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Abstract

Probabilistic matrix factorization (PMF) plays a crucial role in recommendation
systems. It requires a large amount of user data (such as user shopping records and
movie ratings) to predict personal preferences, and thereby provides users high-quality
recommendation services, which expose the risk of leakage of user privacy. Differen-
tial privacy, as a provable privacy protection framework, has been applied widely to
recommendation systems. It is common that different individuals have different levels
of privacy requirements on items. However, traditional differential privacy can only
provide a uniform level of privacy protection for all users.

In this paper, we mainly propose a probabilistic matrix factorization recommenda-
tion scheme with personalized differential privacy (PDP-PMF). It aims to meet users’
privacy requirements specified at the item-level instead of giving the same level of
privacy guarantees for all. We then develop a modified sampling mechanism (with
bounded differential privacy) for achieving PDP. We also perform a theoretical analy-
sis of the PDP-PMF scheme and demonstrate the privacy of the PDP-PMF scheme. In
addition, we implement the probabilistic matrix factorization schemes both with tradi-
tional and with personalized differential privacy (DP-PMF, PDP-PMF) and compare
them through a series of experiments. The results show that the PDP-PMF scheme
performs well on protecting the privacy of each user and its recommendation quality
is much better than the DP-PMF scheme.

Key words: Personalized differential privacy; Recommendation system; Probabilistic ma-
trix factorization.
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1 Introduction

In the last decade, with the rapid development of web-based applications, information has
grown explosively. It is impossible for people to extract relevant data by exploring all web
content. In order to provide personalized recommendation services, recommendation sys-
tems [15] are used widely and promoted rapidly. For building recommendation systems,
probabilistic matrix factorization (PMF) is a prevailing method [23] that performs well on
large and sparse datasets. This model regards the user preference matrix as a product of two
lower-rank user and item matrices and adopts a probabilistic linear setting with Gaussian ob-
servation noise. Training such a model amounts to finding the best low-rank approximation
to the observed target matrix under a given loss function. During the whole recommendation
process, a large amount of user information has to be utilized to train the recommendation
algorithm. Such information may include users’ privacy (such as shopping records and rating
records), and there is a probability of information leakage. Therefore, such a recommenda-
tion system is a double-edged sword. It may promote the rapid development of the internet
economy and there is a risk of leaking sensitive information.

Differential privacy (DP) [8] is a provable and strict privacy protection framework. Usu-
ally, it keeps private information confidential by perturbing the output of the algorithm with
noise. So far, the DP method has been widely applied to recommendation algorithms [2, 11].
It is worth noting that the objective perturbation method proposed in [7] is utilized in [13]
to achieve (traditional) differential privacy for matrix factorization recommendations. We
find that this traditional DP method is also fit for the PMF scheme. Our main idea, for the
probabilistic matrix factorization scheme with traditional differential privacy (DP-PMF), is
firstly to obtain the user profile matrix through the PMF algorithm without privacy protec-
tion and keep it confidential. Then the user profile matrix is input as a constant into the
objective (perturbation) function (different from [13]), and the resulting perturbed item pro-
file matrix satisfies ǫ-differential privacy (ǫ-DP). Finally, the item profile matrix is released.
This makes it impossible for an attacker to guess specific user’s private rating data based on
the recommendation results. Thereby the user’s private information is protected.

However, the traditional differential privacy is aimed at providing the same level of pri-
vacy protection for all users. This “one size fits all” approach ignores the reality that: users’
expectations on privacy protection are not uniform for various items in general [5, 14]. In-
deed, users would like to choose freely different levels of privacy protection for their ratings
and other data. Unfortunately, the traditional differential privacy method can only pro-
vide the highest level (the smallest ǫ) privacy protection for all users in this case, so as
to meet the privacy requirements of all users [14]. This generates excessive noise and thus
impairs seriously the accuracy of the recommendation results. Afterwards it is impossible to
provide users with high-quality recommendation services. To address this problem, person-
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alized differential privacy (PDP) was introduced into recommendation systems in [18, 26]
where a PDP protection framework was proposed to protect user-based collaborative filter-
ing recommendation algorithms. Further, due to the sparsity of the user-item rating matrix,
user-based collaborative filtering algorithms therein may fail to find similar users [19, 24].
Thus in this case the accuracy of recommendation is probably poor. It has been noted that
the PMF model can overcome the above problem and get a better accuracy [23].

In this paper, we introduce the concept of personalized differential privacy (PDP) to
the task of PMF. The proposed probabilistic matrix factorization recommendation scheme
with personalized differential privacy (PDP-PMF) achieves item-level privacy protection. It
meets users’ requirements for different levels of privacy protection on various items, while
achieving a good recommendation quality. The main contributions are as follows:

(1) We consider the scenario that every user may have potentially different privacy require-
ments for all items and the recommender is trustworthy. The goal here is to ensure that
the recommendation scheme designed satisfies personalized differentially private require-
ments ǫij . We present a PDP-PMF scheme using a so-called bounded sample mechanism,
which guarantees users’ privacy requirements and achieves item-level privacy protection
as desired.

(2) We conduct a theoretical analysis of PDP-PMF as well as DP-PMF. Based on the
definition of personalized differential privacy that was first presented in [14], we prove
that the PDP-PMF scheme meets personalized differential privacy and guarantees the
privacy of the whole model.

(3) We carry out multiple sets of experiments on three real datasets for comparisons of
the PDP-PMF scheme with DP-PMF. The experimental results show that PDP-PMF
protects the data privacy of each user well and the recommendation quality is much
better than that of DP-PMF.

The remainder of this paper is organized as follows. In Section 2, we briefly recall the
related work. Section 3 introduces probabilistic matrix factorization technique, (personal-
ized) differential privacy and our setting for the schemes to design. We provide the detailed
design of our traditional differentially private recommendation scheme in Section 4. In Sec-
tion 5, the crucial part of the work will be done, we present the personalized differentially
private recommendation scheme. Section 6 demonstrates and analyzes the performance of
both traditional and personalized differentially private schemes with experiments on three
public datasets. Finally, we conclude this paper in Section 7.
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2 Related work

Traditional Privacy-preserving Recommendations. In recommendation systems, the
traditional ways to protect user privacy data usually include cryptography and obfuscation
based approaches. The cryptology based approach is suitable for the protection of recom-
mendation systems composed of mutually distrustful multiparty, and it normally results in
significantly high computational costs [3, 6], especially when the amount of historical data is
large. On the other hand, the obfuscation based method can improve the computation effi-
ciency effectively, but it can not resist the attack of background knowledge and may weaken
the utility of data [4, 21].

Differentially Private Recommendations. Differential privacy proposed by Dwork
becomes a hot privacy framework recently, and many papers [8, 22, 25, 27] have been pub-
lished on differential privacy. Some literatures aimed to utilize differential privacy to pro-
tect recommendations, and demonstrated that the differentially private recommendation can
solve perfectly some traditional privacy-preserving problems. In particular, McSherry et al.
[11] first applied differential privacy to collaborative filtering recommendation algorithms.
They perturbed in calculating the average score of the movie, the user’s average score, and
the process of constructing the covariance matrix. Then these perturbed matrices were pub-
lished and used in recommendation algorithms. Friedman et al. [2] introduced the differential
privacy concept to the matrix factorization recommendation algorithm. They mainly studied
four different perturbation schemes in the matrix factorization process: Input Perturbation,
Stochastic Gradient Perturbation, Output Perturbation and ALS with Output Perturbation.
In contrast, the method of perturbation in matrix factorization proposed by Friedman et al.
[2] is similar to the method from McSherry et al. They all use the Laplace noise to perform
perturbation, and the results of the perturbation are clamped. However, for such perturba-
tion schemes, the sensitivity of the parameters controlling the amount of noise is too large
and has a great influence on the recommendation results. Zhu et al. [28] applied differential
privacy to a neighborhood-based collaborative filtering algorithm. They added Laplace noise
when calculating project or user similarity and used differential privacy for protection during
neighbor selection. Hua et al. [13] proposed the objective function perturbation method.
They perturbed the objective function in the process of matrix factorization so that the
perturbed item profile matrix satisfies the differential privacy. Then the user profile matrix
was published and used for user rating prediction.

Personalized Differentially Private Recommendations. As for the differentially
private recommendations mentioned above, users are usually provided with the same level of
privacy protection that does not care about users’ personal privacy needs. For this, Li et al.
[18] and Yang et al. [26] adopted personalized differential privacy in recommendation sys-
tems. They studied user-based collaborative filtering recommendation algorithms. Indeed,
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the algorithm is improved in [18] to make recommended results more accurate. However,
user-based collaborative filtering methods cannot handle the user-item rating matrix with
high sparsity, which reduces the accuracy of recommendation. Instead, we adopt the PMF
method.

This work is based on perturbation of the objective function proposed by Hua et al. [13],
and applies the personalized differentially private sample mechanism proposed by Jorgensen
et al. [14]. We make use of the popular probabilistic matrix factorization model to design a
personalized differential privacy recommendation scheme PDP-PMF. We mention that the
sample mechanism proposed by Jorgensen et al. [14] cannot be directly applied here and
some adjustments are made later on. Therefore, in our scheme, users can choose privacy
protection levels for different projects accordingly, while the amount of noise is reduced to
enhance the accuracy of the recommendation results.

3 Preliminaries

In this section, we introduce some notations and initial definitions, and review probabilistic
matrix factorization technique, (personalized) differential privacy and the setting upon which
our work is based.

3.1 Probabilistic matrix factorization

In our setting, there are M movies in the item set I and N users in the user set U . Any user’s
rating for the movies is an integer in the range [1,K], where (K is a constant and called the
upper limit of the score. We denote by R = [rij ]N×M the N ×M preference matrix where
the element rij represents the user τi’s rating on the movie ℓj . In general, R is a sparse
matrix, which means that most users only rate a few movies relatively. The purpose of a
recommendation system is to predict the blank ratings in the user-item matrix R and then
provide recommendation services for users.

As a probabilistic extension of the SVD model, probabilistic matrix factorization [23] is
a state-of-the-art technique to solve the above problem. In the PMF model, the matrix R
would be given by the product of an N×d user coeficient matrix UT and a d×M item profile
matrix V , where U = [ui]i∈[N ] and V = [vj]j∈[M ]. These d-dimensional column vectors, ui

and vj , represent user-specific and item-specific latent profile vectors, respectively. Then the
rating rij is approximated by the product uT

i vj. In general, the dimension d is between 20
and 100.

Following literally [23, Section 2], we add some Gaussian observation noise by defining a
conditional distribution over the observed rating and placing zero-mean spherical Gaussian
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priors on all user and item profile vectors. The so-called maximization of the log-posterior
over item and user profiles therein is equivalent to the minimization of the sum-of-squared-
errors objective function with quadratic regularization terms as follows,

min
U,V

E(U, V ) =
1

2

N∑

i=1

M∑

j=1

Iij(rij − uT
i vj)

2 +
λu

2

N∑

i=1

‖ui‖
2
2 +

λv

2

M∑

j=i

‖vj‖
2
2, (1)

where λu > 0 and λv > 0 are regularization parameters, and Iij is an indicator function that
is Iij = 1 when user τi rated item ℓj and otherwise Iij = 0. For each vector, we denote by
‖ · ‖2 its Euclidean norm. As is mentioned in [7, 13], it is reasonable to suppose that each
column vector ui in U satisfies ‖ui‖2 ≤ 1.

We use the stochastic gradient descent (SGD) method [20] to solve (1). The profile
matrices U and V are iteratively learned by the following rules:

ui(k) = ui(k − 1)− γ · ∇ui
E(U(k − 1), V (k − 1)), (2)

vj(k) = vj(k − 1)− γ · ∇vjE(U(k − 1), V (k − 1)), (3)

where γ > 0 is a learning rate parameter, k is the number of iterations, and

∇ui
E(U, V ) = −

M∑

j=1

Iij(rij − uT
i vj)vj + λuui, (4)

∇vjE(U, V ) = −

N∑

i=1

Iij(rij − uT
i vj)ui + λvvj . (5)

The initial U(0) and V (0) consist of uniformly random norm 1 rows.

3.2 Differential privacy

Differential privacy [8–10] is a new privacy framework based on data distortion. By adding
controllable noise to the statistical results of the data, DP guarantees that calculation results
are not sensitive to any particular record in datasets. In particular, adding, deleting or
modifying any record in the dataset would not have significant influence on the results of
statistical calculation based on the dataset. Thus, as long as any adversary does not know
the sensitive record in the dataset, the protection of the sensitive one can remain.

For applying DP, a crucial choice is the condition under which the datasets, D and
D′, are considered to be neighboring. In our scheme, the user rating datasets, D and D′

are neighboring if D can be obtained from D′ by adding or removing one element. Note
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that such a definition is usually adopted in Unbounded DP [17]. In this paper, however,
we mainly denote datasets by matrices with setting all unselected (and blank) ratings to
zero. This yields that two neighboring datasets differ only at one record, in which place one
(nonzero) rating is selected in a dataset (matrix) and unselected (zero) in the neighboring
dataset (matrix). Due to such matrix representations, bounded DP is applied herein and any
replacement between nonzero ratings is not allowed.

Definition 1 (Differential Privacy [8]). A randomized algorithm A satisfies ǫ-differential
privacy, where ǫ ≥ 0, if and only if for any two neighboring datasets D and D′, and for any
subset O of possible outcomes in Range(A),

Pr[A(D) ∈ O] ≤ eǫ · Pr[A(D′) ∈ O]. (6)

3.3 Personalized differential privacy

In this section, we focus on the concept of Personalized Differential Privacy (PDP). In
Section 5 we present a new sample mechanism that satisfies the definition.

While in traditional DP the privacy guarantee is controlled by a uniform, global privacy
parameter (see Definition 1), PDP deploys a privacy specification, in which each user-item
pair in U×I independently specifies the privacy requirement for their rating data. Formally,

Definition 2 (Privacy Specification [14]). A privacy specification is a mapping P : U ×I →
R

N×M
+ from user-item pairs to personal privacy preferences, where a smaller value represents

a stronger privacy preference. The notation ǫij indicates the level of privacy specification of
the user τi on the item ℓj .

In this paper, we use a matrix to describe a specific instance of a privacy specification, e.g.
P := [ǫij ]N×M , where ǫij ∈ R

+. We assume that each user τi ∈ U has an independent level
of privacy demand ǫij for each item ℓj, and that the default level of a relatively weak privacy
requirement is fixed as ǫdef = 1.0. Indeed we are mainly intended to achieve ǫij-DP for each
valid rating rij while the ǫij for those user-item pairs without valid ratings are meaningless.
We are now ready to formalize our personalized privacy definition.

Definition 3 (Personalized Differential Privacy [14]). In the context of a privacy speci-
fication P and and a universe of user-item pairs U × I, an arbitrary random algorithm
A : D → Range(A) satisfies P-personalized differential privacy (P-PDP), if for any two
neighboring datasets D,D′ ⊆ D and all possible output sets O ⊆ Range(A),

Pr[A(D) ∈ O] ≤ eǫij · Pr[A(D′) ∈ O], (7)

where ǫij denotes the level of privacy requirement of user τi for item ℓj , also referred to as
privacy specification.
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3.4 Setting

In this paper, we consider a recommendation system associated with two kinds of actors,
users and the recommender. The recommender is assumed to be reliable, which means that
the recommender does not abuse the user’s rating data to gain profit. Different users may
have different privacy requirement for various items, which means that users want to protect
the rating data by individual privacy specification according to one’s own will. As usual,
each value of user’s ratings is an integer between 1 and K, and even the value of K is 5 or
10.

We are intended to design a personalized differentially private PMF scheme to meet each
user’s personalized privacy requirement and ensure the accuracy of the recommendation.
Moreover, we publish only the perturbed item profile matrix V but not the user profile
matrix U that must be kept confidential. Otherwise, attackers can predict the user τi’s
preferences for all items locally by the user profile vector ui and the published matrix V .

4 DP-PMF scheme

In this section, we design a differentially private recommendation scheme with a uniform
privacy level ǫ. This scheme then can serve as the basis of our scheme with personalized
differential privacy in the next section.

In order to achieve these privacy goals, we apply the objective-perturbation method
proposed in [13] to the probabilistic matrix factorization technique, and perturb randomly
the objective function instead of the output of the algorithm, to preserve the privacy of users.
In our scenario, the perturbation of the objective (1) is as follows:

min
V

Ẽ(V ) =
1

2

N∑

i=1

M∑

j=1

Iij(rij − uT
i vj)

2 +
λu

2

N∑

i=1

‖ui‖
2
2 +

λv

2

M∑

j=1

‖vj‖
2
2 +

M∑

j=1

ηTj vj, (8)

with Q = [ηj]j∈[M ] denoting the d×M noise matrix for the objective perturbation.
The detailed steps for the differentially private probabilistic matrix factorization scheme

are as follows:

Step 1: The recommender runs the original recommendation algorithm to solve the objective
function (1) for obtaining the user profile matrix U and store U in private.

Step 2: The user profile matrix is regarded as a constant of the perturbation objective func-
tion (8) to achieve the item profile matrix V .
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In our scenario, the minimal valid rating rmin is usually a positive integer while those
unselected and blank ratings are initially set to zero.

Theorem 4. Suppose the noise vector ηj ∈ Q in (8) is generated randomly and satisfies the

probability density function P (ηj) ∝ e−
ǫ‖ηj‖2

∆ with ∆ = rmax. Then, the item profile matrix
V derived from solving the objective function (8) satisfies ǫ-differential privacy.

The proof can be finished in the same manner as in the proof of Theorem 1 in [13].

Proof. Without loss of generality, we assume that D = [rij ]N×M and D′ = [r′ij ]N×M are two
arbitrary neighboring datasets with only one score data different r11 6= r′11. Let Q = [ηj]j∈[M ]

and Q′ = [η′j ]j∈[M ] be the noise matrices trained by (8) using datasets D and D′, respectively.

Let V = [v̄j]j∈[M ] is the item profile matrix obtained by minimizing (8).

We have, ∇vj Ẽ(D, v̄j) = ∇vj Ẽ(D′, v̄j) = 0 for any j ∈ [M ]. Then

ηj −

N∑

i=1

Iij(rij − uT
i v̄j)ui = η′j −

N∑

i=1

Iij(r
′
ij − uT

i v̄j)ui. (9)

If j 6= 1, we have rij = r′ij and drive from (9) that

ηj = η′j .

Hence, ∀j 6= 1, ‖ηj‖2 = ‖η
′
j‖2.

If j = 1 and I11 = 0, we have by (9) that

ηj = η′j .

Thus, ‖ηj‖2 = ‖η
′
j‖2 when j = 1 and Iij = 0.

If j = 1 and I11 = 1, we obtain that

ηj − u1(r11 − uT
1 v̄1) = η′j − u1(r

′
11 − uT

1 v̄1),

ηj − η′j = u1(r11 − r′11).

Thanks to ‖u1‖2 ≤ 1 and |r11 − r′11| ≤ ∆, we obtain that ‖ηj − η′j‖2 ≤ ∆. Therefore,

Pr[V = v̄j|D]

Pr[V = v̄j |D′]
=

∏
j∈[M ] P (ηj)∏
j∈[M ] P (η′j)

= e
−ǫ

∑M
j=1 ‖ηj‖2+ǫ

∑M
j=1 ‖η′j‖2

∆

= e
−ǫ(‖η1‖2−‖η′1‖2)

∆

≤ eǫ. (10)
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The above inequality is derived from the triangle inequality.
In the general case, two arbitrary neighboring datasets differing at the record rpq instead

of r11. Just a few trivial replacements are enough to prove the assertion as required.

5 PDP-PMF scheme

This section is to propose a probabilistic matrix factorization recommendation scheme with
personalized differential privacy. With traditional differential privacy, DP-PMF provides
only a uniform level of privacy protection for all users. Our PDP-PMF scheme further
improves upon the DP-PMF scheme to satisfy different users’ privacy requirements and
protect user privacy at the item level.

To accomplish our PDP-PMF scheme, we modify the sample mechanism in [14] to get a
sample mechanism with bounded differential privacy. The system carries out all processes on
matrices including collection of raw dataset, random sampling, iterations, adding noises and
the final release. In contrast to previous literatures, we adopt the concept of bounded DP
instead of unbounded DP. While in recent years a few papers [18, 26] on PDP have appeared
mainly for user-based collaborative filtering, we introduce PDP into PMF for preserving
item-based privacy.

The new sample mechanism consists of two independent steps basically as follows:

Step 1: Sample randomly the original rating data independently with some probability, set
the unselected rating data to zero, and output the sampling rating matrix.

Step 2: Apply the traditional (bounded) t-DP mechanism to protecting users’ rating data
(output above) privacy.

Definition 5 (Sample Mechanism with Bounded DP). Given a recommendation mechanism
F , a dataset D and a privacy specification P. Let RSM(D,P, t) represent the procedure
that samples independently each rating rij in D with probability π(rij , t) defined as

π(rij , t) =

{
e
ǫij−1
et−1

if t > ǫij ,

1 otherwise,
(11)

where min(ǫij) ≤ t ≤ max(ǫij) is a configurable threshold. The Sample mechanism is defined
as

SF (D,P, t) = DP t
F (RSM(D,P, t)), (12)

where DP t
F is an arbitrary recommendation model F satisfying t-differential privacy.
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The procedure DP t
F is essentially treated as a black box that operates on a sampled

dataset and produces (perturbed) item profile matrix V . It could be a procedure satisfying
differential privacy by applying a Laplace mechanism, an exponential mechanism, or even
a composition of several differentially private mechanisms. For our scheme, we make use of
DP-PMF model including objective perturbation. From [14, 18], the threshold parameter
t provides a possible means of balancing various types of error and is usually chosen as:
t = max(ǫij) or t =

1
|R′|

∑
(i,j)∈R′ ǫij , where R

′ represents the training set of user-item pairs
with available ratings. We will explore the best threshold parameter by experiments in Sect.
6.

Our personalized differentially private recommendation scheme consists of three stages
(S1, S2, S3), as shown in Figure 1.

Figure 1: PDP-PMF recommendation scheme

(1) S1: Random sampling of raw data. We randomly sample the original dataset D with a
certain probability which is greatly dependent on each user-item based privacy demand
ǫij for each rating record rij’s sampling. This stage outputs dataset matrix Ds, see
Algorithm 1, where RSM(D,P, t) indicates the randomized sampling algorithm.

(2) S2: (Traditional) differentially private probabilistic matrix factorization. Inspired by
[13], we firstly run the PMF model (1) on dataset Ds output by stage S1 to get the user
profile matrix U and store it secretly. Secondly, we operate the PMF model (8) with
traditional t-DP to get the perturbed item profile matrix V . Detailed steps are described
in Algorithm 2 for DP t

F (Ds), where Iij is an indicator function on Ds instead of D.

(3) S3: Recommendation. The system predicts users’ ratings for items according to user pro-
file matrix U and item profile matrix V output by stage S2 and provides recommendation

11



Algorithm 1 RSM(D,P, t)

Input: user set U , item set I, raw dataset (matrix) D, privacy specification P, sampling
threshold t

Output: sampled matrix Ds

1: Set Ds ← D
2: for each i from 1 to N do

3: for each j from 1 to M do

4: if D[i, j] 6= 0 then

5: Sample each rating pattern with probability

π(D[i, j], t) =

{
e
ǫij−1
et−1

if t > ǫij ,

1 otherwise.

6: if π(D[i, j], t) 6= 1 then

7: if (τi, ℓj) is not selected then

8: Ds[i, j]← 0
9: end if

10: end if

11: end if

12: end for

13: end for

14: return Ds

services.

Theorem 6. The recommendation scheme proposed above satisfies P-personalized differ-
ential privacy.

Proof. Let D = [rij]N×M and D′ = [r′ij]N×M denote two (neighboring) sets of ratings different
only at one record, rpq 6= 0 and r′pq = 0. This means that the datesetD′ results from removing
from D the rating rpq. We will establish that for any output O ∈ Range(SF (D,P, t)),

e−ǫpq · Pr[SF (D
′,P, t) ∈ O] ≤ Pr[SF (D,P, t) ∈ O] ≤ eǫpq · Pr[SF (D

′,P, t) ∈ O]. (13)

We first prove the right hand of (13). Note that all possible outputs of RSM(D,P, t),
see Algorithm 1, can be divided into two parts. One case is that the score rpq is selected
and the other case unselected. Still, we denote the output set by a matrix Z = [r′′ij ]N×M .
For convenience, the notation Z � D′ means that for any 1 ≤ i ≤ N and 1 ≤ j ≤ M , the
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Algorithm 2 DP t
F (Ds)

Input: sampled profile set Ds, number of factors d, learning rate parameter γ, regulariza-
tion parameters λu and λv, number of gradient descent iterations k1 and k2, sampling
threshold t

Output: user profile matrix U , item profile matrix V
1: Initialize random profile matrices U , V and V
2: for α from 1 to k1 do

3: for each ui and vj do
4: ∇ui

E (U(α− 1), V (α− 1))←
5: −

∑M

j=1 Iij
(
Ds[i, j]− uT

i (α− 1)vj(α− 1)
)
vj(α− 1) + λuui(α− 1)

6: ∇vjE(U(α− 1), V (α− 1))←

7: −
∑N

i=1 Iij
(
Ds[i, j]− uT

i (α− 1)vj(α− 1)
)
ui(α− 1) + λvvj(α− 1)

8: end for

9: for each ui and vj do
10: ui(α)← ui(α− 1)− γ · ∇ui

E(U(α− 1), V (α− 1))
11: vj(α)← vj(α− 1)− γ · ∇vjE(U(α− 1), V (α− 1))
12: end for

13: end for

14: Set V ← V
15: for β from 1 to k2 do

16: for j from 1 to M do

17: Sample noise vector ηj with probability density function P (ηj) ∝ e
−t‖ηj‖2

∆

18: ∇vjE(U, V (β − 1))← −
∑N

i=1 Iij
(
Ds[i, j]− uT

i v̄j(β − 1)
)
ui + λvv̄j(β − 1) + ηj

19: v̄j(β)← v̄j(β − 1)− γ · ∇v̄jE(U, V (β − 1))
20: end for

21: end for

22: return U and V
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relation, r′′ij = r′ij or r
′′
ij = 0, holds. We denote by Z+rpq the dataset matrix differing from Z

at only one (additional) record rpq 6= 0. Then we rewrite (13) as follows,

Pr[SF (D,P, t) ∈ O] =
∑

Z�D′

(
π(rpq, t) · Pr[RSM(D′,P, t) = Z] · Pr[DP t

F (Z+rpq) ∈ O]
)

+
∑

Z�D′

(
(1− π(rpq, t)) · Pr[RSM(D′,P, t) = Z] · Pr[DP t

F (Z) ∈ O]
)

=
∑

Z�D′

(
π(rpq, t) · Pr[RSM(D′,P, t) = Z] · Pr[DP t

F (Z+rpq) ∈ O]
)

+ (1− π(rpq, t)) · Pr[SF (D
′,P, t) ∈ O]. (14)

From (12), DP t
F satisfies t-differential privacy. Then we have, further,

Pr[SF (D,P, t) ∈ O] ≤
∑

Z�D′

(
π(rpq, t) · Pr[RSM(D′,P, t) = Z] · et · Pr[DP t

F (Z) ∈ O]
)

+ (1− π(rpq, t)) · Pr[SF (D
′,P, t) ∈ O]

= et · π(rpq, t) · Pr[SF (D
′,P, t) ∈ O] + (1− π(rpq, t)) · Pr[SF (D

′,P, t) ∈ O]

=
(
1− π(rpq, t) + et · π(rpq, t)

)
· Pr[SF (D

′,P, t) ∈ O]. (15)

Now in view of (11) we consider two cases for π(rpq, t) as below.

(a) The case t ≤ ǫpq. The rating record rpq is selected with probability π(rpq, t) = 1. This
implies

Pr[SF (D,P, t) ∈ O] ≤
(
1− π(rpq, t) + et · π(rpq, t)

)
· Pr[SF (D

′,P, t) ∈ O]

= et · Pr[SF (D
′,P, t) ∈ O]

≤ eǫpq · Pr[SF (D
′,P, t) ∈ O].

(b) The case t > ǫpq. The rating record rpq is selected with probability π(rpq, t) = eǫpq−1
et−1

.
Then we obtain

1− π(rpq, t) + et · π(rpq, t) = 1−
eǫpq − 1

et − 1
+ et ·

eǫpq − 1

et − 1
= eǫpq ,

as required. This finishes our proof of the right inequality of (13).
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The proof of the left inequality of (13) can follow the same line as above with a few
modifications. Firstly, using (14) and t-differential privacy from DP t

F , we observe that

Pr[SF (D,P, t) ∈ O] ≥
(
1− π(rpq, t) + e−t · π(rpq, t)

)
· Pr[SF (D

′,P, t) ∈ O]. (16)

Secondly, while the case of t ≤ ǫpq is trivial, we mention for the case of t > ǫpq that

1− π(rpq, t) + e−t · π(rpq, t) = 1 +
eǫpq − 1

et − 1
·
(
e−t − 1

)
= 1− e−t · (eǫpq − 1)

> 1− e−ǫpq · (eǫpq − 1) = e−ǫpq .

Finally, the proof is complete as required.

Remark 7. Theorem 6 is our main theoretic assertion. Indeed, we would like also to
consider the general choice of modification (between nonzero ratings) for defining neighboring
matrices [12]. That is, two neighboring matrices (sets) of ratings differ only at one (non-
zero) record (rpq 6= r′pq), which allows rpq, r

′
pq 6= 0. In this general bounded DP case, Theorem

4 holds still with the sensitivity ∆ = rmax − rmin instead of rmax. As for Theorem 6, the
recommendation scheme proposed preserves obviously P ′-personalized differential privacy
where P ′ := [ǫ′ij ]N×M and ǫ′ij = 2ǫij . It is a pity that we do not achieve ǫ′ij = ǫij theoretically.

6 Experimental evaluation

In this section, we mainly present an experimental evaluation of our PDP-PMF scheme. In
particular, we compare the recommendation quality of PDP-PMF with that of DP-PMF.

6.1 Experimental Setup

Experimental comparison. Probabilistic matrix factorization technique has been shown
to provide relatively high predictive accuracy [23]. In order to verify the recommendation
quality of the proposed PDP-PMF scheme, we carry out a series of experiments to compare
it with the DP-PMF scheme. From [16, 19], it is known that the recommended accuracy of
PMF is higher than that of user-based collaborative filtering method. For this reason, we
do not make comparisons with the differentially private recommendation schemes based on
collaborative filtering method from [18, 26].

Selection of Datasets. We evaluate the schemes with three public datasets: MovieLens
100K dataset (ML-100K)1, MovieLens 1M dataset (ML-1M)1 and Netflix dataset2. To be

1https://grouplens.org/datasets/movielens/
2https://www.netflixprize.com/
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specific, the MovieLens 100K dataset contains 100 thousand ratings of 1, 682 movies from
943 users. The MovieLens 1M dataset contains 6, 000 users’ ratings of 4, 000 movies and a
total of 1 million records. The third dataset is reduced randomly from the famous Netflix
dataset and consists of 1.5 million ratings given by 7, 128 users over 16,907 movies. For the
above datasets, each rating value is an integer in [1, 5].

Evaluation Metrics. We divide the available rating data into the training and testing
sets and use tenfold cross validation to train and evaluate the recommendation system. In our
experiments, we focus on the prediction accuracy of the recommendations. The root mean

square error (RMSE) is defined by RMSE =
√∑

(i,j)∈R(r̂i,j − rij)2/|R|, where r̂ij = uT
i v̄j is

the predicted user τi’s rating of movie ℓj, and rij the true rating, R represents the testing
set of ratings being predicted, and |R| denotes the number of test ratings. The cumulative
distribution function (CDF) computes the percentage of ratings whose prediction errors, i.e.,
{|r̂ij − rij| : (i, j) ∈ R}, are less than or equal to the variable ranging in [0, rmax].

Parameter Selection. In the PDP-PMF and DP-PMF schemes, some specific parame-
ters are fixed as follows: learning rate γ = 50, regularization parameters λu = λv = 0.01, The
maximum number of iterations k1 = 50 and dimension of all the profile matrix d = 20. In our
proposed PDP-PMF scheme, there are two more important parameters, privacy specification
P and sampling threshold t.

In fact, some studies in literatures [1, 5] related to psychology have found that users
can be divided into different groups based on levels of privacy needs. In the experiment we
randomly divided all records for movie ratings into three levels: conservative indicates that
the records have high privacy requirements among [ǫc, ǫm); moderate means that the records’
privacy concern is at a middle level ranging in [ǫm, ǫl); liberal represents the records with low
privacy concern ǫl. The percentages of the ratings for conservative and moderate security
levels are denoted by fc and fm, respectively. Therefore, the proportion of the low-level
privacy requirement level liberal is fl = 1− fc − fm.

Based on findings reported in [1] in the context of a user survey regarding privacy atti-
tudes, the default fractions of user-item records in the conservative and moderate groups in
our experiment are set to fc = 0.54 and fm = 0.37, respectively. In addition, the privacy
preferences at the conservative and moderate levels are picked uniformly at random from
the ranges [ǫc, ǫm) and [ǫm, ǫl), respectively. As usual, we specify the privacy preference of
the low-level privacy requirement liberal ǫl = 1.0, the default values of ǫc, ǫm are ǫc = 0.1
and ǫm = 0.2, respectively, and the sampling threshold t = 1

|R′|

∑
(i,j)∈R′ ǫij (i.e., the average

privacy setting). To meet the privacy requirements of all users, the privacy parameter of
the DP-PMF scheme is set to the minimum privacy preference, i.e., ǫ = ǫc = 0.1, where a
smaller value implies greater privacy.

Tables 1-4 list the various parameters used in our experiments. For valuable comparisons,
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we mainly consider the ways of changing the privacy specification (fc or ǫm) and the sampling
threshold, respectively, as follows.

Table 1: Parameter sets for Fig. 2

Parameter set Parameter value

PDP-PMF
fm = 0.37, fl = 1− fc − fm, ǫc = 0.1,
ǫm = 0.2, ǫl = 1.0, t = 1

|R′|

∑
(i,j)∈R′ ǫij

DP-PMF ǫ = 0.1

Table 2: Parameter sets for Fig. 3

Parameter set Parameter value
PDP-PMF1 fc = 0.54, fl = 0.09

fm = 0.37, ǫc = 0.1, ǫm = 0.2,
ǫl = 1.0, t = 1

|R′|

∑
(i,j)∈R′ ǫij

PDP-PMF2 fc = 0.37, fl = 0.26
PDP-PMF3 fc = 0.20, fl = 0.43
DP-PMF ǫ = 0.1

Table 3: Parameter sets for Fig. 4

Parameter set Parameter value
PDP-PMF1 fc = 0.54, fl = 0.09

fm = 0.37, ǫc = 0.1, ǫl = 1.0,
t = 1

|R′|

∑
(i,j)∈R′ ǫij

PDP-PMF2 fc = 0.37, fl = 0.26
PDP-PMF3 fc = 0.20, fl = 0.43
DP-PMF ǫ = 0.1

6.2 Results

Varying the Privacy Specification. We perform this firstly by varying fc (from 0.1 to
0.6), while keeping the other parameters at their defaults. For each setting of fc with fm
fixed, the fraction of liberal users is equal to 1 − fc − fm, then decreasing fc increases the
number of liberal users, see Tables 1 and 2. We expect that the PDP-PMF performs even
better when the liberal fraction fl is greater, cf. Figs. 2 and 3.
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Figure 2: RMSE of each scheme for prediction task, as fc is varied.

Table 4: Parameter sets for Fig. 5

Parameter set Parameter value
PP-t1 t = 0.6

fc = 0.60,
fm = 0.35,
fl = 0.05,
ǫc = 0.1,
ǫm = 0.4,
ǫl = 1.0

PP-t2 t = 0.7
PP-t3 t = 0.8
PP-t4 t = 1.0
PET1 PET1(t) = CDF(1) with t
PET1h PET1h(t) = CDF(1.5) with t
PET2 PET2(t) = CDF(2) with t
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Figure 3: CDF of prediction errors in each scheme.
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Figure 4: RMSE of each scheme for prediction task, as ǫm is varied.

20



0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

P
er

ce
nt

ag
e 

of
 R

at
in

gs

 

 

t=0.6
t=0.7
t=0.8
t=1.0

0.6 0.8 1 1.2 1.4

0.25

0.3

0.35

 

 

(a) CDF of prediction errors in PDP-PMF

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Sampling Threshold (t)

P
er

ce
nt

ag
e 

of
 R

at
in

gs

 

 

PET1
PET1h
PET2

(b) CDF at three error points, 1.0, 1.5, 2.0

Figure 5: CDF of prediction errors for ML-100K in PDP-PMF, as t is varied.

Figure 2 describes RMSEs of two schemes for prediction task with varied fc. In general,
RMSE of PDF-PMF scheme increases approximately linearly with the increasing of frac-
tion of conservative records fc and is much smaller than that of DP-PMF scheme (staying
unchanged). For Figs. 2(b) and 2(c), the RMSEs are always around 1.0.

Figure 3 illustrates CDF of prediction errors for four schemes with different fc. We
observe that higher fc makes the average privacy preference t smaller, results in more noises
and gives worse prediction. For Figs. 3(b) and 3(c), the curves for the three PDP-PMF
schemes extremely overlap each other and their percentages of ratings with prediction errors
less than 1 achieve 70%.

Next, we vary ǫm, which controls the upper (lower) bound on the range of privacy settings
generated for the conservative (moderate) user-item records, see Table 3. We expect the error
for the PDP-PMF approaches to be smaller with a higher ǫm, cf. Fig. 4.

Figure 4 demonstrates RMSEs of four schemes for prediction task with varied ǫm. Simi-
larly, RMSEs of PDF-PMF schemes decreases approximately linearly with the increasing of
moderate privacy setting ǫm and is much smaller than that of DP-PMF scheme (unchanged).
For Figs. 4(b) and 4(c), the RMSEs even slightly deceases compared with Fig. 4(a), and
they approach some values in trend, respectively, among [0.94, 0.97], and in particular, the
RMSEs of PDP-PMF3 are almost flat.

Searching for the best sampling threshold. We vary the sampling threshold t,
which balances various types of error, see Table 4. We would like to find the best sampling
threshold and check whether the simply setting t = ǫl = 1.0 offers good results in our setting,
cf. Fig. 5.
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Figure 5 shows that the sampling threshold has a slight influence on the recommendation
quality. Figure 5(b) helps us to find the best choice of sampling threshold t ≈ 0.70 for the
given setting, and it demonstrates that when t > 0.4 (including the theoretically average
privacy preference 0.445), the variations on the percentages of ratings are quite small. In
particular, the difference between the percentages of ratings at the approximately maximum
point 0.7 and the liberal point 1.0 is around 2.2% for each of the three curves.

Finally, from the above experiments, we observe that our proposed PDP-PMF scheme
outperforms the DP-PMF scheme on the three datasets. Further, due to the larger scale of
ratings, the latter two datasets would prevent more noise interference and are much helpful
to obtain stable results.

7 Conclusions

In this paper, we focus on users’ individual privacy preferences for all items and build a
personalized differential privacy recommendation scheme, PDP-PMF. The scheme is based
on the probabilistic matrix factorization model, uses a modified sample mechanism with
bounded DP and meets users’ privacy requirements specified at the item level. Naturally,
the PDP-PMF scheme would be very suitable for our real life. To the best of our knowledge,
we are the first to apply personalized differential privacy to the task of probabilistic matrix
factorization.

Moreover, we propose a traditional differential privacy recommendation scheme DP-PMF
that provides all users with a uniform level of privacy protection. We confirm in theory that
both schemes satisfy (personalized) differential privacy as desired. Through our experi-
ments, the PDP-PMF scheme improves greatly the recommendation quality compared with
(traditional) DP-PMF.
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