
PERCEPTUS: Predictive complex event processing and
reasoning for IoT-enabled supply chain

Author:
Nawaz, F; Janjua, NK; Hussain, OK

Publication details:
Knowledge-Based Systems
v. 180
pp. 133 - 146
0950-7051 (ISSN); 1872-7409 (ISSN)

Publication Date:
2019-09-15

Publisher DOI:
https://doi.org/10.1016/j.knosys.2019.05.024

License:
https://creativecommons.org/licenses/by-nc-nd/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/unsworks_60871 in https://
unsworks.unsw.edu.au on 2024-04-27

http://dx.doi.org/https://doi.org/10.1016/j.knosys.2019.05.024
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/1959.4/unsworks_60871
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Knowledge-Based Systems 180 (2019) 133–146

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

PERCEPTUS: Predictive complex event processing and reasoning for
IoT-enabled supply chain✩

Falak Nawaz a,∗, Naeem Khalid Janjua b, Omar Khadeer Hussain a

a School of Business, University of New South Wales (UNSW), Canberra, Australia
b School of Science, Edith Cowan University (ECU), Perth, Australia

a r t i c l e i n f o

Article history:
Received 2 January 2019
Received in revised form 2 May 2019
Accepted 15 May 2019
Available online 17 May 2019

Keywords:
IoT
Supply chain
Complex event processing
Predictive reasoning

a b s t r a c t

Internet of Things (IoT) is an emerging paradigm that connects various physical sensor devices spread
across different locations. IoT-enabled supply chain provides a natural combination to achieve supply
chain visibility (SCV) which refers to ability of supply chain partners to collect and analyse distributed
supply chain data for the planning and decision support. This data is normally collected and analysed
in real-time by a specialized software known as Complex Event Processing (CEP) engines. However,
current CEP engines have two well-known limitations. Firstly, current CEP engines are job specific and
fail to combine multiple related sensor data streams coming from distributed sources, thereby, supply
chain partners are exposed to manage the underlying information heterogeneity. Secondly, these CEP
systems do not provide decision support to the supply chain planners when the information about
the potential disruptive event is incomplete and/or uncertain. In this paper, a PERCEPTUS framework
is proposed to address the above mentioned issues. It, firstly, utilizes semantic annotation process to
integrate and annotate events coming from heterogeneous data streams. Secondly, it performs complex
event processing to process and correctly interpret annotated complex events. Thirdly, it provides
complex event reasoning (by combining logical and probabilistic reasoning) to predict disruption
events (such as process failure) under incomplete and/or uncertain information. Finally, the proposed
framework is validated using the dataset of a semi-conductor manufacturing process to demonstrate its
superiority in terms of accuracy in predicting disruptive events as compared to the baseline approach.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Supply chain activities are characterized by increasing dy-
namicity which arises from the trends of the global economy,
political situations, distribution of transport services and individ-
ual customer demands. Moreover, the continuous drive towards
lean business processes have resulted in supply chain becoming
more complex and vulnerable to operational disruptions. This led
organizations to be aware of the need to have better supply chain
visibility (SCV), which is a commonly used term in supply chain
management yet not very well defined in the literature [1]. In
literature [2], SCV is defined as ‘‘the identity, location and status
of entities transiting the supply chain, captured in timely mes-
sages about events, along with the planned and actual dates/times

✩ No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict with
this work. For full disclosure statements refer to https://doi.org/10.1016/j.knosys.
2019.05.024.
∗ Corresponding author.

E-mail addresses: falak.nawaz@student.adfa.edu.au (F. Nawaz),
n.janjua@ecu.edu.au (N.K. Janjua), o.hussain@adfa.edu.au (O.K. Hussain).

for these events’’. However, from an Information Technology (IT)
perspective, SCV refers to the ability of a supply chain partner
to collect and analyse distributed data, analyse and generate
specific recommendations, and match insights to the strategy [3].
The increasing use of IT in supply chain has enabled suppliers,
manufacturers, logistics service providers and retailers to benefit
from SCV by making their supply chain data available to their
partners [4]. While the availability of supply chain data provides
the impression of SCV, it also adds to a company’s challenge if it
is not used effectively to generate insights [1]. Moreover, there is
another limitation in achieving visibility for organizations despite
the availability of data. It has been reported that nearly 90% of
all companies have inadequate global supply chain technology
to provide with timely information required for planning and
management [5]. Hence, the partial or complete lack of visibility
resulting from the inadequate technology is the main hurdle for
realization of the global supply chain.

Internet of Things (IoT) is an emerging paradigm that is fo-
cussed on connecting intelligent physical devices (e.g. sensors)
spread across different locations. These devices can sense real-
time information from the surroundings and can share this infor-
mation with other devices. It is estimated that, by the end of year

https://doi.org/10.1016/j.knosys.2019.05.024
0950-7051/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2019.05.024
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2019.05.024&domain=pdf
https://doi.org/10.1016/j.knosys.2019.05.024
https://doi.org/10.1016/j.knosys.2019.05.024
mailto:falak.nawaz@student.adfa.edu.au
mailto:n.janjua@ecu.edu.au
mailto:o.hussain@adfa.edu.au
https://doi.org/10.1016/j.knosys.2019.05.024

134 F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146

2020, approximately 24 billion devices will be interconnected
throughout the world and is expected to produce big amount
of data [6]. This technology is giving rise to the concept of IoT-
enabled supply chain that takes real-time information from IoT
devices installed at different locations within the supply chain,
processes this information through the software systems, and
shares useful insights with supply chain partners [7]. However,
existing software systems are not designed to process big data
that is generated with IoT devices. To process this big data,
specialized software known as Complex Event Processing (CEP)
engines [8–10] are used. The CEP engines infer complex events
(e.g. disruptions) and alarms the decision makers about future
events for better management of supply chain [11]. However,
unlocking the potential of CEP in supply chain is hindered by
two main factors. Firstly, current CEP engines are developed
for a single job and they fail to combine multiple related data
streams coming from distributed sources, thereby, supply chain
trading partners are exposed to manage the underlying informa-
tion heterogeneity [12,13]. Secondly, these CEP systems can only
detect existing disruptive events from a data stream. They do not
provide predictive and proactive decision support to the supply
chain planners when the information about the disruptive event
is incomplete and/or uncertain [14–16].

Owing to the above problems, this study aims to address
the challenges faced by IoT-enabled supply chains and proposes
a PERCEPTUS framework for complex event reasoning. It has
the ability to integrate, process and correctly interpret complex
events in heterogeneous data streams coming from different sup-
ply chain partners using semantic annotation and complex event
processing. It then performs complex event reasoning to predict
disruptive events using logical and probabilistic reasoning engine.
The proposed framework is able to provide decision support to
manage the identified disruptive event even when the underly-
ing information about the event is incomplete and/or uncertain.
Specifically, the main contributions of our work are as follows:

1. An ontology-based semantic annotation process is utilized
that integrates and annotates events coming from hetero-
geneous data streams. This is explained in Section 4.

2. An novel approach for semantic complex event processing
is proposed to process and correctly interpret semantically
annotated complex events. This is explained in Section 5.

3. A logical and probabilistic reasoning engine is proposed that
performs predictive and proactive reasoning even when
the underlying information is incomplete and/or uncertain.
This is discussed in Section 6.

The rest of the paper is organized as follows. In Section 2, the
existing research in CEP systems and related fields is discussed.
The proposed PERCEPTUS framework is presented in Section 3. In
Sections 4 and 5, an ontology-based semantic annotation process
and semantic complex event processing is presented respectively.
In Section 6, the logical and probabilistic predictive reasoning
engine for incomplete and/or uncertain information is described.
Section 7 presents performance evaluation and the prediction
quality of the proposed approach. In this section, the superiority
of the proposed approach is validated by comparing to a base-
line approach for predicting disruptive events in supply chain
using a semi-conductor manufacturing process dataset. Finally, a
conclusion is presented in Section 8.

2. Related work

2.1. Complex event processing

In this section, we outline the existing research in CEP systems
and related field. In recent years, CEP systems have received a

great deal of attention in a variety of domains such as business
process monitoring [17], financial services [18], healthcare [19],
cyber security [20], and traffic management [21] to name a few.
Flouris et al. [11] discussed different CEP techniques covering
both deterministic and probabilistic event models and spanning
from centralized to distributed network settings. Authors re-
viewed current status and issues of CEP techniques arising due
to use of CEP techniques over big data and cloud platforms.
Moreover, a blend of CEP technologies were also presented with
emphasis on predictive analytics, scalability and elasticity.

The current state of the art CEP engines [8–10] are designed
to deal with the specific problem of defining new (higher level)
events starting from primitive events (raw data). However, they
do not provide support to integrate events coming from heteroge-
neous sources. As a result, the complex events coded and detected
by the current CEP engines are not expressive enough to capture
and reason complex situations. For instance, in situation aware-
ness, time critical actions are not only triggered by an individual
event, rather events coming from different sources are integrated
through additional contextual knowledge to infer new pieces
of knowledge to detect and classify a situation of interest. To
overcome the issue of information heterogeneity, CEP researchers
need to step back and learn from another stream of research in
Artificial Intelligence known as the Semantic Web [22]. The Se-
mantic Web research focuses on how ‘‘meaning’’ can be attached
to the data so that data can be understood, shared, reasoned
and integrated by machines without human intervention. Use of
semantics in CEP means annotating sensor data streams with con-
textual knowledge, which serves as a metadata to link distributed
data streams. Thereby, CEP engine can perform reasoning with
various annotated sensor data streams to deduce new or implicit
knowledge, discover significant (and erroneous) events/situations
and answer complex queries.

Recently, ETALIS [10], which is a CEP engine, has been de-
veloped using semantic technologies, however, it suffers from
two major limitations: Firstly, it works under the assumption
that events knowledge is always consistent. In other words, it
is assumed that there will be no conflicting events or situations
during the events integration and reasoning process. And if new
events information comes into the system, it will be consistent
with the already available information. Additionally, new infor-
mation does not lead to the retraction of previous events/actions.
Secondly, it does not support complex actions representation
and predictive reasoning. A production rule system for activity
recognition and monitoring tasks in smart spaces is presented
in [23]. It is based on a hybrid framework consisting of logical and
probabilistic reasoning. Our proposed approach differs from [23]
in the sense that rather than using the reactive approach, we
use the predictive and proactive approach by using the logical
reasoning to predict disruptive events and using the probabilistic
inference to handle the uncertain/unknown situations.

2.2. Predictive business process monitoring

Predictive business process monitoring under defined perfor-
mance constraints is a key issue in many organizations. Predictive
business process monitoring approaches forecast potential prob-
lems during process execution and handle them even before
they occur using machine learning and data mining techniques.
These approaches are also applicable to supply chain in predicting
disruptions and critical situations. These approaches, if combined
with CEP technology, can potentially enhance the performance of
predicting events of interest in business process or supply chain.

There are different approaches for runtime monitoring of busi-
ness process management that has been proposed in the litera-
ture [17,24–28]. In [28], three different prediction techniques for

F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146 135

business process monitoring are compared and analysed empir-
ically. The compared approaches are based on machine learning,
constraint satisfaction and Quality of Service (QoS) aggregation.
In another work [29], authors proposed two approaches, a se-
quential k-nearest neighbour and an extension of Markov model
for predictive business process monitoring. These approaches
exploit temporal and sequential features of the business process
data with an additional sequence alignment component. Cuz-
zocrea et al. [30] discussed the problem of predictive monitoring
when performance constraints are defined in aggregated process
instead of single process. This work integrated two predictive
models: a clustering-based predictor for estimating the outcome
of each ongoing process instance and a time series predictor
for estimating the performance outcome of the future process
instances.

2.3. IoT-enabled supply chain

With the proliferation of sensor networks and IoT devices,
the integration of IoT and supply chain provides a promising
way to establish innovative systems for monitoring supply chain
activities. Different types of devices are used in various supply
chain activities to monitor performance indicators. For example,
radio-frequency identification (RFID) devices are used in items
tracking and inventory management. In this regard, an approach
is proposed in [31] to explore the effectiveness of different types
of RFID in reducing the inventory inaccuracies in supply chain.
Author’s in this work based their approach on the fact that
different types of RFID has unequal techniques in tracing items
and, therefore, presented a scale factor function to illustrate the
relationship between cost of RFID and it abilities in decreasing
inventory inaccuracies. This scale factor function is then used to
formulate analytical models to investigate the cost-effectiveness
of different RFIDs in different scenarios.

In the context of centralized supply chain where orders from
online customers are delivered independently, a new delivery
strategy based on the synthetically dispatched orders is proposed
in [32] to decrease the outbound delivery cost. It utilizes orders
and customers matching and customer visiting sequence with
beta-heuristic algorithms. Similarly, in another work [33], an
RFID-based investment evaluation model is proposed for joint
replenishment and delivery (JRD) problem under stochastic de-
mand. In [34], a joint replenishment problem is modelled that
considers different types of discounts such as two quantity dis-
counts, all-unit quantity discount, and incremental discount on
e-commerce platform. Author’s in this work proposed a novel
locust swarms algorithm to the joint replenishment problem.

There are a few studies that utilize event-driven monitoring
and/or prediction and are also relevant to the supply chain envi-
ronment [35–38]. For instance, in [38], SLA violations in cloud of
things (CoT) environment is addressed by extracting and identi-
fying the impact of the relevant external events on SLA. The ex-
ternal events are usually outside the control of service providers
and users but they may impact the quality of CoT services and
may result in SLA violation. Authors’ presented an approach to
extract external events from social media streams using natural
language processing and machine learning techniques.

Nevertheless, the problems of the current CEP engines still
exist as they fail to combine multiple related sensor data streams
coming from distributed sources. They also fail to provide predic-
tive and proactive decision support to the supply chain planners
particularly when the information about the disruptive event is
incomplete and/or uncertain. In the next section, our proposed
framework is presented that aims to address these issues.

3. Proposed framework

In this section, a framework for Predictive and proactive Com-
plex Event Processing and reasoning in IoT-enabled Supply chain
(PerCEPTuS) is presented. In the proposed framework, our aim is
to shift the notion of reactive computing to proactive computing
by predicting future events of interest based on the current event.
As a first step, the structure and relationship of different informa-
tion sources (i.e. sensor data streams) in the supply chain activity
are required before the complex events are identified. This is
specified using the annotation ontology (as depicted in Fig. 2).
Then, to determine the complex patterns from the incoming
sensor data streams, the performance constraints of the process in
a supply chain activity are also required (discussed in Section 5).
Then the observation and collection of information about the
environment using IoT sensor devices begins and the events that
match complex patterns are identified. Finally, the new knowl-
edge is inferred from the identified events to discover significant
events of interest (e.g. failure of a business process). Fig. 1 de-
picts the architecture of the novel framework for complex event
reasoning engine. As stated before, two prerequisites, namely the
annotation ontology for sensor data streams and performance con-
straints of business process (i.e. supply chain activity constraints)
for predictive reasoning, are needed in the knowledge base before
processing of the information begins. Once the prerequisites are
captured, the information in different components is processed
as follows.

1. Semantic Annotation. This component is connected to the
physical world of IoT having different sensor data streams.
Its responsibility is to model and encode the contextual
knowledge of the heterogeneous data streams, which is
usually extracted from the meta information of the data
stream. This knowledge is encoded in the form of ontolo-
gies, which plays an essential role to correctly interpret
the distributed events information that could otherwise
be interpreted in a number of ways by the CEP engine.
Once the contextual knowledge is modelled and encoded,
it is then used to process and annotate events information
coming from heterogeneous data streams.

2. Semantic Complex Event Processing. This is an important
component of the proposed system that takes the semanti-
cally annotated events as input and after processing iden-
tifies the complex event or activity that has just happened
or is about to happen in the near future. Event calculus
is used to model complex events and actions that may
change over a period of time and may introduce incom-
plete and/or uncertain events information in the knowl-
edge base. There are two types of knowledge bases used in
the proposed framework. The main Knowledge base (KB)
contains rules for defining and capturing complex event
patterns, representing states of complex events, and per-
formance constraints of the business process. While the
Actions KB deals with defining all the alternative actions
that can be taken to avoid an undesired event that is
predicted. It can recommend suitable action to external
applications (e.g. IoT applications) based on the prediction
of the proposed system. In this paper, the emphasis has
been on utilizing the KB for defining rules and facts for
capturing complex event patterns, state representation of
complex events and defining performance constraints of
the business process.

3. Logical and Probabilistic Reasoning Engine. As described pre-
viously that in many cases not only the future events
but also the current events may be detected with uncer-
tainty [14,39]. For example, a sensor device may produce

136 F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146

Fig. 1. PERCEPTUS system architecture.

a noisy reading. This means that reasoning engine must
be able to handle uncertain input events. Therefore, in
this component, a hybrid predictive reasoning is utilized
that has the capabilities of both logical and probabilistic
reasoning. The logical reasoning is performed on the in-
coming events by first determining the state of the EVs
from the incoming data streams and then inferring the
failure of the business process. However, when the incom-
ing data stream contains incomplete, inaccurate or missing
information about any EV, the probabilistic inferencing is
used to determine the possible state of that EV and then
failure of the business process is predicted by the reasoning
engine.

In the following sections, we describe important components
of the proposed system and their working in detail. The working
of the proposed system starts with the semantic annotation of
sensor data stream for predictive reasoning. For this purpose, the
structure and relationships of different sensor data streams in the
supply chain activity or business process are identified. This is
explained in the next section.

4. Semantic annotation

The contextual information coming from sensor data streams
is not always 100% accurate due to the uncertainty of events
and data originating at the source. This contextual information
may be of variable quality. For instance, it can be inaccurate,
redundant, incomplete, or it can be conflicting with other con-
textual information [40]. Moreover, various kinds of context have
dependencies, causal relationships and temporal characteristics.
In this work, we identify two main reasons for different types of
uncertainties in the contextual information, which are given as
follows:

1. The sensor technology is not capable of producing 100%
accurate data due to various technical challenges. For ex-
ample, hardware malfunction can prevent a sensor to re-
port certain events. A sensor may have the limited accuracy
or there may be distortion along a communication chan-
nel [41]. Similarly, a hidden object in video monitoring
or an unclear voice due to noise signals are examples of
imprecise data.

2. The reasoning models are not 100% accurate even when
sensors produce near 100% accurate sensor data [42]. They
also lack accuracy and do not always provide accurate
information about the events and, hence, a probability
value is accompanied with such events to address the
uncertainty.

Therefore, in this work, ontology-based context model is used
that is not just able to represent uncertainty but can also support
to model the temporal aspects of the contextual information.

The contextual knowledge is essential to correctly interpret
the distributed events. This knowledge could be interpreted in
a number of ways if not correctly encoded. This process of con-
textual modelling and event annotation is known as semantic
annotation. Currently, most of the CEP systems represent event
information as a tuple of values separated by a delimiter. For ex-
ample, the raw event tuple from an airflow sensor would look like
‘‘D105VOL, 2018-05-01T09:30, 510.0, 0.8’’ (see Fig. 2). In the pro-
posed semantic annotation technique, a codified ontology with
UIMA (Unstructured Information Management Architecture) [44]
is utilized. The UIMA is a fundamental framework and acts as a
backend engine that uses domain ontologies for raw events data
annotation.

As a result, semantic relationships are built among events
coming from different sources. As shown in Fig. 2, an airflow
semantic sensor event is linked with a blood pressure semantic
sensor event through a common property i.e. ee:hasLocation indi-
cating that both sensors are located in the same office located in
building RTH105. Through such semantic relationships between
events, reasoning engine can reason on events and can infer new
pieces of knowledge and answer complex queries.

5. Semantic complex event processing

In this section, we discuss the basics of semantically annotated
events and also describe their representation for the purpose of
predictive and proactive complex event reasoning.

5.1. Complex event definition and representation

A semantically annotated event can be classified either as a
simple event (SE) or complex event (CE). Moreover, it may also
be a combination of both as shown in a hierarchical structure in

F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146 137

Fig. 2. Semantic Annotation.
Source: Adapted from [43].

Fig. 3. Different levels of nested relationships between EVs.

Fig. 3. It has complete information about its state including its
type, time of occurrence and its relationship with other events.
In our proposed approach, a semantically annotated event is
represented using a vector as (E, R, T, St) and is defined as follows:

• E represents the unique event along with all of its attributes
such as event id, type, relationships etc.
• R represents the pattern (if any) and the information of

other events the pattern is applied to.
• T represents the timestamp when the event is first sensed

or detected.
• St represents the state (of the constraint) of the event. This

state shows the compliance or violation of the complex
event in business process. The state St can be either assigned
or derived from the other complex events during the course
of execution of business process.

To differentiate between different types of events and the
purpose of having state St for every event, consider that Fig. 3
represents an activity or a stage in the business process that
has a value (or performance constraint) which measures its com-
pliance. During the process execution, the chance of the pro-
cess failure is determined by comparing its current value with
the constraints. This run-time comparison is measured for each
event value to its defined constraints. In our proposed approach,
this run-time comparison is specified using a multi-valued logic
which is defined below [14]:

• Normal (N) If the value of the event is within its defined
constraints, its state is represented as normal.
• Failure (F) If the value of the event is not within its defined

constraints, its state is represented as failure.
• Uncertain/Unknown (U): If the value of the event can neither

be evaluated as normal nor as failure then it is represented
as uncertain. This situation can happen when either (a) the
event value cannot be measured due to some technical
failure of the sensor [45] or (b) the event value is at the
boundary of the defined constraints but due to uncertainty
in sensor measurement it cannot be accurately defined as
normal or failure [14].

For each event (SE or CE), the above-mentioned states are de-
termined and then combined (using complex patterns and oper-
ators) to determine the failure of a business process or supply
chain activity (SCA) as shown in Fig. 3. Different types of events
are treated differently in the proposed system, therefore, it is
important to classify them based on their properties. These are
explained as follows:

• Simple Event (SE): An SE is a primitive event which is cap-
tured by a sensor device in the business process. This event
is not dependent on any other event in the system. For
example, it can be seen from Fig. 3 that events such as EV 2,
EV3, EV 5, EV 6 and EV 7 are all SEs.
• Complex Event (CE): A CE is an event that results from the

combination of two or more SEs (or CEs or a combination of
both) connected through a complex pattern R. For example,
it can be seen from Fig. 3 that events such as EV 1, EV4 and
EV 0 are CEs. Unlike SEs, CEs are defined using logical rules
and complex patterns. These complex event definitions are
described in the next section.
• Event with a Value/Constraint (EV): An EV is a specialized

complex event that marks an important step in a business
process. It acts as key performance indicator (KPI) and there-
fore its value is monitored to identify the compliance or
violation of a business process. An EV can either be a CE
or SE or any combination of these. For example, it can be
seen from Fig. 3 that EV 1, EV7 and EV 4 combine to ascertain
the state of the business process EV 0. In this case, EV 7 is
SE while EV 1 and EV 4 are CEs. Moreover, in this process,
any SE or CE can be marked as EV for monitoring its state

138 F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146

Table 1
Complex event pattern detection operators.
Operator Description

SEQ The SEQ operator identifies a given sequence of events from
the input events. For example, ‘‘Peter goes to bed after dinner’’
can be represented as SEQ(dinner, bed).

PAR The PAR operator identifies a pattern of two or more events
occurring at the same time either overlapping completely or
partially. For example, ‘‘Peter eats dinner and reads the
newspaper simultaneously’’ can be represented as PAR(dinner,
newspaper) or PAR(newspaper, dinner).

DURING This complex event is detected when an events occurs during
an interval when another event is happening. For example,
‘‘During dinner, Peter reads the newspaper’’ can be
represented as DURING(dinner, newspaper).

STARTS When two events start at the same time. For example, ‘‘Peters
starts reading the newspaper as soon as he starts eating the
dinner’’. It is represented as STARTS(dinner, newspaper) or
STARTS(newspaper, dinner).

FINISHES When two events finish at the same time. For example,
‘‘Peters stops reading the newspaper as soon as he finishes eating
the dinner’’. It is represented as FINISHES(dinner, newspaper) or
FINISHES(newspaper, dinner).

COUNT Then number of occurrences of an event during a time period.
For example, ‘‘The number of calls Peters receives in a day’’ can
be represented as COUNT(Peter, received_calls).

OR This complex event is detected when one event occur out of
two or more events during a time interval. For example,
‘‘Peter watches either a movie or plays video game at evening ’’.

AND The AND operator identifies the occurrence of two or more
events in any order during a time interval. For example, ‘‘Peter
watches television and talks to his friend on the phone in the
evening ’’.

NOT Any event does not happen or exist at time t. For example,
‘‘an event e does not happen at time t’’ can be represented as
NOT(e).

during the process execution. Therefore, in order to avoid
confusion, hereon in this paper, all of the SEs or CEs are
represented simply as EVs unless otherwise stated, as shown
in Fig. 3.

5.1.1. Complex event pattern detection operators
In this section, the semantics to capture complex events are

explained. This is important when a particular event of interest is
anticipated from a set of events which are originated from sensor
devices. For example, a complex event pattern can identify a
sequence of any two activities in a business process. The complex
event operators are generally applied to events originating from
sensor devices. In some cases, these operators are also applied to
other complex events. The name and the brief description of each
of the operators are described in Table 1.

Note that the time duration is not mentioned in all of the event
definitions above. The time window is controlled through event
calculus ontology (Table 3). Moreover, the detailed description
including event calculus rules of all of the above operators is also
presented in the next section.

5.1.2. Complex event state composition operators
As described previously that a complex event can be a com-

bination of simple events, complex events, or any combination
of both. Moreover, in our model, every complex event (e.g. an
EV) is assigned a state representing its compliance or violation
of the business process. For instance, consider a complex event
COUNT(SEQ(x1,x2), ∆t)) is an EV X and its normal state is repre-
sented by n occurrences of SEQ(x1,x2) pattern during a time period
∆t. Now, if during time period ∆t, the number of occurrences
of SEQ(x1,x2) pattern are found to be either more or less than n,
the current state of EV X will be set as failure. A complex business
process can combine multiple complex events in a nested or hi-
erarchical form. The evaluation of the whole process may require

Table 2
Complex event state composition operators.
EV X EV y EV CON(x,y) EVDIS(x,y) EV IMP(x,y) EV BIC(x,y) EVNEG(x)

N N N N N N F
N F F N F F F
N U U N U U F
F N F N N F N
F F F F N N N
F U F U N U N
U N U N N U U
U F F U U U U
U U U U U U U

Table 3
Event calculus ontology.
Syntax Description

initially(f) Fluent f holds from the initial time
initiates(e, f, t) Event e initiates fluent f at time t
terminates(e, f, t) Event e terminates fluent f at time t
holds_at(f, t) Fluent f holds at time t
happens(e, t) Event e happens at time t
clipped(t1,f,t2) Fluent f is terminated between time t1 and t2
mvi(f, t1, t2) Fluent f holds in the interval (t1, t2]

evaluation of each complex event and its relationship with other
events. Here, the logic for evaluation of the state of complex
events is described when two or more complex events combine
using conjunction (CON), disjunction (DIS), implication (IMP), bicon-
ditional (BIC) and negation (NEG) operators. This logic is based
on Kleene and Priest logic [46]. In Table 2, EV CON(x,y), EVDIS(x,y),
EV IMP(x,y), EV BIC(x,y), and EVNEG(x), representing conjunction, disjunc-
tion, implication, biconditional and negation respectively, of the
states of the complex events EV X and EV y are shown.

Any of the event definition above can be used to evaluate the
state of the complex event. In the next section, complex events
semantics are defined using event calculus.

5.2. Complex event semantics in event calculus

The syntax and semantics for the complex event reasoning
engine are defined in this section. It has been observed that
logic programming has advantages over other formalisms [12].
For example, in the implementation of the CEP concepts, logic
programming is more reusable and extensible than procedural
programming. Secondly, the rule-based formalism presented in
this paper, is expressive and powerful enough to represent com-
plex event patterns. In particular, we use event calculus [47] to
model complex events. It is a general framework for representing
and reasoning about events and their effects. The general theory
of event calculus, which defines the meaning of the predicates, is
called event calculus ontology. It contains a set of predicates as
shown in Table 3.

To define an event, event calculus uses a set of rules to de-
scribe its different aspects. For instances, the event instances are
described with the use of the happens predicate, the effects of
events are described with the use of the initiates and terminates
predicates, and the values of the fluents (variables) are described
with the use of the holds_at, mvi (maximal validity interval)
and other predicates. Each rule has a body that represents the
preconditions and a rule head representing the effect. The event
calculus fluents are defined as facts in the logic program. Once
the event calculus models are captured in logic language, forward
chain reasoning is started by the introduction of annotated events
information as facts into the Rete network [16]. This results in
the activation of new events. The derived events flow back into
the Rete network which, in turn, results in the activation of new
complex events and situations.

F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146 139

Event calculus axioms can be formulated in many different
ways depending upon the required situation. For example, two
basic axioms are given as follows:

holds_at(p, t2) ← holds_at(p, t1) ∧ ¬terminate(e, p, t1) (A1)

¬hold_at(p, t2) ← terminates(e, p, t1) (A2)

In axiom A1, fluent p holds at time t2 if it holds at time t1 and
is not terminated at time t1 due to event e. In axiom A2, fluent
p does not hold at time t2 if an event e terminates p before
time t2 i.e. at t1. Similarly, many different formulations can be
constructed to model any environment. In the next section, we
define basic rules in event calculus which are then used as basic
building blocks to represent complex event patterns.

5.2.1. Modelling an EV in event calculus
As described previously that an event can be simple as well

as complex, its state and the transition between the states need
to be modelled based on its current and the desired state. In
the following, the basic rules to represent the state of a com-
plex event (i.e. EV) are described. For this purpose, three predi-
cates init_state, curr_state and trans_state are defined, which per-
form various operations on EVs. These predicates are defined as
follows:

• Initial state (init_state) This predicate models the initial state
of an EV at the beginning of the business process manage-
ment. It is represented as follows:

initially(ev(x, st)) ← init_state(x, st)

The initial state of the EV is modelled by the above rule
such that variable x represents two things: (i) constraint
of the EV and (ii) unique ID of the EV. Moreover, fluent
ev(x, st) represents the state of the EV identified by x and
st represents its current state.
• Transition state (tran_state) This predicate represents the

change in the state of an EV from one state to another
(e.g. s1 to state s2) after the occurrence of an event e. It is
represented by the following two rules:

terminates(e, ev(x, s1), t) ← happens(e, t)
∧ trans_state(e, t, x, s1, s2) ∧ curr_state(x, s1, t)

initiates(e, ev(x, s2), t) ← happens(e, t)
∧ trans_state(e, t, x, s1, s2) ∧ curr_state(x, s2, t)

With the execution of these two rules, the fluent ev(x, s1)
terminates and the fluent ev(x, s2) initiates, which repre-
sents the change of state of the EV from s1 to s2.
• Current state (curr_state): This predicate returns the current

state st of an EV at any time instant t. It is represented by
the following rule:

holds_at(ev(x, st), t) ← curr_state(t, x, st)

These predicates can describe the process of identifying and
translating business constraints into logical rules. Moreover, these
predicates can also represent the transition of constraints from
one state to another during execution. Fig. 4 depicts the flow
among three predicates to represent a change in the state of an
EV. First of all, EVs and their constraints are identified from the
business process. Then, fluents corresponding to each of the EVs
are initiated by using init_statewith their initial states. When new
runtime observation for an EV is received, it may lead to two dif-
ferent scenarios. It may, either, lead to a transition to a different
state or it may stay in the current state. These two scenarios are
represented by tran_state and curr_state, respectively. The final
state of an EV is represented by the curr_state predicate.

5.2.2. Final state of an EV in event calculus
In this section, rules are defined to get the state of an EV at

any time t during execution of a business process. Let X be an
EV identified in a business process. Its possible final state can be
defined as:

• Normal (X) An EV can be in a normal state in two possible
ways. (i) If the initial state of an EV after the identification
in business process is in normal state or (ii) due to transition
from failure (or uncertain) state to a normal state.

In the first case, an EV is in a normal state and does not violate the
defined constraints. This can be represented using the following
syntax.

init_state(X,N)

The current state of the X can be inquired by the predicate
curr_state which is given by the following rule:

holds_at(ev(X,N), t) ← curr_state(t, X,N)

In the second case, the state of the X transitions from failure
(or uncertain) state to a normal state at time t. The rule for the
transition from an uncertain to a normal state is as follows:

trans_state(e, t, X,U,N)

This predicate terminates the uncertain state of the X and initiates
its normal state, which is represented as follows:

terminates(e, ev(X,U), t) ← happens(e, t)
∧ trans_state(e, t, X,U,N) ∧ curr_state(X,U, t)

initiates(e, ev(X,N), t) ← happens(e, t)
∧ trans_state(e, t, X,U,N) ∧ curr_state(X,N, t)

The current state of the X after the transition can be inquired by
the predicate curr_state which given by the following rule:

holds_at(ev(X,N), t) ← curr_state(t, X,N)

Similarly, when the state of the X transitions from a failure to a
normal state, the transition rule is represented as:

trans_state(e, t, X, F ,N)

This terminates the failure state of the X and initiates its normal
state.

• Uncertain (X): At time t when it is not possible to decide
whether X is in normal state or failure state (e.g. due to
missing sensor value or constraint boundary value), it moves
to an uncertain state.

trans_state(e, t, X,N,U)
trans_state(e, t, X, F ,U)

• Failure (X): At time t when X moves from either a normal
or uncertain state to a failure state, it is represented by the
following rules, respectively:

trans_state(e, t, X,N, F)
trans_state(e, t, X,U, F)

5.2.3. Complex event pattern detection and state composition using
event calculus

In Section 5.1, the complex event operators and their corre-
sponding syntax to represent them were defined. However, that
syntax does not show how different events can be combined in
a complex pattern in a time interval and how the states of EVs
are changed or transitioned when an event occurs. Our complex
event definitions rely on event calculus for time interval using

140 F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146

Fig. 4. Flow among three predicates to represent a change in the state of an EV .

interval-based semantics, where each complex event has a start
time which represents when it is detected in a time window.
The main motivation of using event calculus for complex event
detection is that it not just enables to model the events, it can
also capture the effects of those events that in turn can help to
recognize and learn the event pattern. For example, SEQ(dinner,
bed) pattern can be identified using the following rule:

happens(SEQ (dinner, bed), t4) ← mvi(dinner, t1, t2)
∧ mvi(bed, t3, t4) ∧ t2 < t3

where t1, t2, t3 and t4 represents time such that t1 < t2 < t3 <

t4. This rule detects the sequence of two activities dinner and
bed in which the dinner activity must happen before the bed
activity. The time when the sequence is detected is attached to
the event instance. Similarly, PAR(dinner, newspaper) pattern can
be identified using the following rule:

happens(PAR(dinner, newspaper),max(t2, t4))
← mvi(dinner, t1, t2) ∧mvi(newspaper, t3, t4)
∧max(t1, t3) < min(t2, t4)

where max(t2, t4) returns either t2 or t4 whichever is maximum
and min(t1, t3) returns either t1 or t3 whichever is minimum.

The rules for complex event definitions such as DURING(dinner,
newspaper), STARTS(dinner, newspaper), FINISHES(dinner, newspa-
per), OR(movie, game), AND(movie, game) and NOT(e) can be iden-
tified using the following rule respectively:

happens(DURING(dinner, newspaper), t4) ← mvi(dinner, t1, t4)
∧ mvi(newspaper, t2, t3) ∧ t1 < t2 < t3 < t4

happens(STARTS(dinner, newspaper), t1) ← mvi(dinner, t1, t2)
∧ mvi(newspaper, t1, t3)

happens(FINISHES(dinner, newspaper), t3)
← mvi(dinner, t1, t3)
∧ mvi(newspaper, t2, t3)

happens(OR(movie, game), t) ← (happens(movie, t)
∨ happens(game, t)) ∧ t1 < t < t2

happens(AND(movie, game), t) ← (happens(movie, t)
∧ happens(game, t)) ∧ t1 < t < t2

happens(NOT (e), t) ← ¬happens(e, t)

Each of the event detected using the rules above is assigned a
unique id. Moreover, as described earlier, every complex event
(represented as EV) is assigned a state representing its com-
pliance or violation of the business process. Furthermore, the
evaluation of the state of a business process or activity also
requires the evaluation of all the complex events detected in the
process, which may be connected with each other in sequential,
nested, or hierarchical form. In our model, the states of the EV,
which is composed of other EVs, is defined using event calculus
rules.

In the rest of this section, the conjunction and disjunction rules
are explained to determine the state of an EV from the states
of other EVs it is composed of. Similar rules can be defined for
implication, biconditional and negation operators to achieve the
desired state as shown in Table 2. Consider the example of two
complex events SEQ(x1,x2) and PAR(y1,y2), which are defined as
EVs namely, EV 1 and EV 2 respectively. Both are monitored for
some predefined constraints (such as number of occurrences etc.)
in a time duration. Now assume, a business process requires the
conjunction (say EV CON(1,2)) of both EV 1 and EV 2 to be in normal
state in order to be functional. For this purpose, during execution,
appropriate states (normal, failure, or uncertain) are assigned to
each of them. The conjunction operator then can determine the
state of EV CON(1,2) depending upon the current states of EV 1 and
EV 2 based on the multi-valued logic presented in Table 2.

In the following, the conjunction rules to determine the normal
(N), failure (F), or uncertain (U) states of the EV consisting of m
different EVs detected at time t are presented. Following rule
detects the normal (N) state of the EV identified as EV CON(1,2,...,m)
when conjunction operator is applied to m different EVs.

holds_at (ev(x,N), t) ← (∀i ∈ {1:m} (holds_at(ev(i,N), t)))
∨ (∃i ∈ {1:m} (holds_at(ev(i,N), t)) ∧ ∀j
∈ {1:m} , j ̸= i (holds_at(ev(j,N), t) ∨ holds_at(ev(j,U), t)))

In the above rule, ev(x, N) is a fluent representing an EV CON(1,2,...,m)
identified as x with a normal state (represented as N) such that
its state represents the conjunction of m different EVs at time
instant t. It is evaluated to a normal state when either all of the
EVs it is composed of are evaluated to normal state or at least
one of the EVs it is composed of is in a normal state at any time
instant t and the remaining EVs are evaluated to either normal or
uncertain state. The following rule detects the failure (F) state of
the EV when conjunction operator is applied to it.

holds_at(ev(x, F), t)← ∃i ∈ {1:m} (holds_at(ev(i, F), t))

In the above rule, fluent ev(x, F) evaluates to a failure state when
at least one of the EVs it is composed of is evaluated to a failure
state at any time instant t. Similarly, the following rule detects
the uncertain (U) state of the EV when conjunction operator is
applied to it.

holds_at(ev(x,U), t)← ∀i ∈ {1:m} (holds_at(ev(i,U), t))

In the above rule, fluent ev(x, U) is evaluated to an uncertain state
when all of the EVs it is composed of are evaluated to an uncertain
state at any time instant t.

Similar to the conjunction rules, the disjunction rules to deter-
mine the normal (N), failure (F), or uncertain (U) states of the EV
consisting of m different EVs at time t are defined below.

holds_at(ev(x,N), t)← ∃i ∈ {1:m} (holds_at(ev(i,N), t))

The fluent ev(x, N) is evaluated to a normal state when at least
one of the EVs it is composed of is evaluated to a normal state at
any time instant t.

holds_at(ev(x, F), t)← (∃i ∈ {1:m} (holds_at(ev(i, F), t))

F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146 141

Fig. 5. Relationships between the EVs in a supply chain activity.

∧ ∄j ∈ 1:m(holds_at(ev(j,N), t)))

The fluent ev(x, F) represents the disjunctive EV with a failure
state. It is evaluated to a failure state when at least one of the
EVs it is composed of is evaluated to a failure state at any time
instant t and none of the EVs it is composed of is evaluated to a
normal state at time instant t.

holds_at(ev(x,U), t)← ∀i ∈ {1:m} (holds_at(ev(i,U), t))

The fluent ev(x, U) is evaluated to an uncertain state when all of
the EVs it is composed of are evaluated to an uncertain state at
any time instant t.

The rules for implication, disjunction and negation can also be
defined in similar way. All of the above mentioned rules are
essential for predictive complex event reasoning. In the next
section, the reasoning process to predict the failure of a business
process, which relies on the above mentioned rules, is described.

6. Logical and probabilistic reasoning engine

In this section, we describe the reasoning process of the pro-
posed framework which consists of two steps. In step 1, the
logical reasoning is performed on the incoming events from data
streams to identify the situations of interest (e.g. failure of a
business process). This is done by first determining the state
of the EVs from the incoming data streams and then inferring
the failure of the business process. However, in case, when the
incoming data stream contains incomplete, inaccurate or missing
information about any EV, the probabilistic inferencing in step 2
is performed. In the probabilistic reasoning, a variant of Bayesian
Network (called Adaptive Dynamic Bayesian Network) is con-
structed and then used to determine the possible state of the EVs
and the failure of the business process is determined.

6.1. Logical reasoning

In the logical reasoning process, the sequence of events from
data streams are given as input to the reasoning engine. The
logical reasoning process is described in Algorithm 1, which is
based on the work presented in [14] but has been adapted for
application in IoT-enabled supply chain for predictive monitoring.
The algorithm takes sensor observations as input at any time t
and returns the updated knowledge base, represented as KB(t+1),
with the possible future states of the EVs for time t + 1. To start
the reasoning process, the event calculus theory and its basic
components such as domain-independent axioms (Σ), domain
specific axioms (∆(0)), and initial knowledge base (KB(0)) with
initial facts, are initialized (line 1–3). The complex event rules,
which model EVs and their constraints, are represented using the
state constraints (Ψ) and the effect constraints (ε) (line 4–5).
When an event occurs, these rules trigger and change the states

of the EVs represented using fluents in the system. The EVs whose
states are affected due to an event, are represented by the symbol
Ō(t) (line 7). This symbol represents the collection of states of the
EVs (8–10).

The symbol Ḱβ(t+1) represents the change in the knowledge
base after occurrence of an event, which is validated against
the state constraints to determine states of the EV fluents. At
this stage, algorithm classifies EVs into one of two types, namely
known EVs and unknown EVs. (i) Known EVs (Ō(t)). On occurrence
of an event, if state of an EV is known either as a direct result
of the event or due to its dependence on other EVs is called
as known EV. The known EVs are represented by the vector O =
{EV 1, EV 2, . . . , EV n} and each of them is either in a normal, failure
or uncertain state (line 11–12). The symbol KB(t+1) represents
updated knowledge base at time t + 1. At this time, the future
state of business process can be inferred from the states of all the
known EVs (line 13). (ii) Unknown EVs (Ǭ(t)). An EV, which is not
impacted by an event and its future state cannot be determined
from the current set of events, is termed as unknown EV. For
example, in Fig. 5, if the current state of any EV (e.g. EV 1 or EV 2)
is unknown, the potential state of the process (SCA) cannot be
determined. So, the algorithm determines the probability of the
unknown EVs being in each of the three states, namely normal,
failure or uncertain by using the EVs’ previous states which gives
a measure of the effect of past events on the EV (line 15).

First of all, in Algorithm 2, the probability distribution tables
for the possible states of unknown EVs, which are represented
by Ǭ(t), are generated (line 1–2). The knowledge base is updated
with the new information coming from probabilistic inference
to determine the future state of the business process (line 3–8).
The process of probabilistic inference using Bayesian network is
described in next section.

142 F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146

6.2. Probabilistic inferencing

To determine the state of unknown EVs, a variant of the
Bayesian Network (BN) is used, which is known as Adaptive Dy-
namic Bayesian Network (ADBN). A BN is a probabilistic model that
is represented via a directed acyclic graph where nodes represent
variables and arcs represent their dependencies as shown in
Fig. 5. It provides full representations of probability distributions
and can support any direction of reasoning [48]. For example,
the direction of reasoning can be between nodes to ascertain
the causes of an effect. An ADBN enhances the BN with dynamic
learning capability to build structure of the BN from the training
data and then adapting the learned structure by continuously
updating the conditional probability tables (CPTs) to improve
prediction accuracy.

To elaborate the objective of using probabilistic inferencing,
consider that we want to find the conditional probability (repre-
sented as Pr(SCA|O)) for the state of complex event (represented
as SCA) for a given set of EVs (represented by the vector O =
{EV 1,EV 2,. . . , EV n}). This represents the probability of the state of
a supply chain activity. However, in order to determine Pr(SCA|O),
all of the EVs’ states are required. Consequently, for those evj /∈ O
for which there is no information about their states at a particular
time t, we consider their probability of being either in a failure,
normal or uncertain state. Let Q be the vector of EVs represented
as Q = {EṼ 1,EṼ 2,..EṼm} whose states are unknown at a particular
time t. Then the probability of SCA when O terms are known can
be calculated as follows, according to the Bayes rule:

Pr (SCA|O) =

∑
Pr(⟨SCA, EV1, . . . , EVn, EṼ1, . . . , EṼm⟩)∑

Pr(⟨EV1, . . . , EVn, EṼ1, . . . , EṼm⟩)
(1)

where EV represent EVs with known states and EṼ represent EVs
with unknown states. The probability distributions of all possible
combinations of the EVs is represented using the summation sign
in the numerator and the denominator of the above equation. To
explain this equation with an example, consider one SCA that has
three EVs represented as EV 1, EV 2 and EV 3 as shown in Fig. 5
(ignoring EV 4 and EV 5). Assume that at a specific time t, the states
of EV 1 and EV 3 (also represented by their names) are known
only and the state of EV 2 (represented as EṼ 2) is unknown. Then,
the state of SCA when the states of EV 1 and EV 3 are given is
determined as:

Pr (SCA|EV1 ∧ EV3) =

∑
EṼ2∈{n,f ,u}

Pr (SCA) Pr(EV1, EV3, EṼ2|SCA)∑
EṼ2∈{n,f ,u}

Pr(EV1, EV3, EṼ2)

(2)

Each EV can have state either n, f or u, we evaluate the prob-
abilities of the unknown EVs being in these three states. The
expression Pr(EV1, EV3, EṼ2|SCA), in the above equation, is diffi-
cult to estimate when the number of terms increases. Therefore,
it can be substituted with Pr (EV1|SCA) Pr (EV3|SCA) Pr(EṼ2|SCA)
by the assumption that all the EVs are independent [49]. Hence,
Eq. (2) takes the following form:

Pr (SCA|EV1 ∧ EV3)

=

∑
EṼ2∈{n,f ,u}

Pr (SCA) Pr (EV1|SCA) Pr (EV3|SCA) Pr(EṼ2|SCA)∑
EṼ2∈{n,f ,u}

Pr(EV1, EV3, EṼ2)
(3)

From the above equation, the term
∑

EṼ2∈{n,f ,u}
Pr(EV1, EV3,

EṼ2) can be substituted by a normalization constant α = 1/∑
EṼ2∈{n,f ,u}

Pr(EV1, EV3, EṼ2) [49]. Hence, Eq. (3) can be written

as:

Pr (SCA|EV1 ∧ EV3) = α
∑

EṼ2∈{n,f ,u}

Pr (SCA) Pr (EV1|SCA)

× Pr (EV3|SCA) Pr(EṼ2|SCA) (4)

The arc from SCA to EV 1, as shown in Fig. 5, represents the con-
ditional probability Pr (EV1|SCA). A conditional probability table
(CPT) is created, which contains probabilities for all the possible
combinations of states of EV 1 for each the state of the SCA.
Consider, three states of EV 1 are denoted by n1, f1 and u1 and the
three states of SCA are denoted by normal, failure and uncertain.
Then CPT for Pr (EV1|SCA) is given as:

Pr(EV1|SCA)

=

[Pr(n1|normal) Pr(n1|failure) Pr(n1|uncertain)
Pr(f1|normal) Pr(f1|failure) Pr(f1|uncertain)
Pr(u1|normal) Pr(u1|failure) Pr(u1|uncertain)

]
(5)

where each column in the above matrix sums to 1 and shows the
probability of EV 1 being in n1, f1 and u1 for every state of the SCA.
Similarly, matrices for Pr (EV2|SCA), Pr (EV3|SCA), Pr (EV4|EV2) and
Pr (EV5|EV2) can be found from the past data of EVs being in a
state for each state of the SCA. Referring back to the example of
three EVs and an SCA described above, if the states for EV 1 and
EV 3 are known as n1 and n3 respectively, then the probability of
the SCA being in a failure state can be found by determining the
state of the unknown EV 2 (whose normal, failure and unknown
states are represented as n2, f2, and u2 respectively) as:

Pr (SCA(failure)|n1 ∧ n3)

= α(Pr (failure) Pr (n1|failure) Pr (n3|failure) Pr (n2|failure)
+ Pr (failure) Pr (n1|failure) Pr (n3|failure) Pr (f2|failure)

+ Pr (failure) Pr (n1|failure) Pr (n3|failure) Pr(u2|failure)) (6)

By replacing the corresponding probabilities from the CPTs of EV 1,
EV3 and EV 2 in the above equation will give the probability of a
failure state of SCA. Similarly, the probabilities for the normal and
uncertain states of SCA can be found. The state with the highest
probability is used as the possible state of the SCA in this case.

7. Validation of complex event reasoning engine

The experimental setup for the validation of the complex
event reasoning engine in terms of execution performance is pre-
sented. For this purpose, a prototype is developed in SWI-Prolog.
The prototype system allows to configure business constraints
by defining simple and complex events and their relationships.
For system evaluation, the experiment were conducted on a
computer equipped with an Intel i7-4790 3.60 GHz CPU with 16
Gb RAM. The performance as well as accuracy of the reasoner
in executing event calculus and the proactive determination of
business process compliance (violation) management was deter-
mined. The experiments were conducted for two key reasons.
Firstly, to determine the performance of the system in terms of
the execution time of the reasoning process. Secondly, to validate
ability of the system to predict the possibility of business process
failure before it actually happens. These are explained in the
following sections.

7.1. Performance evaluation

The performance evaluation of the system is carried out by
measuring the execution time by scaling the size of the number
of events, fluents and axioms. The execution time is measured in
a setting where two or more sensor objects continuously send the
response time measurements at several timeslots.

F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146 143

Fig. 6. Proactive reasoning performance.

The dataset for performance evaluation is based on informa-
tion obtained by a number of binary sensors providing data about
the state of machines, valves, devices etc. in an organization at
different timestamps [50]. Moreover, the data also contains some
missing values when sensor was unable to generate a reading.
These measurements are used to evaluate the business process
represented by Fig. 5. Each of these measurement affects one
or more fluents and subsequently different event types. These
changes then can trigger a chain of other fluents leading to
multiple effect axioms such as initiates() and terminates().

The performance of the current system is compared with a
previous work [14] under similar settings. Table 4 shows the
number of events that are used to evaluate the systems. These
events range from 100 to 1000 with different number of facts
and rules. The fluents are affected when an event triggers change
in the knowledge base and consequently other fluents are initi-
ated or terminated in the system. The system is based on event
calculus modelling and few properties are incorporated from our
previous work [14]. However, some characteristics are unique
and enhance the system performance. For example, if an EV move
to failure state from a normal state, the fluents corresponding to
that EV initiate or terminate their respective effects. There are
at least two fluents that change for every state change in an
EV, one fluent for the normal (represented by true) and failure
(represented by false) state while the second fluent handles un-
certain state (when set to true). The second fluent, when set to
true, takes the priority over the first fluent. When it is false, the
determination of the state depends on the first fluent. In previous
work, three fluents, one each for normal, failure, and uncertain
state, were used. This means for each EV, an additional fluent
(or fact) was used and hence more fluents were to be managed
for each rule execution. Moreover, in some cases, these changes
consequently affect other event types which, in turn, trigger other
fluents. From this experiment, it can be concluded that reasoning
time directly depends on the number of changes needed to model
the effect of an event. This is also evident from Fig. 6 where the
reasoning time is increasing gradually as the number of events
processed are increasing.

7.2. Evaluation of the prediction quality

In this section, the quality of the inferred conclusions are
subject to investigation. The objective is to show the applicability
of our approach to a supply chain activity of an organization.

7.2.1. Dataset description
For validation of the proposed framework, a dataset of semi-

conductor manufacturing process is used, which is available at
https://archive.ics.uci.edu/ml/datasets/SECOM. This is a
real-world dataset collected from complex modern
semi-conductor manufacturing process that is normally under
consistent surveillance via monitoring of signals. The signals
are collected from both sensors devices (e.g. vacuum chamber
sensor) and process measurement points. In IoT-enabled supply
chain, the signals from sensor devices (e.g. vacuum chamber
sensor data) as well as process measurement points are remotely
monitored and then valuable data and alerts are delivered to the
supply chain partners.

The dataset consists of 1567 process instances each with 591
different features. The features indicate monitoring signals such
as temperature, infrared radiation etc., which are collected from
sensors and process measurement points. The measured signals
contain useful, irrelevant, noise as well as missing information. A
process instance can result in either failure or success (i.e. normal).
Although, the target of the process instances consist of two values
(i.e. failure and normal), the features of the process instances are
annotated with three values (i.e. failure, normal, uncertain). The
uncertain value is assigned to a feature if it has a missing infor-
mation or its value lies at or around the boundary of its constraint.
To make evaluation of the proposed framework manageable, a
subset of important features are selected from the dataset using
Correlation-based Feature Selection (CFS) method. This results in
34 important features by considering the individual predictability
of each feature along with the degree of redundancy between
them. Moreover, the causal relationship among features is also
considered for selection of key features. This subset of the data
is used to evaluate the proposed framework for predicting the
chances of failure or success of the supply chain activity.

7.2.2. Model creation
For evaluation and comparison of the proposed framework,

two models are created. The first model is called the proposed
model, which utilizes the predictive CEP engine with logical and
probabilistic reasoning while the second model is called the base-
line model, which utilizes probabilistic inferencing but does not
include the logical reasoning capability of the complex event
component. Both models are trained on the same training dataset.
In the following, we describe the characteristics of the two mod-
els and then compare and discuss their results.

As described previously, the baseline model employs proba-
bilistic inferencing using BN. The structure of the BN is learned
from training dataset that captures the dependency among the
features of the dataset. This model simulates process of an orga-
nization that employs various monitoring means using IoT sensor
devices to detect deterioration, compliance or non-compliance
in the process of its production line; for example: monitoring
temperature indicators, monitoring electric indicators and per-
forming radiation analysis etc. [51].

On the other hand, the proposed model employs CEP engine
along with probabilistic inferencing using ADBN to identify sev-
eral different patterns that imply various failure distributions. For
example, the occurrence of an event in a feature (or a set of
features) will have an impact on a target feature. This dependency
relationship between the features is defined through a semantic
annotation ontology. Using this model, the IoT-enabled supply
chain environment is simulated where the data is coming from
different sensors and process measurement points. We focus
on indicators (i.e. temperature and radiation) in semi-conductor
manufacturing process and use one example pattern (PAR(EV 1,
EV2) which is represented as EV 3 in Fig. 7), which occur if a com-
bination of two conditions occur in parallel: (i) steady increase

https://archive.ics.uci.edu/ml/datasets/SECOM

144 F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146

Table 4
Performance comparison of the proposed approach with previous work.
Events Previous work [14] Proposed approach

of facts in kB # of rules in kB Reasoning time (ms) # of facts in kB # of rules in kB Reasoning time (ms)

100 460 178 249 420 178 194
200 660 278 5 406 620 278 3 790
500 1160 378 13 065 1120 378 11 185

1000 2160 478 50 176 2120 478 40 918

Table 5
Confusion matrix.
Target Total instances (actuals) Baseline model (predicted) Proposed model (predicted)

Normal Failure Normal Failure

Normal 104 6 98 35 69
Failure 1463 21 1442 10 1453

Fig. 7. Event timeline of the example.

in infrared radiation (say EV 1) and (ii) abnormal temperature on
a specific location of a component (say EV 2). Occurrence of this
pattern with failure state implies a higher probability of failure of
business process as EV 4 is directly dependent on EV 3 as shown
in Fig. 7. However, if the reasoning algorithm receives insufficient
information about EV 2 at a specific time (say t3 as shown in Fig. 7)
while the state of EV 1 is known, then the decision for the possible
state of complex event EV 3 (as well as EV 4) depends on EV 2
which is unknown. In this scenario, the possible state of EV 2 can
be determined using a probabilistic inferencing by the proposed
model.

7.2.3. Evaluation results
The detailed quality of the prediction results of the two models

are evaluated and compared in Tables 5 and 6. The labels Normal
and Failure represent the states of process instances in the dataset.
A comparison of confusion matrix is presented in Table 5. In the
actual dataset, out of 1567 process instances, 104 process in-
stances have Normal state while process instances having Failure
state are 1463. The baseline model predicted merely 6 instances
correctly out of total 104 Normal instances while 98 instances
were falsely predicted as Failure. On the other hand, the proposed
model correctly predicted 35 out of 104 Normal instances while
63 were falsely predicted as Failure. This shows that baseline
model achieved a precision of 22.2% and a recall of 5.8% while
the proposed model achieved a precision of 77.8% and a recall

Table 6
Overall accuracy.

Baseline model Proposed model

Precision Recall F1-score Precision Recall F1-score

Normal 0.222 0.058 0.092 0.778 0.337 0.470
Failure 0.936 0.986 0.960 0.955 0.993 0.974
Avg./Total 0.889 0.924 0.903 0.943 0.950 0.940

Overall F1-score: 90% 94%

Fig. 8. Accuracy comparison.

of 33.7% for Normal instances (shown in Table 6). Similarly, sig-
nificant accuracy is achieved by the proposed model in predicting
the Failure instances. The baseline model predicted 1442 correctly
out of total 1463 Failure instances while 21 were falsely predicted
as Normal. Whereas the proposed model predicted 1453 correctly
out of 1463 Failure instances and only 10 were falsely predicted
as Normal.

Table 6 shows a comparison of the prediction accuracy indi-
cators such as precision, recall and F1-scores of the two models.
It also shows the accuracy in predicting Normal and Failure in-
stances as well as overall accuracy. The overall precision, recall,
and F1-score of the two models is also illustrated in Fig. 8. It is
clear from this figure that the proposed model performed better
in all accuracy indicators as compared to the baseline model.

8. Conclusion

The emergence of IoT is giving rise to the concept of IoT-
enabled supply chain. It provides a natural combination to
achieve SCV which refers to ability of supply chain partner to
collect and analyse distributed data for decision support. This data
is collected and analysed in real-time by a specialized software
known as CEP engines. However, CEP engines have two limita-
tions which include their inability to combine multiple related

F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146 145

sensor data streams from distributed sources and their inability
of performing predictive reasoning when the information about
the event of interest is incomplete and/or uncertain. In this paper,
we proposed a framework for predictive and proactive complex
event reasoning which processes, integrates, and provides rea-
soning over complex events to predict disruptive events under
incomplete and/or uncertain information using the logical and
probabilistic reasoning approaches. The main contributions of this
work are: (1) semantic annotation of heterogeneous data stream
to integrate and annotate the distributed events information,
(2) a novel approach for semantic complex event processing to
process and correctly interpret semantically annotated complex
events, and (3) development of a methodology for predictive and
proactive complex event reasoning when underlying information
is incomplete and/or uncertain. The validation of the proposed
approach for prediction of failures in IoT-enabled supply chain
activity is performed on real-world semi-conductor manufactur-
ing dataset. The results of the validation of the proposed model
were compared with a baseline model, which indicated that
the proposed approach is much efficient and correctly predicts
failures even under incomplete and/or uncertain information. In
future work, CEP definitions in event calculus will be extended to
explore its applicability in other domains. In particular, we will
explore the application of the proposed CEP in transportation and
logistics industry to capture and predict future events of interest.

Acknowledgements

This research was partially supported by Edith Cowan Univer-
sity (ECU), Australia Early Career Researcher Grant — 2018.

The authors would also like to take this opportunity to express
their deepest appreciations for the time and effort devoted by the
anonymous reviewers.

References

[1] A.N. Zhang, M. Goh, F. Meng, Conceptual modelling for supply chain
inventory visibility, Int. J. Prod. Econ. 133 (2011) 578–585, http://dx.doi.
org/10.1016/j.ijpe.2011.03.003.

[2] V. Francis, Supply chain visibility: Lost in translation? Supply Chain Manag.
13 (2008) 180–184, http://dx.doi.org/10.1108/13598540810871226.

[3] N. Tohamy, L.M. Orlov, L. Herbert, Supply Chain Visibility Defined, Forrester
Research, Cambridge, MA, 2003.

[4] N.K. Janjua, O.K. Hussain, E. Chang, S. Mohammed, S. Islam, Conjoint
utilization of structured and unstructured information for planning inter-
leaving deliberation in supply chains, IEEE/ACM Conf. Web Intell. (2017)
http://dx.doi.org/10.475/123.

[5] P. Myerson, Lean and Technology: Working Hand in Hand to Enable and
Energize your Global Supply Chain, Pearson Education, Inc., 2017.

[6] A. Botta, W. De Donato, V. Persico, A. Pescapé, Integration of Cloud
computing and Internet of Things: A survey, Future Gener. Comput. Syst.
56 (2016) 684–700, http://dx.doi.org/10.1016/j.future.2015.09.021.

[7] K. Yang, D. Forte, M. Tehranipoor, ReSC: An RFID-enabled solution for
defending IoT supply chain, ACM Trans. Autom. Electron. Syst. 23 (2018)
http://dx.doi.org/10.1007/s00706-014-1316-4.

[8] B.F. David, C. Luckham, Complex Event Processing in Distributed Systems,
Hewlett-Packard, 1998, pp. 98–754, doi:10.1.1.56.876.

[9] D. Gyllstrom, E. Wu, H.-J.H. Chae, Y. Diao, P. Stahlberg, G. Anderson,
SASE: Complex event processing over streams, Gen. Syst. abs/cs/061 (2006)
363–374, http://dx.doi.org/10.1016/j.pmcj.2009.06.002.

[10] D. Anicic, P. Fodor, S. Rudolph, R. St, ETALIS : Rule-based reasoning in
event processing, Reason. Event-Based Distrib. Syst. (2011) 99–124, http:
//dx.doi.org/10.1007/978-3-642-19724-6_5.

[11] I. Flouris, N. Giatrakos, A. Deligiannakis, M. Garofalakis, M. Kamp, M. Mock,
Issues in complex event processing: Status and prospects in the Big Data
era, J. Syst. Softw. 127 (2017) 217–236, http://dx.doi.org/10.1016/j.jss.2016.
06.011.

[12] D. Anicic, S. Rudolph, P. Fodor, N. Stojanovic, Stream reasoning and
complex event processing in ETALIS, Semant. Web. 3 (2012) 397–407,
http://dx.doi.org/10.3233/SW-2011-0053.

[13] Y.P. Tsang, K.L. Choy, C.H. Wu, G.T.S. Ho, C.H.Y. Lam, P.S. Koo, An Internet
of Things (IoT)-based risk monitoring system for managing cold supply
chain risks, Ind. Manag. Data Syst. 118 (2018) 1432–1462, http://dx.doi.
org/10.1108/IMDS-09-2017-0384.

[14] F. Nawaz, N.K. Janjua, O.K. Hussain, F.K. Hussain, E. Chang, M. Saberi,
Event-driven approach for predictive and proactive management of SLA
violations in the Cloud of Things, Future Gener. Comput. Syst. 84 (2018)
http://dx.doi.org/10.1016/j.future.2018.02.025.

[15] F. Nawaz, O.K. Hussain, N. Janjua, E. Chang, A proactive event-driven
approach for dynamic QoS compliance in cloud of things, in: Proc. Int.
Conf. Web Intell. - WI ’17, 2017, pp. 971–975, http://dx.doi.org/10.1145/
3106426.3109431.

[16] N.K. Janjua, F.K. Hussain, Web@IDSS - Argumentation-enabled Web-based
IDSS for reasoning over incomplete and conflicting information, Knowl.-
Based Syst. 32 (2012) 9–27, http://dx.doi.org/10.1016/j.knosys.2011.09.
009.

[17] M. Montali, F.M. Maggi, F. Chesani, P. Mello, W.M.P. van der Aalst,
Monitoring business constraints with the event calculus, ACM Trans. Intell.
Syst. Technol. 5 (2013) 1–30, http://dx.doi.org/10.1145/2542182.2542199.

[18] A. Adi, D. Botzer, G. Nechushtai, G. Sharon, Complex event processing
for financial services, in: Proc. IEEE Serv. Comput. Work., IEEE Computer
Society, Washington, DC, USA, 2006, pp. 7–12, http://dx.doi.org/10.1109/
SCW.2006.7.

[19] S. Meister, Telemedical events: Intelligent delivery of telemedical values
using CEP and hl7, in: L. Niedrite, R. Strazdina, B. Wangler (Eds.), Work.
Bus. Informatics Res. BIR 2011 Int. Work. Dr. Consortium, Riga, Latv. Oct. 6,
2011 Revis. Sel. Pap., Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 1–13, http://dx.doi.org/10.1007/978-3-642-29231-6_1.

[20] L. Aniello, G.A. Di Luna, G. Lodi, R. Baldoni, A collaborative event processing
system for protection of critical infrastructures from cyber attacks, in: F.
Flammini, S. Bologna, V. Vittorini (Eds.), Comput. Safety, Reliab. Secur.
30th Int. Conf. 2011, Naples, Italy, Sept. (2011) 19-22. Proc., Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 310–323, http://dx.doi.org/
10.1007/978-3-642-24270-0_23.

[21] A. Kibangou, A. Artikis, E. Michelioudakis, G. Paliouras, M. Schmitt, J.
Lygeros, C. Baber, N. Morar, F. Fournier, I. Skarbovsky, An Integrated and
Scalable Platform for Proactive Event-Driven Traffic Management, (2017)
1–21. http://arxiv.org/abs/1703.02810.

[22] A. Margara, J. Urbani, F. Van Harmelen, H. Bal, Streaming the Web:
Reasoning over dynamic data, J. Web Semant. 25 (2014) 24–44, http:
//dx.doi.org/10.1016/j.websem.2014.02.001.

[23] T. Patkos, D. Plexousakis, A. Chibani, Y. Amirat, An event calculus pro-
duction rule system for reasoning in dynamic and uncertain domains,
Theory Pract. Log. Program. 16 (2016) 325–352, http://dx.doi.org/10.1017/
S1471068416000065.

[24] S. Bragaglia, F. Chesani, P. Mello, M. Montali, P. Torroni, Reactive event
calculus for monitoring global computing applications, in: Lect. Notes
Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinfor-
matics), in: LNCS, vol. 7360, 2012, pp. 123–146, http://dx.doi.org/10.1007/
978-3-642-29414-3_8.

[25] I. Teinemaa, M. Dumas, F.M. Maggi, C. Di Francescomarino, Predictive
Business Process Monitoring with Structured and Unstructured Data, 2678
(2016) 1019-1019–1019. doi:http://dx.oi.org/10.1007/3-540-44895-0.

[26] F.M. Maggi, C. Di Francescomarino, M. Dumas, C. Ghidini, Predictive moni-
toring of business processes, in: Lect. Notes Comput. Sci. (Including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), in: LNCS, vol. 8484,
2014, pp. 457–472, http://dx.doi.org/10.1007/978-3-319-07881-6_31.

[27] C. Di Francescomarino, M. Dumas, F.M. Maggi, I. Teinemaa, Clustering-
based predictive process monitoring, IEEE Trans. Serv. Comput. 14 (2016)
http://dx.doi.org/10.1109/TSC.2016.2645153.

[28] A. Metzger, P. Leitner, D. Ivanovi, E. Schmieders, R. Franklin, M. Carro, S.
Dustdar, K. Pohl, Comparing and combining predictive business process
monitoring techniques andreas, IEEE Trans. Syst. Man Cybern. Syst. 45
(2015) 276–290, http://dx.doi.org/10.1109/TSMC.2014.2347265.

[29] M. Le, B. Gabrys, D. Nauck, A hybrid model for business process event
and outcome prediction, Expert Syst. 34 (2017) 1–11, http://dx.doi.org/10.
1111/exsy.12079.

[30] A. Cuzzocrea, F. Folino, M. Guarascio, L. Pontieri, Predictive monitoring
of temporally-aggregated performance indicators of business processes
against low-level streaming events, Inf. Syst. (2018) 1–31, http://dx.doi.
org/10.1016/j.is.2018.02.001.

[31] L. Cui, J. Deng, F. Liu, Y. Zhang, M. Xu, Investigation of RFID investment
in a single retailer two-supplier supply chain with random demand to
decrease inventory inaccuracy, J. Clean. Prod. 142 (2017) 2028–2044, http:
//dx.doi.org/10.1016/j.jclepro.2016.11.081.

[32] L. Cui, L. Wang, J. Deng, J. Zhang, Intelligent algorithms for a new
joint replenishment and synthetical delivery problem in a warehouse
centralized supply chain, Knowl.-Based Syst. 90 (2015) 185–198, http:
//dx.doi.org/10.1016/j.knosys.2015.09.019.

[33] L. Cui, L. Wang, J. Deng, RFID technology investment evaluation model for
the stochastic joint replenishment and delivery problem, Expert Syst. Appl.
41 (2014) 1792–1805, http://dx.doi.org/10.1016/j.eswa.2013.08.078.

http://dx.doi.org/10.1016/j.ijpe.2011.03.003
http://dx.doi.org/10.1016/j.ijpe.2011.03.003
http://dx.doi.org/10.1016/j.ijpe.2011.03.003
http://dx.doi.org/10.1108/13598540810871226
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb3
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb3
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb3
http://dx.doi.org/10.475/123
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb5
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb5
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb5
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1007/s00706-014-1316-4
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb8
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb8
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb8
http://dx.doi.org/10.1016/j.pmcj.2009.06.002
http://dx.doi.org/10.1007/978-3-642-19724-6_5
http://dx.doi.org/10.1007/978-3-642-19724-6_5
http://dx.doi.org/10.1007/978-3-642-19724-6_5
http://dx.doi.org/10.1016/j.jss.2016.06.011
http://dx.doi.org/10.1016/j.jss.2016.06.011
http://dx.doi.org/10.1016/j.jss.2016.06.011
http://dx.doi.org/10.3233/SW-2011-0053
http://dx.doi.org/10.1108/IMDS-09-2017-0384
http://dx.doi.org/10.1108/IMDS-09-2017-0384
http://dx.doi.org/10.1108/IMDS-09-2017-0384
http://dx.doi.org/10.1016/j.future.2018.02.025
http://dx.doi.org/10.1145/3106426.3109431
http://dx.doi.org/10.1145/3106426.3109431
http://dx.doi.org/10.1145/3106426.3109431
http://dx.doi.org/10.1016/j.knosys.2011.09.009
http://dx.doi.org/10.1016/j.knosys.2011.09.009
http://dx.doi.org/10.1016/j.knosys.2011.09.009
http://dx.doi.org/10.1145/2542182.2542199
http://dx.doi.org/10.1109/SCW.2006.7
http://dx.doi.org/10.1109/SCW.2006.7
http://dx.doi.org/10.1109/SCW.2006.7
http://dx.doi.org/10.1007/978-3-642-29231-6_1
http://dx.doi.org/10.1007/978-3-642-24270-0_23
http://dx.doi.org/10.1007/978-3-642-24270-0_23
http://dx.doi.org/10.1007/978-3-642-24270-0_23
http://arxiv.org/abs/1703.02810
http://dx.doi.org/10.1016/j.websem.2014.02.001
http://dx.doi.org/10.1016/j.websem.2014.02.001
http://dx.doi.org/10.1016/j.websem.2014.02.001
http://dx.doi.org/10.1017/S1471068416000065
http://dx.doi.org/10.1017/S1471068416000065
http://dx.doi.org/10.1017/S1471068416000065
http://dx.doi.org/10.1007/978-3-642-29414-3_8
http://dx.doi.org/10.1007/978-3-642-29414-3_8
http://dx.doi.org/10.1007/978-3-642-29414-3_8
http://dx.oi.org/10.1007/3-540-44895-0
http://dx.doi.org/10.1007/978-3-319-07881-6_31
http://dx.doi.org/10.1109/TSC.2016.2645153
http://dx.doi.org/10.1109/TSMC.2014.2347265
http://dx.doi.org/10.1111/exsy.12079
http://dx.doi.org/10.1111/exsy.12079
http://dx.doi.org/10.1111/exsy.12079
http://dx.doi.org/10.1016/j.is.2018.02.001
http://dx.doi.org/10.1016/j.is.2018.02.001
http://dx.doi.org/10.1016/j.is.2018.02.001
http://dx.doi.org/10.1016/j.jclepro.2016.11.081
http://dx.doi.org/10.1016/j.jclepro.2016.11.081
http://dx.doi.org/10.1016/j.jclepro.2016.11.081
http://dx.doi.org/10.1016/j.knosys.2015.09.019
http://dx.doi.org/10.1016/j.knosys.2015.09.019
http://dx.doi.org/10.1016/j.knosys.2015.09.019
http://dx.doi.org/10.1016/j.eswa.2013.08.078

146 F. Nawaz, N.K. Janjua and O.K. Hussain / Knowledge-Based Systems 180 (2019) 133–146

[34] L. Cui, J. Deng, L. Wang, M. Xu, Y. Zhang, A novel locust swarm algorithm
for the joint replenishment problem considering multiple discounts simul-
taneously, Knowl.-Based Syst. 111 (2016) 51–62, http://dx.doi.org/10.1016/
j.knosys.2016.08.007.

[35] R.A. Hemmat, A. Hafid, SLA Violation Prediction In Cloud Computing: A
Machine Learning Perspective, (2016). http://arxiv.org/abs/1611.10338.

[36] D. Ivanović, M. Carro, M. Hermenegildo, Constraint-based runtime predic-
tion of SLA violations in service orchestrations, in: Lect. Notes Comput.
Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
in: LNCS, vol. 7084, 2011, pp. 62–76, http://dx.doi.org/10.1007/978-3-642-
25535-9_5.

[37] F. Nawaz, M.R. Asadabadi, N.K. Janjua, O.K. Hussain, E. Chang, M. Saberi,
An MCDM method for cloud service selection using a Markov chain and
the best-worst method, Knowl.-Based Syst. 159 (2018) 120–131, http:
//dx.doi.org/10.1016/j.knosys.2018.06.010.

[38] F. Nawaz, O. Hussain, F.K. Hussain, N.K. Janjua, M. Saberi, E. Chang,
Proactive management of SLA violations by capturing relevant external
events in a Cloud of Things environment, Future Gener. Comput. Syst. 2019
(2019).

[39] Y. Engel, O. Etzion, Z. Feldman, A basic model for proactive event-driven
computing, in: Proc. 6th ACM Int. Conf. Distrib. Event-Based Syst. - DEBS
’12, 2012, pp. 107–118, http://dx.doi.org/10.1145/2335484.2335496.

[40] Q. Wei, Z. Jin, Service discovery for internet of things: a context-awareness
perspective, in: Proc. Fourth Asia-Pacific Symp. . . . , 2012, pp. 2–7, http:
//dx.doi.org/10.1145/2430475.2430500.

[41] E. Alevizos, A. Skarlatidis, A. Artikis, G. Paliouras, Probabilistic Complex
Event Recognition: A Survey, 2017, pp. 1–30, http://dx.doi.org/10.1145/
3117809.

[42] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Context Aware
Computing for the Internet of Things: A Survey, X, 2013, pp. 1–41, http:
//dx.doi.org/10.1109/SURV.2013.042313.00197.

[43] Q. Zhou, Y. Simmhan, V. Prasanna, Knowledge-infused and consistent
Complex Event Processing over real-time and persistent streams, Future
Gener. Comput. Syst. 76 (2017) 391–406, http://dx.doi.org/10.1016/j.future.
2016.10.030.

[44] D. Ferrucci, A. Lally, K. Verspoor, E. Nyberg, OASIS Standard - Unstructured
Information Management Architecture (UIMA) Version 1.0, Architecture,
2009.

[45] Context-aware QoS prediction for web service recommendation and selec-
tion, Expert Syst. Appl. 53 (2016) 75–86, http://dx.doi.org/10.1016/j.eswa.
2016.01.010.

[46] D. Kozen, A completeness theorem for kleene algebras and the algebra
of regular events, Inform. and Comput. 110 (1994) 366–390, http://dx.doi.
org/10.1006/inco.1994.1037.

[47] M. Shanahan, The event calculus explained, Artif. Intell. Today Recent
Trends Dev. (1999) 409–430, http://dx.doi.org/10.1007/3-540-48317-9.

[48] K.B. Korb, A.E. Nicholson, Bayesian Artificial Intelligence, second ed., CRC
Press, Inc., Boca Raton, FL, USA, 2010, 2nd ed..

[49] D. Heckerman, D.M. Chickering, D. Geiger, D.M. Chickering, Learning
Bayesian networks: The combination of knowledge and statistical data,
Mach. Learn. 20 (1995) 197–243, http://dx.doi.org/10.1007/BF00994016.

[50] C. Carlsson, M. Heikkilä, J. Mezei, Fuzzy entropy used for predictive
analytics, IEEE Int. Conf. Fuzzy Syst. 341 (2015) 187–209, http://dx.doi.
org/10.1007/978-3-319-31093-0_9.

[51] S. Sethiya, Condition Based Maintenance (CBM), Secy. to C. (2006). http:
//irsme.nic.in/files/cbm-sethiya.pdf.

http://dx.doi.org/10.1016/j.knosys.2016.08.007
http://dx.doi.org/10.1016/j.knosys.2016.08.007
http://dx.doi.org/10.1016/j.knosys.2016.08.007
http://arxiv.org/abs/1611.10338
http://dx.doi.org/10.1007/978-3-642-25535-9_5
http://dx.doi.org/10.1007/978-3-642-25535-9_5
http://dx.doi.org/10.1007/978-3-642-25535-9_5
http://dx.doi.org/10.1016/j.knosys.2018.06.010
http://dx.doi.org/10.1016/j.knosys.2018.06.010
http://dx.doi.org/10.1016/j.knosys.2018.06.010
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb38
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb38
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb38
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb38
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb38
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb38
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb38
http://dx.doi.org/10.1145/2335484.2335496
http://dx.doi.org/10.1145/2430475.2430500
http://dx.doi.org/10.1145/2430475.2430500
http://dx.doi.org/10.1145/2430475.2430500
http://dx.doi.org/10.1145/3117809
http://dx.doi.org/10.1145/3117809
http://dx.doi.org/10.1145/3117809
http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://dx.doi.org/10.1016/j.future.2016.10.030
http://dx.doi.org/10.1016/j.future.2016.10.030
http://dx.doi.org/10.1016/j.future.2016.10.030
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb44
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb44
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb44
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb44
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb44
http://dx.doi.org/10.1016/j.eswa.2016.01.010
http://dx.doi.org/10.1016/j.eswa.2016.01.010
http://dx.doi.org/10.1016/j.eswa.2016.01.010
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1007/3-540-48317-9
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb48
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb48
http://refhub.elsevier.com/S0950-7051(19)30236-9/sb48
http://dx.doi.org/10.1007/BF00994016
http://dx.doi.org/10.1007/978-3-319-31093-0_9
http://dx.doi.org/10.1007/978-3-319-31093-0_9
http://dx.doi.org/10.1007/978-3-319-31093-0_9
http://irsme.nic.in/files/cbm-sethiya.pdf
http://irsme.nic.in/files/cbm-sethiya.pdf
http://irsme.nic.in/files/cbm-sethiya.pdf

	PERCEPTUS: Predictive complex event processing and reasoning for IoT-enabled supply chain
	Introduction
	Related work
	Complex event processing
	Predictive business process monitoring
	IoT-enabled supply chain

	Proposed framework
	Semantic annotation
	Semantic complex event processing
	Complex event definition and representation
	Complex event pattern detection operators
	Complex event state composition operators

	Complex event semantics in event calculus
	Modelling an EV in event calculus
	Final state of an EV in event calculus
	Complex event pattern detection and state composition using event calculus

	Logical and probabilistic reasoning engine
	Logical reasoning
	Probabilistic inferencing

	Validation of complex event reasoning engine
	Performance evaluation
	Evaluation of the prediction quality
	Dataset description
	Model creation
	Evaluation results

	Conclusion
	Acknowledgements
	References

