2019

u

dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation
Learning

Palash Goyal

University of Southern California, Information Sciences Institute
4676 Admiralty Way, Suite 1001. Marina del Rey, CA. 90292, USA

Sujit Rokka Chhetri

University of California-Irvine
Irvine, CA. 92697, USA

Arquimedes Canedo

Siemens Corporate Technology
755 College Rd E, Princeton, NJ. 08540, USA

Abstract

™ Learning graph representations is a fundamental task aimed at capturing various properties of graphs in vector space. The most
(Nl recent methods learn such representations for static networks. However, real-world networks evolve over time and have varying
dynamics. Capturing such evolution is key to predicting the properties of unseen networks. To understand how the network
p— dynamics affect the prediction performance, we propose an embedding approach which learns the structure of evolution in dynamic
) graphs and can predict unseen links with higher precision. Our model, dyngraphZ2vec, learns the temporal transitions in the network
(/) using a deep architecture composed of dense and recurrent layers. We motivate the need for capturing dynamics for the prediction
L ,on a toy data set created using stochastic block models. We then demonstrate the efficacy of dyngraph2vec over existing state-of-
the-art methods on two real-world data sets. We observe that learning dynamics can improve the quality of embedding and yield

S
(-

265

Q

1809

2

X
S

better performance in link prediction.

Keywords: Graph embedding techniques, Graph embedding applications, Python Graph Embedding Methods GEM Library

1. Introduction

Understanding and analyzing graphs is an essential topic
that has been widely studied over the past decades. Many real-

world problems can be formulated as link predictions in graphs [[1}

2,13, 14]. For example, link prediction in an author collaboration
network [1]] can be used to predict potential future author col-
laboration. Similarly, new connections between proteins can
be discovered using protein interaction networks [5], and new
friendships can be predicted using social networks [6]]. Recent
work on obtaining such predictions use graph representation
learning. These methods represent each node in the network
with a fixed dimensional embedding and map link prediction
in the network space to the nearest neighbor search in the em-
bedding space [7]. It has been shown that such techniques can
outperform traditional link prediction methods on graphs [8}[9].

Existing works on graph representation learning primarily
focus on static graphs of two types: (i) aggregated, consisting
of all edges until time 7T'; and (ii) snapshot, which comprise of
edges at the current time step ¢. These models learn latent rep-
resentations of the static graph and use them to predict missing
links [10, (11} 12} (13} 8, 9} [14]]. However, real networks often
have complex dynamics which govern their evolution. As an

Preprint submitted to Knowledge Based Systems

Figure 1: User A breaks ties with his friend at each time step and befriends a
friend of a friend. Such temporal patterns require knowledge across multiple
time steps for accurate prediction.

illustration, consider the social network shown in Figurem In
this example, user A moves from one friend to another in such
a way that only a friend of a friend is followed and making sure
not to befriend an old friend. Methods based on static networks
can only observe the network at time ¢ + 1 and cannot ascertain
if A will befriend B or D in the next time step. Instead, observ-
ing multiple snapshots can capture the network dynamics and
predict A’s connection to D with high certainty.

In this work, we aim to capture the underlying network
dynamics of evolution. Given temporal snapshots of graphs,
our goal is to learn a representation of nodes at each time step
while capturing the dynamics such that we can predict their fu-

July 3, 2019

ture connections. Learning such representations is a challeng-
ing task. Firstly, the temporal patterns may exist over vary-
ing period lengths. For example, in Figure[I] user A may hold
to each friend for a varying k length. Secondly, different ver-
tices may have different patterns. In Figure (I} user A may
break ties with friends whereas other users continue with their
ties. Capturing such variations is extremely challenging. Ex-
isting research builds upon simplified assumptions to overcome
these challenges. Methods including DynamicTriad [15], Dyn-
GEM [16] and TIMERS [17] assume that the patterns are of
short duration (length 2) and only consider the previous time
step graph to predict new links. Furthermore, DynGEM and
TIMERS make the assumption that the changes are smooth and
use a regularization to disallow rapid changes.

In this work, we present a model which overcomes the above
challenges. dyngraph2vec uses multiple non-linear layers to
learn structural patterns in each network. Furthermore, it uses
recurrent layers to learn the temporal transitions in the network.
The look back parameter in the recurrent layers controls the
length of temporal patterns learned. We focus our experiments
on the task of link prediction. We compare dyngraph2vec with
the state-of-the-art algorithms for dynamic graph embedding
and show its performance on several real-world networks in-
cluding collaboration networks and social networks. Our exper-
iments show that using a deep model with recurrent layers can
capture temporal dynamics of the networks and significantly
outperform the state-of-the-art methods on link prediction. We
emphasize that our work is targeted towards link prediction and
not node classification. Furthermore, our algorithm works on
both aggregated and snapshot temporal graphs.

Overall, our paper makes the following contributions:

1. We propose dyngraph2vec, a dynamic graph embedding
model which captures temporal dynamics.

2. We demonstrate that capturing network dynamics can sig-
nificantly improve the performance on link prediction.

3. We present variations of our model to show the key ad-
vantages and differences.

4. We publish a library, DynamicGEM B implementing the
variations of our model and state-of-the-art dynamic em-
bedding approaches.

2. Related Work

Graph representation learning techniques can be broadly di-
vided into two categories: (i) static graph embedding, which
represents each node in the graph with a single vector; and (ii)
dynamic graph embedding, which considers multiple snapshots
of a graph and obtains a time series of vectors for each node.
Most analysis has been done on static graph embedding. Re-
cently, however, some works have been devoted to studying dy-
namic graph embedding.

Thttps://github.com/palash1992/DynamicGEM

2.1. Static Graph Embedding

Methods to represent nodes of a graph typically aim to pre-
serve certain properties of the original graph in the embedding
space. Based on this observation, methods can be divided into
(i) distance preserving, and (ii) structure preserving. Distance
preserving methods devise objective functions such that the dis-
tance between nodes in the original graph and the embedding
space have similar rankings. For example, Laplacian Eigen-
maps [18] minimizes the sum of the distance between the em-
beddings of neighboring nodes under the constraints of trans-
lational invariance, thus keeping the nodes close in the embed-
ding space. Similarly, Graph Factorization [10] approximates
the edge weight with the dot product of the nodes’ embeddings,
thus preserving distance in the inner product space. Recent
methods have gone further to preserve higher order distances.
Higher Order Proximity Embedding (HOPE) [9] uses multiple
higher-order functions to compute a similarity matrix from a
graph’s adjacency matrix and uses Singular Value Decomposi-
tion (SVD) to learn the representation. GraRep [12] considers
the node transition matrix and its higher powers to construct a
similarity matrix.

On the other hand, structure-preserving methods aim to pre-
serve the roles of individual nodes in the graph. node2vec [8]]
uses a combination of breadth-first search and depth-first search
to find nodes similar to a node in terms of distance and role. Re-
cently, deep learning methods to learn network representations
have been proposed. These methods inherently preserve the
higher order graph properties including distance and structure.
SDNE [19], DNGR [20] and VGAE [21] use deep autoencoders
for this purpose. Some other recent approaches use graph con-
volutional networks to learn inherent graph structure [22] 23]
24].

2.2. Dynamic Graph Embedding

Embedding dynamic graphs is an emerging topic still un-
der investigation. Some methods have been proposed to ex-
tend static graph embedding approaches by adding regulariza-
tion [25/[17]. DynGEM [26]] uses the learned embedding from
previous time step graphs to initialize the current time step em-
bedding. Although it does not explicitly use regularization,
such initialization implicitly keeps the new embedding close to
the previous. DynamicTriad [15] relaxes the temporal smooth-
ness assumption but only considers patterns spanning two-time
steps. TIMERS [[17] incrementally updates the embedding us-
ing incremental Singular Value Decomposition (SVD) and re-
runs SVD when the error increases above a threshold.

DYLINK2VEC [27]] learns embedding of links (node pairs
instead of nodes) and uses temporal functions to learn patterns
over time.

Link embedding renders the method non-scalable for graphs
with high density. Our model uses recurrent layers to learn tem-
poral patterns over long sequences of graphs and multiple fully
connected layer to capture intricate patterns at each time step.

2.3. Dynamic Link Prediction

Several methods have been proposed on dynamic link pre-
diction without emphasis on graph embedding. Many of these
methods use probabilistic non-parametric approaches [28], 29].
NonParam [28] uses kernel functions to model the dynamics
of individual node features influenced by the neighbor features.
Another class of algorithms uses matrix and tensor factoriza-
tions to model link dynamics [30, 31]. Further, many dynamic
link prediction models have been proposed for specific appli-
cations including recommendation systems [32] and attributed
graphs [33]. These methods often have assumptions about the
inherent structure of the network and require node attributes.
Our model, however, extends the traditional graph embedding
framework to capture network dynamics.

3. Motivating Example

We consider a toy example to motivate the idea of cap-
turing network dynamics. Consider an evolution of graph G,
G = {G1,..,Gr}, where G, represents the state of graph at time
t. The initial graph G is generated using the Stochastic Block
Model [34] with 2 communities (represented by colors indigo
and yellow in Figure[3), each with 500 nodes (the figure shows
a total of 50 nodes for ease of visualization). The in-block and
cross-block probabilities are set to 0.1 and 0.01 respectively.
The evolution pattern can be defined as a three-step process.
In the first step (shown in Figure [3(a)), we randomly and uni-
formly select 10 nodes (colored red in Figure [3| which shows 2
of these nodes) from the yellow community. In step two (shown
in Figure[3(b)), we randomly add 30 edges between each of the

20 15 -10 -5 0 5 10

—-20 0

50

20

20

0 50 —20

(d) dyngraph2vecAE

(e) dyngraph2vecRNN

selected nodes in step one and random nodes in the Indigo com-
munity. This is similar to having more than cross-block proba-
bility but less than in-block probability. In step three (shown in
Figure 3c)), the community membership of the nodes selected
in step 2 is changed from yellow to indigo. Similarly, the edges
(colored red in Figure [3) are either removed or added to reflect
the cross-block and in-block connection probabilities. Then, for
the next time step (shown in Figure [3(d)), the same three steps
are repeated to evolve the graph. Informally, this can be inter-
preted as a two-step movement of users from one community to
another by initially increasing friends in the other community

and subsequently moving to it.
Our task is to learn the embeddings predictive of the change

in community of the 10 nodes. Figure [2] shows the results of
the state-of-the-art dynamic graph embedding techniques (Dyn-
GEM, optimalSVD, and DynamicTriad) and the three variations
of our model: dyngraph2vecAE, dyngraph2vecRNN and dyn-
graph2vecAERNN (see Methodology Section for the descrip-
tion of the methods). Figure 2] shows the embeddings of nodes
after the first step of evolution. The nodes selected for com-
munity shift are colored in red. We show the results for 4 runs
of the model to ensure robustness. Figure 2Ja) shows that Dyn-
GEM brings the red nodes closer to the edge of the yellow com-
munity but does not move any of the nodes to the other commu-
nity. Similarly, DynamicTriad results in Figure[2{c) show that it
only shifts 1 to 4 nodes to its actual community in the next step.
The optimalSVD method in Figure [2|b) is not able to shift any
nodes. However, our dyngraph2vecAE and dyngraph2vecRNN,
and dyngraph2vecAERNN (shown in Figure [2(d-f)) success-
fully capture the dynamics and move the embedding of most

15 -10 -5 0 5 10 60 20 40 60 30 20

(c) DynamicTriad

4

10-30-20-10 0 10 20 30 40

—60- .
—40 —30

—-20 0

20

20 10 0 10 20 30 —30-40-30-20-10 0 10 20 30 40

(f) dyngraph2vecAERNN

Figure 2: Motivating example of network evolution - community shift.

3

12 ' ' ' ' ' o120

1.0 - -9 - 1.0-
...\ - 02.0:0.
=901 %
08 - Z93=<Ce 0.8
. s=—C e
0.6 - o oo 0.6
o
0.4 0.4
@
0.2 S, 0.2
0.0 . o 0.0

0.4 -

0.2 -

0.0 - L3
=02 - - =024 -
02 00 02 04,06 08 10 12

(©) ' (d)

Figure 3: Motivating example of network evolution - community shift (for clar-
ity, only showing 50 of 500 nodes and 2 out 10 migrating nodes).

of the 10 selected nodes to the indigo community, keeping the
rest of the nodes intact. This shows that capturing dynamics is
critical in understanding the evolution of networks.

4. Methodology

In this section, we define the problem statement. We then
explain multiple variations of deep learning models capable of
capturing temporal patterns in dynamic graphs. Finally, we de-
sign the loss functions and optimization approach.

4.1. Problem Statement

Consider a weighted graph G(V, E), with V and E as the
set of vertices and edges respectively. We denote the adjacency
matrix of G by A, i.e. for an edge (i, j) € E, A;; denotes its
weight, else A;; = 0. An evolution of graph G is denoted as
G = {G1,..,Gr}, where G, represents the state of graph at time
t.

We define our problem as follows: Given an evolution of
graph G, G, we aim to represent each node v in a series of low-
dimensional vector space y,,, . ..y, wherey, is the embedding
of node v at time t, by learning mappings f; : {V1,...,V;, Eq, ..
RY and W, = fivi,...,vi, E1, ... E;) such that y,, can capture
temporal patterns required to predict y,, . In other words, the
embedding function at each time step uses information from
graph evolution to capture network dynamics and can thus pre-
dict links with higher precision.

4.2. dyngraph2vec

Our dyngraph2vec is a deep learning model that takes as in-
put a set of previous graphs and generates as output the graph
at the next time step, thus capturing highly non-linear interac-
tions between vertices at each time step and across multiple
time steps. Since the embedding values capture the temporal
evolution of the links, it allows us to predict the next time step

Algorithm 1: dyngraph2vec

Function dyngraph2vec (Graphs G = {Gy, ..,Gr},
Dimension d, Look back Ib)
Generate adjacency matrices A from G;
¥ « Randomlnit();
Set ¥ = {(A;,)} foreachu € V, for each r € {1..t};
for iter =1...1do
M « getArchitecturelnput(¥, Ib);
Choose L based on the architecture used;
grad <« 0L/09,
? « UpdateGradient(:}, grad);

Y « EncoderForwardPass(G,);
L return Y

graph link. The model learns the network embedding at time
step ¢ by optimizing the following loss function:

Ly = ||(At+l+l — A1) O B”%:,

(1
= (f(Aps - Ast) = Ari) © Bll7..

Here we penalize the incorrect reconstruction of edges at time
t+1+1 by using the embedding at time step 7+/. Minimizing this
loss function enforces the parameters to be tuned such that it can
capture evolving patterns relations between nodes to predict the
edges at a future time step. The embedding at time step +d is a
function of the graphs at time steps #, 1+ 1, ..., t+/ where [is the
temporal look back. We use a weighting matrix 8B to weight the
reconstruction of observed edges higher than unobserved links
as traditionally used in the literature [19]. Here, 8;; = g for
(i, j) € E41, else 1, where B is a hyperparameter controlling
the weight of penalizing observed edges. Note that © represents
elementwise product.

We propose three variations of our model based on the
architecture of deep learning models as shown in Figure [
(i) dyngraph2vecAE, (ii) dyngraph2vecRNN, and (iii) dyn-
graph2vecAERNN. Our three methods differ in the formulation
of the function f(.). dyngraph2vecAE extends the autoencoders
to the dynamic setting in a straightforward manner. Therefore,
we overcome the limitations of capturing temporal information
and the high number of model parameters through a newly pro-

-Ei} Posed dyngraph2vecRNN and dyngraph2vecAERNN.

A simple way to extend the autoencoders traditionally used
to embed static graphs [19] to temporal graphs is to add the in-
formation about previous / graphs as input to the autoencoder.
This model (dyngraph2vecAE) thus uses multiple fully con-
nected layers to model the interconnection of nodes within and
across time. Concretely, for a node u# with neighborhood vector
set u1 ; = [ay,,...,ay,], the hidden representation of the first
layer is learned as:

Y = LW huy, + b D),)

where f, is the activation function, WSE e R and d,
and / are the dimensions of representation learned by the first
layer, number of nodes in the graph, and look back, respec-

Predicted Graph

Predicted Graph
IA P Predicted Graph .y t+l+1 =
t+l+1 f NI
N
,,,,,,,,, e o o R W
5 (LSTM H LSTM }——— LSTM j } Lg g =
Id = I &G S | 3
3 S A A A 125 = | 3
= S 152 S 3
[S] QL J 1 8.8 S N
N S 123 3| E
S = S8 P W B -
; : Bl e
SN W W Y Embedding N §.Embedding-. | L. W W i
g (e Space ‘, ‘ \\L Space t }
|
Embedding of (Ac) | Eqﬂ bedding of (Acs)) S !
|
— 4 ! T y .
2 | ‘ | S
) \] E
= [% 3
S 5 4 T =
£ S 118 g
) S [3
S = 125
QL <3 | S E
R (s f f
S = 1§35 ¢
V} ! S & % XX]
~ A N A A 3 =3
[| | gl i
S
At AGt,,l ;o o Al Ac At LX) Acil Q T s T ?
rapns
P Graphs A¢ At Xy At

(a) Dynamic Graph to Vector Auto
Encoder (dyngraph2vecAE)

(b) Dynamic Graph to Vector Recurrent
Neural Network (dyngraph2vecRNN)

(c) Dynamic Graph to Vector Autoenncoder
Recurrent Neural Network (dyngraph2vecAERNN)

Figure 4: dyngraph2vec architecture variations for dynamic graph embedding.

tively. The representation of the k" layer is defined as:
W = Wiy + 50, 3)

Note that dyngraph2vecAE has O(nid") parameters. As most
real-world graphs are sparse, learning the parameters can be
challenging.

To reduce the number of model parameters and
achieve a more efficient temporal learning, we propose
dyngraph2vecRNN and dyngraph2vecAERNN. In dyn-
graph2vecRNN we use sparsely connected Long Short Term
Memory (LSTM) networks to learn the embedding. LSTM is a
type of Recurrent Neural Network (RNN) capable of handling
long-term dependency problems. In dynamic graphs, there can
be long-term dependencies which may not be captured by fully
connected auto-encoders. The hidden state representation of a
single LSTM network is defined as:

¥ = o) tanh(C() (4a)
oM = o (Wi V2 Luy 1+ BD) (4b)
Ch = (04 D 4D 5 ¢V (4¢)
C) = tanh(W .y, iy, + BV (4d)

O =Wy L up]+ b (4e)

f;(l) — O'(W(l) [y(l) up,

U U1

) (4f)

where C,, represents the cell states of LSTM, f,, is the value to
trigger the forget gate, o, is the value to trigger the output gate,
iy, represents the value to trigger the update gate of the LSTM,
C,, represents the new estimated candidate state, and b repre-
sents the biases. There can be / LSTM networks connected in
the first layer, where the cell states and hidden representation
are passed in a chain from ¢ — / to t LSTM networks. The rep-
resentation of the k" layer is then given as follows:

® = o) « tanh(C) (Sa)

Ur

Yu,
(k) — Uu,(W(k)N[y(k) ’)’u, 1)] + b(k)) (5b)

Ur-1

The problem with passing the sparse neighbourhood vector u; ;, =
la,,, - ..,ay,,] of node u to the LSTM network is that the LSTM
model parameters (such as the number of memory cells, num-
ber of input units, output units, etc.) needed to learn a low
dimension representation become large. Rather, the LSTM net-
work may be able to better learn the temporal representation
if the sparse neighbourhood vector is reduced to a low dimen-
sion representation. To achieve this, we propose a variation
of dyngraph2vec model called dyngraph2vecAERNN. In dyn-
graph2vecAERNN instead of passing the sparse neighbourhood
vector, we use a fully connected encoder to initially acquire low
dimensional hidden representation given as follows:

yﬁ,’,’) fa(W(p)RNNy;p 1y} + b(p)). (6)

where p represents the output layer of the fully connected en-

coder. This representation is then passed to the LSTM net-
works.
Y = oD s tanh(CPHY) (7a)
1 1 1 1
o™ = Wi i P+ BT (7b)

Then the hidden representation generated by the LSTM net-
work is passed to a fully connected decoder.

4.3. Optimization

We optimize the loss function defined above to get the op-
timal model parameters. By applying the gradient with respect
to the decoder weights on equation[T} we get:

oL, 3 f(YKDWE 4 p®0)

i = 21 = A 0 Bl pg

s

where WX is the weight matrix of the penultimate layer for all
the three models. For each individual model, we back propagate
the gradients based on the neural units to get the derivatives for
all previous layers. For the LSTM based dyngraph2vec mod-
els, back propagation through time is performed to update the
weights of the LSTM networks.

After obtaining the derivatives, we optimize the model us-
ing stochastic gradient descent (SGD) [35] with Adaptive Mo-
ment Estimation (Adam)[36]]. The algorithm is specified in Al-

gorithm

5. Experiments

In this section, we describe the data sets used and estab-
lish the baselines for comparison. Furthermore, we define the
evaluation metrics for our experiments and parameter settings.
All the experiments were performed on a 64 bit Ubuntu 16.04.1
LTS system with Intel (R) Core (TM) i9-7900X CPU with 19
processors, 10 CPU cores, 3.30 GHz CPU clock frequency, 64
GB RAM, and two Nvidia Titan X, each with 12 GB memory.

Table 1: Dataset Statistics

Name | SBM | Hep-th AS
Nodes n 1000 | 150-14446 | 7716
Edges m 56016 | 268-48274 | 487-26467
Time steps T 10 136 733

5.1. Datasets

We conduct experiments on two real-world datasets and a
synthetic dataset to evaluate our proposed algorithm. We as-
sume that the proposed models are aware of all the nodes, and

that no new nodes are introduced in subsequent time steps. Rather,

the links between the existing nodes change with a certain tem-
poral pattern. The datasets are summarized in Table T}

Stochastic Block Model (SBM) - community diminishing:
In order to test the performance of various static and dynamic
graph embedding algorithms, we generated synthetic SBM data
with two communities and a total of 1000 nodes. The cross-
block connectivity probability is 0.01 and in-block connectivity
probability is set to 0.1. One of the communities is continuously
diminished by migrating the 10-20 nodes to the other commu-
nity. A total of 10 dynamic graphs are generated for the eval-
uation. Since SBM is a synthetic dataset, there is no notion of
time steps..

Hep-th [[1]: The first real-world data set used to test the dy-
namic graph embedding algorithms is the collaboration graph
of authors in High Energy Physics Theory conference. The
original data set contains abstracts of papers in High Energy
Physics Theory conference in the period from January 1993 to
April 2003. Hence, the resolution of the time step is one month.
This graph is aggregated over the months. For our evaluation,
we consider the last 50 snapshots of this dataset. From this
dataset 2000 nodes are sampled for training and testing the pro-
posed models.

Autonomous Systems (AS) [37]: The second real-world dataset
utilized is a communication network of who-talks-to-whom from
the BGP (Border Gateway Protocol) logs. The dataset contains
733 instances spanning from November 8, 1997, to January 2,

2000. Hence, the resolution of time step for the AS dataset is
one month. However, they are snapshots of each month instead
of an aggregation as in Hep-th. For our evaluation, we consider
a subset of this dataset which contains the last 50 snapshots.
From this dataset 2000 nodes are sampled for training and test-
ing the proposed models.

5.2. Baselines

We compare our model with the following state-of-the-art
static and dynamic graph embedding methods:

o Optimal Singular Value Decomposition
(OptimalSVD) [38]: It uses the singular value de-
composition of the adjacency matrix or its variation (i.e.,
the transition matrix) to represent the individual nodes
in the graph. The low rank SVD decomposition with
largest d singular values are then used for graph structure
matching, clustering, etc.

o [ncremental Singular Value Decomposition
(IncSVD) [39]: It utilizes a perturbation matrix
which captures the changing dynamics of the graphs and
performs additive modification on the SVD.

e Rerun Singular Value Decomposition (RerunSVD or
TIMERS) [17]: It utilizes the incremental SVD to get the
dynamic graph embedding, however, it also uses a tol-
erance threshold to restart the optimal SVD calculation
when the incremental graph embedding starts to deviate.

e Dynamic Embedding using Dynamic Triad Closure Pro-
cess (dynamicTriad) [15]: It utilizes the triadic closure
process to generate a graph embedding that preserves
structural and evolution patterns of the graph.

e Deep Embedding Method for Dynamic Graphs
(dynGEM) [16]: It utilizes deep auto-encoders to
incrementally generate embedding of a dynamic graph at
snapshot 7 by using only the snapshot at time # — 1.

5.3. Evaluation Metrics

In our experiments, we evaluate our model on link pre-
diction at time step ¢ + 1 by using all graphs until the time
step t . We use Mean Average Precision (MAP) as our met-
rics. precision@k is the fraction of correct predictions in the
top k predictions. It is defined as P@k = W where
E,req and E,, are the predicted and ground truth edges respec-
tively. MAP averages the precision over all nodes. It can be

. > AP(i) o _ 2 precision@k()-{E preq, (K)EE, }
written as <7r— where AP(i) = By (OEg) and
|E pred; (1:k)NEgy, |

precision@k(i) = . P@k values are used to test
the top predictions made by the model. MAP values are more
robust and average the predictions for all nodes. High MAP val-
ues imply that the model can make good predictions for most
nodes.

6. Results and Analysis

In this section, we present the performance result of various
models for link prediction on different datasets. We train the
model on graphs from time step 7 to ¢ + [where [is the look-
back of the model, and predict the links of the graph at time
step t+ [+ 1. The lookback / is a model hyperparameter. For an
evolving graph with T steps, we perform the above prediction
from T'/2 to T and report the average MAP of link prediction.
Furthermore, we also present the performance of models when
an increasing length of the graph sequence are provided in the
training data. Unless explicitly mentioned, for the models con-
sisting of recurrent neural network, a lookback value of 3 is
used for the training and testing purpose.

14- incSVD B dynGEM
B rerunSVD B dyngraph2vecAE

1.2 BN optimalSVD B dyngraph2vecRNN
a 10 B dynTriad B dyngraph2vecAERNN 7
<
= 0.8-
c
3
S 06-

=}
=

=]
bo

0-
256

128
Embedding Size

Figure 5: MAP values for the SBM dataset.

6.1. SBM Dataset

The MAP values for various algorithms with SBM dataset
with a diminishing community is shown in Figure 5] The
MAP values shown are for link prediction with embedding sizes
64, 128 and 256. This figure shows that our methods dyn-
graph2vecAE, dyngraph2vecRNN and dyngraph2vecAERNN
all have higher MAP values compared to the rest of the base-
lines except for dynGEM. The dynGEM algorithm is able to
have higher MAP values than all the algorithms. This is due to
the fact that dynGEM also generates the embedding of the graph
at snapshot 7+ 1 using the graph at snapshot ¢. Since in our SBM
dataset the node-migration criteria are introduced only one-time
step earlier, the dynGEM node embedding technique is able to
capture these dynamics. However, the proposed dyngraph2vec
methods also achieve average MAP values within +1.5% of the
MAP values achieved by dynGEM. Notice that the MAP val-
ues of SVD based methods increase as the embedding size in-
creases. However, this is not the case for dynTriad.

6.2. Hep-th Dataset

The link prediction results for the Hep-th dataset is shown
in Figure [6| The proposed dyngraph2vec algorithms outper-
form all the other state-of-the-art static and dynamic algo-
rithms. Among the proposed algorithms, dyngraph2vecAERNN
has the highest MAP values, followed by dyngraph2vecRNN
and dyngraph2vecAE, respectively. The dynamicTriad is able
to perform better than the SVD based algorithms. Notice

incSVD e dynGEM
s rerunSVD B dyngraph2vecAE
08 B optimalSVD B dyngraph2vecRNN
B dynTriad B dyngraph2vecAERNN

E::

Mean MAP

o

128
Embedding Size
Figure 6: MAP values for the Hep-th dataset.

that dynGEM 1is not able to have higher MAP values than
the dyngraph2vec algorithms in the Hep-th dataset. Since dyn-
graph2vec utilizes not only 7— 1 but —/—1 time-steps to predict
the link for the time-step ¢, it has higher performance compared
to other state-of-the-art algorithms.

incSVD s dynGEM
rerunSVD B dyngraph2vecAE
|
|

=
o

optimalSVD dyngraph2vecRNN
dynTriad dyngraph2vecAERNN -

a- |II||I| IIIII|| IIIIIIl

128 256
Embedding Size

Figure 7: MAP values for the AS dataset.

Mean MAP
i1l

=)
o

=}
-

(

6.3. AS Dataset

The MAP value for link prediction with various algorithms
for the AS dataset is shown in Figure[7] dyngraph2vecAERNN
outperforms all the state-of-the-art algorithms. The algorithm
with the second highest MAP score is dyngraph2vecRNN. How-
ever, dyngraph2vecAE has a higher MAP only with a lower em-
bedding of size 64. SVD methods are able to improve their
MAP values by increasing the embedding size. However, they
are not able to outperform the dyngraph2vec algorithms.

6.4. MAP exploration

The summary of MAP values for different embedding sizes
(64, 128 and 256) for different datasets is presented in Table
[l The top three highest MAP values are highlighted in bold.
For the synthetic SBM dataset, the top three algorithms with
highest MAP values are dynGEM, dyngraph2VecAERNN, and
dyngraph2vecRNN, respectively. Since the change pattern for
the SBM dataset is introduced only at timestep 1— 1, dynGEM is
able to better predict the links. The model architecture of dyn-
GEM and dyngraph2vecAE are only different on what data are
fed to train the model. In dyngraph2vecAE, we essentially feed
more data depending on the size of the lookback. The lookback
size increases the model complexity. Since the SBM dataset

doesn’t have temporal patterns evolving for more than one-time
steps, the dyngraph2vec models are only able to achieve com-
parable but not better result compared to dynGEM.

Table 2: Average MAP values over different embedding sizes.

Average MAP
Method SBM | Hepth [AS
IncrementalSVD 0.4421 0.2518 0.1452
rerunSVD 0.5474 0.2541 0.1607
optimalSVD 0.5831 0.2419 0.1152
dynamicTriad 0.1509 0.3606 0.0677
dynGEM 0.9648 0.2587 0.0975
dyngraph2vecAE (1b=3) 0.9500 0.3951 0.1825
dyngraph2vecAE (Ib=5) - 0.512 0.2800
dyngraph2vecRNN (1b=3) 0.9567 0.5451 0.2350
dyngraph2vecRNN - 0.7290 (1b=8) | 0.313 (Ib=10)
dyngraph2vecAERNN (1b=3) || 0.9581 0.5952 0.3274
dyngraph2vecAERNN 0.739 (1Ib=8) | 0.3801 (1b=10)

Ib = Lookback value

For the Hep-th dataset, the top three algorithm with high-
est MAP values are dyngraph2VecAERNN, dyngraph2VecRNN,
and dyngraph2VecAE, respectively. In fact, compared to the
state-of-the-art algorithm dynamicTriad, the proposed models
dyngraph2VecAERNN (with lookback=8), dyngraph2VecRNN
(with lookback=8)), and dyngraph2VecAE(with lookback=5)
obtain ~105%, ~102%, and ~42% higher average MAP values,
respectively.

For the AS dataset, the top three algorithm with high-
est MAP values are dyngraph2VecAERNN, dyngraph2VecRNN,
and dyngraph2VecAE, respectively. Compared to the
state-of-the-art rerunSVD algorithm, the proposed models
dyngraph2VecAERNN (with lookback=10), dyngraph2VecRNN
(with lookback=10), and dyngraph2VecAE (with lookback=5)
obtain ~137%, ~95%, and ~74% higher average MAP values,
respectively.

These results show that the dyngraph2vec variants are able
to capture the graph dynamics much better than most of the
state-of-the-art algorithms in general.

6.5. Hyper-parameter Sensitivity: Lookback

One of the important parameters for time-series analysis is
how much in the past the method looks to predict the future.
To analyze the effect of look back on the MAP score we have
trained the dyngraph2Vec algorithms with various look back
values. The embedding dimension is fixed to 128. The look
back size is varied from 1 to 10. We then tested the change in
MAP values with the real word datasets AS and Hep-th.

Performance of dyngraph2Vec algorithms with various look-
back values for the Hep-th dataset is presented in Figure [§] It
can be noticed that increasing lookback values consistently in-
crease the average MAP values. Moreover, it is interesting to
notice that dyngraph2VecAE although has increased in perfor-
mance until lookback size of 8, its performance is decreased
for lookback value of 10. Since it does not have memory units
to store the temporal patterns like the recurrent variations, it
relies solely on the fully connected dense layers to encode to
the pattern. This seems rather ineffective compared to the dyn-
graph2VecRNN and dyngraph2vecAERNN for the Hep-th dataset.

1.0
M dyngraph2vecAE

(0.8 ®== dyngraph2vecRNN
% Emm dyngraph2vecAERNN
= 0.6
[—
3
0.2 II I I
1 2 3 4 5 6 8 10

Lookback numbers

Figure 8: Mean MAP values for various lookback numbers for Hep-th dataset.

The highest MAP values achieved if by dyngraph2vecAERNN
is 0.739 for the lookback size of 8.

0.6
M dyngraph2vecAE
B dyngraph2vecRNN
% 0.4 B dyngraph2vecAERNN
=
§ | |
o ol
1 2 3 4 5 6 8 10

Lookback numbers

Figure 9: Mean MAP values for various lookback numbers for AS dataset.

Similarly, the performance of the proposed models while
changing the lookback size for AS dataset is presented in Fig-
ure[9] The average MAP values also increase with the increas-
ing lookback size in the AS dataset. The highest MAP value
of 0.3801 is again achieved by dyngraph2vecAERNN with the
lookback size of 10. The dyngraph2vecAE model, initially,
has comparable and sometimes even higher MAP value with
respect to dyngraph2vecRNN. However, it can be noticed that
for the lookback size of 10, the dyngraph2vecRNN outperforms
dyngraph2vecAE model consisting of just the fully connected
neural networks. In fact, the MAP value does not increase after
the lookback size of 5 for dyngraph2vecAE.

6.6. Length of training sequence versus MAP value

In this section, we present the impact of length of graph
sequence supplied to the models during training on its perfor-
mance. In order to conduct this experiment, the graph sequence
provided as training data is increased one step at a time. Hence,
we use graph sequence of length 1 tot € [T, T + 1,T +2,T +
3,...,T + n] to predict the links for graph at time step ¢ €
[T+1, T+2,...,T +n+ 1], where T > lookback. The ex-
periment is performed on Hep-th and AS dataset with a fixed
lookback size of 8. The total sequence of data is 50 and it is
split between 25 for training and 25 for testing. Hence, in the
experiment the training data sequence increases from total of
25 sequence to 49 graph sequence. The results in Figure[T0]and
[[T]shows the average MAP values for predicting the links start-
ing the graph sequence at 26" to all the way to 50 time-step.
Where each time step represents a month.

The result of increasing the amount of graph sequence in
training data for Hep-th dataset is shown in Figure [T0} It can

[N=Nelog_N-8-0-8-g-g—n-0-n-g—g-u-5-0-E-

| B R B

R — A R = A = A X —x—X—X
0.7
13) Algorithm
< —@— dyngraph2vecAE
% 0.6 —#— dyngraph2vecRNN
s dyngraph2vecAERNN
VS

)
® o— 0 -0, —0—0—0""“¢-0-®
0.5 o-._.‘./’\./ <o’ ®~e—o-°

25 30 35 40 45 50
Training Data

Figure 10: MAP value with increasing amount of temporal graphs added in the
training data for Hep-th dataset (lookback = 8).

be noticed that for both the RNN and AERNN the increasing
amount of graph sequence in the data does not drastically in-
crease the MAP value. For, dyngraph2vecAE there is a slight
increase in the MAP value towards the end.

0.4

0.3 r\x/"

MAP Value

° o~

0.2 ./'~-—-~.f°/\"/ ‘

® Algorithm
—®— dyngraph2vecAE
—%— dyngraph2vecRNN
dyngraph2vecAERNN

25 30 35 40 45 50
Training Data

Figure 11: MAP value with increasing amount of temporal graphs added in the
training data for AS dataset (lookback = 8).

On the other hand, increasing the amount of graph sequence
for the AS dataset during training gives a gradual improvement
in link prediction performance in the testing phase. However,
they start converging eventually after seeing 80% (total of 40
graph sequence) of the sequence data.

7. Discussion

Model Variation: It can be observed that among different
proposed models, the recurrent variation was capable of achiev-
ing higher average MAP values. These architectures are effi-
cient in learning short and long term temporal patterns and pro-
vide an edge in learning the temporal evolution of the graphs
compared to the fully connected neural networks without re-
current units.

Dataset: We observe that depending on the dataset, the
same model architecture provides different performance. Due
to the nature of data, it may have different temporal patterns,
periodic, semi-periodic, stationary, etc. Hence, to capture all
these patterns, we found out that the models have to be tuned
specifically to the dataset.

Sampling: One of the weakness of the proposed algorithms
is that the model size (in terms of the number of weights to be
trained) increases based on the size of the nodes considered dur-
ing the training phase. To overcome this, the nodes have been
sampled. Currently, we utilize uniform sampling of the nodes

to mitigate this issue. However, we believe that a better sam-
pling scheme that is aware of the graph properties may further
improve its performance.

Large Lookbacks: While it is desirable to test large look-
back values for learning the temporal evolution with the current
hardware resources, we constantly ran into resource exhausted
error with lookbacks greater than 10. (especially for

8. Future Work

Other Datasets: We have validated our algorithms with a
synthetic dynamic SBM and two real-world datasets including
Hep-th and AS. We leave the test on further datasets as future
work.

Hyper-parameters: Currently, we provided the evaluation
of the proposed algorithm with embedding size of 64, 128 and
256. We leave the exhaustive evaluation of the proposed algo-
rithms for broader ranges of embedding size and look back size
for future work.

Evaluation: We have demonstrated the effectiveness of the
proposed algorithms for predicting the links of the next time
step. However, in dynamic graph networks, there are various
evaluations such as node classification that can be performed.
We leave them as our future work.

Evolving communities: In real world graphs, communities
often grow or shrink in terms of number of nodes per com-
munity, and in terms of total number of communities. Using
inductive methods to handle such cases is an interesting future
work.

9. Conclusion

This paper introduced dyngraph2vec, a model for captur-
ing temporal patterns in dynamic networks. It learns the evo-
lution patterns of individual nodes and provides an embedding
capable of predicting future links with higher precision. We
propose three variations of our model based on the architecture
with varying capabilities. The experiments show that our model
can capture temporal patterns on synthetic and real datasets and
outperform state-of-the-art methods in link prediction. There
are several directions for future work: (1) interpretability by
extending the model to provide more insight into network dy-
namics and better understand temporal dynamics; (2) automatic
hyperparameter optimization for higher accuracy; and (3) graph
convolutions to learn from node attributes and reduce the num-
ber of parameters.

References

References

[1] J. Gehrke, P. Ginsparg, J. Kleinberg, Overview of the 2003 kdd cup, ACM
SIGKDD Explorations 5 (2).

[2] L. C. Freeman, Visualizing social networks, Journal of social structure
1 (1) (2000) 4.

[3] A. Theocharidis, S. Van Dongen, A. Enright, T. Freeman, Network visu-
alization and analysis of gene expression data using biolayout express3d,
Nature protocols 4 (2009) 1535-1550.

[4]

[5]

(6]
(7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
(16]
(17]
[18]

[19]

(20]

(21]

(22]

P. Goyal, A. Sapienza, E. Ferrara, Recommending teammates with deep
neural networks, in: Proceedings of the 29th on Hypertext and Social
Media, ACM, 2018, pp. 57-61.

G. A. Pavlopoulos, A.-L. Wegener, R. Schneider, A survey of visualiza-
tion tools for biological network analysis, Biodata mining 1 (1) (2008)
12.

S. Wasserman, K. Faust, Social network analysis: Methods and applica-
tions, Vol. 8, Cambridge university press, 1994.

P. Goyal, E. Ferrara, Graph embedding techniques, applica-
tions, and performance: A survey, Knowledge-Based Sys-
temsdoi:https://doi.org/10.1016/j.knosys.2018.03.022|
URL http://www.sciencedirect.com/science/article/pii/
S0950705118301540

A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks,
in: Proceedings of the 22nd International Conference on Knowledge Dis-
covery and Data Mining, ACM, 2016, pp. 855-864.

M. Ou, P. Cui, J. Pei, Z. Zhang, W. Zhu, Asymmetric transitivity preserv-
ing graph embedding, in: Proc. of ACM SIGKDD, 2016, pp. 1105-1114.
A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, A. J.
Smola, Distributed large-scale natural graph factorization, in: Proceed-
ings of the 22nd international conference on World Wide Web, ACM,
2013, pp. 37-48.

B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social
representations, in: Proceedings 20th international conference on Knowl-
edge discovery and data mining, 2014, pp. 701-710.

S. Cao, W. Lu, Q. Xu, Grarep: Learning graph representations with global
structural information, in: KDD1S5, 2015, pp. 891-900.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale
information network embedding, in: Proceedings 24th International Con-
ference on World Wide Web, 2015, pp. 1067-1077.

P. Goyal, H. Hosseinmardi, E. Ferrara, A. Galstyan, Embedding networks
with edge attributes, in: Proceedings of the 29th on Hypertext and Social
Media, ACM, 2018, pp. 38—42.

L. Zhou, Y. Yang, X. Ren, F. Wu, Y. Zhuang, Dynamic Network Embed-
ding by Modelling Triadic Closure Process, in: AAAI 2018.

P. Goyal, N. Kamra, X. He, Y. Liu, Dyngem: Deep embedding method
for dynamic graphs, arXiv preprint arXiv:1805.11273.

Z. Zhang, P. Cui, J. Pei, X. Wang, W. Zhu, Timers: Error-bounded svd
restart on dynamic networks, arXiv preprint arXiv:1711.09541.

M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for
embedding and clustering, in: NIPS, Vol. 14, 2001, pp. 585-591.

D. Wang, P. Cui, W. Zhu, Structural deep network embedding, in: Pro-
ceedings of the 22nd International Conference on Knowledge Discovery
and Data Mining, ACM, 2016, pp. 1225-1234.

S. Cao, W. Lu, Q. Xu, Deep neural networks for learning graph represen-
tations, in: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI Press, 2016, pp. 1145-1152.

T. N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint
arXiv:1611.07308.

T. N. Kipf, M. Welling, Semi-supervised classification with graph convo-

10

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]

[37]

[38]

[39]

lutional networks, arXiv preprint arXiv:1609.02907.

J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally
connected networks on graphs, arXiv preprint arXiv:1312.6203.

M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-
structured data, arXiv preprint arXiv:1506.05163.

L. Zhu, D. Guo, J. Yin, G. Ver Steeg, A. Galstyan, Scalable temporal la-
tent space inference for link prediction in dynamic social networks, IEEE
Transactions on Knowledge and Data Engineering 28 (10) (2016) 2765—
27717.

P. Goyal, N. Kamra, X. He, Y. Liu, Dyngem: Deep embedding method
for dynamic graphs, in: IJCAI International Workshop on Representation
Learning for Graphs, 2017.

M. Rahman, T. K. Saha, M. A. Hasan, K. S. Xu, C. K. Reddy, Dylink2vec:
Effective feature representation for link prediction in dynamic networks,
arXiv preprint arXiv:1804.05755.

P. Sarkar, D. Chakrabarti, M. Jordan, Nonparametric link prediction in
dynamic networks, arXiv preprint arXiv:1206.6394.

S. Yang, T. Khot, K. Kersting, S. Natarajan, Learning continuous-time
bayesian networks in relational domains: A non-parametric approach, in:
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

D. M. Dunlavy, T. G. Kolda, E. Acar, Temporal link prediction using
matrix and tensor factorizations, ACM Transactions on Knowledge Dis-

covery from Data (TKDD) 5 (2) (2011) 10.

X. Ma, P. Sun, Y. Wang, Graph regularized nonnegative matrix factoriza-
tion for temporal link prediction in dynamic networks, Physica A: Statis-
tical mechanics and its applications 496 (2018) 121-136.

N. Talasu, A. Jonnalagadda, S. S. A. Pillai, J. Rahul, A link predic-
tion based approach for recommendation systems, in: 2017 international
conference on advances in computing, communications and informatics
(ICACCI), IEEE, 2017, pp. 2059-2062.

J. Li, K. Cheng, L. Wu, H. Liu, Streaming link prediction on dynamic
attributed networks, in: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, ACM, 2018, pp. 369-377.
Y.J. Wang, G. Y. Wong, Stochastic blockmodels for directed graphs, Jour-
nal of the American Statistical Association 82 (397) (1987) 8-19.

D. E. Rumelhart, G. E. Hinton, R. J. Williams, Neurocomputing: Foun-
dations of research, JA Anderson and E. Rosenfeld, Eds (1988) 696-699.
D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980.

J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: densification
laws, shrinking diameters and possible explanations, in: Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge dis-
covery in data mining, ACM, 2005, pp. 177-187.

M. Ou, P. Cui, J. Pei, Z. Zhang, W. Zhu, Asymmetric transitivity preserv-
ing graph embedding, in: Proceedings of the 22nd ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, ACM,
2016, pp. 1105-1114.

M. Brand, Fast low-rank modifications of the thin singular value decom-
position, Linear algebra and its applications 415 (1) (2006) 20-30.

http://www.sciencedirect.com/science/article/pii/S0950705118301540
http://www.sciencedirect.com/science/article/pii/S0950705118301540
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2018.03.022
http://www.sciencedirect.com/science/article/pii/S0950705118301540
http://www.sciencedirect.com/science/article/pii/S0950705118301540

	1 Introduction
	2 Related Work
	2.1 Static Graph Embedding
	2.2 Dynamic Graph Embedding
	2.3 Dynamic Link Prediction

	3 Motivating Example
	4 Methodology
	4.1 Problem Statement
	4.2 dyngraph2vec
	4.3 Optimization

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Evaluation Metrics

	6 Results and Analysis
	6.1 SBM Dataset
	6.2 Hep-th Dataset
	6.3 AS Dataset
	6.4 MAP exploration
	6.5 Hyper-parameter Sensitivity: Lookback
	6.6 Length of training sequence versus MAP value

	7 Discussion
	8 Future Work
	9 Conclusion

