
 Dynamic threshold neural P systems

Hong Peng a, Jun Wang b, Mario J. Pérez-Jiménez c, Agustín Riscos-Núñez c

a School of Computer and Software Engineering, Xihua University, Chengdu 610039, China
b School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
c Research Group of Natural Computing, Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Sevilla 41012, Spain

Keywords:
Membrane computing
P systems
Neural-like P systems
Dynamic threshold neural P systems 
Universality

 a b s t r a c t

Pulse coupled neural networks (PCNN, for short) are models abstracting the synchronization behavior
observed experimentally for the cortical neurons in the visual cortex of a cat’s brain, and the intersecting
cortical model is a simplified version of the PCNN model. Membrane computing (MC) is a kind compu-
tation paradigm abstracted from the structure and functioning of biological cells that provide models
working in cell-like mode, neural-like mode and tissue-like mode. Inspired from intersecting cortical
model, this paper proposes a newkind of neural-like P systems, called dynamic threshold neural P systems
(for short, DTNP systems). DTNP systems can be represented as a directed graph,where nodes are dynamic
threshold neurons while arcs denote synaptic connections of these neurons. DTNP systems provide a
kind of parallel computing models, they have two data units (feeding input unit and dynamic threshold
unit) and the neuron firing mechanism is implemented by using a dynamic threshold mechanism. The
Turing universality of DTNP systems as number accepting/generating devices is established. In addition,
an universal DTNP system having 109 neurons for computing functions is constructed.

1. Introduction

Membrane Computing is a kind computation paradigm ab-
stracted from the structure and functioning of biological cells. This 
paradigm provides models working in cell-like mode, based on the 
hierarchical structure of biological membranes in a cell, tissue-like 
mode, abstracted from the communication and cooperation of cells 
in biological tissues, and neural-like mode based on the way that 
neurons communicate with each other by means of short electrical 
impulses (spikes) but fired at precise moments of time.

Spiking neural P systems (in short, SNP systems) [1] are a kind 
of neural-like P systems in membrane computing [2], abstracted 
from the way neurons work together to deal with and commu-
nicate information in a network form of neural cells linked by 
synapses [3,4]. A SNP system has a directed graph structure, in 
which the neurons denote the nodes and the arcs denote the 
synaptic connections between these neurons. There are two kinds

of components in each neuron: a data unit that is used to store
the number of spikes, and several rules (firing and/or forgetting
rules). SNP systems have a working alphabet that is a singleton
whose unique element a is called spike. A global clock is considered
to mark the time of these systems, and all the neurons operate in
parallel. SNP systems provide a class of parallel computingmodels.

In the past years, many variants of SNP systems have been
discussed, abstracted from a various of biological facts and/or com-
bined themethods and ideas in computer sciences ormathematics.
Considered a couple of anti-spikes (a, ā), SNP systems with anti-
spikes were proposed in Pan et al. [5]. With the inspiration of
astrocytes with excitatory and inhibitory influences, SNP systems
with astrocytes were discussed in [6,7], respectively. In [8,9], SNP
systems with rules on synapses have been discussed, in which
rules were considered in synapses. At the same time, a competitive
spike consumption strategy was discussed in Peng et al. [10]. By
introducing weight and threshold mechanism, SNP systems with
weights/thresholds have been investigated in [11,12], respectively.
Inspired from the biological fact that the synapse has one or more
chemical channels, Peng et al. [4] and Song et al. [13] investi-
gated SNP systems with multiple channels. Considered a new

https://doi.org/10.1016/j.knosys.2018.10.016
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2018.10.016&domain=pdf
mailto:wj.xhu@hotmail.com
https://doi.org/10.1016/j.knosys.2018.10.016


communication strategy among neurons, Pan et al. [14] and Wu
et al. [15] discussed SNP systems with communication on request.
Motivated by the biological phenomena that each neuron has a
charge either positive or negative, SNP systems with polarizations
were discussed [16]. Under the restriction that at most one neuron
can be applied at each time, Ibarra [17] and Zhang [18] discussed
sequential SNP systems, respectively. In addition, Chen et al. [19]
introduced axon P systems, inwhich nodes are organized in a linear
structure. Due to the use of a global clock, a lot of SNP systemswork
synchronously, however, a number of asynchronous SNP systems
were investigated [20,21]. In recent years, fuzzy logic has been
integrated in SNP systems, called fuzzy SNP systems, such as, fuzzy
reasoning SNP systems [22], weighted fuzzy SNP systems [23]
and adaptive fuzzy SNP systems [24]. In addition, SNP systems
have been applied to process a lot of real-world problems, for
instance, fault diagnosis [25–28], image processing [29], data clus-
tering [30–32] and combinatorial optimization problems [33]. The
computational properties of SNP systems were investigated. Nu-
merous variants of SNP systems, as number accepting/generating
devices [1,6,20,21], language generating devices [34,35] and func-
tion computing device [36,37], have been proven to be Turing
universal. SNP systems have been used to deal with some compu-
tationally hard problems in a linear or polynomial time [38,39].

Biological systems have always been an inspiration for de-
veloping algorithms. Cat’s and guinea pig’s visual cortexes have
helped in developing some digital models. Eckhorn et al. [40,41]
createdmammal’s neuronmodel by investigating the synchronous
oscillating phenomenon of neurons in cat’s visual cortex. Eckhorn’s
neuron model has been used to develop pulse coupled neural
networks [42]. In Eckhorn’s model, each neuron has three com-
ponents (receptive field, nonlinear modulation and output mod-
ule), and the receptive field consists of linking input and feeding
input [43]. Kinser [44] proposed the intersecting cortical model
(ICM) that is amodification of Eckhorn’s neuronmodel [45]. In ICM
model, feeding input and nonlinearmodulationmechanism in Eck-
horn’s model are removed, and a dynamic threshold mechanism
is introduced where the threshold can be changed according to
the neurons’s firing. From the perspective of application, regular-
expression-based firing mechanism in SNP systems maybe suffer
from a limitation when they are directly used to solve real-world
problems: it is only suitable to the kind of some applications
related to regular language. Therefore, it becomes an interesting
and challenging problem how to develop some extensions to break
the limitation. Comparedwith spiking neuron used in SNP systems,
the ICM model can provide a stronger control ability for behavior
of neurons. This paper focuses on how to develop a new neural-
like model based on the ICM model under membrane computing
framework, which is different from the existing SNP system in the
mechanism.

This paper investigates a new variant of neural-like P systems,
called dynamic threshold neural P systems (in short, DTNP sys-
tems), abstracted from the intersecting cortical model (for short,
ICM model) that was derived from the synchronous oscillating
phenomenon of neurons in cat’s visual cortex [40]. A DTNP system
contains a number of dynamic threshold neurons, and each dy-
namic threshold neuron has two data units and dynamic threshold
mechanism used to process the neuron’ firing. For convenience,
we define DTNP systems by using the notations and terms as
in SNP systems. The computational power of DTNP systems as
number generating/accepting devices and function computing de-
vice is discussed. Specifically, DTNP systems as number generat-
ing/accepting deviceswhich use an unbounded number of neurons
and where each neuron has at most two rules, are Turing uni-
versal. Moreover, an universal DTNP system having 109 neurons
for computing functions is established. From the point of view of
working mechanism, the differences between DTNP systems and
SNP systems can be summarized as follows:

(1) SNP systems are inspired from a simplified model of spiking
neurons, while DTNP systems use dynamic threshold neu-
rons, abstract from ICM model of the cortical neurons.

(2) SNP systems use a regular-expression-based firing mecha-
nism, however, DTNP systems adopt a dynamic-threshold-
based firing mechanism, which is often expressed by a con-
junctive form.

(3) Each dynamic threshold neuron in DTNP systems has two
data units (feeding input unit and dynamic threshold unit),
and maximum spike consumption strategy and non-
deterministic rule selection strategy are used to deal with
the neuron’s spiking.

The motivation of this paper stays in introducing a new dynamic
threshold neuron, inspired from ICMmodel of the cortical neurons,
and proposing a new variant of neural-like P systems based on
the dynamic threshold neuron, i.e., DTNP systems. In addition, SNP
systems can suffer from a certain limitation in directly solving real-
world problems because they use a regular-language-based firing
condition, for example, image and signal processing problems.
However, the limitation is relaxed in DTNP systems in a conjunc-
tive form, and a firing mechanism with dynamic threshold is used
to handle the firing of neurons. It is well-known that pulse coupled
neural networks as an analog of DTNP systems have been success-
fully used to solve image and signal processing problems. There-
fore, the new variant seems to be suitable for solving those real-
world problems. However, this work mainly focuses on computa-
tional power of DTNP systems as number generating/accepting and
function computing devices.

The rest of this paper is organized as follows. The proposed
DTNP systems are presented in Section 2. The universality of DTNP
systems as number accepting/generating devices is proven in Sec-
tion 3. The universality of DTNP systems as function computing
device is investigated in Section 4. Section 5 draws conclusions and
discussion.

2. DTNP systems

In this section, we describe in detail the proposed DTNP sys-
tems, which are inspired from the ICM model. For clarity and ease
of understanding, we use notations and terms similar to those used
in SNP systems. It is well known that in SNP systems, each neuron
has a data unit (storing the number of spikes in the neuron) and
some rules (characterizing the behavior of the system). However,
ICM model has two kinds of data (feeding input and dynamic
threshold) and a dynamic thresholdmechanismwhere the thresh-
old can be changed with the neurons’s firing. Therefore, when
designing the DTNP systems, two integrants that are different from
SNP systems are considered:

(1) each dynamic threshold neuron has two data units: feeding
input unit and dynamic threshold unit.

(2) the neuron’s firing is based on a dynamic threshold mecha-
nism instead of regular-expression-based or static-
threshold-based firing rules.

As a result, the dynamic threshold mechanism can provides a
stronger control ability for behavior of DTNP systems.

2.1. Definition

Definition 1. A DTNP system with degreem ≥ 1 is formulated as
a tuple:

Π = (O, σ1, . . . , σm, syn, in, out)

where:

(1) O = {a} is the singleton alphabet (a is called the spike);



(2) σi = (ui, τi, Ri), 1 ≤ i ≤ m, are neurons with dynamic
threshold, where:

(a) ui ≥ 0 is the number of spikes as feeding input via
dendrites in σi;

(b) τi ≥ 0 is the (dynamic) threshold in σi;
(c) Ri denotes the finite set of firing rules of the form

Ei/(au, aτ ) → ap, inwhich Ei = {ui ≥ τi∧ui ≥ u∧τi ≥

τ } is a firing condition, u ≥ 1, τ ≥ 0, p ≥ 0 and p ≤ u;
In the case of p ≥ 1, the rule is called a firing rule, and
in the case of p = 0, the rule is called a forgetting rule
(a0 is denoted by λ);

(3) syn ⊆ {1, . . . ,m} × {1, . . . ,m} indicates a directed graph
structure of synapses between neurons; note that (i, i) /∈

syn, 1 ≤ i ≤ m;
(4) in, out ∈ {σ1, . . . , σm} denote the input neuron and output

neuron of Π , respectively.

A DTNP system is regarded as a directed graph without self-
loops (arcs from a node to itself), where the nodes of the graph
are represented by neurons while the arcs denote synaptic con-
nections between these neurons. A virtual node that represents
the environment can be considered in this graph and there exist
two distinguished neurons (the input neuron and the output neu-
ron) that allow to the system communicate with its environment.
Specifically, the output neuron provides an ‘‘outgoing arc’’ in such
manner that each step that output neuron fires, a spike is trans-
mitted into the environment of DTNP system. The input neuron
provides an ‘‘ingoing arc’’ in such manner that a natural number
n can be encoded in the system when two spikes are imported in
the input neuron during n steps.

Apart from directed graph structure, there are two integrants
in a DTNP system: data and rules. Data is used to describe the
state of each neuron, and the rules characterize the dynamic
behavior of the system. Different from SNP systems, each neuron
σi in DTNP systems has two data units: a feeding input unit,
denoted by ui, and a dynamic threshold unit, denoted by τi, that
is, ui(t) and τi(t) denote respectively the numbers of spikes in
feeding input unit and dynamic threshold unit at time t . As-
sume Π = (O, σ1, . . . , σm, syn, in, out) is a DTNP system of
degree m. A configuration Ct of Π at time t is denoted by a vector
(u1(t), τ1(t), . . . , um(t), τm(t)), which is an instantaneous descrip-
tion of the system, in which for each 1 ≤ i ≤ m, ui(t) indicates the
number of spikes contained in feeding input unit of neuron σi at
time t and τi(t) is the dynamic threshold of neuron σi at time t . The
initial configuration of Π is (u1, τ1, . . . , um, τm), that is, ui(0) = ui
and τi(0) = τi, for each 1 ≤ i ≤ m.

DTNP systems have the rules of two types: firing rules and
forgetting rules. Each neuron σi is associated a finite set of (firing
and/or forgetting) rules of the type Ei/(au, aτ ) → ap. Note that
the expression Ei = {ui ≥ τi ∧ ui ≥ u ∧ τi ≥ τ } can be
omitted because it is injectively associated with σi. The semantics
of the rules in DTNP systems can be illustrated as follows. The rule
r ≡ Ei/(au, aτ ) → ap in neuron σi is applicable to a configuration
Ct at time t ≥ 0 of Π if ui(t) ≥ τi(t), ui(t) ≥ u and τi(t) ≥ τ .
When rule r ≡ Ei/(au, aτ ) → ap is applicable to a configura-
tion Ct we say that neuron σi is enabled at time t . When rule
Ei/(au, aτ ) → ap is applied to a configuration Ct , neuron σi fires,
consuming u spikes in feeding input unit and τ spikes in dynamic
threshold unit. Besides, if p ≥ 1 then it generates p spikes that
are transmitted to each postsynaptic neurons σj where (i, j) ∈ syn.
Thus, by applying the rule Ei/(au, aτ ) → ap to a configuration
Ct = (u1(t), τ1(t), . . . , um(t), τm(t)), we have{
ui(t + 1) = ui(t) − u + n,
τi(t + 1) = τi(t) − τ + p.

Fig. 1. An example of DTNP systems.

where n denotes the number of spikes received from other neu-
rons, and p denotes the number of spikes generated by the neuron.

Two rules r ≡ Ei/(au, aτ ) → ap and r ′
≡ Ei/(au

′

, aτ ′

) → ap
′

in neuron σi can be applicable to a configuration Ct . In this case,
only one of them will be applied to Ct according to the following
criterion (maximum spike consumption strategy is adopted): if u >

u′ (resp. u < u′) then rule r (resp. rule r ′) is chosen to apply
(in particular, is possible to apply a forgetting rules instead of an
applicable firing rule); if u = u′ then one of them (r or r ′) is non-
deterministically selected.

For a configuration Ct , if no rule of the system can be applied,
we say that it is a halting configuration. If Ct is a non-halting
configuration thenweuse Ct ⇒Π Ct+1 to denote one transition step
from configuration Ct to configuration Ct+1. In a DTNP system, the
rules are sequentially applied for each neuron, however, neurons
function in parallel.

DTNP systems can be considered working in generating mode
or in accepting mode. In the case of DTNP systems as generating
device, a spike train is associated with any computation C0 ⇒Π

C1 ⇒Π . . . ⇒Π Ct ⇒Π Ct+1 . . . as follows: it is the binary
sequence such that at position t is written 1 if the output neuron
emits some spike at time t , otherwise a 0 is written. Let ST (Π )
denote the collection of all spike trains (over all computations)
of Π . ST (Π ) can be associated with a set of numbers in several
ways, in this paper, the computation result is considered as the
number of steps between the first two consecutive spikes emitted
to the environment. N2(Π ) is used to express the set of numbers
computed by Π , and N2DTNPn

m denotes the families of all sets
N2(Π ) computed by DTNP systems having at most m neurons and
at most n rules in each neuron. As usual, parameter m or n is
replacedwith ∗ if it is not bounded. In the case of generatingmode,
the role of the input neuron is irrelevant and it can be ignored.

For the case of DTNP systems as accepting device, a distin-
guished neuron is regarded as the input neuron and two spikes
are imported to the neuron during k steps. Then, the number k is
accepted if the computation halts. Nacc(Π ) is used to express the
set of numbers accepted by Π and NaccDTNPn

m denotes the families
of all sets Nacc(Π ) accepted by DTNP systems having at most m
neurons and at most n rules in each neuron. For accepting mode,
the role of the output neuron is irrelevant and it can be ignored.

In the following, DTNP systems as number accepting/generating
devices are proved to be computationally complete (equivalent
with Turing machines).

2.2. An illustrative example

Tounderstand themechanismofDTNP systems,wehere give an
example working in generating mode that can generate the finite
spike train.

Let us suppose that Π is a DTNP system, consisting of four
neurons σ1, σ2, σ3 and out , shown in Fig. 1. Initially, neurons σ2, σ3
and out have no spike in their feeding input units, while neuron σ1
has three spikes in its feeding input unit, that is, u1(0) = 3, u2(0) =

0, u3(0) = 0, uout (0) = 0. The initial thresholds of the four neurons



are set: τ1(0) = 2, τ2(0) = 2, τ3(0) = 2, τout (0) = 1. Thus,
C0 = (3, 2, 0, 2, 0, 2, 0, 1).

At time 1, since u1(0) = 3 ≥ τ1(0) = 2, rules (a3, a2) → a2
and (a2, a2) → a2 can be applied. Nevertheless, rule (a3, a2) → a2
(with u = 3, τ = p = 2) will be applied in neuron σ1 according
to maximum spike consumption strategy, and then it sends two
spikes to neurons σ2 and σ3. Thus, u1(1) = 0, τ1(1) = 2, u2(1) =

2, τ2(1) = 2, u3(1) = 2, τ3(1) = 2, uout (1) = 0, τout (1) = 1.
Therefore, C1 = (0, 2, 2, 2, 2, 2, 0, 1).

At time 2, since u3(1) = 2 ≥ τ3(1) = 2, rule (a, a) → a
and forgetting rule (a2, λ) → λ can be enabled, but, according to
maximum spike consumption strategy, rule (a2, λ) → λ will be
applied in neuron σ3, consuming only two spikes in feeding input
unit of that neuron. With respect to neuron σ2, rules (a2, a2) → a2
(with u = τ = p = 2) and (a2, a) → a (with u′

= 2, τ ′
= p′

= 1)
can be applied because u2(1) ≥ τ2(1), u2(1) ≥ u, τ2(1) ≥ τ , u2(1) ≥

u′, τ2(1) ≥ τ ′. Thus, one of them is selected non-deterministically,
and two cases are considered as follows:

(1) Case 1: rule (a2, a2) → a2 is applied in neuron σ2 at time 2.
In this case, neuron σ2 consumes two spikes in each of
its two data units and sends two spikes to neuron out .
Then, we have uout (2) = 2, τout (2) = 1. Thus, C2 =

(0, 2, 0, 2, 0, 2, 2, 1). At time 3, since uout (2) ≥ τout (2),
rule (a, a) → a is enable and sends one spike into the
environment. Then, we have uout (3) = 1, τout (3) = 1, and
C3 = (0, 2, 0, 2, 0, 2, 1, 1). At time 4, since uout (3) ≥ τout (3),
rule (a, a) → a is applied again and sends the second spike
into the environment. Then, we have uout (4) = 0, τout (4) =

1 andno rule is applicable to anyneuron. Thus, the generated
spike train is ‘‘0011’’, and C4 = (0, 2, 0, 2, 0, 2, 0, 1).

(2) Case 2: rule (a2, a) → a is applied in neuron σ2 at time 2.
In this case, neuron σ2 consumes two spikes in its feed-
ing input unit and transmits one spike into neuron out .
Then, we have uout (2) = 1, τout (2) = 1. Thus, C2 =

(0, 2, 0, 2, 0, 2, 1, 1). At time3,with one spike in neuron out ,
rule (a, a) → a is applied to transmit one spike into the envi-
ronment. Then, we have uout (3) = 0, τout (3) = 1 and no rule
is applicable to any neuron. Thus, C3 = (0, 2, 0, 2, 0, 2, 0, 1).
The system halts, and the generated spike train is ‘‘001’’.

3. Turing universality of DTNP systems as number-generating/
accepting device

In this section, computational completeness of DTNP systems
as number accepting/generating devices is discussed. The univer-
sality of DTNP systems is proven by simulating register machines.
Specifically, we showed that DTNP systems can accept/generate all
recursively enumerable sets of numbers, which is usually denoted
by NRE.

Let us recall that a register machine can be denoted by M =

(m,H, l0, lh, I), in which m denotes the number of registers; H
denotes the set of instruction labels; I denotes the set of instruc-
tions bijectively labeled by elements of H; l0 ∈ H indicates the
starting label, while lh ∈ H is the halting label and corresponds
to instruction HALT . There are instructions of the following three
forms in I:

(1) li : (ADD(r), lj, lk), li ∈ H \ {lh}, lj, lk ∈ H , 1 ≤ r ≤ m (add 1
to register r and then go non-deterministically to one of the
instructions with labels lj or lk).

(2) li : (SUB(r), lj, lk), li ∈ H \ {lh}, lj, lk ∈ H , 1 ≤ r ≤ m (if
register r is non-zero, then decrease the value of register r
by one and go to the instruction with label lj; otherwise go
to the instruction with label lk).

(3) lh : HALT (halting instruction).

It is worth pointing out that the following convention will be
considered throughout this paper: when comparing or evaluating
the computation power of both number accepting/generating de-
vices, the number 0 is ignored; this is associated with a frequently
made convention in automata and grammars theory, in which the
empty string λ is omitted when evaluating two language accept-
ing/generating devices.

3.1. Turing universality of systems working in the generating mode

For the generating mode, a register machine can compute a
number n: Initially, all registers are set to be empty; starting
from the instruction l0, the register machine continuously applies
instructions in I; if it arrives the halting instruction, then the value
contained in the first register is called as the number computed by
register machines. It has been proven that the family NRE can be
computed by register machines. We first give the universal result
of DTNP systems as number generating device as follows.

Theorem 1. N2DTNP2
∗

= NRE

Proof. It is obvious that N2DTNP2
∗

⊆ NRE due to the Turing-
Church thesis and the universality of Turingmachines. So it suffices
to prove NRE ⊆ N2DTNP2

∗
and we will use the characterization

of the family NRE by means of register machines working in the
generative mode. For this purpose, let M = (m,H, l0, lh, I) be a
register machine. In general, suppose that all registers except for
register 1 are empty, and that during the computation register 1 is
never decreased.

To simulate the register machine M , a DTNP system Π is con-
structed, including the modules of three types: an FINmodule that
provides the computation result, shown in Fig. 4, and SUB and ADD
modules that are applied to simulate the SUB andADD instructions,
shown in Fig. 2 and Fig. 3 respectively.

Assume that each register r of M corresponds to a neuron σr in
Π that has no rule. The number contained in register r is encoded:
if register r contains the number n ≥ 0, then neuron σr stores 2n
spikes in its feeding input unit. Each instruction l corresponds to
a neuron σl, and in modules we design some auxiliary neurons.
Initially, neuron σl0 contains two spikes in its feeding input unit,
and all auxiliary neurons have no spike. Assume that each neuron
contains a certain initial threshold: (i) each neuron that corre-
sponds to an instruction has initial threshold a2; (ii) each register
contains initial threshold a3; (iii) initial thresholds of other neurons
are set to a, a2 or a3. Since neuron σli has two spikes, the system
Π begins to simulate the instruction li : (OP(r), lj, lk) (OP denotes
operation ADD or operation SUB): starting from the activated neu-
ron σli , the simulation deals with neuron σr as indicated by OP,
and then two spikes are introduced into one of neurons σlj and
σlk . Once neuron σlh is activated and the FIN module is executed,
this indicates that the simulation of M is completed. During the
computation, output neuronσout applies its rules to send the spikes
into the environment twice at times t1 and t2 respectively, and the
interval t2 − t1 that is associated with the number contained in
register 1, is considered as the computation result. Note that if any
rule (au, aτ ) → ap in any module satisfies that τ = p, then the
number of spikes in dynamic threshold units remains unchanged
(as already explained in Section 2).

To prove that the registermachineM can be correctly simulated
by the system Π , we will illustrate how do SUB and ADD modules
simulate the SUB and ADD instructions respectively, and how the
computation result is exported by the FIN module.

(1) Module ADD (shown in Fig. 2) - simulating an ADD instruc-
tion li : (ADD(r), lj, lk).

The DTNP system Π begins from simulation of instruction l0,
which is an ADD instruction. Suppose that at time t , an ADD



Fig. 2. Module ADD (simulating li : (ADD(r), lj, lk)).

instruction li : (ADD(r), lj, lk) is executed in M . Let us see how
that instruction is simulated by the DTNP system constructed.
Assume that Ct = (n1, τ1, n2, τ2, . . . , n8, τ8) is the configura-
tion of module ADD at time t , which is associated to eight neu-
rons σli , σc1 , σc2 , σc3 , σc4 , σc5 , σlj and σlk , respectively. Thus, Ct =

(2, 2, 0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 2, 0, 2). Since neuron σli has re-
ceived two spikes, its feeding input unit has two spikes, which is
equal to the number of spikes in dynamic threshold unit. Therefore,
rule (a2, a2) → a2 is enabled and then two spikes are transmitted
to neurons σci,1 , σci,2 and σr . The fact that neuron σr receives
two spikes means that register r is increased by 1. Thus, Ct+1 =

(0, 2, 2, 2, 2, 2, 0, 3, 0, 2, 0, 2, 0, 2, 0, 2).
At time t + 1, with two spikes in neurons σci,1 and σci,2 , the

rule (a2, a2) → a2 is applied and each of them sends two spikes
to neuron σci,3 . Thus, neuron σci,3 receives four spikes. Therefore,
Ct+2 = (0, 2, 0, 2, 0, 2, 4, 3, 0, 2, 0, 2, 0, 2, 0, 2). At time t + 2,
with four spikes in neurons σci,3 , two rules (a4, a2) → a2 and
(a4, a3) → a3 can be applied to neuronσci,3 . Since the two ruleswill
consume the same number of spikes in feeding input unit, one of
them is selected non-deterministically. Two cases are considered
as follows:

(i) At time t + 2, if rule (a4, a3) → a3 is applied, neuron σci,3
sends three spikes to neurons σci,4 and σci,5 , respectively.
Thus, Ct+3 = (0, 2, 0, 2, 0, 2, 0, 3, 3, 2, 3, 2, 0, 2, 0, 2). At
time t + 3, with three spikes in σci,4 , rule (a3, a2) → a2 is
applied, then two spikes are sent to neuron σlj . Thus, neuron
σlj receives two spikes, meaning that system Π begins to
simulate the instruction lj ofM . At the same time, since rule
(a3, a) → a in neuron σci,5 can be applied, and it transmits
one spike to neuron σlk . But the spike in neuron σlk will
be removed by rule (a, λ) → λ in neuron σlk . Therefore,
Ct+4 = (0, 2, 0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 2, 2, 0, 2).

(ii) At time t + 2, if rule (a4, a2) → a2 is applied, neuron σci,3
transmits two spikes to neurons σci,4 and σci,5 , respectively.
Thus, Ct+3 = (0, 2, 0, 2, 0, 2, 0, 3, 2, 2, 2, 2, 0, 2, 0, 2). At
time t + 3, with two spikes in σci,4 , rule (a2, a) → a is
enabled and one spike is transmitted to neuron σlj , but the
spike will be consumed by rule (a, λ) → λ in neuron
σlj . At the same time t + 3, with two spikes in σci,5 , rule
(a2, a2) → a2 is applied, then two spikes are transmitted to
neuron σlk , and with two spikes in neuron σlk , the system Π

Fig. 3. Module SUB (simulating li : (SUB(r), lj, lk)).

begins to simulate the instruction lk ofM . Therefore, Ct+4 =

(0, 2, 0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 2, 2, 2).

Consequently, ADD instruction can correctly simulated by ADD
module: fromneuronσli receiving two spikes, the number of spikes
in neuron σr is increased by two, and one of neurons σlj and σlk is
selected non-deterministically.

(2) Module SUB (shown in Fig. 3) - simulating a SUB instruction
li : (SUB(r), lj, lk).

Assume that in the register machine M a SUB instruction li :

(SUB(r), lj, lk) is executed at time t . Let us see how that instruction
is simulated by the DTPN system constructed. Assume that C ′

t =

(n1, τ1, n2, τ2, . . . , n9, τ9) is the configuration of module SUB at
time t , which is associated to eight neurons σli , σc1 , σc2 , σc3 , σr ,

σc4 , σc5 , σlj and σlk , respectively. Thus, C
′
t = (2, 2, 0, 1, 0, 1, 0, 1,

2n, 3, 0, 2, 0, 2, 0, 2, 0, 2). Since neuron σli receives two spikes at
time t , rule (a2, a) → a is enabled, and it transmits one spike to
neurons σci,1 , σci,2 and σci,3 . Therefore, C

′

t+1 = (0, 2, 1, 1, 1, 1, 1, 1,
2n, 3, 0, 2, 0, 2, 0, 2, 0, 2). At time t + 1, each of neurons σci,1 , σci,2
and σci,3 transmits one spike to neuron σr by rule (a, a) → a.
Neuron σr receives three spikes. Thus, C ′

t+2 = (0, 2, 0, 1, 0, 1, 0, 1,
2n + 3, 3, 0, 2, 0, 2, 0, 2, 0, 2). According to the number of spikes
in σr , two cases are considered as follows:

(i) If at time t the contents of register r in M is n > 0 then at
time t + 2, neuron σr contains has 2n + 3 spikes (in this
case, 2n + 3 ≥ 5). Then, rule (a5, a3) → a3 will be applied
in neuron σr , so three spikes are sent to neurons σci,4 and
σci,5 respectively. Thus, C ′

t+3 = (0, 2, 0, 1, 0, 1, 0, 1, 2n −

2, 3, 3, 2, 3, 2, 0, 2, 0, 2). At time t + 3, with three spikes in
σci,4 , rule (a3, a2) → a2 is applied, and then two spikes are
transmitted to neuron σlj . Therefore, neuron σlj receives two
spikes, meaning that the system Π begins to simulate the
instruction lj ofM . At the same time, since rule (a3, a) → a in
neuron σci,5 can be applied, it transmits one spike to neuron
σlk . However, this spikewill be consumed by rule (a, λ) → λ

at time t + 4. Therefore, C ′

t+4 = (0, 2, 0, 1, 0, 1, 0, 1, 2n −

2, 3, 0, 2, 0, 2, 2, 2, 0, 2).
(ii) If at time t the contents of register r in M is 0 then at

time t + 2, neuron σr contains has 3 spikes. Then only rule
(a3, a2) → a2 is applicable in neuron σr . When applying
such a rule, two spikes are transmitted to neurons σci,4 and



Fig. 4. Module FIN (ending the computation).

σci,5 , respectively. Thus, C
′

t+3 = (0, 2, 0, 1, 0, 1, 0, 1, 0, 3,
2, 2, 2, 2, 0, 2, 0, 2). At time t + 3, with two spikes in σci,4 ,
rule (a2, a) → a is enabled and one spike is transmit-
ted to neuron σlj , but the spike will be removed by rule
(a, λ) → λ in neuron σlj , at the next step. Moreover,
with two spikes in σci,5 , rule (a2, a2) → a2 is applied,
and then two spikes are sent to neuron σlk . Thus, C

′

t+4 =

(0, 2, 0, 1, 0, 1, 0, 1, 0, 3, 0, 2, 0, 2, 0, 2, 2, 2). Moreover,
neuron σlk receives two spikes. Since neuron σlk has two
spikes, the system Π begins to simulate the instruction lk.

Consequently, SUB instruction can be correctly simulated by
the SUB module: the system begins with two spikes in neuron σli ,
and ends with σlj receiving two spikes (if the number contained in
register r is greater than 0) or with σlk receiving two spikes (if the
number contained in register r is 0).

(3) Module FIN (shown in Fig. 4) - outputting the result of
computation.

Let C ′′
t = (n1, τ1, n2, τ2, n3, τ3) be the configuration of module

FIN at time t , which is associated to three neurons σli , σ1 and σout ,
respectively. Suppose that at time t the computation in M halts
and the result is n > 0, i.e., the halting instruction lh arrives and
register 1 has natural number n. Then, at that time t , neuron σlh
receives two spikes and neuron σ1 contains 2n spikes. Thus, C ′′

t =

(2, 2, 2n, 1, 0, 1). Since neuron σlh has two spikes, rule (a2, a) → a
is enabled and one spike is transmitted to neurons σ1 and σout .
Simultaneously, in neuron σ1 rule (a2, λ) → λ is applied. Thus,
at configuration C ′′

t+1, neuron σ1 contains 2n−1 spikes and neuron
σout contains one spike, i.e., C ′′

t+1 = (0, 2, 2n − 1, 1, 1, 1).
Now, two cases are considered. If n = 1 then in neuron σ1 rule

(a, a) → a is applied and in neuron σout rule (a, a) → a is applied.
Thus, C ′′

t+2 = (0, 2, 0, 1, 1, 1). Consequently, at configuration C ′′

t+2
neuron σ1 contains no spikes, neuron σout contains one spike and
one spike has been transmitted to the environment. Then in neuron
σ1 no rule is applied and in neuron σout rule (a, a) → a is applied.
C ′′

t+3 = (0, 2, 0, 1, 0, 1). Therefore, at configuration C ′′

t+3 neurons
σ1 and σout contain no spikes, and one spike has been transmitted
to the environment. Hence, in the case n = 1 the DTNP system
halts and the result is (t + 3) − (t + 2) = 1.

If n > 1 then in neuron σ1 rule (a2, λ) → λ is applied and
in neuron σout rule (a, a) → a is applied. C ′′

t+2 = (0, 2, 2n −

2, 1, 1, 1). Consequently, at configuration C ′′

t+2 neuron σ1 contains
2n − 3 spikes, neuron σout contains no spike and one spike has
been transmitted to the environment. Then, in neuron σ1 rule
(a2, λ) → λ is applied and in neuron σout no rule is applied.
C ′′

t+3 = (0, 2, 2n − 3, 1, 1, 1). Therefore, at configuration C ′′

t+3
neuron σ1 contains 2n−5 spikes and neuron σout contains no spike.
Repeating the reasoning, at configuration C ′′

t+n = (0, 2, 1, 1, 0, 1)
neuron σ1 contains one spike and neuron σout contains no spike,
at configuration C ′′

t+n+1 = (0, 2, 0, 1, 1, 1) neuron σ1 contains
no spike and neuron σout contains one spike. At configuration
C ′′

t+n+2 = (0, 2, 0, 1, 0, 1) neurons σ1 and σout contain no spikes,
one spike has been transmitted to the environment, and the system

Fig. 5. The INPUT Module of Π ′ .

halts. Hence, in the case n > 1, the result of the system is n =

(t + n + 2) − (t + 2), which is exactly the number contained in
register 1 while the computation ofM halts.

Based on the above analysis, it can be found that the register
machine as number generating device is correctly simulated by
DTNP system, in which each neuron has at most two rules. There-
fore, the theorem holds. □

3.2. Turing universality of systems working in the accepting mode

In the following, we prove the universal result of DTNP systems
as number accepting device.

Theorem 2. NaccDTNP2
∗

= NRE

Proof. A DTNP system Π ′ is constructed to simulate a deter-
ministic register machine that works in accepting mode, M =

(m,H, l0, lh, I). The proof of Theorem 1 is modified to illustrate the
following proof. The DTNP system Π ′ contains an SUB module, a
deterministic ADDmodule and an INPUTmodule. Initially, no spike
is contained in any of the auxiliary neurons. For initial thresholds
in neurons, the same setting in the proof of Theorem 1 is used.

The INPUT module is shown in Fig. 5. Neuron σin is used to read
spike train 10n−11 from the environment. Note that the interval
between the two spikes in the spike train, n = (n+1)−1, indicates
the number accepted by the system.

Suppose that at time t , the first spike is imported into neuron
σin from the environment. With one spike in neuron σin, one spike
is transmitted into neurons σc1 , σc2 and σc3 by rule (a, a) → a. At
time t + 1, neurons σc2 and σc3 each transmits one spike to neuron
σ1. Thus, neuron σ1 receives two spikes. Note that with only one
spike in neuron σc1 , rule (a2, a2) → a2 cannot be applied.

From time t + 1, until the second spike entering neurons σin,
one spike is transmitted into neuron σ1 by neurons σc2 and σc3
respectively. For neuron σ1, since 2n spikes are received in total
from time t + 2 to time t + n + 1, this indicates that the number
contained in register 1 is n.

At time t + n+ 1, σin receives the second spike, and then it fires
to transmit one spike to neurons σc1 , neurons σc2 and σc3 . At time
t+n+2, since neuronσc1 receives one spike, it has two spikes, thus,
rule (a2, a2) → a2 is applied to transmits two spikes to neuron σl0 .
Since neuron σl0 has two spikes, the system will be activated to
simulate the instruction l0.

Since the register machine is used as number accepting device,
the deterministic ADD instructions, li : (ADD(r), lj), are considered,
shown in Fig. 6. With two spikes in neuron σli , rule (a2, a2) →

a2 is enabled to transmit two spikes to neurons σlj and σr . Since
neuron σlj receives two spikes, the system begins to simulate the
instruction lj.



Fig. 6. Module ADD of Π ′ (simulating li : (ADD(r), lj)).

Fig. 7. A universal register machine for computing functions [8].

Weusemodule SUB in Fig. 3 to simulate the SUB instructions li :

(SUB(r), lj, lk)), which has been described in the proof of Theorem1.
Module FIN is omitted, but neuron σlh is remained in the DTSN
system. When neuron σlh receives two spikes, this indicates that
register machineM arrives the halting instruction lh and halts.

According to the above analysis, it can be found that the reg-
ister machine as number accepting device is correctly simulated
by DTNP system, in which each neuron has at most two rules.
Therefore, the theorem holds. □

4. Turing universality of DTNP systems for computing func-
tions

In this section, universality of DTNP systems for computing
functions will be discussed. A register machine used to compute a
function f : Nk

→ N , M = (m,H, l0, lh, I), is described as follows.
Initially, let all registers be empty, and k arguments in the first k
registers are introduced into the registermachine. The registerma-
chine starts from instruction l0, and then it runs continuously until
the halting instruction lh arrives. As a result, the number contained
in another special register rt is considered to be computation result,
i.e., value of function f . A fixed admissible enumeration of the
unary partial recursive functions can be denoted by (ϕ0, ϕ1, . . .).
Generally, a registermachine is called universal if only if a recursive
function g exists so that ϕx(y) = Mu(g(x), y) for ∀ x, y ∈ N .

Fig. 7 gives a register machine Mu = (9,H, l0, lh, I) consist-
ing of 9 registers (labeled from 0 to 8), a HALT instruction and
25 instructions (14 SUB and 10 ADD instructions) [8]. Note that
register machine Mu is a modified version of the register ma-
chine provided in [46], where it adds a new register 8, while
original halting instruction is replaced by three instructions: l22 :

(SUB(0), l23, lh); l23 : (ADD(8), l22); lh : HALT . In [46], the original

Fig. 8. Module INPUT.

register machine has been proven to be universal for comput-
ing functions. Moreover, the modified register machine has been
widely used to investigate the universality of SNP systems and
variants for computing functions. In this work, register machine
Mu will be simulated by constructing a DTNP system.

Theorem 3. There is an universal DTNP system containing 109
neurons as function computing devices.

Proof. To simulate universal register machine Mu, a DTNP system
Π ′′ is constructed, which consists of an OUTPUTmodule, an INPUT
module, and ADD and SUBmodules. The OUTPUTmodule is used to
export final result, and a spike train is read from the environment
by the INPUT module. The ADD instructions of Mu is simulated by
the ADD modules, while the SUB instructions is simulated by the
SUB modules. For each register r in Mu, there is a neuron σr , and
we assume that neuron σr has 2n spikes in its feeding input unit if
register r contains the number n ≥ 0. In addition, each instruction
li corresponds to a neuron σli . When neuron σli receives two spikes,
thismeans that the instruction li will be simulated. If neuronσlh has
two spikes, this indicates that Π ′′ completes the simulation ofMu.
Initially, all neurons are assumed to be empty.

The INPUT module is provided in Fig. 8, which is used to read
the spike train 10g(x)10y1 from the environment, where neuron σ1
receives 2g(x) spikes and 2y spikes are stored in neuron σ2.

The INPUT module can be described as follows. At the begin-
ning, the first spike is imported into neuron σin from the envi-
ronment. Neuron σin uses rule (a, a) → a to send one spike into
neurons σc1 , σc2 and σc3 . Since neurons σc1 and σc2 have one spike
respectively, rule (a, a) → a is enabled in the two neurons. At each
step from this time until the second spike is read into neurons σc1
and σc2 , the two neurons send one spike to each other, and they
together send two spikes each to neurons σc4 and σc5 . At each step,
neuron σc4 uses the rule (a

2, a2) → a2 to send two spikes to neuron
σ1; however, two spikes contained in σc5 will be removed by rule
(a2, λ) → λ. Note that neuron σin receives the second spike after
g(x) steps. Therefore, g(x) spikes are placed in σ1.

When the second spike enters both neurons σc1 and σc2 , they
have two spikes in their feeding input units. Thus, rule (a2, a2) →

a2 in neurons σc1 and σc2 can be applied respectively. As the
result, neurons σc1 and σc2 send two spikes to each other, and they
together send four spikes to neurons σc4 and σc5 . In neuron σc4 , the
received four spikes are removed by rule (a4, λ) → λ. At each step,



Fig. 9. Module OUPUT.

Table 1
The comparison of different computing models in the term of small number of
computing units.
Computing models The number of neurons

DTPN systems 109
SNQ P systems with one type of spike [15] 181
SNQ P systems with two types of spikes [14] 49
SNP systems [36] 84
Recurrent neural networks [47] 886

neuron σc5 uses rule (a4, a2) → a2 to send two spikes to neuron
σ2. Therefore, neuron σ2 had 2y spikes once neurons σc1 and σc2
receive the third spike.

Note that during neuronσc3 receives the first two spikes, no rule
in the neuron can be enabled. However, once it receives the third
spike, neuronσc3 fires by rule (a

3, a2) → a2 and sends two spikes to
neuron σl0 . Since neuron σl0 contains two spikes, the systembegins
to simulate instruction l0 ofM ′

u.
From Fig. 7, it can be found that all ADD instructions are with

the form li : (ADD(r), lj). Therefore, a deterministic ADD module,
shown in Fig. 6, is used to simulate the ADD instruction. For the
ADDmodule, its workmechanism has been illustrated in the proof
of Theorem 2.

We use the SUBmodule in Fig. 3 to simulate the SUB instruction
li : (SUB(r), lj, lk). Theworkmechanismof the SUBmodule has been
illustrated in the proof of Theorem 1.

Suppose that the computation in Mu halts now, meaning that
instruction lh reaches. The result of the computation is stored in
register 8, and during the computation the result is never decre-
mented. The OUTPUT module is used to export the computation
result, as shown in Fig. 9.

Suppose that at step t neuron σlh receives two spikes, and
neuron σ8 has 2n spikes, where n > 0. Rule (a2, a) → a in neuron
σlh is enabled, and then it transmits one spike to neuron σ8. Since
one spike is transmitted to neuron σ8 at step t + 1, the number
of spikes stored in its feeding input unit becomes odd, hence one
spike is transmitted to the environment via rule (a2, a) → a.
From step t + 1 to step t + n + 1, rule (a2, a) → a is constantly
applied to send one spike to the environment. Since only one spike
is remained in neuron σ8 at step t + n + 2, the spike is removed
by applying rule (a, λ) → λ. As a result, n spikes are emitted to the
environment, which is exactly the number contained in register 8
ofMu when the system halts.

For DTNP system Π ′′, we use a total of 109 neurons, including
(i) 5 neurons for the INPUT module, (ii) 70 neurons for 14 SUB
instructions, (iii) 25 neurons for 25 instructions, and (iv) 9 neurons
for 9 registers. According to above analysis to the modules in
system Π ′′, it is obviously indicated that system Π ′′ can correctly
simulate register machineMu. □

Theorem 3 gives a small number of computing units (i.e., neu-
rons) for DTNP systems as function computing devices to achieve
universality. To further evaluate computational power of DTNP
systems, Table 1 provides the comparison result of the proposed
variant with other computing models in the term of small number
of computing units. It can be observed from Table 1 that recur-
rent neural networks [47] and SNQ P systems with one type of
spike [15] need 886 and 161 respectively to achieve Turing univer-
sality for computing function. However, DTPN systems need fewer
neurons to achieve Turing universality for computing function.
Although SNQ P systems with two types of spikes [14] need 49
neurons that are less than that of DTNP systems, they have two
types of spikes. However, DTNP systems have only one type of
spike. SNP systems [36] need only 84 neurons to achieve Turing
universality for computing function, however, DTNP systems need
more neurons. The comparison indicates that dynamic threshold
mechanism has an influence on the computing capability of DTNP
systems.

5. Conclusions

In this paper, inspired from intersecting cortical model (ICM), a
new kind of neural-like P systems, dynamic threshold neural P sys-
tems (in short, DTNP systems) was presented. DTNP systems have
a directed graph structure and are a kind of parallel computing
systems. Computational completeness ofDTNP systemsworking as
the number generating/accepting devices was established by sim-
ulating register machines. Moreover, we constructed an universal
DTNP system for computing Turing computable functions.

It is surprising that SNP systems have been proved to be compu-
tationally universal despite its inspiration from a simple model of
spiking neuron. Unfortunately, successful examples of direct appli-
cation of SNP systems to solve real-world problems are rarely ad-
dressed. From the semantics of SNP systems, regular-expression-
type firing mechanism maybe restrict their application in real-
world problems. Usually, some nonnative mechanisms need to be
introduced in SNP systems in order to overcome the limitation, for
example, fuzzy logic [22–28].

Mainmotivation behind thiswork is to propose a newvariant of
neural-like P systems based on dynamic threshold neurons that are
inspired from the intersecting cortical model. However, this paper
mainly focuses on the construction of the variant and establishing
its Turing universality results as the number generating/accepting
and function computing devices. Our a further work is considered
as follows. It iswell-known that the intersecting corticalmodelwas
used to develop pulse coupled neural networks (PCNNs), which
have been successfully applied to process many image processing
problems. Note that DTNP systems also are inspired from inter-
secting cortical model, so they are analogous to PCNNs, however,
they are different from PCNNs in somemechanism aspects. Maybe,
DTNP systems become an alternative model for solving these real-
world problems.

As a new line of research, we will propose to study the com-
putational efficiency of DTNP systems by introducing concepts of
computational complexity theory. Additionally, other interesting
questions concerning to DTNP systems can be further investigated,
for instance, the universality as language generating devices, asyn-
chronous and sequential working modes, and so on.

Acknowledgments

The authors thank the anonymous reviewers for providing very
insightful and constructive suggestions, which have greatly help
improve the presentation of this paper.

This work was partially supported by the National Natural
Science Foundation of China (No. 61472328), Research Fund of



Table A.2
Acronyms and notations used in this paper.
PCNN Pulse coupled neural networks.
ICM Intersecting cortical model.
SNP systems Spiking neural P systems.
DTNP systems Dynamic threshold neural P systems.
NRE All recursively enumerable sets of numbers.
Π A DTNP system.
N2(Π ) The set of numbers computed by Π .
N2DTNPn

m The families of all sets computed by DTNP systems having
at mostm neurons and at most n rules in each neuron.

Nacc (Π ) The set of numbers accepted by Π .
NaccDTNPn

m The families of all sets accepted by DTNP systems having
at mostm neurons and at most n rules in each neuron.

O The singleton alphabet.
a The spike.
σi The ith neuron in a DTNP system or a module.
ui The number of spikes as feeding input via dendrites in σi .
τi The (dynamic) threshold in neuron σi .
Ri The finite set of firing rules in neuron σi .
Ei The firing condition.
λ The empty object.
syn The directed graph structure of synapses between neurons.
in The input neuron.
out The output neuron.
C0 Initial configuration.
Ct The configuration at step t .
ST (Π ) The collection of all spike trains of Π .
M ,Mu A register machine.
m The number of registers.
r A register.
H The set of instruction labels.
I The set of instructions bijectively labeled by elements of H .
l0 The starting label.
lh The halting label.
li The ith instruction.
HALT The halting instruction.
ADD Add instruction or module.
SUB Subtraction instruction or module.
FIN The output module.
INPUT The input module.

Sichuan Science and Technology Project (No. 2018JY0083), Chun-
hui Project Foundation of the Education Department of China (Nos.
Z2016143 and Z2016148), and Research Foundation of the Educa-
tion Department of Sichuan province (No. 17TD0034), China.

Appendix. Nomenclature

The acronyms and notations used in this paper are provided in
Table A.2.

References

[1] M. Ionescu, Gh. Păun, T. Yokomori, Spiking neural P systems, Fund. Inform. 71
(2006) 279–308.

[2] Gh. Păun, Computingwithmembranes, J. Comput. Syst. Sci. 61 (1) (2000) 108–
143.

[3] Gh. Pǎun, G. Rozenberg, A. Salomaa, The Oxford Handbook of Membrance
Computing, Oxford University Press, New York, 2010.

[4] H. Peng, J. Yang, J. Wang, T. Wang, Z. Sun, X. Song, X. Luo, X. Huang, Spiking
neural P systems with multiple channels, Neural Netw. 95 (2017) 66–71.

[5] L. Pan, Gh. Păun, Spiking neural P systems with anti-spikes, Int. J. Comput.
Commun. Control IV (3) (2009) 273–282.

[6] Gh. Păun, Spiking neural P systems with astrocyte-like control, J. UCS 13 (11)
(2007) 1707–1721.

[7] L. Pan, J. Wang, H.J. Hoogeboom, Spiking neural P systems with astrocytes,
Neural Comput. 24 (3) (2012) 805–825.

[8] T. Song, L. Pan, Gh. Păun, Spiking neural P systems with rules on synapses,
Theoret. Comput. Sci. 529 (2014) 82–95.

[9] T. Song, L. Pan, Spiking neural P systems with rules on synapses working in
maximum spiking strategy, IEEE Transaction onNanobioscience 14 (4) (2015)
465–477.

[10] H. Peng, R. Chen, J. Wang, X. Song, T. Wang, F. Yang, Z. Sun, Competitive
Spiking Neural P Systems with Rules on Synapses, IEEE Trans. NanoBiosci. 16
(8) (2018) 888–895.

[11] J. Wang, H.J. Hoogeboom, L. Pan, Gh. Păun, M.J. Pérez-Jiménez, Spiking neural
P systems with weights, Neural Comput. 22 (2010) 2615–2646.

[12] X. Zeng, X. Zhang, T. Song, L. Pan, Spiking neural P systems with thresholds,
Neural Comput. 26 (7) (2014) 1340–1361.

[13] X. Song, J. Wang, H. Peng, G. Ning, Z. Sun, T. Wang, F. Yang, Spiking neural P
systems with multiple channels and anti-spikes, Biosystems 169–170 (2018)
13–19.

[14] L. Pan, Gh. Păun, G. Zhang, F. Neri, Spiking neural p systems with communi-
cation on request, Int. J. Neural Syst. 28 (8) (2017) 1–13, paper id: 1750042.

[15] T. Wu, F. Bîlbîe, A. Pǎun, L. Pan, F. Neri, Simplified and yet Turing uni-
versal spiking neural P systems with communication on request, Int. J.
Neural Syst. (2018). paper id: 1850013. Available at https://doi.org/101142/
S0129065718500132.

[16] T. Wu, A. Păun, Z. Zhang, L. Pan, Spiking neural p systems with polarizations,
IEEE Trans. Neural Netw. Learn. Syst. 28 (8) (2018) 3349–3360.

[17] O.H. Ibarra, A. Păun, A. Rodríguez-Pat́on, Sequential SNP systems based on
min/max spike number, Theoret. Comput. Sci. 410 (30) (2009) 2982–2991.

[18] X. Zhang, X. Zeng, B. Luo, L. Pan, On some classes of sequential spiking neural
P systems, Neural Comput. 26 (5) (2014) 974–997.

[19] H.M. Chen, T.-O. Ishdorj, Gh. Păun, Computing along the axon, Progress Natual
Sci. 17 (4) (2007) 417–423.

[20] M. Cavaliere, O.H. Ibarra, Gh. Păun, O. Egecioglu, M. Ionescu, S. Woodworth,
Asynchronous spiking neural P systems, Theoret. Comput. Sci. 410 (24) (2009)
2352–2364.

[21] T. Song, L. Pan, Gh. Păun, Asynchronous spiking neural P systems with local
synchronization, Inform. Sci. 219 (2012) 197–207.

[22] H. Peng, J. Wang, M.J. Pérez-Jiménez, H. Wang, J. Shao, T. Wang, Fuzzy rea-
soning spiking neural P system for fault diagnosis, Inform. Sci. 23 (20) (2013)
106–116.

[23] J. Wang, P. Shi, H. Peng, M.J. Pérez-Jiménez, T. Wang, Weighted fuzzy spiking
neural P system, IEEE Trans. Fuzzy Syst. 21 (2) (2013) 209–220.

[24] J. Wang, H. Peng, Adaptive fuzzy spiking neural P systems for fuzzy inference
and learning, Int. J. Comput. Math. 90 (4) (2013) 857–868.

[25] T. Wang, G.X. Zhang, J.B. Zhao, Z.Y. He, J. Wang, M.J. Pérez-Jiménez, Fault
diagnosis of electric power systems based on fuzzy reasoning spiking neural
P systems, IEEE Trans. Power Syst. 30 (3) (2015) 1182–1194.

[26] J.Wang, H. Peng,M. Tu,M.J. Pérez-Jiménez, A fault diagnosismethod of power
systems based on an improved adaptive fuzzy spiking neural P systems and
PSO algorithms, Chin. J. Electron. 25 (2) (2016) 320–327.

[27] H. Peng, J.Wang, P. Shi,M.J. Pérez-Jiménez, A. Riscos-Núñez, Fault diagnosis of
power systems using fuzzy tissue-like P systems, Integr. Comput.-Aided Eng.
24 (2017) 401–411.

[28] H. Peng, J. Wang, J. Ming, P. Shi, M.J. Pérez-Jiménez, W. Yu, C. Tao, Fault di-
agnosis of power systems using intuitionistic fuzzy spiking neural P systems,
IEEE Trans. Smart Grid 9 (5) (2018) 4777–4784.

[29] D. Díaz-Pernil, F. Peña-Cantillana, M.A. Gutiérrez-Naranjo, A parallel algo-
rithm for skeletonizing images by using spiking neural P systems, Neurocom-
puting 115 (2013) 81–91.

[30] H. Peng, J.Wang,M.J. Pérez-Jiménez, A. Riscos-Núñez, An unsupervised learn-
ing algorithm for membrane computing, Inform. Sci. 304 (2015) 80–91.

[31] H. Peng, J. Wang, P. Shi, M.J. Pérez-Jiménez, A. Riscos-Núñez, An extended
membrane systemwith activemembrane to solve automatic fuzzy clustering
problems, Int. J. Neural Syst. 26 (3) (2016) 1–17, Article No. 1650004.

[32] H. Peng, P. Shi, J. Wang, A. Riscos-Núñez, M.J. Pérez-Jiménez, Multiobjective
fuzzy clustering approach based on tissue-like membrane systems, Knowl.-
Based Syst. 125 (2017) 74–82.

[33] G. Zhang, H. Rong, F. Neri, M.J. Pérez-Jiménez, An optimization spiking neural
P system for approximately solving combinatorial optimization problems, Int.
J. Neural Syst. 24 (5) (2014) 1–16, Article No. 1440006.

[34] H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, On string
languages generated by spiking neural P systems, Fund. Inform. 75 (1) (2007)
141–162.

[35] X. Zhang, X. Zeng, L. Pan, On string language generated by spiking neural P
systems with exhaustive use of rules, Nat. Comput. 90 (1) (2008) 535–549.

[36] A. Păun, Gh. Păun, Small universal spiking neural P systems, BioSystems 90
(1) (2007) 48–60.

[37] A. Păun, M. Sidoroff, Sequentially induced by spike number in SNP systems:
small universalmachines, in:Membrane Computing, Springer, 2012, pp. 333–
345.

[38] L. Pan, Gh. Păun, M.J. Pérez-Jiménez, Spiking neural P systems with neuron
division and budding, Sci. China Inf. Sci. 54 (8) (2011) 1596–1607.

[39] A. Leporati, G. Mauri, C. Zandron, Gh. Păun, M.J. Pérez-Jiménez, Uniform
solutions to SAT and Subset Sum by spiking neural P systems, Nat. Comput. 8
(4) (2009) 681–702.

[40] R. Eckhorn, H.J. Reitboeck, M. Arndt, et al., Feature linking via synchrozation
among distributed asemblies: simulation of results from cat cortex, Nat.
Comput. 2 (3) (1990) 293–307.

http://refhub.elsevier.com/S0950-7051(18)30502-1/sb1
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb1
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb1
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb2
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb2
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb2
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb3
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb3
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb3
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb4
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb4
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb4
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb5
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb5
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb5
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb6
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb6
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb6
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb7
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb7
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb7
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb8
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb8
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb8
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb9
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb9
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb9
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb9
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb9
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb10
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb10
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb10
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb10
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb10
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb11
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb11
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb11
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb12
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb12
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb12
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb13
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb13
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb13
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb13
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb13
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb14
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb14
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb14
https://doi.org/101142/S0129065718500132
https://doi.org/101142/S0129065718500132
https://doi.org/101142/S0129065718500132
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb16
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb16
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb16
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb17
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb17
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb17
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb18
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb18
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb18
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb19
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb19
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb19
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb20
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb20
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb20
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb20
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb20
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb21
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb21
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb21
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb22
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb22
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb22
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb22
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb22
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb23
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb23
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb23
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb24
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb24
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb24
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb25
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb25
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb25
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb25
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb25
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb26
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb26
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb26
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb26
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb26
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb27
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb27
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb27
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb27
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb27
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb28
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb28
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb28
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb28
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb28
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb29
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb29
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb29
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb29
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb29
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb30
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb30
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb30
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb31
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb31
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb31
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb31
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb31
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb32
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb32
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb32
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb32
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb32
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb33
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb33
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb33
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb33
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb33
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb34
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb34
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb34
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb34
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb34
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb35
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb35
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb35
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb36
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb36
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb36
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb37
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb37
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb37
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb37
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb37
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb38
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb38
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb38
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb39
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb39
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb39
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb39
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb39
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb40
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb40
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb40
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb40
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb40


[41] R. Eckhorn, A. Frien, R. Bauer, et al., High frequency oscillations in primary
visual cortex of awarke monkey, NeuroKey 4 (3) (1993) 243–246.

[42] J.L. Johnson, D. Ritter, Observation of periodicwaves in a pulse-coupled neural
network, Opt. Lett. 18 (1993) 1253–1255.

[43] J.L. Johnson, M.L. Padget, PCNN models and applications, IEEE Trans. Neural
Netw. 10 (3) (1999) 480–498.

[44] J.M. Kinser, A simplified pulse-coupledneural network, Proc. SPIE 2760 (1996)
563–569.

[45] U. Ekblad, J.M. Kinser, J. Atmera, N. Zetterlunda, The intersecting cortical
model in image processing, Nucl. Instrum. Methods Phys. Res. A 525 (2004)
392–396.

[46] I. Korec, Small universal register machines, Theoret. Comput. Sci. 168 (2)
(1996) 267–301.

[47] H.T. Siegelmann, E.D. Sontag, On the computational power of neural nets, J.
Comput. System Sci. 50 (1) (1995) 132–150.

http://refhub.elsevier.com/S0950-7051(18)30502-1/sb41
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb41
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb41
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb42
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb42
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb42
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb43
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb43
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb43
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb44
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb44
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb44
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb45
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb45
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb45
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb45
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb45
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb46
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb46
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb46
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb47
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb47
http://refhub.elsevier.com/S0950-7051(18)30502-1/sb47

	Dynamic threshold neural P systems
	Introduction
	DTNP Systems
	Definition
	An illustrative example

	Turing Universality of DTNP Systems as Number-generating/accepting Device
	Turing universality of systems working in the generating mode
	Turing universality of systems working in the accepting mode

	Turing Universality of DTNP Systems for Computing Functions
	Conclusions
	Acknowledgments
	Appendix Nomenclature
	References




