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Abstract

Breast mass cancer remains a great challenge for developing advanced computer-

aided diagnosis (CADx) systems, to assist medical professionals for the de-

termination of benignancy or malignancy of masses. This paper presents a

novel approach to building fuzzy rule-based CADx systems for mass classifi-

cation of mammographic images, via the use of weighted fuzzy rule interpola-

tion. It describes an integrated implementation of such a classification system

that ensures interpretable classification of masses through firing the rules that

match given observations, while having the capability of classifying unmatched

observations through fuzzy rule interpolation (FRI). In particular, a feature

weight-guided FRI scheme is exploited to enable such inference. The work is

implemented through integrating feature weights with a popular scale and move

transformation-based FRI, with the individual feature weights derived from fea-

ture selection as a preprocessing process. The efficacy of the proposed CADx

system is systematically evaluated using two real-world mammographic image

datasets, demonstrating its explicit interpretability and potential classification

performance.
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1. Introduction

Breast cancer is one of the severest threats for women around the world.

Early detection of breast lesions has been shown to provide an essential means

to reduce the possibility of deterioration of patients’ health conditions or even

death. Amongst various tools available, mammography screening offers a partic-5

ularly popular technique for identifying the presence of abnormalities in breasts.

As a result, mammographic images are produced, in the form of films or more

advanced recently, in that of full field digital mammograms, which are helpful

to effectively detect and diagnose breast cancer by medical professionals.

Mass and microcalcification are two important early signs of abnormalities10

for detecting developing breast cancer, which are normally present in mam-

mographic images. Masses are often indistinguishable from the surrounding

parenchymal, resulting in more significant challenges for mass detection and

classification. In general, an abnormal mass can be categorised into either be-

nign or malignant. For instance, the standardised Breast Imaging Reporting and15

Data System (BI-RADS) [1] characterises masses for determination of benign

or malignant in terms of their shapes, margins and densities. This reflects how

radiologists visualise the mammographic images for diagnosis. Benign masses

are frequently found to be in round or oval shapes, having well-defined margins

and low densities, whilst malignant masses are more likely in irregular shapes20

and have spicule margins with relatively high densities.

Reading mammograms is a very demanding task for radiologists, and the

determination of whether an image shows a benign mass or malignant may be

affected by the experience and subjective criteria of a certain radiologist who

handles a given case. The development of Computer-Aided Diagnosis (CADx)25

techniques plays an effective supporting role in assisting medical professionals in

the interpretation of medical images. Especially, a combination of using a CADx

system and exploiting human expertise directly would greatly improve diagnos-

tic accuracy and efficiency. A number of CADx systems have been studied and

2



applied to support mammographic abnormality diagnosis (e.g., [2, 3, 4, 5, 6, 7]).30

Most developed techniques can be referred to in the recent survey of such re-

search in [8, 9, 10].

Existing computational techniques may provide a second opinion for mam-

mographic mass diagnosis, by dealing with the mammograms using pathological

related knowledge. In general, most CADx systems for mammogram mass clas-35

sification build their structures by following a number of key phases, including:

image preprocessing, region of interest (ROI) extraction, mass segmentation,

feature extraction and selection, and class determination. Various image fea-

tures have been found in the literature for characterising mass properties, such

as traditional features in terms of intensity, morphology, texture, etc. and fea-40

tures generated from advanced computational mechanisms like deep neutral

networks [11]. Morphological (aka. geometric) features are one of the most

common types used to discriminate mammographic masses [12], typically ex-

tracted to represent the shape and boundary characteristics of masses. They are

commonly adopted to support precise mass segmentation carried out by radiol-45

ogists or CADx systems. This is because such features depict what radiologists

visualise a mass lesion, which are essential to enable subsequent interpretation

of the classification or diagnostic outcome.

From medical viewpoint, interpreting mammogram masses visually is a very

demanding task for radiologists. It would therefore be a great assistance to be50

able to produce interpretable diagnoses from any CADx system in use. Re-

cently, efforts have been made for improving accuracy of CADx systems for

mammogram classification, such as those achieved by deep convolutional neu-

ral networks (DCNNs, e.g., [13, 11, 14]), which have been seen to make great

progress in meeting the visual recognition challenges. In such work, informa-55

tive features are extracted to generate potential explanations for mammogram

classification, by visually showing the edge of mass in saliency maps for ex-

ample. However, to ensure interpretable feature representations requires the

annotations of radiologists (or other alternative means) to correlate the DCNNs

features with radiological features that reflect clinically relevant phenomena.60
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This makes the interpretation progress and hence, the entire diagnostic system

more complicated. It remains a difficult problem to discover clinically explain-

able interpretations for machine learning-based CADx systems.

The question now is what intelligent classification methods can be better

developed to facilitate the use of semantics-rich geometric mass features, in65

an effort to enhance CADx systems’ explainability explicitly. Fuzzy rule-based

systems are known to be able to simulate human reasoning in decision support.

Inference made by firing fuzzy if-then rules can be readily interpreted by human

users. Such systems provide an effective tool to deal with the impreciseness

and vagueness commonly incurred in real-world problems, including the de-70

scription of mammographic mass characteristics. Fuzzy rule-based techniques

therefore, have a natural appeal in establishing a CADx system for mammo-

graphic mass diagnosis. For example, Adaptive Neuro-Fuzzy Inference System

(ANFIS) has been applied to classifying normal/abnormal mammograms, as

well as to determining abnormal severity [15]. Also, the classical Compositional75

Rule of Inference (CRI) [16] has been employed to perform mammogram diag-

nostic reasoning (e.g., classifying mammogram mass lesions into the well-known

BI-RADS shape categories) [17, 7].

Little work exists to explicitly interpret radiological phenomena of mass le-

sions in mammograms with the use of fuzzy rules, however. In addition, there80

may not be sufficient mammographic image data to enable the full exploitation

of traditional fuzzy systems to perform required diagnostic tasks. As such, a

fuzzy rule base inducted from the data may not cover the entire problem domain,

resulting in the situations where certain observations can not match any of the

rules in the rule base, thereby deriving no or wrong conclusions [17]. Fuzzy inter-85

polative reasoning through fuzzy rule interpolation (FRI) can help to deal with

exactly such sparse knowledge-based problems [18, 19, 20, 21, 22, 23, 24, 25].

The efficacy of classical FRI techniques have been significantly strengthened

with the recent advances in the literature, e.g., by the so-called weighted FRI

approach [26, 27, 28], which no longer imposes the constraint that the rule90

antecedent features are of equal significance in decision-making. Instead, fea-
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tures are ranked with their relative weights exploited in the procedures of a

conventional FRI method (e.g., the scale and move transformation-based FRI,

T-FRI [29]). The resultant techniques have been successfully applied in tack-

ling classification and prediction problems, inspiring the development reported95

herein.

This paper presents two key contributions to the relevant literature: 1) an

implemented fuzzy rule-based inference system for mass classification in mam-

mograms, where fuzzy interpolative reasoning is embedded for the first time in a

CADx system (for coping with sparse rule bases), supported by feature weight-100

guided FRI; and 2) an explicit explanation output from the CADx system, in

the form of clinically interpretable rules using features of doamin semantics,

thereby providing a “second opinion” for assisting radiologists to read mammo-

grams. The remainder of this paper is organised as follows. Section 2 describes

the mammographic image data addressed in this work. Section 3 presents the105

fuzzy rule-based interpolative reasoning system for mammographic mass classi-

fication. Section 4 provides experimental evaluation of the implemented system

with systematically statistical comparisons. Finally, Section 5 concludes the

paper and points out issues for further research.

2. Databases110

The benchmark mammographic image datasets used in this work are adopted

from the Breast Cancer Digital Repository (BCDR) [30]. It is a wide-ranging

and comprehensively annotated public database for mammographic disease study,

especially for the development of breast cancer CADx techniques and for train-

ing medical physicians involved in the diagnostic, treatment or research of breast115

cancer and associated technologies. This repository is continuously being en-

riched and currently, contains cases of 1734 patients with mammography and ul-

trasound images, clinical history, lesion segmentation and selected pre-computed

image-based descriptors.

BCDR consists of two different types of sub-repository: 1) a digitalised film120
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mammography (FM)-based repository, and 2) a full field digital mammography

(DM)-based repository. Both FM and DM repositories are divided into several

sub-datasets including different number of cases, which form a common ground

for fair comparison between various CADx systems for mammographic disease

analysis. As with other established mammographic databases, digitalised film125

mammogram images have rather lower resolution whilst full field digital mam-

mogram images are much more common nowadays (because of their higher

spatial resolution and permitting more image manipulation to enable better vi-

sualisation). Without biases, the present work takes samples from both FM and

DM sub-datasets, containing the following types of mass:130

• BCDR-D01: comprised of 79 biopsy-proven lesions of 64 women, rendering

141 segmentations. All of them present suspicious mass, of which 85 are

benign and 56 are malignant. Each image is a grey level mammogram in

14 bits with a resolution of 3328×4084 pixels.

• BCDR-F01: comprised of 200 biopsy-proven lesions of 190 women, ren-135

dering 362 segmentations, with mass lesions occurring in 231 segmented

images where the number of benign and malignant masses are 112 and

119, respectively. Each image is a grey level digitalised mammogram in 8

bits with a resolution of 720×1168 pixels.

Note that each mammogram image considered has a precise segmentation of140

identified lesion. In particular, the contour of mass is manually annotated by

medical specialists. Fig. 1 shows examples of benign and malignant mass lesions

with respective mass segmentations, taken from each of the two datasets.

3. Fuzzy Rule-based Interpolative Classifier

This section details the design and implementation of a rule-based system145

that works through the assistance of fuzzy interpolative reasoning, for classifying

mammographic mass in mammogram images.
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(a) Malignant mass in
BCDR-D01

(b) Benign mass in
BCDR-D01

(c) Malignant
mass in BCDR-
F01

(d) Benign mass
in BCDR-F01

Figure 1: Samples of mass lesions with mass contours annotated.

3.1. System Framework

The workflow of the entire diagnostic system is specified as illustrated in

Fig. 2. The general working process is as follows. Having identified a gen-150

eral region of interest (ROI) and segmented mass lesion from a given original

mammogram image, a set of potentially descriptive features are extracted for

characterising the properties of the image (particularly regarding the geometric

shape, margin, density of mass lesion). The resulting mass features are evalu-

ated by a feature ranking method, of two-fold objectives: 1) selection of more155

informative top features, and 2) assignment of weights to those selected ones in

terms of their relative ranking scores. A fuzzy semantic rule base is generated

from the given image database through the use of selected mass features as

rule conditionals, by employing a certain standard fuzzy rule induction method

(which is beyond the scope of this paper).160

Following the aforementioned preparation, the primary work for mass clas-

sification is highlighted in the dashed box in Fig. 2. In particular, when a novel

observed mass is present (represented with selected features) it is regarded as

a new observation to be checked against the rules within the rule base. If it is

matched by any existing rule, the rule is fired by the use of conventional com-165

positional rule of inference (CRI). If there is no rule matching the observation,

weighted fuzzy rule interpolation (where T-FRI is used for implementation in
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this work, though others may be used as an alternative [28]) to perform inter-

polative reasoning, estimating the benignancy or malignancy of the given mass.

Technical details are provided in the following.170

Figure 2: Fuzzy interpolative reasoning for mammographic mass classification.

3.2. ROI Extraction and Mass Segmentation

In BCDR, each mammogram is associated with a precise segmentation of the

underlying mass lesion. Since the focus of this work is on mass classification,

the available contours of masses are adopted here for generating the ROI image

and subsequently, the mass-segmented mask image of each given mammogram.175

These two images are chopped from the original mammogram, such that the

observed mass locates in the centre. The resultant images consolidate the basis

upon which to extract features in terms of mass shapes, margins and densities.

Fig 3 shows examples of the ROI and mass-segmented mask images as per those

mammogram samples displayed in Fig 1.180
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(a) ROI of (a) (b) Mask of (a) (c) ROI of (b) (d) Mask of (b)

(e) ROI of (c) (f) Mask of (c) (g) ROI of (d) (h) Mask of (d)

Figure 3: ROI and mass-segmented mask images of mass samples given in Fig. 1.

3.3. Mass Feature Extraction and Ranking

Given the ROI image and mass-segmented image of a mammogram, a set of

features are extracted for characterising mass lesion in terms of the image prop-

erties such as mass shape, margin and density. Generally, the benign masses

are frequently found to be in round or oval shapes, having well-defined mar-185

gins and low densities, while the malignant masses are more likely in irregular

shapes and have spicule margins with relatively high densities. Inspired by this

observation, in this work, a total of 18 features are taken as the possible ones

to distinguish benign and malignant masses, as listed in Table 1. This intu-

itive approach is based on the understanding of medical professionals practice,190

in that these two types of mass are often differentiated from their geometrical

shape and boundary as well as density.

Benign and malignant masses may be found in rather different shapes. To

reflect this viewpoint, six geometry features are extracted from the mask images

of mass, including: mass area (F1), mass perimeter (F2), circularity measure195

(F3), convexity measure (F4), mass eccentricity (F5) and dispersion (F6). In
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particular, area and perimeter are basic shape descriptors for measuring the

size of a mass. The features F3-F6 are metrics which define the morphological

characteristics of masses in different shapes, potentially helpful to differentiate

masses of regular shape from those of irregular, and to quantify the circularity200

and ellipticity of regular masses.

The margin of a mass offers another view for depicting the geometric prop-

erties of masses. Margin features can be grouped in two sub-categories. One is

used to determine the degree of boundary roughness. Herein, five normalised ra-

dial length (NRL)-based statistical features (F7-F11) and compactness measure205

(F12) are employed to cover this aspect. The other group is to quantify the

sharpness of margin intensity, with three margin gradient features (F13-F15)

adopted to measure the pixel intensity variations over the boundaries of masses.

Mass shape and margin features characterise the morphological properties

of mass regions, while the density features of mass reveal the intensity of mass210

region compared against its surrounding tissue. The last three features are

therefore adopted to exploit the pixel intensity within a mass involved in the ROI

images. In particular, the features F16 and F17 are computed with respect to

the statistics relevant to the moments which measure the intensity of suspicious

mass region. The contrast measure (F18) is the difference between the average215

grey level of the ROI and that of the surrounding region, evaluating the intensity

variation within masses in contrast to that outside.

Note that there may exist redundant features among the extracted combina-

torial properties of mass shape, margin and density. Obviously, such redundancy

should be removed, not only to improve the performance of classifier (via the220

use of less features gaining efficiency and the reduction of measurement noise

gaining effectiveness), but also to enhance interpretability of the diagnostic sys-

tem (with less complex rules). In this work, a feature ranking mechanism taken

from the core of the popular Relief-F algorithm [34] is employed to evaluate in-

dividual mass features. This results in a set of scores that indicate the relative225

importance of each feature in the determination of benign and malignant mass.

Intuitively, those features which have relatively lower scores may have poorer
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capability in the discrimination of different classes, and thus a subset of fea-

tures are selected whose score values are higher than the average. The average

score is herein utilised in order to ensure the process is automated; otherwise,230

if desirable, a pre-defined threshold may be used for the removal of low-ranking

features.

Without losing generality, suppose that there are m (m ≤ 18) features being

selected, each of which has a ranking score RSi, i = 1, 2, . . . ,m. These different

score values can then be normalised as weights associated with each of the235

selected individual features, as follows:

Wi =
RSi∑

t=1,...,mRSt
(1)

Given their underlying definition, the resulting normalised ranking scores

have a natural appeal to be interpreted as the relative significance degrees of

the contribution that a remaining feature may make to the decision, regarding

the benignancy or malignancy of the mass. Such weights will also be utilised to240

guide the fuzzy rule-based interpolative inference system for mass classification

as to be discussed later.

3.4. Generation of Fuzzy Classification Rules

Having represented mass lesions in mammograms with selected mass shape,

margin and density features, fuzzy rules for mass classification can be generated245

from given images whose decision classes are known. More specifically, the fuzzy

rule base for mass classification consists of fuzzy if-then rules whose antecedent

attributes are the ranked mass features selected in Section 3.3 and consequent

attribute is the corresponding mass lesion type (i.e., Benign or Malignant).

The fuzzy values for each antecedent feature are fuzzified linguistic terms,250

which are defined in terms of the physical meaning of the underlying mass fea-

tures (that are given in Table 1). Different values of the numerical metrics

defining the features indicate different properties of a certain mass (including:

shape, margin and density). Generally, the linguistic terms describing the fea-
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tures can be given in order, such as “..., Small ,..., Medium ,..., Large ,...”.255

Table 2 lists the linguistic values used in this work, mimicking the terms used

by the medical professionals in the field concerned. From this definition, a fuzzy

rule base is inducted from the extracted feature data, by promoting any hype-

grid delimited by the fuzzy feature values that is hit by at least one given data.

Note that any standard fuzzy rule induction method may be employed to create260

the rules, which is not the focus of this work. Unless stated otherwise, rules are

herein learned from the selected mass features based on the use of the classical

method of [35].

A possible rule, for example, from the learned rule base may be represented

such that265

If Area is Small and ... Circularity is Large and ... NRL zero-crossing is

Small and Margin gradient mean is Large and ... Density contrast is Small,

then Mass is Benign.

From the underlying semantics of the morphological and density features, this

rule can be directly mapped onto the following, using the linguistic terms given270

in Table 2:

If Mass is Small and ... Mass shape is Very Like Circular and ... Mass

margin is Smooth and Margin is Circumscribed and ... Mass density contrast

(between inside and outside mass) is Low, then Mass is Benign.

Using fuzzy rules like the above helps facilitate the understanding of any con-275

clusion drawn regarding whether a new mammogram stands for a benign or

malignant mass, through the use of the fuzzy interpolative reasoning system as

described next.

3.5. Feature Weight-Guided Interpolative Reasoning

When a new observation is present, in terms of a set of measured feature280

values (representing an unknown mass lesion), all rules in the rule base are used

to match against it in order to derive a diagnostic conclusion. However, the rule

base learned from previously given data may be sparse, especially when only

limited source data (or classified medical mammographic images) are available.
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Thus, checking against all the available rules cannot fully cover the entire prob-285

lem domain. That is, there exist situations where no rules can be found that

match the new observation, leading to no conclusion to be drawn. To enable

approximate inference on the unmatched observation, FRI is utilised. In this

work, the recently developed feature weighted FRI is adapted to implement the

required interpolative reasoning for mass classification. This adaptation is the290

first practical application of weighted FRI techniques.

For a formal illustration of the feature weighted FRI approach, without

losing generality, suppose that a (sparse) fuzzy rule base R = {r1, r2, . . . , rN}

has been learned, each involving multiple antecedent attributes. Also, suppose

that through feature ranking each attribute is now associated with a weight.295

Thus, a certain rule ri may be represented as follows:

ri : If a1(W1) is Ai
1 and a2(W2) is Ai

2 and · · · and am(Wm) is Ai
m, then z is

Bi

where aj , j = 1, 2, . . . ,m are the rule antecedent attributes or features; Wj are

the weights of these features; z is the consequent attribute; Ai
j denotes the fuzzy300

set value taken by aj in the rule ri; and Bi represents the fuzzy set value of the

consequent attribute z in ri. In addition, let an observation o∗ be represented

by

o∗ : a1 is A∗1 and a2 is A∗2 and · · · and am is A∗m where A∗j denotes the

observed value for the feature aj . In practice, each of such observed feature305

value may be a real number, but for generality, in this work it is assumed to

be a fuzzy value that is fuzzified from the underlying real number, using a

conventional fuzzification method.

For simplicity, triangular membership functions are employed for implement-

ing the CADx system in this work, with each fuzzy set represented by three char-310

acteristic points (CPs). Namely, the fuzzy values Ai
j , A

∗
j , Bi appearing in the

rule antecedents and observations, as well as the consequent B∗ to be computed

(i = 1, 2, . . . , N, j = 1, 2, . . . ,m) are expressed as (aij1, a
i
j2, a

i
j3), (a∗j1, a

∗
j2, a

∗
j3),

(bi1, b
i
2, b

i
3), and (b∗1, b

∗
2, b
∗
3), respectively. Within each triangular membership

function, the first and third CP stand for the two extreme points of the support315
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with a membership value of 0 and the middle one stands for the normal point

of the fuzzy set with a membership of 1.

Using the above notations, the algorithm for feature weight-guided FRI can

be summarised as follows.

3.5.1. Step 1: Weighted Selection of Closest Rules for Interpolation320

Any FRI process starts as an observation o∗ being newly presented to the

fuzzy system does not activate any rule in the sparse rule base, due to no match-

ing (or in certain FRI-based systems, due to too low level a partial matching).

Then, for interpolation, n (n ≥ 2) rules closest to the observation are sought in

order to implement the interpolation. The similarity measure defined for such325

rule selection is based on weighted aggregation of distances between individ-

ual antecedent attributes of a given rule and their corresponding values in the

observation. This takes into consideration of the individual antecedent weights

evaluated from the feature ranking scores, leading to the selection of rules which

have one of the first n minimal distances to the observation.330

Euclidean distance metric is typically used, as defined below:

d(o∗, ri,W ) =
1√∑m

t=1(1−Wt)2

√√√√ m∑
j=1

(
(1−Wj)d(A∗j , A

i
j)
)2

(2)

with d(A∗j , A
i
j) being computed via the representative value [20] such that

d(A∗j , A
i
j) =

∣∣Rep(A∗j )−Rep(Ai
j)
∣∣

maxAj −minAj

(3)

where d(A∗j , A
i
j) represents the normalised result of the otherwise absolute dis-

tance; maxAj
and minAj

denote the maximal and minimal value of the attribute

aj , respectively; and m is the number of all antecedent attributes involved in all335

the given rules. As indicated previously, triangular membership functions are

used throughout and therefore, the representative value of a fuzzy set (a1, a2, a3)

may be simply calculated by averaging the CPs of the triangular fuzzy set, such
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that

Rep(A) =
a1 + a2 + a3

3
(4)

In this work, the number of closest rules, n is set to 2 for conducting rule340

interpolation. This is supported by the recent studies [28] in that the adoption

of the least number of closest rules (i.e., n = 2) is able to achieve a superior

performance for feature weighted T-FRI. Such a set up normally has a high

classification accuracy while saving computational costs.

3.5.2. Step 2: Construction of Intermediate Fuzzy Rule345

From the preceding procedure, two closest rules to a given observation

are chosen (which are of the shortest distances amongst all the rules to the

observation). Using these two rules, an intermediate fuzzy rule r′ is con-

structed, forming the starting point of the transformation process of T-FRI.

In implementation, the construction procedure computes the antecedent fuzzy350

sets A′j , j = 1, . . . ,m and the corresponding consequent fuzzy set Z ′ of the

intermediate rule:

r′ : If a1 is A′1 and a2 is A′2 and · · · and am is A′m, then z is Z ′

which is a weighted aggregation of the two selected closest rules.

Let wi
j , i ∈ {1, 2}, denote the weight to which the jth antecedent of the355

ith fuzzy rule contributes to the construction of the jth antecedent A′j of the

intermediate fuzzy rule:

wi
j =

1

1 + d(Ai
j , A

∗
j )

(5)

where d(Ai
j , A

∗
j ) is calculated as per Eqn. (3). Then,

A′j =
∑
i=1,2

ŵi
jA

i
j (6)
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where ŵi
j is the normalised weight defined by

ŵi
j =

wi
j∑

t=1,2 w
t
j

(7)

The consequent value of the intermediate rule is constructed in the same360

manner as above:

Z ′ =
∑
i=1,2

ŵi
zZ

i (8)

which is the weighted aggregation of the consequent values of the two closest

rules Zi, i = 1, 2, where ŵi
z is the weighted average of those weights associated

with the antecedents ŵi
j in all rules, by the use of the feature weights (Wj , j =

1, . . . ,m):365

ŵi
z =

m∑
j=1

Wjŵi
j (9)

3.5.3. Step 3: Computation of Scale and Move Factors

The initial goal of a transformation process T in T-FRI is to scale and move

intermediate antecedent fuzzy sest A′j . This is in order that the transformed

shapes and representative values coincide with those of the respective observed

values A∗j . Over the process of this transformation, move and scale factors are370

recorded so that the consequent of the intermediate rule can be modified ac-

cordingly, to produce the required interpolated result by following the sound

intuition that similar antecedents should lead to similar consequent. This pro-

cess is implemented in two stages: (i) scale operation from A′j to Â′j (denoting

the scaled intermediate fuzzy set), and (ii) move operation from Â′j to A∗j . From375

these operations, the required scale rate sAj
and move ratio mAj

are determined.

In particular, given a triangular fuzzy set A′j = (a′j1, a
′
j2, a

′
j3), the scale rate

sAj is:

sAj
=
a∗j3 − a∗j1
a′j3 − a′j1

(10)
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which essentially expands or contracts the support length of A′j : a′j3 − a′j1 so

that it becomes the same as that of A∗j . The scaled intermediate fuzzy set Â′j ,380

which has the same representative value as A′j , is then obtained such that

â′j1 =
(1 + 2sAj

)a′j1 + (1− sAj
)a′j2 + (1− sAj

)a′j3
3

â′j2 =
(1− sAj

)a′j1 + (1 + 2sAj
)a′j2 + (1− sAj

)a′j3
3

â′j3 =
(1− sAj )a′j1 + (1− sAj )a′j2 + (1 + 2sAj )a′j3

3
(11)

Similarly, the move operation shifts the position of Â′j to becoming the

same as that of A∗j , while maintaining its representative value Rep(Â′j). This is

achieved using the move ratio mAj
:

mAj =


3(a∗j1− ˆa′j1)

ˆa′j2− ˆa′j1
, if a∗j1 ≥ â′j1

3(a∗j1− ˆa′j1)

ˆa′j3− ˆa′j2
, otherwise

(12)

3.5.4. Step 4: Scale and Move Transformation for Interpolated Result385

Having calculated the necessary scale and move factors (i.e., sAj
andmAj

, j =

1, . . . ,m), this procedure completes the T-FRI process, deriving the required

consequent of Z∗. This follows the intuition of similar observations leading

to similar consequents, a heuristic fundamental to analogical approximate rea-

soning. For this, the transformation factors on the antecedent attributes are390

aggregated. This is implemented by taking into consideration of feature weights

assigned for each of the individual antecedent attributes, as shown below:

sz =

m∑
j=1

WjsAj
mz =

m∑
j=1

WjmAj
(13)

This entails the computation of scaled Ẑ ′ = (ẑ′1, ẑ
′
2, ẑ
′
3):
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ẑ′1 =
(1 + 2sz)z′1 + (1− sz)z′2 + (1− sz)z′3

3

ẑ′2 =
(1− sz)z′1 + (1 + 2sz)z′2 + (1− sz)z′3

3

ẑ′3 =
(1− sz)z′1 + (1− sz)z′2 + (1 + 2sz)z′3

3
(14)

where Z ′ = (z′1, z
′
2, z
′
3) is the fuzzy value of the intermediate consequent previ-

ously computed. From this, again, by analogy to the transformation required395

for the antecedent to match the observation, move transformation is applied,

resulting in the final, required interpolated consequent Z∗ = (z∗1 , z
∗
2 , z
∗
3):

z∗1 = ẑ′1 +mzγ

z∗2 = ẑ′2 − 2mzγ γ =


ẑ′2−ẑ′1

3 , if mz ≥ 0

ẑ′3−ẑ′2
3 , otherwise

z∗3 = ẑ′3 +mzγ (15)

Based on the above, when a sparse rule base is learned from source data

and a novel observation finds no rules to match, the required consequent can

be derived. The entire interpolative process is guided by the feature weights.400

Note that for those matched observations, the classification results are directly

obtained by firing the matched rules without going through interpolation. As

with many fuzzy rule-based systems, the resultant consequent fuzzy sets are

required to be defuzzified for providing a class label, returning the conclusion

on classification. Obviously, in the present CADx system, the conclusion drawn405

over the given mass is whether its type is benignancy or malignancy.

3.6. Pseudocode of Mass Classification System

Finally, to reinforce the understanding and to help implement the proposed

mammographic diagnostic system, Algorithms 1 and 2 present the pseudocode
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for the training and application (or testing) of the classification system, respec-410

tively. They jointly reflect the overall system framework as illustrated in Fig. 2.

Note that the subroutine implementing the core shaded part of Fig. 2, i.e., the

procedure for feature weight-guided interpolation, is simply outlined in Line 8

of Algorithm 2 without comprehensively detailing it. This is because the work

presented herein is aimed to offer a practical application of weighted FRI, de-415

tailed pseudocode of which is beyond the scope of this paper but can be found

in [36].

Algorithm 1 Pseudodode of Mammographic Mass Classifier under Training

Input: • Training dataset with mammographic images labelled with mass
type

Output: • Selected conditional attributes and their relative weights

• Rule base
1: Identify mass ROI images for each of input mammographic images;
2: Segment mass aided with available contours provided in dataset, resulting

in mass-segmented mask images;
3: Extract K mass shape (F1-F6), margin (F7-F15) and density (F16-F18)

features (K = 18, as specified in Table 1) for each mammogram using pairs
of ROI and mass-segmented mask images;

4: Rank extracted mass features (F1-F18) of training dataset to obtain ranking
score RSi, i = 1, 2, . . . ,K;

5: Select top m features F = {RSi, i = 1, . . . ,m} such that RSi >
1
K

∑K
t=1RSt;

6: Calculate feature weights W in terms of Eqn. (1);
7: Generate fuzzy rule base R using selected mass features and mass types;
8: Return F , W and R

4. Experimental Evaluation

This section presents a systematic experimental evaluation of the proposed

fuzzy rule-based interpolative system for mammographic mass classification.420

The results are reported on the classification accuracy, sensitivity, specificity,

the area under the Receiver Operating Characteristic (ROC) curve, and the

ratios of false positives and false negatives over the size of the testing data.

These are supported by running nonparametric Wilcoxon signed-rank tests for

validating the statistical significance of the classification performance.425
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Algorithm 2 Pseudocode of Mammographic Mass Classifier in Action

Input: • Rule base (R) generated from training

• Selected features (F ) and their relative weights (W ) produced from
training

• Unknown mammogram to be classified
Output: • Mass category (i.e., benignancy or malignancy)

1: Identify mass ROI images of given mammogram;
2: Segment mass, resulting in mass-segmented mask images;
3: Extract |F | features (as specified in F , where |F | stands for F ’s cardinality),

serving as observation o∗ to be classified;
4: Match o∗ against each rule in rule base R;
5: if matched with at least one rule then
6: Fire matched rule(s) using CRI to obtain required consequent Z∗ for o∗;
7: else
8: Execute weighted FRI to compute Z∗ = WeightedTFRI(R, o∗,W );
9: end if

10: Defuzzify Z∗ as a class label;
11: Return Benign or Malignant mass

4.1. Experimental Setup

To have a common ground for fair comparison, all of the given mammo-

graphic images which contain mass lesions provided in BCDR-D01 and BCDR-

F01 datasets are employed to conduct the evaluation, for full field digital mam-

mograms and digitalised film mammograms, respectively. As indicated pre-430

viously, the mass contours annotated by medical specialists are used for the

generation of mass-segmented mask images, where the distance between the

margin of the chopped box and the provided mass boundary is empirically set

as 30 pixels. The corresponding ROI images are of the same size as that of the

mask images, while each sharing the same location as their respective original.435

Again, examples of those can be found in Fig. 3 of Section 3.2.

The classification performance is herein evaluated by 10-fold cross valida-

tion randomly repeated for 10 times for both datasets. The partition of each

antecedent attribute domain (which is normalised) into triangular membership

fuzzy values is achieved by approximating what is learned by the use of Fuzzy C-440

Means (FCM) [37]. The number of triangular membership functions (i.e., clus-

ters) for each attribute tuned by FCM is determined by the standard method
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of [38].

Comparative experimental studies are carried out for classifying mammo-

graphic masses, amongst the following three situations: 1) matching the rules445

in the learned rule base using CRI only for classification (as per classical fuzzy

inference systems without FRI), 2) performing CRI for those matched testing

observations and conventional unweighted T-FRI for those unmatched ones, and

3) running CRI for matched rule firing and the implemented feature weighted

T-FRI for interpolative rule-based classification.450

To comprehensively evaluate the classification performance, the following

four commonly used metrics are first adopted: classification accuracy, sensi-

tivity, specificity and AUC (i.e., area under ROC curve). These performance

indices are computed as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(16)

Sensitivity =
TP

TP + FN
(17)

Specificity =
TN

TN + FP
(18)

where TP, FP, TN and FN stand for the number of: true positives, false posi-455

tives, true negatives and false negatives, respectively. The ROC curve is created

by plotting the true positive rate against the false positive rate at various thresh-

old settings and then, the area encompassed by the plotted curve is computed.

All of the four evaluation metrics take values between 0 and 1, and a good di-

agnostic test is obtained when these are close to 1. In addition, two ratio-based460

performance criteria are also checked, namely FP ratio and FN ratio, which are

defined as the ratio between the number of FP over the data size, and that be-

tween the number of FN over the data size, respectively. Here, data size stands
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for the number of images tested. These two ratios are computed as follows:

FP ratio =
FP

Number of testing images
(19)

FN ratio =
FN

Number of testing images
(20)

Smaller values of these ratios indicate better classification, of course.465

4.2. Results and Discussion

Comparative experimental results are reported and discussed in this section,

including aspects regarding classification interpretability as well as performance

measurements.

4.2.1. Interpretability of Fuzzy Rules for Diagnosis470

The mechanism for mammographic mass classification in this work is achieved

by the use of semantic fuzzy rules, through rule firing for novel observations that

match a certain given rule or rule interpolation for those that match no rules.

As indicated before, such fuzzy rules are human interpretable because of the

employment of selected semantics-rich, morphological and density features as475

rule antecedent attributes. In the following, two examples are provided to show

the interpretable diagnostic procedure of rule matching (i.e., CRI) and that of

rule interpolation for mass classification, respectively.

(a) Running CRI over matching rule(s)

For BCDR-D01 dataset, nine top-ranked features are selected to generate the480

fuzzy rule base. These are: Perimeter (F2), NRL entropy (F9), Mass intensity

standard deviation (F17), Margin gradient entropy (F15), Compactness (F12),

Mass intensity mean (F16), Margin gradient SD (F14), Convexity (F4), Margin

gradient mean (F13). All types of mass feature are involved. In particular,

F2, F4 and F17, F16 are mass shape and density features, respectively, while485

the remaining are mass margin descriptors. These features utilise 3, 3, 4, 4,

3, 3, 3, 4, and 4 fuzzy membership sets representing the underlying linguistic
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terms, returned by the application of FCM. In particular, the terms used for

three-membership features are “Small, Medium, Large”, and those for four-

membership features are “Small, Medium-small, Medium, Large” or “Small,490

Medium, Medium-large, Large”, depending on which end over the normalised

interval [0,1] the partitions are closer to.

Consider as an illustrative example, the observation consisting of the follow-

ing feature values:

[F2, F9, F17, F15, F12, F16, F14, F4, F13] =495

[0.0760, 0.3178, 0.0368, 0.4178, 0.2690, 0.1181, 0.0709, 0.9179, 0.0865]

with the original mammogram, mass-segmented mask and ROI images shown

in Fig. 4. There are four fuzzy rules in total which match this observation, of

which the one shown below has the largest matching degree:

If Perimeter (F2) is Small and NRL entropy (F9) is Medium and Mass500

intensity SD (F17) is Small and Margin gradient entropy (F15) is Medium

and Compactness (F12) is Small and Mass intensity mean (F16) is Small and

Margin gradient SD (F14) is Small and Convexity (F4) is Large and Margin

gradient mean (F13) is Small, then Mass is Benign.

Considering the semantic meaning of each feature given in Table 2, the above505

rule can be directly translated into:

If Mass size is Small and Mass contour is Smooth and Blurred and Mass

density (and its variation) is Low and Mass is Very Like a convex regular region,

then Mass is Benign.

Firing this rule successfully classifies the mass as Benign, as shown in Fig. 4.510

It visually recognises the mass lesion in terms of its geometrical shape, contour

and density properties, which can be readily understood by medical specialists

or explained to the patient.

(b) Running weighted rule interpolation due to no matching rules

As illustrated in Fig. 2 of Section 3.1, feature weight-guided FRI sub-procedure515

is triggered by any observation that matches no rules in the sparse rule base, de-

riving an interpolative classification of the mass category. In this case, selecting

two closest neighbouring rules forms the starting point and sets the foundation
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(a) Original mammogram (b) Mass-segmented
mask

(c) Chopped ROI

Figure 4: Benign mass classified by matched fuzzy rules.

for rule interpolation.

As with the case for BCDR-D01, in BCDR-F01, all extracted features are520

ranked first, resulting in the top six being selected. These are: Compactness

(F12), Convexity (F4), Circularity (F3), NRL entropy (F9), NRL zero-crossing

count (F11) and Mass intensity mean (F16). In particular, F4 and F3 are mass

shape features, F12, F9 and F11 are mass margin features, and F16 is selected

again as the density descriptor in this dataset.525

The number of fuzzy membership functions learned for these selected fea-

tures are 4, 4, 5, 4, 2, 4, respectively. The fuzzy terms taken by the four-

membership features attain the same rule as set in BCDR-D01, while the (only)

two-membership feature has two alternatives (i.e., “Small, Large”) and the re-

maining one has five fuzzy values, taking from “Small, Medium-small, Medium,530

Medium-large, Large”.

Consider the case where the following observation is given which has no rules

matched:

[F12, F4, F3, F9, F11, F16] =

[0.9184, 0.2868, 0.2456, 0.8442, 0.4595, 0.4882]535

The original mammogram, mass-segmented mask and ROI images for this case
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are shown in Fig. 5. From this, two fuzzy rules are found to be the closest to

the given observation according to Eqn. (2) in Section 3.5, which are:

Rule 1: If Compactness (F12) is Large and Convexity (F4) is Medium-small

and Circularity (F3) is Medium-small and NRL entropy (F9) is Medium-large540

and NRL zero-crossing count (F11) is Large and Mass intensity mean (F16) is

Medium, then Mass is Malignant.

Rule 2: If Compactness (F12) is Medium-large and Convexity (F4) is Medium

and Circularity (F3) is Medium and NRL entropy (F9) is Medium-large and

NRL zero-crossing count (F11) is Large and Mass intensity mean (F16) is545

Medium, then Mass is Malignant.

Both rules give malignancy as the conclusion. Having taken into account

the semantic linguistic values used for each mass feature in Table 2, these two

selected rules jointly lead to the following interpolated rule, with detailed com-

putational process omitted to save space:550

(a) Original mammogram (b) Mass-segmented
mask

(c) Chopped ROI

Figure 5: Malignant mass classified by feature weight-guided FRI.

If Mass is Less Like a circular regular region and Mass contour is Irregular

and Mass density is Slightly high, then Mass is Malignant.

The final interpolated consequent also indicates malignancy for the observed
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mass. As can be seen, classifying mammographic mass through interpolating

two semantic fuzzy rules offers clear interpretability.555

Collectively, the interpretability of the proposed fuzzy rule-based diagnos-

tic system is shown by the process of inferring the category of mammogram

mass, running either CRI over matched rule(s) against a given observation or

weighted rule interpolation when there is no matching rule. Such interpretability

is empowered by the employment of selected semantics-rich, morphological and560

density features as rule antecedent attributes, in conjunction with the underly-

ing logic relationships between these attributes and the classification outcome.

Only clinically explainable fuzzy rules are used for classification. This forms a

significant contrast with existing techniques for addressing the problem of mass

classification. For instance, in attempting to building an interpretable CADx565

system using a deep convolution neural network (DCNN)-based framework, such

as DeepMiner [13], great effort has been devolved to discovering interpretable

representations in deep neural networks so as to provide explanations for medical

predictions. Unfortunately, generation of explanations for DCNN-based mam-

mogram classification requires sophisticated expert annotation regarding any570

interpretable network units. Another attempt is to reveal visually interpretable

images extracted from a DCNN, being only concerned with the edge of masses

in saliency maps [11]. Yet, no human-like linguistic explanation is produced

automatically, unlike what is facilitated in the present rule-based approach.

4.2.2. Performance Based on Fairly Dense Rule Base575

In this part of investigation, all fuzzy rules in the learned rule base are used

for mammographic mass classification. Table 3 shows the results with respect

to the six performance criteria, namely classification accuracies, sensitivities,

specificities, AUC, FP ratio and FN ratio, which are obtained by averaging

the outcomes of 10×10-fold cross validation. In particular, results on the row580

named CRI are those achieved by firing matched rules only, those on T-FRI

by aiding CRI with classical T-FRI, those on W-T-FRI by combining CRI and

feature weighted T-FRI. The classification outcome is obviously unknown for
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cases where CRI is used alone to deal with any unmatched observation, in which

case an error is recorded while calculating the accuracy, sensitivity, specificity,585

FP ratio and FN ratio, but this does not apply to the computation of AUC.

The performance of CRI provides the baseline for comparison. As can be

seen in Table 3, most of the testing samples are matched with the learned rule(s),

resulting in reasonable classified results for both datasets. This is not surprising

as the datasets used for training have been fairly comprehensive. Nevertheless,590

the rule base is not complete, there are uncovered problem spaces for which

T-FRI and W-T-FRI can help improve the performance. Indeed, the use of

either FRI method significantly strengthens the effectiveness of CRI on BCDR-

D01, in terms of the improvement on classification accuracy, sensitivity and

specificity, and in the reduction of both false positive ratio and false negative595

ratio. This shows the potential of fuzzy interpolative inference for coping with

challenging situations where the given rule base fails to include rules matching

a novel observation.

Applying the feature weighted FRI method has shown a slight further en-

hancement over the use of the popular T-FRI. The statistical significance is600

herein verified by Wilcoxon signed-rank test (with the parameter p = 0.0312).

This demonstrates that the best AUC performance is attained by the use of

W-T-FRI for both datasets, with 0.9614 and 0.9023 for the two datasets, re-

spectively. This performance is comparable to that of the state-of-the-art CADx

systems for mammographic mass classification, where the recorded best AUC605

measures are 0.9650 and 0.8940, respectively for BCDR-D01 and BCDR-F01

(see [39, 40]). Yet, the classification process, and hence, the results of running

the existing methods are not so easy to interpret as their counterparts of the

proposed approach. More importantly, the performance improvement becomes

much more significant when considering situations where only a sparse rule base610

is available, as to be shown next.
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4.2.3. Performance Based on Very Sparse Rule Base

The classification results presented in the previous part of experimental eval-

uation are achieved by the use of the entire rule base learned from the data avail-

able. This is the situation that a real-world application would encounter. Even615

for the examined problem where a good amount of training data is exploited

to generate a fairly dense rule base, as with the investigated case, sparseness

may exist. This itself already shows the need for the employment of FRI tech-

niques. However, there are practical situations where not sufficient training

data is obtainable, especially when dealing with certain novel medical cases. It620

is therefore very interesting to investigate how the T-FRI in general and the W-

T-FRI method in particular may bring forward any benefits in such situations.

For this purpose, without complicating the experimental studies by introducing

different datasets, here, two rule bases which are much sparser than the one used

previously are artificially generated, by randomly removing a number of learned625

rules from the original used. Note that this artificially imposed removal is for

academic investigation only; in real application, unless there is inconsistency or

redundancy, learned rules are not to be removed.

Table 4 shows the averaged results of this investigation, in relation to the

percentage of rules removed. Particularly, the two sparser rule bases run are630

created by randomly deleting 30% and 70% of the learned rules, respectively.

As expected, and reflected by this table, the performance of applying CRI alone

declines dramatically as the proportion of rules remaining available decreases.

The accuracies drop 30.01% (=83.44%-53.43%) and 60% (=83.44%-23.44%) for

BCDR-D01 and 45.31% (=83.73%-38.42%) and 67.4% (=83.73%-16.33%) for635

BCDR-F01, respectively. The resultant performance deteriorates so much that

such an approach is no longer acceptable in practice.

On the contrast, both FRI methods have shown to be able to alleviate such

performance decline. With the employment of a FRI mechanism present CADx

system maintains a strong capability in distinguishing suspicious mass lesions640

when CRI performs poorly, given only a considerably sparse rule base. Even
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when just a small proportion of rules remains available (for the cases where

70% of the rules are removed), the classification performance (regarding accu-

racies, sensitivities and specificities) is still at an approximate rate of 80% on

the BCDR-D01 dataset and at high 60% on BCDR-F01. Regarding the FP and645

FN ratios, a significant reduction in these for both datasets has been shown by

the use of either T-FRI or W-T-FRI as compared to the use of just CRI. To-

gether, these results strongly demonstrate the significant effectiveness of fuzzy

interpolative reasoning for resolving the problems involving a sparse rule base.

Examining more closely by comparing the performance of T-FRI and that650

of W-T-FRI, as the rule base is reduced to be much sparser, the improvement

of W-T-FRI over T-FRI becomes more notable. In particular, the classifica-

tion accuracy is enhanced by 2.36% and 4.08% with regards to 30% and 70%

reduction of the rules on BCDR-D01, and by 1.62% and 3.73% on BCDR-F01.

Furthermore, Table 5 summarises the average number of testing samples that655

require rule interpolation in each of the three inference situations (namely, run-

ning CRI alone, and CRI with T-FRI or W-T-FRI). Note that RB in this table

and the next, stands for Rule Base. It is evident that the more unmatched

samples, the more opportunities there are for the FRI methods to perform.

Comparative performance is also measured through ROC analysis. The ROC660

curves resulting from running the standard T-FRI and feature weighted T-FRI

over the use of different rule bases are given in Fig. 6, on both BCDR-D01 and

BCDR-F01. Whilst it is not surprising that the best performance is achieved

using the fairly dense rule base for both methods, W-T-FRI is shown to be less

sensitive to the deterioration of sparsity of the rule base.665

Last but not least, as indicated previously, to further determine the statis-

tical significance in performance improvement of T-FRI over CRI, and that of

W-T-FRI over T-FRI, the nonparametric Wilcoxon signed-rank tests are con-

ducted. This is carried out for the classification accuracies obtained from the

use of three different inference mechanisms implemented, with three different670

sparsities of the rule base on both datasets. Table 6 lists the p-value of each

pairwise test. As can be seen in this table, all but one expectable test show
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Table 5: Average Number of Testing Samples

Dataset
Number of Samples Requiring Interpolation/Total (per Fold)
Fairly Dense RB Sparser RB 1 Sparser RB 2

BCDR-D01 1.24/14 5.85/14 10.50/14
BCDR-F01 0.21/23 12.77/23 18.70/23

(a) (b)

(c) (d)

Figure 6: ROC for T-FRI and W-T-FRI using rule bases of different sparsity.

relative small p-values (e.g., p < 0.05), which reflects the statistical significance

of outperformance in each comparison. The only exception (with p = 1) is for

the case comparing W-T-FRI against T-FRI on BCDR-F01 when the originally675

learned, fairly dense rule base is employed.

34



Table 6: P-value in Statistical Wilcoxon Signed Rank Test

BCDR-D01
Original RB 30% Reduced RB 70% Reduced RB

CRI vs. T-FRI 5.65× 10−13 1.34× 10−11 3.31× 10−8

T-FRI vs. W-T-FRI 0.0312 8.03× 10−5 1.71× 10−4

BCDR-F01
Original RB 30% Reduced RB 70% Reduced RB

CRI vs. T-FRI 0.0019 3.36× 10−8 1.56× 10−6

T-FRI vs. W-T-FRI 1 0.0169 4.88× 10−4

5. Conclusion

In this paper, a novel fuzzy rule-based diagnostic system for mammographic

mass classification has been presented. The system is able to derive a conclusion

for unknown observed masses that have no rules to match. The diagnostic680

outcomes are interpretable as the rules are learned over selected features in

terms of mass geometric and density properties, with feature values represented

in linguistic terms. The effectiveness of adapting feature weighted fuzzy rule

interpolation as the core of the implemented system has been systematically

evaluated and demonstrated, capable of dealing with rather sparse rule bases.685

This has been accomplished through comparison with the state-of-the-art work

on mammogram datasets.

The present work utilises transformation-based FRI algorithm, especially its

weighted version for implementation. However, other established approaches

for FRI may be modified for use as alternatives [18, 25]. In the implemented690

CADx system, individual feature weights are derived by ranking scores using

a common feature ranking mechanism. It would be interesting to investigate

how different feature selection techniques (e.g., those reported in [41, 42]) may

be exploited to evaluate extracted features. If successful, this would help effec-

tively reduce the dimensionality without destroying the underlying semantics695

of feature description, and of course rank the features to produce the required

weights. Finally, to reinforce the motivations for this development, applying

the proposed approach to more complicated breast cancer diagnostic problems
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remains an active research.
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[4] N.P. Pérez, M.A.G. López, A. Silva, and I. Ramos. “Improving the

Mann–Whitney statistical test for feature selection: An approach in breast710

cancer diagnosis on mammography.” Artificial intelligence in medicine 63.1

(2015): 19-31.

[5] G. Magna, P. Casti, S.V. Jayaraman, M. Salmeri, A. Mencattini, E. Mar-

tinelli, and C.D. Natale. “Identification of mammography anomalies for

breast cancer detection by an ensemble of classification models based on715

artificial immune system.” Knowledge-Based Systems 101 (2016): 60-70.
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[18] L.T. Kóczy, K. Hirota. “Approximate reasoning by linear rule interpola-755

tion and general approximation.” International Journal of Approximate

Reasoning 9.3, 197-225 (1993).
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