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Abstract

Corals are crucial animals as they support a large part of marine life. The auto-

matic classification of corals species based on underwater images is important as

it can help experts to track and detect threatened and vulnerable coral species.

However, this classification is complicated due to the nature of coral underwa-

ter images and the fact that current underwater coral datasets are unrealistic

as they contain only texture images, while the images taken by autonomous

underwater vehicles show the complete coral structure. The objective of this

paper is two-fold. The first is to build a dataset that is representative of the

problem of classifying underwater coral images, the StructureRSMAS dataset.

The second is to build a classifier capable of resolving the real problem of classi-

fying corals, based either on texture or structure images. We have achieved this

by using a two-level classifier composed of three ResNet models. The first level

recognizes whether the input image is a texture or a structure image. Then,

the second level identifies the coral species. To do this, we have used a known

texture dataset, RSMAS, and StructureRSMAS.
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Learning, Convolutional Neural Networks, Inception, ResNet, DenseNet.

1. Introduction

Coral reefs are extremely valuable ecosystems for marine life and humans.

A recent evaluation of 40% of the total number of coral species has shown that

more than 200 species are threatened [1]. This is a direct consequence of air and

water pollution and the changes in ocean temperatures due to climate change5

[2].

The automatic classification of corals based on images is a hard task. There

are thousands of coral species and their taxonomy is continuously updated as

more information is obtained. In addition, some coral species look really similar

externally whereas their differences are based on internal characteristics. This10

makes difficult to keep a constant record of all the species, even more their

extension rates. Nowadays, thousands of images of coral reefs and other ben-

thic habitats are being captured regularly by Autonomous Underwater Vehicles

(AUVs). However, analysing that huge amount of data and acquiring useful

information out of it is still a bottleneck, as many hours of experts manual work15

are involved in such tasks. Having a rigorous accurate automatic coral classifier

can potentially help in analysing the large amount of data, thereby progressing

in the understanding of coral reefs. Nevertheless, the available coral datasets

contain, in general, texture images, as opposed to the structure images obtained

by AUVs. This is a consequence of using classical machine learning models, since20

they need to extract textures as a previous feature extraction step. Texture im-

ages show only a small part of the coral and do not include any information of

the whole structure of the coral body, while structure images contain the whole

coral or a large part of it. Figure 1 shows an example of (a) a coral texture

or local information and (b) a coral structure or global information. The avail-25

able public coral datasets, such as EILAT (which contains images taken near

Eilat) RSMAS (Rosenstiel School of Marine and Atmospheric Sciences)or MLC

(Moorea Labelled Corals), among others, only contain texture images. As far
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(a) Texture (b) Structre

Figure 1: Difference between (a) coral texture and (b) coral structure.

as we know, there is no publicly available datasets containing coral structure

images.30

Making the coral classification automatic has been tackled in previous works,

using either normal machine learning models combined with feature extraction

methods [3, 4, 5, 6] or Convolutional Neural Networks (CNNs) [7, 8, 9, 10].

Recently, CNNs are providing outstanding performance in pattern recognition

in many fields, particularly in Computer Vision [11, 12, 13]. A clear example is35

the ImageNet Large Scale Visual Recognition Challenge(ILSVRC) competition

[14], whose top ten models have been CNNs since 2012. A key to its success

is that they are capable to extract simple and complex features as the network

goes deeper [15, 16]. In fact, since the last few years, they are capable to use

the simple features in the deeper layers by adding some connections that skip40

layers [17, 18]. Furthermore, they are able to overcome the limitation of large

datasets requirements in the training phase by increasing the size of the training

set artificially (data augmentation) or by starting the training using the weights

from the pre-trained network on another dataset (transfer learning).

However, none of the previous works address the problem of classifying coral45

texture and structure images together, so it is still an unsolved issue. Most CNN

works analyse classical architectures such as LeNet [19] and VGGnet [20]. In

[10], the authors analysed more recent CNNs, like Inception [16], ResNet [17]

and DenseNet [18] on two texture datasets, RSMAS and EILAT. They achieved

the state-of-the-art accuracies in both datasets. In general, CNNs outperform50
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classical feature extraction in the classification of coral texture images.

In this work, we aim at identifying coral species based on their texture or

structure images. To the best of our knowledge, this is the first work classi-

fying corals based on texture and structure images. We propose to use recent

CNNs to classify any coral image, either texture or structure. We want to55

provide a classifier that could be used with pictures provided by AUVs, ir-

respective of the portion of coral that is contained in each image. In order

to achieve this, we have used a known texture dataset, RSMAS [21], and a

new structure dataset, more realistic, that we have built in this work, called

StructureRSMAS. This dataset is available through the following link: http:60

//sci2s.ugr.es/CNN-coral-image-classification. We have taken advan-

tage of the costly experimentation that it has been done in [10] to choose the

best model and configuration for RSMAS. For StructureRSMAS, we have eval-

uated Inception, ResNet and DenseNet, and we have chosen the best model and

its best configuration. We have also tested the influence of some image enhance-65

ment techniques on both datasets, RSMAS and StructureRSMAS, in order to

improve the images before using the CNN models.Finally, we have built a two-

level classifier, whose first level is to decide whether the input coral image is a

texture or a structure and whose second level is to identify the coral species.

Similar strategies have also been used in other works [22].To obtain the model70

in the first level, we have also evaluated the three CNN architectures mentioned

before. To the best of our knowledge, this work is the first identifying coral

species based on its local or global information.

The rest of the paper is organized as follows. In Section 2, we give an

overview on CNNs and the three architectures we have used. In Section 3, a75

summary on previous works for classifying underwater coral images is given. In

Section 4, we present the structure dataset we have created. In Section 5, we

describe our proposal to classify coral images, either texture or structure and

in Section 6 we explain the experiments we have carried out to obtain such a

classifier. Finally, in Section 7 we state the conclusions of this work.80
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2. Convolutional Neural Networks (CNNs) and improvement tech-

niques

CNNs are a widely used type of artificial neural network. They constitute

the state-of-the-art in object recognition in images. Using CNNs we do not

have to extract the features from the images with a previous algorithm. This is85

possible thanks to its principal operation: the convolution, which is defined, for

a point (i, j), as [23]:

∑

m

∑

n

I(i−m, j − n)K(m,n) , (1)

where I is the input of the convolution and K is the kernel of the convolution

with size m × n. Each convolutional layer has different numbers of kernels.

As we can see in Figure 2, the input of the convolutional layer is convoluted90

with each kernel, resulting in an output feature map per kernel. The values

of these kernels, called weights, are learned by the CNN autonomously during

the training process. At the end of the training, these values are the selected

features of the images.

To increase the non-linearity of the models, every convolutional layer is fol-95

lowed by a non-linear operation, typically the Rectified Linear Unit (ReLU)

operation.

To increase the abstraction level of the extracted features, it is usual to

reduce the size of the feature maps from the convolutional layer using a pooling

layer, which takes a neighbourhood of size m × n and performs an operation100

to it. There are several variants, depending on the operation used: maximum

pooling, minimum pooling, average pooling, etc. The size is reduced, as we

can see in Figure 2, by using a stride between one group of pixels and the

next one. Among other things, pooling allows the network to extract simple

features at the beginning and complex features as the network goes deeper.This105

is why the first improvement to obtain better results with CNNs was to make

the networks deeper. However, it has the problem that the deeper the network,

the harder it is to train it. On the other hand, it is usual that, at the same

5
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Figure 2: An example of a convolutional layer and a pooling layer in a CNN.

level, the network has various convolutional layers, increasing the width of the

network and extracting different features. This is clearly seen in Inception v3110

architecture [16].

In the last years, some architectures, like ResNet [17] and DenseNet [18], have

explored other ways to improve the performance of the networks. In particular,

they added connections that skip layers, making the network to use the simple

features extracted at the beginning in deeper layers. This has been proved to115

work well: ResNet won the ILSVRC competition [14] in 2015 and DenseNet

beat its results in 2016.

In order to obtain good results from a CNN, it is necessary to train it with

large datasets. However, there are two improvement techniques that help to

overcome this constraint: transfer learning and data augmentation.120

By using transfer learning we can start the training of the network from the

pre-trained weights in another problem, although it is recommended that this

other problem is somehow related with the problem that we want to resolve.

Then, we can choose between retraining only the last layer of the network, which

classifies the images into our classes, or to retrain all the weights in the network125

(or some of them), which is also called fine-tuning.

Data augmentation allow us to artificially increase the size of the training

set, so we have more images to train the network. The increase in the training

6
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set is done by applying several distortions to the original images, like zooming

them, flipping them horizontally or vertically, rotating them, shifting them, etc.130

They can be applied alone or combined, and in most of them we can choose how

much distortion we want to apply: rotate an image 15 degrees, zoom 25% of the

image, etc. Depending on the original images, we need to be careful with the

data augmentation techniques we apply as the images may lose their meaning:

for example, flipping the images in hand-writing digit classification.135

In this work, we will use Inception v3, ResNet and DenseNet. These three

architectures are based on the repetition of a block, different in each case. The

composition of these networks is shown in Table 1. As it is seen in the table,

Inception v3 has a fixed number of layers. That is because it has a fixed number

of blocks, although the base inception module is only used at the beginning of140

the network and it has several modifications as the network goes deeper. On the

other hand, the number of layers in ResNet and DenseNet is a hyperparameter

and it depends on the number of times their blocks are repeated. There are two

more hyperparameters in the three architectures: the number of epochs and the

batch size we used to train them.145

3. Related work on coral classification

In this section we first present the available coral datasets that have been

used in the literature. Second, we present the previous works on the classifica-

tion of coral images and the results obtained for RSMAS, the texture dataset

we have used.150

3.1. Coral datasets

The current available eight open datasets are KTH-TIPS (Textures under

varying Illumination, Pose and Scale), CURET (Columbia-Utrecht Reflectance

and Texture), UIUCtex (University of Illinois at Urbana-Champaign texture

dataset), MLC (Moorea Labelled Corals), EILAT, EILAT2, RSMAS (Rosenstiel155

School of Marine and Atmospheric Sciences)and the Red Sea Mosaic. Only
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Table 1: Description of the composition of Inception v3, ResNet and DenseNet. BN stands

for Batch Normalization.

Architecture Name of the

block

Composition of the block Same block along

the network?

Number of layers

of the network

Inception v3 Base incep-

tion module

Three 1×1 convolutions, four

3×3 convolutions and one pool-

ing. Some of these operations are

made in parallel, so it has a con-

catenation filter at the end. All

the convolutions are followed by

BN and a ReLU.

No 42

ResNet Building block Three consecutive operations:

1×1 conv., 3×3 conv., and 1×1

conv. It has an additional con-

nection between the input of the

first 1×1 conv. and the output

of the second 1×1 conv that per-

forms a 1×1 conv. or an identity.

All the convolutions are followed

by BN and a ReLU.

Yes It depends on the

number of times the

block is repeated.

DenseNet Dense block A repetition of the sequence:

BN, ReLU, 1×1 conv., BN,

ReLU and 3×3 conv. The output

of all the layers inside the block

is connected with the input of all

the following layers in the block.

Yes It depends on the

number of times the

block is repeated

and the repetitions

inside each block.
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MLC, EILAT, EILAT2, RSMAS and the Red Sea Mosaic contain RGB images.

From these, RSMAS and EILAT are the ones with more number of classes, 14

and 8, respectively, and the most recent. EILAT2 is a subset of EILAT, MLC

only contains five coral classes and the Red Sea Mosaic is actually a large image160

containing different coral species.

The images in all these datasets share some characteristics inherent to under-

water images: the water movement cause lightning variations between images

taken at the same time; the water causes the images to be blurry; and it is very

common that animals, like fish, cover part of the corals when the images are165

being taken. On the other hand, the images share some characteristics inherent

to coral images, like the occurrence of various coral species in the same image

or the subjective classification of the images by different experts.

Both RSMAS and EILAT are texture datasets, but we choose RSMAS as

our texture dataset because the labelling is the scientific Latin name of the170

coral species, which allow us to obtain structure images from these species and

to create StructureRSMAS, a coral structure dataset that contains images from

the same species that RSMAS. RMSAS contains 766 images that are patches

that contain specific and small parts of the corals, not the entire structure of

them. They are close-up images, so they are sometimes blurry and small: each175

one of them have 256 × 256 pixels in size. Some images from RSMAS can be

seen in Figure 3.

3.2. Previous works

Before recent advances in deep learning, most previous approaches on the

automatic coral reef classification with underwater images combined classical180

machine learning models with feature extraction algorithms [24, 6, 3, 5]. They

used, in general, an algorithm to extract color features and another one to

extract texture features. Then, they used them to train a classical machine

learning model, like Support Vector Machines in [3] or a three layer neural

network in [24]. Most of them used a single dataset, usually small and containing185

several non-coral classes, except for [5], where the authors designed an algorithm

9
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(a) ACER (b) APAL (c) CNAT (d) DANT

(e) DSTR (f) GORG (g) MALC (h) MCAV

(i) MMEA (j) MONT (k) PALY (l) SPO

(m) SSID (n) TUNI

Figure 3: One texture image from each RSMAS class.
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that could be used with different datasets. They divided their algorithm into

steps and at each step several sub-algorithms could be chosen in accordance

with the dataset that was going to be classified.

The authors in [25, 26, 27] proposed three different modifications of the local190

binary pattern feature descriptor, and they used the extracted features to train

machine learning models in order to classify several datasets.

In 2015, the author in [7] used CNNs for the first time to resolve this task.

He used a LeNet-5 model, but he still combined it with feature extraction al-

gorithms. Since then, most works classifying coral images have used CNNs, as195

they provide better results and do not need a previous step of feature extrac-

tion. The authors in [8] and [9] used a VGGnet model and in [9] the authors also

combined the features extracted by the CNN model with hand-crafted features,

although the improvement from such custom features was small. In [8] they

used the Benthoz15 dataset and in [9] they used the MLC dataset.200

In [10], the authors proposed the use of more powerful CNNs to classify

EILAT and RSMAS [21], and they found that ResNet was the best CNN ar-

chitecture in both datasets, improving the state-of-the-art results obtained by

[5, 25, 26] and [27], which were all the works that used EILAT and RSMAS.

The works that used RSMAS and the results they obtained can be seen in205

Table 2. The highest result is a recall of 99.34%, obtained by [27], but using

a held out test of 10%. The authors in [10] obtained an accuracy of 98.63%

using a five fold cross validation technique, which means that they were using

tests sets of 20% of the dataset in each partition. Then, they took the mean of

the test accuracy on the five partitions. As a consequence, this result is more210

stable. Because of this, the best model for RSMAS, and the one we choose to

use in this work, is the one obtained in [10].

An extensive review on the classification of coral images using deep learning

can be found in [28]. However, most of these works used texture datasets whose

images show close-up and very specific patches of the corals, not the whole215

structure of them. The present work is different from all the previously cited

works in that it develops an automatic model capable of identifying the species

11
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Table 2: Results from previous works on RSMAS. The results of Shihavuddin et al. using a

5 fold cross validation can be found in [10].

Authors Ref. Metric Result Test method

Brown Mary et al. [25] Recall 98.87% 10% held out test

Brown Mary et al. [25] Recall 84.9% 25% held out test

Brown Mary et al. [26] Recall 98.1% 10% held out test

Brown Mary et al. [26] Recall 85.72% 25% held out test

Brown Mary et al. [27] Recall 99.34% 10% held out test

Brown Mary et al. [27] Recall 85.8% 25% held out test

Shihavuddin et al. [5] Accuracy 92.74% 5 fold cross validation

Gómez-Ŕıos et al. [10] Accuracy 98.63% 5 fold cross validation

of a coral based on an input image of either texture or structure.

4. StructureRSMAS: a new coral structure dataset

In this section we present the new coral dataset of coral structure images220

we have built: StructureRSMAS. We have considered the same coral species,

nomenclature and number of classes as in RSMAS. We have downloaded the

images from official scientific websites, e.g., the Encyclopedia of Life [29], the

IUCN Red List of Threatened Species [30] or the coralpedia of the University

of Warwick [31]. Few images were available per class.225

We have built StructureRSMAS because typical coral pictures often capture

the whole coral body and structure and do not focus only on the texture of

its parts. An ideal classifier should be able to recognize the coral based either

on its texture or structure and with images taken under different conditions,

cameras, etc. To develop such a model we need images that show both texture230

and structure of the coral species.

StructureRSMAS contains 409 coral images of variable size but larger than

the ones in RSMAS. Some examples can be seen in Figure 4. The dataset, along

with a list of the sources of the images, is available through the following link:

http://sci2s.ugr.es/CNN-coral-image-classification. In Figure 3 and235

Figure 4 we can see the difference between texture and structure images from

12
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Table 3: Characteristics of RSMAS and StructureRSMAS. #imgs refers to the number of

images in that class.

Classes #imgs in RS-

MAS

#imgs in Struc-

tureRSMAS

Acropora Cervicornis (ACER). 109 44

Acropora Palmata (APAL). 77 41

Colpophyllia Natans (CNAT). 57 34

Diadema Antillarum (DANT). 63 20

Diploria Strigosa (DSTR). 24 16

Gorgonians (GORG). 60 18

Millepora Alcicornis (MALC). 22 33

Montastraea Cavernosa (MCAV). 79 38

Meandrina Meandrites (MMEA). 54 30

Montipora spp. (MONT). 28 21

Palythoas Palythoa (PALY). 32 32

Sponge Fungus (SPO). 88 23

Siderastrea Siderea (SSID). 37 36

Tunicates (TUNI). 36 23

the same coral species.

The images in RSMAS and StructureRSMAS were taken with different cam-

eras and under different conditions. They are both imbalanced, as we show in

Table 3, since there are classes that contain more images than others, like ACER240

in RSMAS, which has 109 images, while MALC has 22 images. The differences

are smaller in StructureRSMAS. The largest difference in this dataset is between

ACER, with 44 images, and DSTR, with 16 images.

5. A two-level classifier for coral classification using a texture model

and a structure model245

We propose the use of a two-level classifier to address the automatic clas-

sification of corals based on either texture or structure images. This classifier

is composed of three models, one used in the first level and the other two used

in the second level. As we show in Figure 5, the first level is to determine if
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(a) ACER (b) APAL (c) CNAT

(d) DANT (e) DSTR (f) GORG

(g) MALC (h) MCAV (i) MMEA

(j) MONT (k) PALY (l) SPO

(m) SSID (n) TUNI

Figure 4: One structure image from each StructureRSMAS class.
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Figure 5: The two-level classifier we have developed to classify any coral image, either texture

or structure.

the image is a texture or a structure. Therefore, the model used in this level is250

a binary classier trained over the images of RSMAS (texture images) and the

images of StructureRSMAS (structure images) as two separated classes. In the

second level, we decide which coral species the image belongs to using a texture

model, trained over RSMAS, or a structure model, trained over StructureRS-

MAS, depending on the output obtained in the first level. To build our two-level255

model, at the first level we have developed a binary texture or structure clas-

sification model. At the second level, we have considered the most accurate

texture model from the literature and developed a new structure classification

model using StructureRSMAS.

In particular, for the texture dataset, RSMAS, we have used the state-of-260

the-art model proposed in [10], a ResNet-152 model that used transfer learning

from ImageNet and data augmentation techniques.

For the structure dataset, StructureRSMAS, and the texture or structure

binary classifier, we have evaluated different CNN architectures and configura-

tions, as we will see in the following section.265

In both datasets, we have evaluated the improvement of some image enhance-

ment techniques before the application of the data augmentation techniques.

15
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Table 4: The set of hyperparameters we have test in the three architectures.

Number of layers Number of epochs Batch size

Inception v3 42
100, 300, 500,

700, 1000, 1300

32, 64,

128
ResNet 50, 152

DenseNet 121, 161

6. Experimental Analysis

In this section we describe the process we have used to build the two-level

classifier. First, we describe the experimental framework we have used in all the270

experiments. Second, we evaluate different image enhancement techniques in

the RSMAS dataset.Third, we analyse and compare different CNN architectures

for StructureRSMAS and choose the best of them. We also evaluate the image

enhancement and data augmentation techniques in this dataset, and choose

the best configuration for it.Fourth, we evaluate and compare the same CNN275

architectures, and data augmentation techniquesto classify an image into texture

or structure using the image enhancement techniques for both datasets that we

found the best for them. Finally, we analyse and evaluate the performance of

the proposed two-level classifier.

6.1. Experimental framework280

The results shown in this section are obtained using a 5 fold cross validation

technique. The known accuracy metric has been used to compare the perfor-

mance of the CNNs and the data augmentation techniques.

For the implementation of Inception, ResNet and DenseNet, we have used

Keras [32] with Tensorflow [33] as backend. For Inception, we have used the285

model already available in Keras 2.0.4, and we have adapted the code by Yu

Felix in GitHub [34] for ResNet and DenseNet.

To search for the best model for StructureRSMAS and for the decision be-

tween texture and structure, we have evaluated the hyperparameters that we

show in Table 4 in a grid search.290
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Table 5: Description of the evaluated data augmentation techniques.

Data augmenta-

tion technique

Parameter Description

Shift A float num-

ber x

To shift vertically and horizontally the images by

a random fraction of the width or length, respec-

tively, in [0, x].

Zoom A float num-

ber x

To zoom the images so their width and length are

a random number in [1− x, 1 + x].

Rotation An integer

number x

To rotate the images by a random degree in [0, x].

Flip True/False If true, randomly choose if the image is horizon-

tally flipped or not.

Since RSMAS and StructureRSMAS are very small to train the CNNs from

scratch, as we can see in Table 3, we have used transfer learning from ImageNet

[35]. That way, we have all the networks with its weights pre-trained on Ima-

geNet. Then, we have removed the last Fully Connected (FC) layer with 1000

neurons, which classifies the inputs into ImageNet classes, and we have added295

two FC layers, the first with 512 neurons and a ReLU activation and the second

with as many neurons as classes in the dataset we are classifying (14 for Struc-

tureRSMAS and 2 for the classifier between RSMAS and StructureRSMAS) and

a softmax activation. Lastly, we have only trained the two FC layers we have

added.300

Once we have chosen the best CNN model and its best parameters, we

test the following image enhancement techniques: contrast and brightness en-

hancement (referred to later as CBE) [36, 37], saliency detection [38, 39] and

deblurring [40, 41]. Then, we choose the best combination of them for each

dataset and with it, we evaluate data augmentation techniques.We have evalu-305

ated the performance of data augmentation by carrying out experiments with

and without the use of data augmentation techniques. The description of the

data augmentation techniques we have used is in Table 5.
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Table 6: Results obtained for RSMAS using ResNet-152 for each image enhancement tech-

nique. The best accuracy is stressed in bold.

Without en-

hancement

CBE Deblur Saliency Deblur + CBE Deblur + CBE

+ Saliency

Accuracy 96.710 96.575 96.438 79.726 95.342 72.740

6.2. Second level: texture model

In this section we evaluate the image enhancement techniques in the RSMAS310

dataset. We use the best model and hyperparameters found in [10] for this

dataset: a ResNet152 model with batch size 32 and 300 epochs for the training

process. The results can be seen in Table 6, where CBE refers to contrast

and brightness enhancement. As we can observe in this table, none of the

image enhancement techniques helps to improve the accuracy of the model in315

RSMAS, though the differences, if we exclude the saliency method, are similar.

We argue that this is happening because the images in this dataset are already

preprocessed. In the case of the saliency method, we think this is normal as we

are loosing all the information in the background of the images.

As a result, we are not using any image enhancement techniques in this320

dataset and thus we are using the best data augmentation technique reported

in [10], a random zoom of 0.4, which give us an accuracy of 98.356%.

6.3. Second level: structure model

To automatically classify any coral image from AUVs, it is necessary to clas-

sify images of entire corals. At this level, we focus on the problem of classifying325

structure images before solving the classification of texture and structure im-

ages together. These images are generally larger than the images in RSMAS.

To simplify the number of experiments, we first have chosen the best model to

classify the complete images in StructureRSMAS, among several CNNs models,

without using data augmentation. After that, we have chosen the best model330

to evaluate the image enhancement methods and we have chosen the best of

them. Once we have the best model and the best image enhancement method,

we evaluate the data augmentation techniques.
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Table 7: Best results obtained for StructureRSMAS using Inception, ResNet-50, ResNet-152,

DenseNet-121 and DenseNet-161, and the set of hyperparameters used to obtain them, without

data augmentation. The best accuracy is stressed in bold.

Inception ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

Accuracy 81.316 83.158 83.158 54.737 55.526

Best batch size 32 32 32 64 32

Best number of epochs 700 300 1300 700 700

The results without data augmentation and without image enhancement,

and the hyperparameters we have used to obtain those results, are shown in335

Table 7. Similarly to RSMAS, ResNet is the best classifier. Particularly, ResNet-

50 achieves the highest accuracy, although Inception also obtains a competitive

accuracy. DenseNet is the only CNN that does not show a good performance

in this problem. As stated in [10], this is probably due to the large number of

connections in DenseNet, which makes it more adapted to ImageNet than the340

rest of the architectures. As a consequence, it is more difficult to classify a new

dataset just by training the last two layers of the network.

We observe that the accuracy obtained for StructureRSMAS is lower than

the one obtained for RSMAS. This can be explained by the fact that Structur-

eRSMAS contains fewer examples than RSMAS, and the images that belong to345

the same class have very different characteristics e.g., resolution, angle of view

or distance from which the images are captured. Despite all of this, we achieve

a good accuracy, 83.158%.

Next, we have used the ResNet-50 model with its best parameters to test

the image enhancement methods in this dataset. The results we have obtained350

are showed in Table 8, and we can see that for this dataset it is better to

first preprocess the images by using contrast and brightness enhancement and

deblurring. The highest accuracy with image enhancement, 2.6% higher than

without applying any image enhancement, was obtained by applying the deblur-

ring method alone. While applying the contrast and brightness enhancement355

improved the accuracy by only 1.3%. As a result, we have preprocessed the
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Table 8: Results obtained for StructureRSMAS using ResNet-50 for each image enhancement

technique. The best accuracy is stressed in bold.

Without en-

hancement

CBE Deblur Saliency Deblur + CBE Deblur + CBE

+ Saliency

Accuracy 82.368 83.684 85.000 52.632 83.158 51.358

Table 9: Best results obtained for StructureRSMAS using ResNet-50 for each data augmen-

tation technique. The best accuracy is stressed in bold.

shift = 0.4 flip zoom = 0.4 rotation = 6 flip + rotation = 8

Accuracy 84.211 85.000 83.421 84.737 83.684

images in StructureRSMAS with the deblurring method.

Finally, we have evaluated different data augmentation techniques with the

ResNet-50 classifier, and, for the sake of brevity, the best results can be seen in

Table 9. They show that there is no improvement from using data augmentation360

in this dataset.We argue that this can be due to the very small size of the dataset,

which also affects even when using data augmentation, as there are few images

from which to obtain new images.

6.4. First level: texture or structure binary model

In this section we develop a classifier to distinguish whether an image is a365

texture or a structure. To do this, we have joined in one dataset all the images in

RSMAS in one class and all the images in StructureRSMAS, preprocessed with

the deblurring method, in another class. We have followed the same scheme:

first, we have chosen the best model without data augmentation, and then we

have evaluated several data augmentation techniques using the best model.370

The results without data augmentation, along with the best hyperparame-

ters, can be found in Table 10. We can see that all the models provide good

results distinguishing textures and structures. This is actually the expected

output as the images in both classes are very dissimilar. In this case the best

model is ResNet-152, achieving an accuracy of 99.730%.375

We have evaluated ResNet-152 using different data augmentation techniques.

The ones that have given the best results can be seen in Table 11. The improve-
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Table 10: Best results obtained for the texture or structure binary classifier using Inception,

ResNet-50, ResNet-152, DenseNet-121 and DenseNet-161 and the set of hyperparameters used

to obtained them, without data augmentation. The best accuracy is stressed in bold.

Inception ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

Accuracy 95.495 99.640 99.730 98.920 99.009

Best batch size 64 32 64 32 64

Best number of epochs 300 700 1000 1000 1300

Table 11: Best results obtained for the texture or structure binary classifier using ResNet-152

and data augmentation techniques. The best accuracy is stressed in bold.

shift = 0.4 zoom = 0.3 rotation = 4 flip

Accuracy 99.640 99.820 99.460 99.550

ment is small as we already had a very good result. Even so, we have obtained

an accuracy of 99.820%. This means that the model is only wrong in two images

that can be seen in Figure 6. The first one (a) is a structure image classified as380

a texture image, and the second one (b) is a texture classified as a structure.

The high classification accuracy obtained by this binary classifier opens up

the possibility of using it as a first level model to decide whether the image is a

texture or a structure without losing accuracy in the second level.

(a) MMEA (b) MCAV

Figure 6: Coral images misclassified by the texture or structure binary classifier.
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Table 12: Results obtained using the two-level classifier over the test set from RSMAS ∪
StructureRSMAS, RSMAS and StructureRSMAS.

RSMAS ∪ StructureRSMAS RSMAS StructureRSMAS

Accuracy 93.874 98.356 85.263

6.5. Two-level classifier: identification of coral species based on texture or struc-385

ture images

At this point, we already have the three models needed to build the two-level

classifier for the classification of coral species based on either texture images

or structure images. The first level of the classifier is to use the model that

distinguishes between textures and structures, which we built in the previous390

section, to classify the input image in a texture image or a structure image.

The second level of the two-level classifier is to classify the image into one of

the coral species. To do this, the image is given to the RSMAS classifier or the

StructureRSMAS classifier depending on the output of the first level.

We have evaluated the two-level classifier individually on structure images,395

on texture images and on structure images and texture images. The results can

be seen in Table 12. It is important to note that, in each partition of the 5

fold cross validation, we are testing the two-level classifier with the same images

that we used to test the StructureRSMAS model, the RSMAS model and the

texture or structure binary classifier. That is, to test the two-level classifier we400

are not using images that were used to train any of its components.

Thanks to the high accuracy of the classifier in the first level, the accura-

cies obtained by the two-level classifier when we evaluate it only with texture

images and only with structure images are very similar to the ones obtained

by the RSMAS classifier and the StructureRSMAS classifier, respectively. This405

means that we classify textures and structures separately without decreasing the

classification accuracy obtained by the texture classifier alone and the structure

classifier alone. In fact, the accuracy for StructureRSMAS is now slightly bet-

ter, which means that the RSMAS classifier in the second level is classifying

correctly the image that are misclassified in the first level as a texture.410
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When we test the two-level classifier with texture and structure images, the

accuracy is 93.874%, which is higher than the weighted arithmetic mean, tak-

ing into account the number of images in each dataset, between the obtained

accuracy using the RSMAS model and the obtained accuracy using the Structur-

eRSMAS model, which is 93.707%. Therefore, we have built a robust classifier415

that obtains a very good accuracy classifying any type of coral image.

7. Conclusions

The problem of classifying together structure and texture underwater coral

images is a complicated task for three reasons: 1) the underwater images involve

lightning problems and camera focusing problems due to the water, along with420

partial occlusion of marine animals; 2) different coral species look very similar

and some species coexist together; and 3) there are not available coral structure

datasets, and coral texture and structure images are very different from each

other, no matter that they belong to the same class.

We have resolved this last problem by creating a coral structure dataset425

called StructureRSMAS, and we have tackled the classification of any coral im-

age by using CNNs. Particularly, we have used one of the newest and most

powerful CNNs, ResNet, which have been the one that have obtained better

accuracies in the texture dataset, RSMAS, and the structure dataset, Structur-

eRSMAS. We have also used image enhancement methods in the two datasets,430

data augmentation techniques and transfer learning from ImageNet to improve

our results.We have resolved this classification building a two-level classifier

composed of three models: the best model known model for RSMAS, the best

model we have developed in this work for StructureRSMAS and a model to

distinguish between a texture image and a structure image, also developed in435

this work.

We have observed that data augmentation does not bring much benefit when

classifying structure images alone, and we argue that this happens because

StructureRSMAS is small.
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The two-level classifier we have developed in this work first identifies if the440

input image is a texture or a structure and then uses one of two specialized

CNNs, depending on whether the image is a texture or a structure. It is able

to correctly classify 93.874%of the images in RSMAS ∪ StructureRSMAS.

Acknowledgments

This work was partially supported by the Spanish Ministry of Science and445

Technology under the project TIN2017-89517-P. Siham Tabik was supported

by the Ramón y Cajal Program (RYC-2015-18136). Anabel Gómez-Ŕıos was
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