or equivalence relations. m # pe tition based granular
computing model [30], a universal set U is diviued i.to smaller non-empty
subsets called blocks. Each element from the orig.~al set is a member of only
one block and all blocks are pairwise disjo1."

Definition 1. A partition of a finite =t 7~ family of subsets of U, m =
{X1,... Xn}, if and only if:

i) Xi#0,
(ii) CJ X; =1,
(iii) 3:(,1 NX;-:0, where i#j.
FEach subset X; 1s called ¢ block . f the partition.

There is a one-to-or ¢ cc.respondence between the set of all partitions of U
and the set of all equiva'- ace relations on U. If £ C U x U is an equivalence
relation on U, nar °ly, E 13 reflexive, symmetric, and transitive, then the
family of equivaleuce cicses of E is a partition U/E = [z]g | y € U, where
[]g ={y € U | £, } is the equivalence class containing = € U. Conversely,
given a partitiv. 7, an equivalence relation can be defined by xFE.y if and
only if x and y are 1. the same block of 7.

In the ¢ 'tr xt « [ granular computing, each block of a partition may be
interprete” as a ~canule. Since each element or piece of information is con-
tained i . only »ne subset, a partition is often considered to be one of the
simplest g-am-ation schemes. Consequently, partition based granular com-
puti.g hac been studied by many researchers in the context of rough set
theo. 18, 27, 30].

2.0 rogressive partitioning
1. further decompose or granulate a problem, a partition can be refined
through further subdivisions of its blocks. Each further subdivision of a block




also adheres to the properties of a partition. When a bloc- is sabdivided,
the resulting sub-blocks are a partition of the origina' biock. Thus, every
refinement of a partition is also a partition of the o. ~iral partition. The
process of refining a partition successively is referr . to .3 progressive or
recursive partitioning. The result is a multilevel ¢ ranula structure that is
more suitable for representing the various levels of de ~il ~:quired in granular
computing.

It is helpful to think of the progressive refinen.cnt 2, a tree structure. The
root node is the original information, and every .>vel consists of a refinement
of the previous level. An example of such . struc'ure is shown in Figure 3.
The multilevel structure preserves the rela. "nsu.p between successive refine-
ments and allows for the creation of fur~+i~~~+_ search for appropriate levels
of granularity. In this case we could definc = look-up function to progress up
the tree into coarser granulations (L. ss J “~il) and a look-down function to
progress down the tree for finer granui. ions (more detail).

{CL,L Cvd7€7f7g}

e

I.J’v b, « d} {6} {f?g}

™ - N
{0bcy {d {5+ {g}
TN

fa,u5 12}

Figure 3: Tree reg cesen. “tion of a granular structure from progressive partitioning

In order tc clerly and explicitly represent different types of granules
produced in . prog ~ssive partitioning process, we introduce the notions of
granules an<. gr-.nulr structures. There are two types of granules for forming
a granular stro-tv.ce. A simple granule is a nonempty subset of a universal
set and 1, comj 2site granule consists of other granules (either simple or com-
posite). A cor posite granule contains structural information regarding its
constliuent granules. Formally, we define atomic (i.e., simple) and composite
(i.e., non-at bmic) granules recursively.

L <. 2on 2. Let U be a finite and non-empty universal set. The family of
grai iles can be constructed recursively with the following rules:

(i) An atomic granule g is any non-empty subset of U, that is, ) # g C U;
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(i) A non-atomic granule is a finite non-empty set G of , anu.es, that is,
each element of G is either an atomic granule or ¢ no1-atomic granule.

By definition, a composite granule contains grar-les . 2t, in turn, may
contain smaller granules. A composite granule in fi ¢t rep. 2sents a hierarchi-
cal structure with multiple levels of granules. In th. narcr, we will refer to
a granule as a granular structure and use thece te s interchangeably. In
many situations, we are interested in the fami., of 7 elements of U that
appear in all atomic granules used to form a gi. nule.

Definition 3. Given a granule G, the se. ~f ew.~.ents that appear in G is re-
cursiwely defined as follows: for an atomic ara. e g and a composite granule

G,

(i) elg) =g,9<U,

(i) e = e (1)

FeG

Definition 4. A granule G is callea a nested granule if (1) G is an atomic
granule, or (ii) G is coms osew of a family of nested granules and the sets
of elements of granules o, = are pairwise disjoint, that is, for F, F' € G, if

F #£F, thene(F)Ne( ") =y.

The atomic grar ales << the smallest components of U and cannot be
further decompose . The progressive partitioning process creates a nested
structure as the ~*omic granules and nested granules are contained within
larger nested g-anv es. The nested structure highlights the hierarchical na-
ture of the pertiti n-based structures. By moving up and down the various
levels of thi, progressive partitioning, the data can be viewed at different
resolutions. 1.. ord :r to show the granular structure in a similar form, we use
a dot-rey resen*ation of a composite granule as a unit which is then connected
to its cou stituer t granules. Figure 4 shows an example of the nested granular
struct..e resutting from progressive partitioning, which corresponds to Fig-
ure . . An 1ternal dot node represents a nested granule, where the contents
of the ~»~-.ule at that level are not of interest and consequently hidden. If
furtue . 'etail is required, one can move down a level to unpack and observe
the -ontents within the nested granule. The leaf nodes represent atomic
granwes that are subsets of U.




./\{d} )

N
{a, b} {c}

Figure 4: A dot-representation of the nested granu. - structure of Figure 3: G =

{{{a, b}, {c}p Add ) {ed, {91}

A partition is a special case of a cor-= __.l_ sranule, as shown in Figure 5.
It can be seen that a partition is a two-lev.! granular structure, namely, the
level of the family of blocks represenya -, “'ie dot and the level of individual
block represented by subsets of U

[ ]
_—

/
{roocdy Aep {fg}

Figure 5: Granule structure . ~du ed by a partition: = = {{a,b,c,d},{e},{f, 9}}

In developing granu.. ity .nd complexity measures of granular structures,
it is of interest to d’ :cuss the meaning and implications of independence and
interaction between elc ments of a set. An element or granule is said to
be independent ot . nother element or granule if they can be considered in
isolation. A pa.. o' elements or granules are dependent if they must be con-
sidered in ta’.dem b. ause of their interactions. In general, a set of elements
or granules ~re der :ndent if any one is related to the rest. The complexity
of any na*ral ¢~ artificial system is determined by how individual compo-
nents of the s, stem interact with each other. Systems with independent
(non-inte. ~ctir 2) elements are simpler, and systems with highly interacting
com’ onen’s are complex. In reality, while some components are highly de-
penc - nt, sc ne other components are only loosely dependent. By exploiting
th~ weaker dependencies, we may decompose a complex system into subsys-
ter>s so that we do not need to consider the minor interactions between
elemcnts in different subsystems. In this way, we may turn complexity into
simplicity.




The earlier mentioned parable of two watchmakers is . good example
to show how to reduce complexity of any natural or arificiar system. If
we have a watch which is subdivided into various s.“assemblies, we only
need to consider the interaction of elements in the _ame .-1bassembly and
the interaction of subassemblies, and we do not nee 1 to co sider interactions
between elements in different subassemblies. Since (e »amber elements in
each subassembly and the number of subassem’ lies .= small, we reduce the
complexity of watchmaking. We may use software ¢ stem development to
further illustrate this point. Consider a large sotu. are system which is divided
into numerous subroutines. Naturally, if 5 -hroutiies are fully independent
of one another, the code is less complex thic it cach subroutine was required
to interact with numerous other subro*~~~ _{ is not surprising that large
software systems are organized into hierai. “ical structures in order to reduce
its complexity.

In forming granular structures dep. ident elements must be placed in the
same granule and elements in diftc -c. * granules are independent. Thus, we
choose the notion of interactio~~ 2s & basis for our study of complexity of a
granular structure. We propose a 1. mily of complexity measures which covers
the spectrum of independence and varying levels of dependence. One may
select a specific complexity mea. ure from the class according to the actual
levels of dependence for a 1. ~tic dar application.

2.3. Derwing multilev. < ran lar structures in information tables

A commonly usr 1 representation of data in rough set theory and granular
computing is the .nfori ~tion table [19, 32]. An example of an information
table from Quir an !22] is presented in Table 1. The information table con-
tains informatic» .bout various objects, in this case, people, with regards
to certain at ributes, in this case, height, hair colour, and eye colour. The
objects in t »e i.for nation table can be partitioned based on any one of the
attributes for ¢ -.mple, partitioning the people based on their height pro-
ducing t e sets of short and tall people, respectively.

Besidc " bei g useful for creating a single partition, the attributes of an in-
form ttion “able can be used to create a multilevel granular structure through
a preoressiv e partitioning. Each block of a partition can be further refined
u~ino the other attributes. An example of a hierarchical multilevel structure
incieed by such a progressive partitioning is shown in Figure 6. In this ex-
ampr we form a multilevel structure by partitioning the information table
in the following order of attributes: height, eye colour, and hair colour. We
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Table 1: Information Table Example

Object ‘ Height Eyes  Hair ‘ (" ass

short blue blond |+
short brown blond | -
tall blue red ‘

tall blue dirk -
tall blue daa | -
tall blue  blo..1 +
tall brown dark -
short brown bloud -

SQ 0O Q_QU O QR

stop the progressive partitioning if a ~~* of oujects have the same class label.
Note that the figure represents the n. 1l .ilevel structure for this progressive
partitioning scheme only. It is alsc , 2ssihle to progressively partition with a
different order of attributes.

The decision tree given in Fig're v can be used to derive a set of classifi-
cation rules. For example, “if height s short and eye colour is blue, then the
class is +.” Naturally, the com, 'exity of the tree determines the complexity
of the set of classification. ~ules. As an application, the proposed measures
of complexity may be a yplied 1.. machine learning and data analysis for con-
structing a suitable d.-ision t ee.

3. Granularity «nd . mplexity of a set

According t» D finition 2, an atomic granule is a subset of a universal
set and a comrpos,.~ granule is a set of granules. By the fact that a granular
structure is rec .rsively defined by sets of granules, a study of granularity
measures an. o lexity measures of a granular structure necessarily stems
from a s.udy ot the corresponding measures of a set. There can be two
categorics of gr .nularity and complexity measures, depending on whether el-
emen*_ n a oot are assumed to be independent or interdependent. This leads
to tl e two lasses of independence-based and interaction-based measures. If
the el mer s are assumed to be independent, the granularity and complexity
n.~as. .. become the same and will depend only on the number of elements
witi n the set. If elements are assumed to be interdependent, a complexity
measure must also take into consideration the interactions of elements.
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All:
{a,b,c,d,e, f,g,h}

short: tall:
{a,b, h} e fig}

short & blue: short & brown: /

{a} {b,h}
tall & blu tall & brown:
{e.d,e, f} {g}

|
tall & blue & red:  tall & blue & « & tall & blue & blond:
{c} -y {1

Figure 6: Progressive partitioning ~f * ae information table in Table 1.

3.1. Granularity and complexi*' mew-ures assuming the independence of el-
ements

A granule is a cluster of i=dividuals or a chunk of information that can be
studied as a single unit. T tuitiv ly speaking, the concept of the granularity
of a granule is used to d=sci.e r ar perception of the sizes of granules. That
is, a measure of granu'rit- should reflect the sizes of different granules. We
can order granules arco. g ¢o their granularity.

In a set-theoret - setting, we use a finite set of objects to represent an
atomic granule and usc ~ set of granules to represent a composite granule.
A larger set ha . more elements and, thus, has a larger granularity. This
relationship imu. ~ciately suggests the use of the cardinality (i.e., the number
of elements 7.1 a set, for defining a simple granularity measure m;(X) of a
set X CU:

m(X) = |x], (2)

where | - ! deno es the cardinality of the set. The measure m; simply counts
the n-...iber u1 elements of in a set. Based on the cardinality of a set, more
gran 1larity measures have been proposed by researchers to capture various
semal..‘~< _nterpretations of granularity.

u: < “ype of granularity measures of a set is derived from an information-
thec etic consideration. A subset X of a finite universal set is viewed as
possible alternatives or choices. For an element randomly picked from X,
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we have limited information about whether it is a specific ~lement. There
is more uncertainty when the element is picked from . L roer subset com-
pared to when the element is picked from a smaller su. set. The information
uncertainty of X is defined by:

my(X) = log(|X1), (3)

which is the Hartley entropy [9] of the set X. .¢ i- usc d as a measure of the
nonspecificity inherent in the set X. When X - {z} 1s a singleton subset, we
have log(|{z}|) = 0, that is, we are sure that the lement is x if it is picked
from {z}. When X = U, we have the nraxu. 1 value, indicating that we
are most unsure about which one is the ele..ent randomly picked from U.
This offers a very interesting interpreta.-on of granularity. A set of a larger
granularity leads to a higher nonsperificity when we choose an element from
the set.

By definition, we have 1 < ,. /X, < |U]| and 0 < my(X) < log|U]|
for a non-empty subset X of U. In sowie situation, it may be more conve-
nient to use a normalized measw.e. 5, normalization, we have the following
normalized measures:

N\ X
_ log | X|
X ) 4

The values of the wwo 1. malized measures are in the unit interval [0, 1].

It is interesti 1ig o note that measures my, my, and my are all monotonic
increasing trans ~r aations of the cardinality of a set. This class of granularity
measures of -, set is . ystematically studied by Yao and Zhao [34].

Conside nc v th 2 connection of the granularity of a set and the complexity
of a set. T is rc.<onable to assume the complexity of a set also depends on
the num er of 'ements in the set. In other words, a granularity measure may
serve as « messure of the complexity of a set. At the same time, we must
poin’ out u assumption implicitly made. When measuring the granularity
of a .=t by . monotonic increasing transformation of the cardinality of a set,
w~ <impuy count the number of elements in a set. In the context of measuring
the ¢ mplexity of a set, this is based on an assumption that the elements of
the s.t are independent. If elements are interdependent, simply counting the
number of elements may not be sufficient.
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3.2. Complexity measures assuming the interdependence o) .'ements

If we assume that elements in a set are independent, .ne ~nmplexity of the
set only depends on the number of elements in the se. 1. other words, the
granularity measure m, of a set can be used as a m~_..ure € the complexity
of the set:

c1(X) = mi(X) = [X] ()

If the elements in the set are dependent, we n ust co. sider the interactions
of elements. The simplest type of interactio: is pair.vise interaction. Miao
and Fan [16] and Qian and Liang [21] used the .. umber of pairs in a set to
define the granularity of a set. This gives ti.> foll- wing measure of pairwise
complexity of a set:

C (6)
The measure ¢; is a monotonic increasi. ; transformation of the cardinality of
the size. Although one may interp.~u = ws a measure of granularity [21, 34|,
it may be more meaningful to i~*ernr t ¢y as a measure of complexity, rather
than a measure of granularity. In ¢“her words, we use the number of elements
in a set to quantify the granularity, which is a measure of the first-order,
element level complexity. [he 1. imber of pairs in a set is a measure of the
second-order, pairwise com, 'exit .

If X contains thres or more elements, we may consider interactions of
three elements. The nu.»er Jf triplets in X contributes to a measure of the
complexity of the t' ird oracr:

ey = (XTY _ 110 = (X ~2)
w0=(11) - ) (™

By following *he s« me ideas, we can have a measure of i-th order complexity,
where 1 <1 < ||

<|X|\ XiXI-n

Definitic~ 5. . r a finite set X, a measure of i-th order complexity is given

by:
X X!
0= (7) - mrm ®

That '~ ¢! X) is the number of i elements in X . It is assumed that (‘X|) 0

i, 2 = 4. The normalized measure of i order complexity is given by:
(")

0 = i
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and is bounded by the interval [0, 1].

In defining a measure of ¢-th order complexity, we ¢ »ly _onsider the inter-
action of exactly ¢ elements. For a given set, we may a»~ue > at its complexity
is determined jointly by the number of elements (i.¢ ., first- »rder complexity),
the pairwise interactions (i.e., the second-order cc moleity), triplet inter-
actions (i.e., third-order complexity), and so +n. ™herefore, a complexity
measure must account interactions for all order. .p tc a number k, in order
to fully quantify the complexity arising from ali , 2ssiole interacting elements.
By summing up complexity measures of o:1ers frc m 1 to k, we define a cu-

mulative complexity measure c¥(X) for a. orac_. of interaction.

Definition 6. A measure of cumulative crmplexity of orders 1 to k is defined

by:
HX) = i (X, = i ('fl). (10)

The measure cf(X) represents i/~ towul complexity of the set with respect to

interactions from 1 to k elements.

The cumulative comp. xity n easure Cj(X) for 1 < k < 3 are:

alX) = alX)=[X|, (11)
AX) = ala) + e = HETED (12)
Sy = cl(X)—l—cg(X)—l—cg(X):w. (13)

It is interesti 1g to 1. te that all are monotonic increasing transformations of
the cardina 'ty of 3. While ¢} is the granularity of X, ¢? and ¢} reflect the
complexit=- of .. In general, we do not have a simple formula to compute
the cumr 1ilative complexity of a set. In real world applications, it may be
sufficient “o ue: the cumulative measures of a small k.

I'. orde " to understand the physical meaning of the cumulative complexity
meas re, v2 may consider X to be the set of components or parts of a
sotem. A system with more interacting parts is considered complex for
tw. 7aain reasons. First, a system with more parts is more complex than
anot. »r system with less parts. Secondly, the interaction between various
parts further increases the complexity. Whereas current studies consider
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only independence or pairwise interactions, the newly prop.<ed complexity
measure accounts for all orders of complexity. We con-ide - the interaction-
based measures of a set to be the complexity measure. of a set.

4. Granularity measures of a partition

A partition is set of subsets that represents i st ~tured subdivision of a
universal set. Each block is an atomic granule .ad tie partition is a com-
posite granule. For a partition, measures of gi. uarity and complexity are
closely related. Measures of granularity of = parti ion have been studied by
many researchers [4, 16, 21, 27, 29, 34|. Cwrenu ,.anularity measures fall un-
der two categories: information-theoretic meac res and pairwise interaction-
based measures. They can be unified wit..'n a family of expected granularity
measures [34].

4.1. Information-theoretic measur .

One common type of granv'=rity measures are the information-theoretic
granularity measures, which use ..~ Shannon and Hartley entropy as a basis.
Consider a partition 7 = {X+...., X,,}. The partition has a probability dis-
tribution P(7) = (p(X1), ..,p(-"n)) where p(X;) = |X;|/|U|. The Shannon
entropy of the partition is ~fine | as:

= —Zp ) log(p(X))
Xl | <|X¢|>
: (14)
Z 19 | U]
It represent. tb: amount of information generated by a given probability

distribution |2 . For any block of the partition 7, the Hartley entropy [9] is
defined # s

Hy(X;) = log | X (15)

and neasuves the non-specificity of a set, which is the granularity measure
mp, (© a set
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The Shannon entropy of a partition can be rearrangea n tecms of the
Hartley entropy as follows:

X | Xii|
H(ﬂ)——zmlog(m)
= log |U| — Z||U|

It has been used as a measure of granularity of a . >rtition by many authors [4,
3, 6, 17, 27|. Miao and Wang [17] and Diin..~ch an . Gediga [6] first used the
Shannon entropy as a measure of roughnes. or g.anularity and Wierman [27|
was the first to call it a granularity me~~=~

Although the full Shannon entropy ot . nartition has been considered as
a granularity measure, from Equatic (.7} ‘t can be seen that log |U| is the
constant Hartley entropy Ho(U), indey ,ndent of the partition. As a result,
some authors [29] have used only t..~ second term in Equation (16) as a
granularity measure M}, (7):

9= 3 sl Z e "

which is the mathemat cal e..» :ctation of m;. The value of M, is bound
within the limits of 0 2 1d 1,g |17 |, which represent the finest (singleton blocks)
and coarsest (one blyck) parcitions, respectively. The information-theoretic
class of granularit . -easures do not consider interactions between the ele-
ments of a block nr between the blocks themselves, which makes them un-
suitable as a m’ asu e of complexity.

(16)

4.2. Pairwis . interaction-based measures

The pai. ~is 2 in’ eraction-based measures of granularity are built upon the
idea of ¢ .ating he number of interacting pairs of elements of U under a
partitior [34].

Let 7 - J7\q,..., X,,} be a partition of the universal set U and E, be
the orres; onding equivalence relation. Miao and Fan [16] proposed the
follov ug ir ceraction based granularity measure:

, E, PXx X = XX
Tomy = B LX) S I Z'

Uxul U XU U] U] o™
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where U x U is the Cartesian product of U and U. The nume. ~tor .s the num-
ber of pairs in the equivalence relation and the denomin to. is the number of
all pairs in the coarsest equivalence relation U x U. T ~e "aaximum value of
the measure is therefore 1. Equivalently, the measur- M; ¢ 11 be interpreted
in terms of the partition. The term |X; x X;| corr spond. to the number of
possible pairwise interactions between elements in e Fock X;, where the
order of the two elements in a pair is consider :d. 7% = term |U x U] is the
number of pairwise interactions in the coarsest partiton {U}. A coarser re-
lation allows for a larger number of interactions, <o the granularity measure
increases with the coarsening of partitions.

We have two interesting observations  the measure M;. First, we can
re-express M as follows:

- Sl x v
Mim = =555

1 ~_ X)X - 1)+ | X
= — 2
U x 77! zz; 2

1 - | X
b))
=1

_ waz (2e5(X;) + 1 (X))

'U><U|Z co(X;) + 2 X)) (19)

That is, M ca. e written as a combination of both ¢; and ¢,, which is
related to cv nulative complexity of orders 1 to 2. Second, the measure M;
is similar t. tFe ir.ormation-theoretic measure M) in the sense of mathe-
matical e, ecta.” . The term ¢ (X;) = | X;|/|U| depends only on the num-
ber of e 3mentk within block X;. Therefore, the measure M; is not a fully
interactio. hacced measure.

Cian ad Liang [21]| proposed a true interaction-based granularity mea-
sure V/,, csded the combination entropy. They used combinations to repre-
s ~* the possible number of pairwise interactions:

X (5 Ix
Z|U| 'U* =3 e 2
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which is a mathematical expectation of ¢ (X;). The combu. tion entropy is
bounded by 0 and 1, that is, 0 < M, (7) < 1.

4.8. A class of expected granularity measure

Let 1 = {X3, ..., X, } denote a partition of a fini e and . onempty universe
U. In order to see the connection between the t.~e~ measures, My, M;
and M, we first consider the notions of meesure . f the granularity and
complexity of a block of 7 or a subset of of /. Given cwo subsets A, B C U
with A C B, the granularity of the smaller set +. is less than or equal to the
granularity of the larger set B. The size of . set as defined by its cardinality
provides a good measure of the granulariy, of vue set. In fact, any positive
monotonic increasing transformation of +%~ -__dinality of the block X; may
serve as a measure of granularity [34].

The partition 7 defines a probabii. "y u".*~ibution P(7) = (p(X1),...,p(Xy)),
where p(X;) = |X;|/|U|. The three n. asures of granularity of a partition,
discussion in the last subsection, cen © = expressed as mathematical expecta-
tions as follows:

M= Y pXma(X0),
M) = Zp(X»ml(Xi),
My(m) = Zp(Xi)E2<Xi)a (21)

where the corres, > ading three measures the granularity and complexity of a
set are given py 34

mp(Xi) = log(|Xy|),

_ X
ml(Xz') = |U )
| X

Ul -

(%)
Tha' is, the granularity of a partition is given as the expectation of the
granwarity or complexity of all blocks of the partition.
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By generalizing these measures, Yao and Zhao [34] inti. Juced a family
of expected granularity measures:

:ZP(X)W(X)ZZP(XL)W(XU, (23)

Xerm

where m (X;) is a measure of granularity or co aple . *y of a subset of U. It
is required that the measure of granularity fo1 . sulset of U is a positive
monotonic increasing transformation of its cara.~alty. We can obtain many
different measures as special cases of the fa_~ily of  xpected granularity mea-
sures. For example, if we use the cardinali.r ot «. block and the number of all
pairs produced by a block, respectivelv =ae = sures of the granularity of a
block, that is, m;(X;) = | X;| and c2(X;) - (pgil), we have two new measures
of the granularity of a partition:

My(m) = ZP Xi)pmulX ZP i) Xil,

M) = Xn<Xi>c2<Xi>=Zp<Xi>(’)§"). (24)

=1 i=1

They are, respectively, the « ~.age block size and the average number of
pairs in a block induc d ty tFe partition 7. Semantically, they capture dif-
ferent aspects of a part..*o; the former does not consider interaction of
elements within a 1. °k and the latter considers pairwise interactions of ele-
ments within a black.

4.4. Aziomatic " .racterization of a measure of granularity and the implica-
tions fo - defining a complexity measure
Several a.“ 1015 have investigated an axiomatic foundation for measuring
the gran aaritv o. a partition by suggesting properties that must be satis-
fied [21, 27, 34] They discussed the rationale behind a measure of granular-
ity be-~d ¢.. wwo key notions, namely, a refinement-coarsening relation and
size- somo1 >hism on the family of all partition II on U.

[ .Zwition 7. A refinement-coarsening relation = on the family of all par-
titeor s I1 of a set U s defined as follows:

77 << E,CE,. (25)
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Equivalently, m is a refinement of @ or n’ is a coarsening o, = i every block
of ™ is a subset of a block of '.

Definition 8. A partition 7w is size-isomorphic to ~notn.~ partition w', if
there exists a bijection f:m — 7' such that VX € w, |f X)) ]| = |X]|.

The refinement-coarsening relation is a parti .l or”'~ring of partitions, that
is, =< is reflexive, anti-symmetric, and transitiv> A 1ieasure of granularity
must reflect the refinement-coarsening relation ~ncu that a refined partition
has a lower granularity and coarsened pecrtition 1as a higher granularity.
When defining the refinement-coarsening ~~lat.. =, the composition of blocks
in 7 and 7 must be examined in terms of se. ‘nclusion. Consider two par-
titions on a universal set U = {a,b,c,a, > f}, 7 = {{a,b},{c,d,e, f}} and
' ={{a,c}, {b},{d}, {e}, {f}}. It ic . ~~omable to say that 7’ has a smaller
granularity than 7. However, since 7’ .~ a0t a refinement of 7, we cannot use
the relation < to reflect comparisc ~f g. anularity. Therefore, we must have
an element-independent relation betyveen partitions. For this purpose, Wier-
man [27]| proposed the notion o1 ~ize-isomorphisms in Definition 8 by con-
sidering only the structure of partitions, instead of individual elements. The
size-isomorphism relation = is . n equivalence relation on partitions which
means a measure of gran.'arity must have the same value for partitions
of the same structure Ir the previous example, 7’ is size-isomorphic to
7" = {{a,b},{c},{d}, e, {7} and 77 <X 7. If #’ and 7" have the same
granularity and the granui. ity of 7’ is less than that of 7, then the granu-
larity of 7" is less Jhau. *hat of 7.

In summary, ..ording to the refinement-coarsening relation and the size-
isomorphism, ¢ orsaularity measure must satisfy at least the following two
properties:

737 = M(E,) <M(E,),
T = M(E,)=ME,). (26)

The “ust property states that a refined partition has a lower granularity.
The secona property states that two partitions having the same structure
must ...~ the same granularity. All of the previously discussed granularity
mas) 1o, of a partition satisfy these two requirements.

: s mentioned in the introduction, the present study considers only the
structural complexity of granular structures. Two size-isomorphic partitions
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have the same structural complexity. However, they may 1. ve aifferent se-
mantic content. As pointed out by a reviewer of this paer “in aata analysis
or decision making, two granularity structures with s.-e-*somorphisms may
yield completely different results.” In practice, it . nece.~ary to combine
the structural complexity and the semantic conte t into 2 common frame-
work. While structural complexity can help us ide tifs simple structures,
the semantic content is important for deriving isef> . -esults.

5. Complexity measures of a partition

This section examines measures of cow.nlex.., of a partition. The results
provide a basis for introducing a familv of con -lexity measures for a special
type of hierarchical granular structures 1..'1uced by progressive partitioning.

5.1. From granularity measures to coi 7 exity measures

Studies on measures of the gra. w. rity serve a starting point for defining
complexity of granular structrre in 2eneral and partitions in specific. A
question that naturally arises is v.“ether the refinement-coarsening and size
isomorphic relations are good criteria for defining a measure of complexity.
When it comes to compl xity .1duced by a partition, the notion of size-
isomorphism is still applica. 'e. 7 wo partitions with the same structure must
have the same comple.ity Ou the other hand, the refinement-coarsening
relation is no longer ap > opriate. The complexity of a partition may not be
the same as its grar alarity.

Consider the t.vo ea"reme cases of partitions, namely, the coarsest parti-
tion {U} and tb 1. est partition {{z} | x € U}. For {U}, we have only one
block, which is ~asy to process. However, we have |U| number of elements
to process in che su.:le block, which is complex to process. In other words,
{U} is sim7 te i« te' ms of the number of blocks, but is complex in terms of
number of elen. s within the block. For the finest partition, all blocks are
singletor subse ‘s, each of which is easy to process. However, the number of
blocks a1. the naximum among all possible partitions, which is complex to
proc ss. That is, the finest partition is complex in terms of the number of
bloc: s and s simple in terms of number of elements within each block. The
nmbeis ot blocks and the number of elements in the blocks both contribute
to “h.. complexity of a partition. In general, the complexity of a partition is
a ba. nce of these two sources of complexity. The complexity of a partition
decreases with subdivisions of U, but increases as the blocks of the partition
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approach singleton subsets. Since measures of granularity o. v consider the
elements within the blocks, the granularity monotonic .ly decreases as the
partition is refined towards singleton blocks. They ti.~re ore do not reflect
the nature of complexity. In this vein, it is challen<.g to lefine a relation
for characterizing the complexity partitions, as t’ ere is still a lack of ac-
cepted definition and interpretation of the complex. = of partitions. In the
rest of this paper, we attempt to provide a part al s~ .. tion to this important
problem.

When proposing a measure of complexity ot « nartition, measures of gran-
ularity of a partition do provide useful hii.*s. Fir t, while the information-
theoretic measure does not consider interac“ion etween different elements in
a block, the interaction-based measure -~~~ _rs only pairwise interaction.
The complexity may be caused by highe. order interactions, for example,
triplet interactions, which these me su. = 1o not account for. A measure
of complexity measure may need to c. isider higher level interaction. Sec-
ond, measures of granularity do n ~ousider the number of blocks or the
interaction between blocks. A ~easu-e of complexity may need to consider
interactions between blocks of a L. rtition. Third, a partition is only a two-
level granular structure. In ~eneral, we need to consider multilevel granular
structures induced by pro ,ressiv - partitioning. These observations motivate
the introduction of measui.~ of granular structures based on results from
measures of granularit- of 1 partition.

A partition is a ba.7: el ment for interpreting a hierarchical granular
structure produced »v prog.essive partitioning. As a prerequisite for study-
ing the complexity of . ultilevel granular structures, we first examine the
complexity of a “,ar ition as a two-level granular structure shown in Figure 5.
As a basis for 'ef :rmining a complexity measure of a partition, we must
first consider a mea. ingful understanding of complexity that a complexity
measure wi - re tect

The tv~-lev.' .nterpretation of a partition suggests that the complexity
of a par ition . as contributions from both levels. At the partition-level, a
partition .~ a ¢ ¢ of blocks where each block is considered as one element. The
part’.on-1 vel describes the structure of the partition. A larger number of
bloct = can 1ave more interactions and is consequently more complex. Since
th~ naruicion is a set of blocks, we can use the complexity measure of a
sev ¢ ) to measure the i-th order interactions between the blocks in the
partiion. At the block-level, the complexity of any block is also determined
by the number of possible interactions within the block. If we consider the

23




block as a set, the complexity of any block X € 7 can also e mecasured by
the i-th order complexity measure ¢;(X) of a set.

Definition 9. Suppose ¢ is a complerity measure of « ~et. A complexity
measure C' of a partition m = {X1,..., X, }, induce 1 by ¢ 1is defined by:

C(r) =c(m)+ Y c(X) (27)

Xem

In ¢(), the complexity measure of ¢ is applic.’ to I partition © as a set of

blocks.

The granularity of a partition depenas ~n wue granularity measure of a
set. Similarly, the complexity measurr - _ _.rtition depends on the com-
plexity measure of the set. However, the measures are applied differently.
Whereas the granularity of a partiti n ., “e expectation of the granularity
of its comprising blocks, the the comp. xity of a partition considers a com-
bined contribution from the two Lcvel~ of the partition. By definition, the
meaning of the proposed meas :~ of (omplexity depends on the meaning of
the complexity measure ¢ of a sev. Although different complexity measures
may be uniformly represent~< as positive monotonic increasing transforma-
tions of the cardinality of a set, hey have different interpretations. In turn,
they lead to different interp. *at ons of complexity measures defined by Def-
inition 9.

The complexity me« wes my and my consider only the number of ele-
ments in a set. In s ‘me sense, they implicitly assume that elements in a set
are independent. .f the “lements in the set are assumed to be independent,
then these measure can also serve as the first-order complexity measure of
a set. On the ¢ e, hand, measures ¢; and ¢y consider the number of pairs
produced by a ret «ad implicitly assume that the elements of a set have
pairwise ini ra tio’ . As such, these measures can be used to quantify the
second-or- .1 co.. plexity of the set. These measures reflect different sources
of comp =xity, . 2sulting from either the size of the set or from the number of
interactin, »2°.s within a set. Beyond second-order measures, higher-order
meas arem. 1ts can also be used to measure the complexity of the partition.
For (imule .ive complexity measure ¢t of a set given by Definition 6, a cu-
r lative complexity measure of a partition would be:

SCRTTORD SEEIED 3 (4 FS 3) o) (o) HEEY

Xerm i=1 Xerm i=1
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which is simply an example of the class of complexity mea. res defined by
Definition 9.

In the rest of this section, we use several examples ‘o - cudy the meaning
of different complexity measures.

Example 1. Consider the first-order complexity m. asure  f a set X, c;(X) =
mp(X) = log(|X]), used as an information-thr..etic weasure of granular-
ity. For the universe, we have ¢,(U) = log |U}). For a partition 7 =
{X1,..., X}, according to Definition 9, the ~omp’= .ty of the partition can
be computed as:

Cilm) = Tos([]) + 3 los(1 X)) = wlll) + 3 loa(IXil),  (29)
Xerm i=1
where || is the number of blocks inw For the coarsest partition {U}, we have
Cn({U}) =1og({U}]) +log(|U]) = loo('J]), which is in fact the granularity
of the universal set U. That is, the . ars. st partition has the same complexity
as the set U itself. This is reasonalle, if we treat the coarsest partition as
U. For the finest partition, we "awe Cp({{z} | v € U}) = log(|[{{z} | = €
U}) + > e log(|{z}]) = log(|U]). again, it has the same complexity as the
universe U. This result ic con.istent with the common practice of treating
the finest partition as U.
Given a universe U with || > 2, suppose we partition U into two blocks
7 ={X1,Xo}. The cc m’:xit, of w is computed as:
Gy m) = log(|m|) +log(|X1]) + log (| Xz|)
log(2) + log(| X1]) + log(|X2|)
> log(|U]).
That is, acce ding .. the complexity measure, the partitioning of U into two
blocks in far « in reo .es the complexity. This is consistent with the assumption
that elements v, T are independent. In other words, if elements are indepen-

dent, gr nulat. n does not provide any advantage with regards to complexity
reduction.

Exa nple . Consider a first-order complexity measure of a set X, c1(X) =
my(a) = 1|, The complezity of U is given by C1(U) = |U|. For a partition

7 (V.o . X, }, the complezity of the partition can be computed as:
Ci(m) = || + Y IX| = |« + D _1X| = |« + |U], (30)
Xem =1
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which is greater than the complexity of U. For the coarsc.* paitition, the
complexity is C1({U}) = U} + |U| = 1 + |U|, whic. 1. areater than the
complexity of U. This reflects the fact that U is on.' ¢ single-level gran-
ular structure, while {U} is a two-level granular <. uctu.~. The latter is
more complex than the former. For the finest pa “tition, the complexity is
Coy({{x} |2 € U}) = {{z} |2 € U} + >, cp{x} - 27 |. This complexity
measure 1s a sum of the cardinality at two levels of t’ . wartition under the as-
sumption that all elements are independent. The ineasure clearly shows that,
when elements are independent, partitioning ti.. universe in fact increases
the complexity. That is, one can simply co. <ider «lements in U one-by-one,
instead of clustering them into groups.

Example 3. Consider a second-order co:. nlexity measure of a set X, co(X) =
(‘f'), where (|)2<|) =0if | X| <2. It .o . easure that accounts for pairwise
interactions within a set. For the un. erse, we have co(U) = (‘g‘). For a
partition m = { X1, ..., X, }, the comy'»uuty of the partition can be computed

T (SR o

For the coarsest partition, .= ha e Co({U}) = (H[Q]}') + ('g') = (‘g‘), which is
the same as the comple city of L. For the finest partition, we have Cy({{z} |
r e U}) = (H{x}‘;e’ L‘/\ U (|{92”}|) = (‘g‘), which is again the same
complezity of U. Cwen a «oiwverse U with |U| > 2, suppose we partition U

into two blocks m-={ A", Xo}. The complezity of w is computed as:
J _ (Il | X1 | X |
a(T) = (2 Tl )T
_ (2 | X1 | Xa|
- () (5) (%
_ (W
5 )

Acce -ding 1) this complexity measure, the partitioning of U into two blocks
derreases the complexity. If the elements of a set are assumed to have pair-
we. e nteraction, then subdivision of U provides advantages with regards to
comy 'exity reduction.
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Examples 1 to 3 demonstrate that the complexity ot . pastition is a
multifaceted notion, depending on the processing eler en s under different
assumptions. If elements and blocks of a partition .= ssumed to be in-
dependent, using a partition indeed leads to an inc _.se . complexity. On
the other hand, if the elements and blocks of a Hartitic1 are assumed to
be pairwise dependent, the introduction of partitic. re-alts in complexity
reduction. The complexity of a partition is a hala-.c of the partition-level
and block-level complexity. A finer partition wili ..ave . higher partition-level
complexity and a lower block-level complexity. 1.. the case of independence, a
partition of U reduces the block-level comp. xity, b 1t increases the partition-
level complexity through the creation of 1. n-inweracting blocks. In the case
of pairwise interaction, a partition of U =~~~ the number of possible inter-
actions by isolating related elements into “heir respective blocks. Although
the partition-level complexity is incrc wel, ** can be outweighed by the reduc-
tion of the block-level complexity. An . teraction-based complexity measure
enables us to search for the right leve! of granularity that produces the least
complexity in processing.

6. Complexity measures _° eranular structures induced by progres-
sive partitioning

A partition is a sper 1al “ype of granular structures. To quantify the effect
of the numerous comp.~ ats .n a partition, an interaction-based complexity
measure was propoced in ti.e last section to account for the different orders
of interactions bet weewn. hlocks and between elements within a block. By ex-
tending the sam’ a. Jument, we can study complexity measures of a granular
structure in ge. ~re .

6.1. Compl xitr measures for nested granular structures

A partition .~ - two-level granular structure. Given a complexity measure
of a set, in De nition 9 we define the induced complexity of a partition by
summing *he t-vo components in Equation (27). The two terms in the equa-
tion _orresmond to the two levels. For a general granular structure, we need
to ccnsider multiple levels. According to the recursive definition of a multi-
level grauular structure in Definition 2, we can apply the complexity measure
of ~ ¢t recursively to compute the complexity of a granular structure.
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Definition 10. Suppose c is a complexity measure of a sc! A complexity
measure of a granular structure, as given by Definition 2, nn be recursively
defined based on ¢ as follows: for an atomic granule g a. 1 ¢ composite granule

C(G) = c(g), G=gCU isan atomic "ran-.le,
C(G) = ¢G)+ Z C(F), G isa cor po ite granule, (32)

Fed

where ¢(G) is applied to G by treating G e~ a set « f granules.

According to the definition, the complexiv. of a composite granule is the
sum of the two sources of complexity y'~en by a granule. The first term,
c(@), is the complexity of the granu’ 7 as a family of granules. The second
term, Y pe C(F), is the total comp'e ity of all granules in G. That is,
the complexity of a granule comv'..~s Loth types of complexity. By using
this general definition, we can obta'n various complexity measures of the
complexity of a granular structu. ~ by using different complexity measures of
the complexity of a set.

We have shown that t'.e nuber of interactions of different orders con-
tribute to the complexity . ¥ a se.. By considering all orders of the possible
interactions in a granu!.r struc.ure with respect to a cumulative complexity
measure of a set, we cc» bave . complexity measure that offers a holistic view
of the granular struc.ure. ,"".th respect to the i-th order interaction complex-
ity and cumulativ. or'er k complexity, we have two families of complexity
measures of a gr-.. lar structure.

Definition 11. L. * ¢;(X) = (‘Xl) denote the complexity measure defined by

(2
the number ,f ir cercctions of exact i elements in a set. A complexity measure

of a granular trv _ture, induced by c¢;, is defined as follows: for an atomic
granule + and 2 composite granule G,

wmza@=¢v

1

<mn:a@+2am:0ﬁ+zam, (33)

1
Fed FeG

where ¢;(G) is the complexity of G as a set of granules.
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Definition 12. Let c}(X) = Zle ¢i(X) be the cumulative "-th order (k >

1) complexity measure of a set X. The complexity of + g 1mule, induced by

¥ is recursively defined as: for an atomic granule g ai.7 o composite granule

G,

Cte) = o) =Dt =3 {7
Cf(G) = ZQ(G):Z<Q(G) K ZQ(F))
i=1 =1 FeG
OGN e
= . -+ L) 34
Z() i) (34)

Example 4. When interactions are - asidered, a decomposition of U can
be shown to reduce its complexity. + oms.ler the example shown in Figure 4,

that is, a composite granule G — {{3 “a,b}, {c}},{d}}, {e}, {{f}, {g}}} We

can calculate the values of differc, *+ complexity measures as follows:

Cil(U) = &(U)=T,
CH(G) = Ci(F) =16,
C2(U) CHU)+Co(U) =7+ 21 =28,
C2 N = CHG) + Cy(G) =16+ 7 = 23,
C*U) = C}U)+ C5(U) =28 + 35 = 63,
CHF) = CHG)+C3(G)=23+1=24.

If the eleme ts cf the granule are assumed to be independent, measured by C},
it can be seer, ~at subdiwviding the granule into more blocks actually increases
the com: exity 1f the elements are assumed to have pairwise interactions,
measure.’ by C' , subdividing the granule reduces the complexity. If the el-
emen’., have wriplet interactions, measured by C3, the complexity is further
redu ed.

L. C7ition 10 gives rise to a family of complexity measures generated by

con. exity measures of a set. We can generate many specific measures of
compiexity. Consider the information-theoretic measure of granularity as a
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measure of complexity ¢, (X) = m,(X) = log(]X]). For an «*omic granule g
and a composite granule G, we have:

Cr(g) = cnlg) =log(lgl),
Ch(G) = en(G)+ Y Ch(F)

Fed

= log(IG) +)_ Cr.x) (35)
F 4

When G is a partition, we obtain Equatioi (29) a: a special case.

We now examine properties of specific “vpe. of complexity measures. In
C} we do not consider any interaction hetwaor lifferent elements or granules
in a granule, namely, all components ot . granule are independent. It can
be easy verified that the granule U L.~ *he minimum value of 4. This
suggests that further decomposition o. J into smaller granules will increase
the complexity, which is consistert -iti. the assumption of independence.
That is, under the independenc~ assumption, U is the only structure that we
need when considering individuai .'ements separately and we do not need to
consider other granules.

Consider a universe U ".nd a , artition 7 = { X7, ..., X,,}. The cumulative
k-th order complexity of U "=

=3 (1), (36)

=1

The cumulative - order complexity of the partition is

Ci(m) = i (‘Zl) + if: (‘)Z{j’)' (37)

i=1 =1 j=1

The siz¢ of the granules and the number of granules is highly coupled in
a partitic®  Some observations can be made regarding the nature of the
com’ lexity of a partition as measured by C¥, k > 2. The first term represents
the ¢ mtribr tion to the complexity from the interaction between blocks of the
p-rtition and the second term represents contribution from the interactions
w1 Wit each block for all blocks. As the number of blocks increases, the
avera_e size of the blocks decreases. When |7| > 1, we have |X;| < |U|. It
follows that in each block we do not have some higher order interactions as
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we do in U. In addition, we do not need to consider intera. ‘ions of objects
in different blocks. In other words, any interaction cons.de ed by the second
term in C¥(7) is considered by C¥(U), but the reverse .~ n'.t true. Therefore,
for £ > 2, we have the following inequality:

2 (“ﬂ) > Ekiili ('f"\ (33)

The quantity,

k FoImox
>(F)-X2i%) )
i=1 =1 =1~
is the reduction of complexity at the lever . f individual blocks. On the other
hand, a partition also introduces co. pw .*;7 at the partition level, as given
by the first term in C¥(7), namely > (‘7;‘). Therefore, whether a partition
increases the overall simplicity is a e nuned by a trade-off of the reduction
and the increment of complexi’ -

The discussion suggests that .-= can re-express the comparison of the

complexities of U and ,

S (715 Sy (u?-\) oy (r;w)’ (40)

i=1 i=1 j=1 i=1

equivalently as follrc vs:

54 (Mij') 5)s (l)?') 53 ('Z')- (41)

i=1 j=1 =1

The left ha. 1 <.de s the reduction of complexity and the right hand side is
the increr—_nt o, “omplexity. By using a larger number of smaller blocks, we
have a b gher r. duction and a higher increment. By using a lower number of
larger blo "« ~ e have a lower reduction and a lower increment. The combined
resu'.s is 1 ndetermined, that is, may be either favourable or unfavourable.
The . narses ¢ and finest partitions represent two extreme cases. According to
r ~~enre UF, their complexities are given by

Cr{uy) = 1+C1),
Ci({{z} |z € U}) = CH(U)+]UI. (42)
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They are, in fact, greater than the complexity of U. The fiu t partition has
a higher complexity than that of the coarsest partition wi ich 1s the reverse
order given by the granularity of partitions. To have *he complexity lower
than the complexity of U, we need to use a partitic__ tha, ‘s somewhere in
the middle.

A nested granular structure is obtained by progi.-<iv_ partitioning. The
analysis of the complexity of a partition can be >xte..~d to a granular struc-
ture. As the complexity of each granule composii.g the nested granular struc-
ture decreases with decomposition or subdivisic> the overall complexity of
the nested granular structure will also dec.~ase. iccording to the measure
C¥ (@), when higher degrees of interaction .~ dependency are considered, it is
highly possible to construct a multileve! =»~~=-'__ structure with a complexity
less than the complexity of U. That is, w. use granular structures when we
decompose larger granules into smai.~ o +ules in order to eliminate higher
order dependency. The analysis is co. sistent with the argument given by
Simon [26] regarding the use of hie "a. “hical systems to reduce complexity.

6.2. Axiomatic characterization .} a measure of complexity

The multilevel granular <*ructures induced by the progressive partition-
ing necessitate additional -onsia. rations. The definition of size-isomorphism
of partitions can be generai.~d 0 nested granular structures given by Defi-
nition 4. However, a - apy.ng between two blocks cannot easily generalized.
We recast the definitio.. f si.e isomorphism in terms of a bijection over the
set of objects, whic » allows us to generalize to the case of multilevel struc-
tures.

Definition 13. A partition 7 is isomorphic to another partition w', written
m = 7' if we can ovein w from ™ by a bijection f: U — U, and vice versa.
That is, tw  ob ects f(a) and f(b) are in the same block of 7 if and only if a
and b are *» the <ume block of 7'

The «“omic granules which make up a nested granule form a partition of
U. I, order tor two nested granular structures to be isomorphic, the corre-
spor. ling tv o partitions must be isomorphic according to Definition 13. In
addition, vhe two trees expressed as a dot-representation such as that shown
in “igare 4 must be isomorphic, that is, the two trees have the same structure.
The 'efinition of two isomorphic nested granular structures immediately fol-
lows.
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Definition 14. A granular structure G is isomorphic to « other granular
structure G', written G =2 G, if we can obtain G frem 7' by a bijection
f:U — U, and vice versa. That is, the partition fori, ~d »y atomic granules
in G is isomorphic to the partition formed by the at-.aic ¢, ~nules in G' and
the two trees of G and G' are isomorphic.

O

. {d} {r {g} {m} N
N ¢ 7 Aa} °
{a,b} {c} P

{e} {f.9}

Figure 7: Two isomoprhic nested granv’ar structures G (left) and G’ (right)

Example 5. Consider a universal set of objects U = {a,b,c,d, e, f,g}. Fig-
ure 7 shows an example «f twe isomorphic granular structures. It can be
seen that we can obtain ™' = {{{a, b} {c}},{d}}, {e}, {{/}, {g}}} from
G = {{o}, {{c} {d}}, {at R} A S g}}}) by using the bijection F(a) =
f,F(b) =9g,F(c) = Fd) =a,F(e) =bF(f) =d,F(g9) = ¢, and vice
versa. The leaf nod:s of C' jorm a partition {{a,b},{c}, {d},{e}, {f},{9}}
that is, according t L Snition 13, isomorphic to the partition {{b}, {c}, {d},{a},{e}, {f,9}}
formed by the lec, . odes of G' under the bijection F. Furthermore, the struc-
ture of the twc qrewles are the same. In defining the isomorphic relation
between gran:les, .2 order of granules are not important, that is, the order
of subtrees <5 n t irportant.

If tw, grarular structures are isomorphic to each other, that is, they
have the same tructure, then they must also have the same complexity. A
comp' __ity ..casure must satisfy the following requirement:

GG = C(G) =C(@). (43)

T~ romplexity measures introduced in this paper are based on the structure
of a yranule, and do not depend on the the names of the elements within the
granules. For an atomic granule, the complexity is measured solely by the
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number of elements contained inside. For a composite granu'~ tne complex-
ity is measured by the number of granules and their res ,ec ive siructures. A
bijection f which defines isomorphic granules can be -ier/ed as the renam-
ing of elements and granules while preserving the . actu.>. Therefore, all
complexity measures satisfy the requirement given by Eq. ation (43).

When studying a granularity measure of a partitic. w- also use a refinement-
coarsening relation on partitions. As discussed e wrlie | “he refinement-coarsening
relation does not reflect our perception of the cow.plexi.y of partitions. Thus,
we need to introduce a “equally or less complex “han,” or equivalently, “not
more complex than” relation <.. The rela.*on <, would allow for a partial
ordering of various granular structures. r.-cora.ngly, a granule that is less
complex than another granule would ha = = == or complexity value. In other
words, we would have the following prope.*v of the complexity measure:

G=.G = ('3 <O@). (44)

In conjunction with the isomorphic p.operty, these two properties would form
an axiomatic basis for defining a ~~mp.exity measure of a granular structure.

Like the refinement-coarsening 1elation =<, the relation <. is reflexive
and transitive. However, -k =<, it is difficult to define <. based on the
structures of granules. As.hown »y different cumulative orders of complexity
measures, the complex’cy nf g.anules is a multi-faceted notion. It may be
impossible to define —* i1 geaeral. However, it may be possible to define
<. under a specific ‘nterp. ’ation of complexity. This will be an interesting
future research tor ic.

7. Conclusio..

Granula’ coraputing is an interdisciplinary field that is growing in pop-
ularity. A <. nmon granulation scheme that researchers have studied is
partitior pased granular computing. The present work addresses two main
deficienc es wit1 current studies. Firstly, researchers have focused on the
partit'ca as a two-level structure. The concept of partition-based gran-
ular struct res is introduced to account for multilevel structures induced
throug™ » ogressive partitioning or refinement. The nested granular struc-
ture ¢ Los from the hierarchy of composite granules, which are composed of
eith ¢ atomic granules or composite granules. Secondly, a complexity mea-
sure is introduced to account for the complexity arising from the structure
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of a partition. Current studies consider only what is contain. 4 in individual
blocks. The newly proposed measure considers the cor.pi xity arising from
two sources, from the contents of each block and fro.~ t'.e structure itself.
Thus, we consider interactions between elements of » ' lock . nd also between
blocks of a partition. Whereas previous studies ¢ onside, granularity mea-
sures of a partition as the expected granularity of . ~ b'scks, the proposed
complexity measure considers the cumulative con . xity arising from the
blocks and the structure through summation. Ly inc easing the number of
blocks, the complexity of each block is increase. but the complexity result-
ing from the structure is increased. An ave. e for uture research is to study
the axiomatization of specific classes of co. nleaiy measures.

The focus of this paper was to deve'~r **~ heoretical foundation for the
development of a newly proposed comple. ‘ty measure. A main objective is
to draw attention to the differences »co. ~m the two notions of granularity
and complexity of granular structures While the former has been exten-
sively studied, this paper is the firs: s.'dy of the latter. As such, the present
work is focused on a theoretics' inve *tigation only. The proposed measures
are applicable to any methods ot sranular computing where the complexity
is of a main concern. While the general ideas are application independent,
the choice of a particular . in tL > cumulative k-th complexity is application
dependent. In order to avo..' ur iecessary distractions from focusing on any
particular applications, wr only consider simple examples to illustrate the
computation of the va. s o the proposed measures. As a natural exten-
sion of this work, fi -ure wo.k will include an experimental evaluation of the
proposed complex.ty mi~sures in various applications.

Acknowledge.. ~ its

The aut’.or wou'd like to thank the reviewers for their constructive and
critical comme~ts Prof. Yiyu Yao for his fruitful discussions and insightful
commen s thrcighout the writing of the manuscript, and Prof. Jean-Pierre
Hickey 1. r his aelpful comments and suggestions on improvements of the
mani cript.

[1] ». Be.giela and W. Pedrycz. Granular Computing: An Introduction.
"twer Academic Publishers, 2002.

[2] .*. Bargiela and W. Pedrycz. Human-centric information processing
through granular modelling, volume 182. Springer, 2008.

35




3]

4]

[5]

(6]

[10]

[11]

[12]

[13]

T. Beaubouef, F. E. Petry, and G. Arora. Informatio.. theuretic mea-
sures of uncertainty for rough sets and rough rela’.on 31 dacabases. In-
formation Sciences, 109(1-4):185-195, 1998.

J. Dai and H. Tian. Entropy measures and Zranu.rity measures for
set-valued information systems. Information S ience , 240:72-82, 2013.

J. Dai, W. Wang, Q. Xu, and H. Tian. "Tnc_rte nty measurement for
interval-valued decision systems based o.. exten< :d conditional entropy.
Knowledge-Based Systems, 27:443-450, 201x%.

I. Diintsch and G. Gediga. Uncertainty measures of rough set prediction.
Artificial intelligence, 106(1):109-"°7 120,

Q. Feng, D. Miao, J. Zhou, and . “'heng. A novel measure of knowledge
granularity in rough sets. Interna.’s nal Journal of Granular Computing,
Rough Sets and Intelligent Sy-voms, 1(3):233-251, 20009.

H. Fujita, T. Li, and Y. “ao. Advances in three-way decisions and
granular computing. Knowledgc-Based Systems, 91(2):1-3, 2016.

R. V. Hartley. Transr .ission »f information. Bell Labs Technical Journal,
7(3):535-563, 1928

Y. Jing, T. Li, C. "vo, S -J. Horng, G. Wang, and Z. Yu. An incremen-
tal approach f r attri. ate reduction based on knowledge granularity.
Knowledge-B .sea “stems, 104:24-38, 2016.

X. Kang 2ad '). Miao. A study on information granularity in formal
concept anau, is based on concept-bases. Knowledge-Based Systems,
105:147 157, 2016.

J. Liaug, k. Li, and Y. Qian. Distance: A more comprehensible per-
spe tive fc - measures in rough set theory. Knowledge-Based Systems,
27122 170, 2012.

1. Liar z and Z. Shi. The information entropy, rough entropy and knowl-
edge granulation in rough set theory. International Journal of Uncer-
'mnty, Fuzziness and Knowledge-Based Systems, 12(01):37-46, 2004.

36




[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

J. Liang, J. Wang, and Y. Qian. A new measure of unce.*ainyy based on
knowledge granulation for rough sets. Information “cicnces, 179(4):458—
470, 20009.

G. Lin, J. Liang, and Y. Qian. Uncertainty m :asurc * for multigranula-
tion approximation space. International Jourr.~l of ' ncertainty, Fuzzi-
ness and Knowledge-Based Systems, 23(03".443-457, 2015.

D. Q. Miao and S. D. Fan. The calculatic > of kn~ vledge granulation and
its application. Systems Engineering-theory (¢ Practice, 1:7-14, 2002.

D. Q. Miao and J. Wang. On the 1. 'atiouships between information
entropy and roughness of knowled~~ *== ___zh set theory. Pattern Recog-
nition and Artificial Intelligence, 1, 1298.

7. Pawlak. Rough sets. Internatic » .l journal of computer & information
sciences, 11(5):341-356, 198%.

Z. Pawlak. Rough sets: _neu. . ical aspects of reasoning about data,
volume 9. Springer Science & L asiness Media, 2012.

W. Pedrycz, A. Skovron, .nd V. Kreinovich. Handbook of granular
computing. John Wiley - Sons, 2008.

Y. Qian and J. L. » .. Combination entropy and combination granula-
tion in rough se. theor, International Journal of Uncertainty, Fuzziness
and Knowled,e-b.~ed Systems, 16(02):179-193, 2008.

J. R. Quirlan Learning efficient classification procedures and their
application vc chess end games. In Machine learning, pages 463—482.
Springe ., 1°83.

S. S-ichi, A Selamat, and H. Fujita. Systematic mapping study on
gra ular e mputing. Knowledge-Based Systems, 80:78-97, 2015.

_. E. Shannon. A mathematical theory of communication. ACM SIG-
VM OBI .E Mobile Computing and Communications Review, 5(1):3-55,
QUUL.

W. Shu and H. Shen. Multi-criteria feature selection on cost-sensitive
data with missing values. Pattern Recognition, 51:268-280, 2016.

37




[26]

[27]

28]

[29]

[30]

[31]

[32]

33

[34]

[35]

136]

H. A. Simon. The architecture of complexity. Proceedu.>s o) the Amer-
ican Philosophical Society, 106:467-482, 1962.

M. J. Wierman. Measuring uncertainty in roueh sc' theory. Interna-
tional Journal of General System, 28(4-5):283 297, 1999.

J. Yao. Nowel Developments in Granular ('c npucong: Applications for
Advanced Human Reasoning and Soft Cor. pv’ati n. IGI Global, 2010.

Y. Yao. Probabilistic approaches to ro.~h sets. FEzxpert systems,
20(5):287-297, 2003.

Y. Yao. A partition model of granular ¢« mputing. In Transactions on
Rough Sets I, pages 232-253. Spring >v. 2004.

Y. Yao. Integrative levels of gran la 1ty. In Human-Centric Information
Processing Through Granula, Modcling, pages 31-47. Springer, 2009.

Y. Yao. Interpreting conce .U '»a1 hing in cognitive informatics and gran-
ular computing. IEEFE Transac*ions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 2°/1):855-866, 2009.

Y. Yao. A triarchic the ~ry o granular computing. Granular Computing,
1(2):145-157, 201F.

Y. Yao and L. "hao. A measurement theory view on the granularity of
partitions. In o1, ation Sciences, 213:1-13, 2012.

P. Zhu. A-. in proved axiomatic definition of information granulation.
Fundamenu. “nformaticae, 120(1):93-109, 2012.

P. Zhv an . @ Wen. Information-theoretic measures associated with
rough <et v roximations. Information Sciences, 212:33-43, 2012.

38




