
Autoencoder Based Sample Selection
for Self-Taught Learning

Siwei Fenga, Han Yub,c,d, Marco F. Duartea,∗

aDepartment of Electrical and Computer Engineering, University of Massachusetts,
Amherst, MA 01003 USA

bSchool of Computer Science and Engineering, Nanyang Technological University,
Singapore 639798

cJoint NTU-UBC Research Centre of Excellence in Active Living for the Elderly, Singapore
639798

dAlibaba-NTU Singapore Joint Research Institute, Singapore 639798

Abstract

Self-taught learning is a technique that uses a large number of unlabeled data

as source samples to improve the task performance on target samples. Com-

pared with other transfer learning techniques, self-taught learning can be applied

to a broader set of scenarios due to the loose restrictions on the source data.

However, knowledge transferred from source samples that are not sufficiently

related to the target domain may negatively influence the target learner, which

is referred to as negative transfer. In this paper, we propose a metric for the

relevance between a source sample and the target samples. To be more specific,

both source and target samples are reconstructed through a single-layer au-

toencoder with a linear relationship between source samples and reconstructed

target samples being simultaneously enforced. An `2,1-norm sparsity constraint

is imposed on the transformation matrix to identify source samples relevant to

the target domain. Source domain samples that are deemed relevant are as-

signed pseudo-labels reflecting their relevance to target domain samples, and

are combined with target samples in order to provide an expanded training

set for classifier training. Local data structures are also preserved during source

∗Corresponding author
Email addresses: siwei@umass.edu (Siwei Feng), han.yu@ntu.edu.sg (Han Yu),

mduarte@ecs.umass.edu (Marco F. Duarte)

Preprint submitted to Journal of LATEX Templates December 3, 2019

ar
X

iv
:1

80
8.

01
57

4v
2

 [
cs

.L
G

]
 2

 D
ec

 2
01

9

sample selection through spectral graph analysis. Promising results in extensive

experiments show the advantages of the proposed approach.

Keywords: Self-Taught Learning, Sample Selection, Autoencoder, Domain

Mapping, Spectral Graph Analysis.

1. Introduction

Supervised learning is widely used in many machine learning tasks [1–3].

However, applications of supervised learning methods are limited in practical

scenarios due to its requirements on large-scale labeled training datasets1 with

both training and testing data sharing the same label and feature space, which

lead to high costs in collecting eligible training data [4, 5].

Several techniques have been proposed to tackle the limitations of supervised

learning methods. Semi-supervised learning algorithms [6, 7] use both labeled

and unlabeled data to improve performance when labeled training data are lim-

ited. However, the success of many semi-supervised learning algorithms highly

depends on the validity of assumptions that the unlabeled and labeled data

have the same distribution [6] or class labels [7]. Therefore, it is still difficult to

gather unlabeled data that satisfy these preconditions.

In order to further loosen the restrictions on training data, many transfer

learning approaches [8] have been proposed to use the knowledge obtained from

auxiliary domains2 to improve the performance on target domain tasks. Self-

taught learning [9–17] is a type of transfer learning technique that employs

unlabeled auxiliary data to improve the performance of a supervised learning

task when labeled training data are limited. Though similar to semi-supervised

learning, self-taught learning methods have fewer restrictions on unlabeled data,

as they allow the label spaces and marginal probability distributions of unlabeled

and labeled data to be different. In self-taught learning, unlabeled data are used

1“Training data” is used in the sequel to denote data used for model learning.
2“Source domain” is used in the sequel to denote auxiliary domains that are used to improve

target domain task performance.

2

Figure 1: Block diagram for the GASTL framework.

as the source from which the knowledge learned is applied to tasks performed

on labeled target data. Such a loose restriction on unlabeled data significantly

simplifies learning due to the huge volume of unlabeled data we can access.

However, the easily obtained unlabeled data inevitably contain samples that

are only weakly related to the labeled training data, which may even harm the

supervised learning performance if we treat them equally as other unlabeled

samples during knowledge transfer. Target task performance degradation due

to knowledge transfer from source domains that are not sufficiently related is

known as negative transfer [18], which has been studied under several transfer

learning scenarios [19, 20]. However, to the best of our knowledge, the problem

of negative transfer in self-taught learning has not been studied before.

In this paper, we propose a novel algorithm for self-taught learning with

unlabeled source data that are related to labeled target data to be selected with

the purpose of reducing negative transfer. The algorithm leverages a linear

mapping, a k-nearest neighbor (kNN) graph, and a single-layer autoencoder to

obtain a metric for cross-domain relevance. We refer to this method as graph

and autoencoder-based self-taught learning (GASTL). The GASTL framework

includes two modules: a source sample re-weighting module and a classifier

training module. In the first module, we assign each unlabeled source sample

3

a weight that indicates its relevance to labeled target samples.3 In the second

module, source samples with large weights are selected as a transfer training

set to be combined with target data to train a classifier. Each selected source

sample is assigned a pseudo-label from the target domain label space to be

used during classifier training. The source sample weights are also used during

classifier training. The trained classifier is then used to predict labels of unseen

target samples. Figure 1 shows the flowchart of GASTL.

The key contributions of this paper are as follows:

• We propose a novel metric for the relevance of each source sample to the

target domain in the scenario of self-taught learning based on an autoen-

coder and graph data regularization. To the best of our knowledge, we

are the first to measure cross-domain sample relevance in order to tackle

the issue of negative transfer in self-taught learning problems.

• We propose a novel classifier training scheme with both selected source

samples and target samples as the training dataset with the relevance

of each source sample to the target domain being considered. We are

not aware of existing self-taught learning approaches that integrate cross-

domain relevance into classifier training.

• We present an efficient solver for the knowledge transfer optimization prob-

lem described above that relies on an iterative scheme based on gradient

descent of the proposed objective function.

• We provide multiple numerical results to demonstrate the performance

improvements in terms of classification accuracy and sensitivity to pa-

rameters achieved by the proposed method compared with state-of-the-art

self-taught learning methods and other relevant techniques.

3The setting of self-taught learning requires source samples to be unlabeled and target

samples to be labeled. Therefore we do not specify the availability of label information for

both source and target samples in the sequel.

4

The rest of this paper is organized as follows. Section 2 introduces notation.

Section 3 overviews relevant techniques. The proposed framework is presented

in Section 4. Experimental results are provided in Section 5. Section 6 concludes

with suggestions for future work.

2. Notation

Vectors are denoted by bold lowercase letters while matrices are denoted

by bold uppercase letters. The superscript T of a matrix denotes the trans-

position operation. For a matrix A, A(q) denotes the qth column and A(p)

denotes the pth row, while A(p,q) denotes the entry at the pth row and qth

column. The `r,p-norm for a matrix W ∈ Ra×b is denoted as ‖W‖r,p =(∑a
i=1

(∑b
j=1 |W(i,j)|r

)p/r)1/p

. The `r-norm for a vector w ∈ Ra is de-

noted as ‖w‖r =
(∑a

i=1 |w(i)|r
)1/r

. The trace of a matrix L ∈ Ra×a is de-

fined as Tr(L) =
∑a

i=1 L(i,i). We use 1 and 0 to denote an all-ones and

all-zeros matrix or vector of the appropriate size, respectively. We use X =

[X(1),X(2), · · · ,X(n)] ∈ Rd×n to denote a sample set, where X(i) ∈ Rd is the

ith sample in X for i = 1, 2, · · · , n, and where d and n denote the sample

dimensionality and the number of samples in X, respectively.

In transfer learning, we use D to denote a domain and T to denote a task.

A domain D consists of a feature space X and a marginal probability distri-

bution P (X) over a sample set X. A task T consists of a label space Y and

an objective predictive function f(X,Y) to predict the corresponding labels

Y of a sample set X. We refer readers to [8] for a detailed explanation of

these notations. We use Dsrc = {Xsrc, P (Xsrc)} and Tsrc = {Ysrc, f(Xsrc,Ysrc)}

to denote the source domain and task, and use Dtrg = {Xtrg, P (Xtrg)} and

Ttrg = {Ytrg, f(Xtrg,Ytrg)} for the target domain and task.

5

3. Background and Related Work

3.1. Self-Taught Learning

Transfer learning methods can be classified as homogeneous (Xsrc = Xtrg)

or heterogeneous (Xsrc 6= Xtrg), and as transductive (Tsrc = Ttrg) or inductive

(Tsrc 6= Ttrg) [8]. The self-taught learning setting assumes different label spaces

between the source and target domains, and label information is assumed to

be unavailable in the source domain. Therefore, the self-taught learning set-

ting is similar to the inductive transfer learning setting when no labeled data

is available in the source domain. The goal of self-taught learning is to use the

unlabeled source domain data to help improve the target domain task perfor-

mance. In this paper we focus on homogeneous self-taught learning.

The idea of self-taught learning was first proposed by Raina et al. [9].4 In

STL, a dictionary D is first learned using source domain samples. After that,

the sparse coefficients for target domain sampels Atrg are computed based on

D. Finally, a classifier is learned on Atrg as well as target domain labels by

applying a supervised learning algorithm. Robust and discriminative self-taught

learning (RDSTL) [16] is an extension of STL that takes advantage of the label

information of target samples during learning and makes the dictionary learning

process more robust to noise and outliers by imposing an `2,1-norm constraint

on both the dictionary learning reconstruction loss and the sparse coefficient

matrix. Self-taught low-rank (S-Low) coding [17] is suitable for both clustering

and classification tasks in visual learning. By imposing a low-rank constraint

onto the sparse coefficient matrix, S-Low coding is able to characterize the global

structure information in the target domain. Self-taught clustering [10] is the first

algorithm proposed to tackle unsupervised inductive transfer learning problems

and aims at clustering a small amount of target unlabeled data by learning

a useful feature representation with the help of large amounts of unlabeled

4We use abbreviation STL to denote the method of [9] in the sequel, while we use the full

name “self-taught learning“ for the class of learning problems.

6

source domain data. Kuen et al. [11] incorporates self-taught learning into

visual tracking, where local representations are learned offline on unlabeled data

and transferred to the observational model of the proposed tracker. Kemker

et al. [14] applies self-taught learning to hyperspectral image classification by

learning models from sufficiently large quantities of unlabeled source data that

are distinct from the labeled target data to extract generalizable features. The

trained models are then used to extract features on the labeled target data for

classification. He et al. [15] combines self-taught learning, sparse autoencoder,

and radial basis functions to the field of wound infection detection to solve

the problem of insufficient labeled wound infection samples. A basis vector

is first learned on the easily obtained unlabeled pollutant gas samples. Then

new representation of wound infection samples are learned using the basis vector

under a sparsity constraint for classification. The idea of self-taught learning has

also been incorporated into object localization [12, 13] to learn object detectors

without or with little human supervision.

Although these self-taught learning approaches use different schemes for

knowledge transfer, they all use the entire source sample set without consider-

ing their relevance to the target domain, which makes these methods potentially

vulnerable to negative transfer.

3.2. Single-Layer Autoencoder

A single-layer autoencoder is an artificial neural network that aims to recon-

struct inputs by using only a single hidden layer, and is widely used in transfer

learning [21]. Given input data x ∈ Rd, an autoencoder first maps x to a com-

pressed data representation z ∈ Rm in a hidden layer, given by z = f(W1x+b1),

where W1 ∈ Rm×d is a weight matrix, b1 ∈ Rm is a bias vector, and f(·) is an

elementary nonlinear activation function. This part is referred to as an encoder.

The second step is to map the compressed data representation z to output data

x̄ ∈ Rd, which is x̄ = g(W2z + b2), where W2 ∈ Rd×m and b2 ∈ Rd are the

corresponding weight matrix and bias vector, respectively. This part is referred

to as a decoder.

7

The optimization problem underlying autoencoder training is to minimize

the difference between the input data and the output data. To be more specific,

given a set of data X = [X(1),X(2), · · · ,X(n)], the parameters W1, W2, b1,

and b2 are adapted to minimize the reconstruction error
∑

i ‖X(i) − X̄(i)‖22,

where X̄(i) is the output of autoencoder to the input X(i).

3.3. Instance-Based Transfer Learning

Instance-based transfer learning assumes that certain instances of data from

the source domain can be reused for learning in the target domain by reweight-

ing. Instance reweighting and sampling based on instance importance are two

major techniques in this context [8]. Kernel mean matching (KMM) [22] and

multiscale landmarks selection (MLS) [23] are two instance-based transfer learn-

ing methods that fit our setting of unlabeled source data since neither of them

require label information from the source domain. KMM is a nonparametric

method which directly produces resampling weights without requiring the esti-

mation of biased densities or selection probabilities, or the assumption that the

probabilities of the different classes are known. MLS selects landmarks that are

similarly distributed in the two domains to reduce the discrepancy between the

domains, where each instance from the union of source and target domain data

is considered as a candidate landmark, and the candidate is kept as a landmark

if its quality is sufficiently high according to some measure.

4. Proposed Method

In this section, we introduce our proposed GASTL approach. The basic

framework of GASTL is to reconstruct both source and target samples through

a single-layer autoencoder, while simultaneously enforcing a linear relationship

between source samples and target samples. Both global and local data struc-

tures are preserved through a single-layer autoencoder and spectral graph anal-

ysis, respectively. We develop a metric for the relevance between each source

sample and the target samples, which is used for source sample selection for

8

knowledge transfer. Meanwhile, a weight is assigned to each source sample re-

flecting its relevance to the target samples for the subsequent classifier training,

during which each selected source sample is assigned a pseudo-label from the tar-

get domain label space and combined with target samples to build the classifier

training sample set. Source sample weights are also considered during classifier

training. Finally, the trained classifier is used to predict labels of unseen target

samples.

4.1. Knowledge Transfer and Relevance Measure

In this section, we present the problem formulation of our knowledge transfer

scheme. We also propose a measure for relevance between each source sample

and the target samples.

4.1.1. Objective Function

The objective function of GASTL includes four parts: a data reconstruction

term, a domain mapping term, a regularization term for sample selection, and

a term based on spectral graph analysis for local data structure preservation.

The details of these four terms are described below.

Many transfer learning methods perform knowledge transfer from a source

domain to a target domain by finding a mapping between them [24, 25]. In

particular, we can set h1(Xtrg) = h2(Xsrc)A, where h1(·) and h2(·) are two

transformations, while A is a matrix that linearly maps transformed source

samples h2(Xsrc) into transformed target samples h1(Xtrg). More specifically,

the mapping is obtained from the optimization:

min
Θ,A
M(Θ,A) + λR(A),

where Θ is a set of parameters used for the nonlinear mappings h1 and h2,

while M(Θ,A) = L (h1(Xtrg),h2(Xsrc)A) denotes a cost function for domain

mapping, where L(·, ·) is a loss function andR(·) corresponds to a regularization

function on A to avoid overfitting.5

5We empirically found that regularizing Θ did not noticeably affect the performance of

9

A simple way to achieve domain mapping is to assume a linear mapping

between source and target data, which is Xtrg = XsrcA. This requires the cost

M(Θ,A) = L(Xtrg,XsrcA). The use of a linear mapping in knowledge trans-

fer is often computationally efficient. However, the success of this knowledge

transfer scheme relies on an assumption that Xtrg ∈ span(Xsrc) [26]. Due to

the ubiquitous large discrepancy between the source and target domains in self-

taught learning scenarios, Xtrg is usually not in the span of Xsrc, and hence a

linear reconstruction scheme can hardly do well in knowledge transfer. There-

fore, we aim to find a non-linear reconstruction scheme that can decrease the

discrepancy between source and target domains. One possible way to do this

is to find a nonlinear transformation on Xtrg, and recover the output of this

transformation as a linear transformation of source samples which are relevant

to the target samples. That is, h(Xtrg) = XsrcA, where h(·) is a nonlinear

transformation. Furthermore, due to the possible large diversity of source sam-

ples compared with the target samples, we can assume that the feature space

shared by both source and target domains are separated into several clusters:

the source samples lie near a union of many clusters, while the target samples

concentrate near a single cluster. Intuitively, negative transfer can be alleviated

by using source samples that are close to target samples for knowledge transfer.

As mentioned in Section 3.2, a single-layer autoencoder aims at minimizing

the reconstruction error between output and input data. We use X = [Xsrc Xtrg]

as the input to a single-layer autoencoder by optimizing a reconstruction error-

driven loss function:

L(Θ) =
1

2n
‖X− h(X; Θ)‖2F , (1)

where n = nsrc +ntrg, Θ = [W1,W2,b1,b2], and h(X; Θ) = g(W2 · f(W1X+

b1) + b2).6 We use the sigmoid function as the activation function: f(z) =

g(z) = 1/(1 + exp(−z)). In (1), both source and target samples share the

knowledge transfer. Therefore, we do not pursue such regularization in this paper.
6We often drop the dependence on Θ for readability, i.e. we use h(X) to denote h(X; Θ)

when no ambiguity is caused.

10

same parameters to train an autoencoder, which makes the reconstructed source

and target samples lie in the same submanifold under the learned parameters

Θ. Meanwhile, we use the following minimization problem for the purpose of

domain mapping:

C(Θ,A) =
1

2ntrg
‖XsrcA− h(Xtrg; Θ)‖2F . (2)

That is, we enforce the target samples in the autoencoder output to be recon-

structed by a linear combination of the source samples. While it is feasible to

separate the optimization of (1) and (2), we observed that a joint framework

is able to provide better knowledge transfer performance. Due to the nonlinear

nature of transformation featured by a single-layer autoencoder, the distribution

gap can be ameliorated through minimizing C(Θ,A) with respect to Θ and A.

Therefore, we define the mapping cost

M(Θ,A) = L(Θ) + µC(Θ,A),

where µ is a balance parameter, to obtain a nonlinear mapping between source

samples and target samples.

Since each row of A indicates the importance of the corresponding source

sample in reconstructing transformed target samples, we use the `2-norm of

each row of A to measure the relevance between a source sample and the target

samples. This leads to an `2,1-norm regularization function R(A) = ‖A‖2,1
that enforces row sparsity on the transformation matrix A.

Data transformations based on autoencoders only guarantee broad data

structure preservation, which does not take pair-wise relationships between data

points into consideration. Therefore, we need to include local geometric struc-

tures from the data into our objective function. Local geometric structures

of the data often contain discriminative information of neighboring data point

pairs [27–32], in which nearby data points are assumed to have similar repre-

sentations. In order to characterize the local data structure, we construct a

k-nearest neighbor (kNN) graph G on the data space. The edge weight be-

tween two connected data points is determined by the similarity between those

11

two points. We define the adjacency matrix S for the graph G as follows:

for a data point X(i), its weight S(i,j) 6= 0 if and only if X(i) ∈ Nk(X(j)) or

X(j) ∈ Nk(X(i)), where Nk(X(i)) denotes the k-nearest neighborhood set for

X(i); otherwise, S(i,j) = 0. In this paper, we use cosine similarity to determine

nonzero weights as S(i,j) = (X(i)TX(j))/(‖X(i)‖2‖X(j)‖2). The Laplacian ma-

trix L of the graph G is defined as L = D − S, where D is a diagonal matrix

whose ith element on the diagonal is defined as D(i,i) =
∑n

j=1 S(i,j). With

these definitions, we set up the following minimization objective for local data

structure preservation:

G(Θ) =
1

2

n∑
i=1

n∑
j=1

‖Z(i) − Z(j)‖22S(i,j) = Tr(ZLZT),

where Z(i) = f(W1X(i) + b1) for i = 1, 2, · · · , n, and Z = [Z(1),Z(2), · · · ,Z(n)].

The final objective function for source sample selection can be written in

terms of the following minimization with respect to the parameters Θ = [W1,W2,

b1,b2] and A:

{Θ̂, Â} = arg min
Θ,A
L(Θ) + µC(Θ,A) + λR(A) + γG(Θ), (3)

where µ, λ, and γ are balance parameters.

4.1.2. Optimization

The closed form solution of the optimization problem in (3) is hard to obtain

due to the `2,1-norm regularization term. We employ an alternating optimiza-

tion scheme to solve this problem with Θ and A being iteratively updated, until

the objective function value in (3) converges or a maximum number of iterations

is reached.

When A is fixed, (3) becomes

Θ̂ = arg min
Θ
F1(Θ) := arg min

Θ
L(Θ) + µC(Θ,A) + γG(Θ). (4)

Following [33], we use a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) algorithm to solve (4). The L-BFGS algorithm is a type of quasi-Newton

method that requires much fewer iterations to converge than first order methods

12

such as gradient descent. Furthermore, compared with other BFGS algorithms,

the L-BFGS algorithm has low computational cost, making it possible to use

the whole dataset for optimization and provide more stable performance than

commonly used stochastic gradient descent algorithms. For example, the dimen-

sionality of the parameter Θ is the sum of the dimensionalities of W1 ∈ Rm×d,

W2 ∈ Rd×m, b1 ∈ Rm, and b2 ∈ Rd, which is 2md + d + m. Compared

with the conventional BFGS algorithm, which requires computing and storing

of (2md + d + m) × (2md + d + m) Hessian matrices, the L-BFGS algorithm

saves the past l updates of Θ and corresponding gradients. Therefore, denot-

ing the number of iterations in the optimization by t, the corresponding time

complexity of L-BFGS is O(tlmd). We refer readers to [34] for more details on

L-BFGS algorithm, which we implement using the minFunc toolbox [35]. The

solver requires the gradients of the objective function in (4) with respect to

its parameters Θ. The gradients for both L(Θ) and C(Θ,A) can be obtained

through a back-propagation algorithm. We skip the details for the derivation of

the gradients of both L(Θ) and C(Θ), which are standard in the formulation of

back-propagation for an autoencoder. The resulting gradients for L(Θ) are:

∂L(Θ)

∂W1
=

1

n
∆L2X

T ,
∂L(Θ)

∂W2
=

1

n
∆L3Y

T ,
∂L(Θ)

∂b1
=

1

n
∆L21,

∂L(Θ)

∂b2
=

1

n
∆L31,

where each column of ∆L2 ∈ Rm×n and ∆L3 ∈ Rd×n contains the error term of

the corresponding sample for the hidden layer and the output layer, respectively:

∆L3 = (h(X)−X) • h(X) • (1− h(X)), ∆L2 = (W2
T∆L3) •Y • (1−Y),

with • denoting the element-wise product operator. The gradients for C(Θ,A)

are:
∂C(Θ,A)

∂W1
=

1

ntrg
∆C2(XsrcA)T ,

∂C(Θ,A)

∂W2
=

1

ntrg
∆C3Y

T
trg,

∂C(Θ,A)

∂b1
=

1

ntrg
∆C21,

∂C(Θ,A)

∂b2
=

1

ntrg
∆C31.

(5)

Both ∆
(i)
L2 and ∆

(i)
L3 in (4.1.2) play same roles as ∆

(i)
C2 and ∆

(i)
C3 in (5). Their

definitions are:

∆C3 = (h(Xtrg)−XsrcA)•h(Xtrg)•(1−h(Xtrg)), ∆C2 = (W2
T∆C3)•Ytrg•(1−Ytrg),

13

where Ytrg = f(W1Xtrg + b1). The gradients of the graph term G(Θ) =

Tr(YLYT) can be obtained in a straightforward fashion as follows:

∂G(Θ)

∂W1
=
∂Tr(YLYT)

∂Y
· ∂Y

∂W1
= 2 (YL •Y • (1−Y)) XT ,

∂G(Θ)

∂W2
= 0,

∂G(Θ)

∂b1
=
∂Tr(YLYT)

∂Y
· ∂Y

∂b1
= 2 (YL •Y • (1−Y)) 1,

∂G(Θ)

∂b2
= 0.

To conclude, the gradients of the objective function in (4) with respect to Θ =

[W1,W2,b1,b2] can be written as

∂F1(Θ)

∂W1
=

1

n
∆L2X

T +
µ

ntrg
∆C2(XsrcA)T + 2γ (YL •Y • (1−Y)) XT ,

∂F1(Θ)

∂W2
=

1

n
∆L3Y

T +
µ

ntrg
∆C3Y

T
trg,

∂F1(Θ)

∂b1
=

1

n
∆L21 +

µ

ntrg
∆C21 + 2γ (YL •Y • (1−Y)) 1,

∂F1(Θ)

∂b2
=

1

n
∆L31 +

µ

ntrg
∆C31.

When Θ is fixed, (3) becomes

Â = arg min
A
F2(A) := arg min

A
µC(Θ,A) + λR(A)

= arg min
A

µ

2ntrg
‖XsrcA− h(Xtrg; Θ)‖2F + λ‖A‖2,1.

(6)

Following [36], we calculate the derivative of F2(A) with respect to A through

∂F2(A)

∂A
=

µ

ntrg
[XT

srcXsrcA−XT
srch(Xtrg)] + λAU,

where U ∈ Rnsrc×nsrc is a diagonal matrix whose ith element on the diagonal is

U(i,i) =
(
2‖A(i)‖2

)−1
. (7)

We add a small constant ε to each element in A to avoid overflow; thus ‖A(i)‖2
is nonzero for each i. In this way, F2(A) becomes

S(A,U) =
µ

2ntrg
‖XsrcA− h(Xtrg; Θ)‖2F + λTr(ATUA). (8)

Therefore, when U is fixed, the optimal value of A can be obtained through

Â = (µXT
srcXsrc + ntrgλU)−1µXT

srch(Xtrg). (9)

We can update U through (7) when A is fixed and update A through (9) when

U is fixed with an iterative scheme until the value of F2(A) converges.

14

4.1.3. Convergence Analysis

The optimization of GASTL is based on an alternative scheme. When A

is fixed, an L-BFGS algorithm is employed to optimize (4). The convergence

analysis of L-BFGS algorithm can be found in [34]. Following [36], we show the

convergence behavior when Θ is fixed as follows.

Proposition 1. For two variables a and b, if b is positive, then the following

inequality holds:
a2

2b
− a >

b2

2b
− b (10)

Proof. For two arbitrary variables a and b, we have

a2 − 2ab+ b2 > 0⇔ a2 − 2ab > b2 − 2b2

If b is positive, then we get (10).

Proposition 2. When Θ is fixed, the optimization procedure of (6) is non-

increasing over iteration by employing the optimization procedure in Section

4.1.2.

Proof. When U is fixed as Ut in the tth iteration, minimizing (8) with respect

to A is a convex optimization problem; thus leading to the following inequality:

µ

2ntrg
‖XsrcA

t+1 − h(Xtrg; Θ)‖2F + λTr
[
(At+1)TUtAt+1

]
6

µ

2ntrg
‖XsrcA

t − h(Xtrg; Θ)‖2F + λTr
[
(At)TUtAt

] (11)

The trace item on the left side can be written as

Tr(((At+1)TUtAt+1))

=‖At+1‖2,1 + Tr(((At+1)TUtAt+1))− ‖At+1‖2,1

=‖At+1‖2,1 +

nsrc∑
i=1

(
‖At+1

(i) ‖
2
2

2‖At
(i)‖2

− ‖At+1
(i) ‖2

)
.

Likewise, the trace item on the right side can be written as

Tr(((At)TUtAt)) = ‖At‖2,1 +

nsrc∑
i=1

(
‖At

(i)‖
2
2

2‖At
(i)‖2

− ‖At
(i)‖2

)
.

15

Therefore, (11) becomes

µ

2ntrg
‖XsrcA

t+1 − h(Xtrg; Θ)‖2F + λ‖At+1‖2,1 + λ

nsrc∑
i=1

(
‖At+1

(i) ‖
2
2

2‖At
(i)‖2

− ‖At+1
(i) ‖2

)

6
µ

2ntrg
‖XsrcA

t − h(Xtrg; Θ)‖2F + λ‖At‖2,1 + λ

nsrc∑
i=1

(
‖At

(i)‖
2
2

2‖At
(i)‖2

− ‖At
(i)‖2

)
(12)

It is easy to obtain the following inequality based on the result of Proposition

1:
nsrc∑
i=1

(
‖At+1

(i) ‖
2
2

2‖At
(i)‖2

− ‖At+1
(i) ‖2

)
>

nsrc∑
i=1

(
‖At

(i)‖
2
2

2‖At
(i)‖2

− ‖At
(i)‖2

)
(13)

Plugging (13) into (12) leads to the following inequality:

µ

2ntrg
‖XsrcA

t+1 − h(Xtrg; Θ)‖2F + λ‖At+1‖2,1

6
µ

2ntrg
‖XsrcA

t − h(Xtrg; Θ)‖2F + λ‖At‖2,1
(14)

Proposition 3. The alternating optimization process of (3) with respect to Θ

and A is convergent.

Proof. When A is fixed as At in the tth iteration, an L-BFGS algorithm is used

to optimize (3) with regard to Θ. Since L-BFGS algorithms are convergent,7

we have

F(Θt+1,At) 6 F(Θt,At). (15)

When Θ is fixed as Θt+1 in the (t+ 1)th iteration, we can get

F(Θt+1,At+1) 6 F(Θt+1,At) (16)

based on Proposition 2. By combining (15) and (16), we have

F(Θt+1,At+1) 6 F(Θt,At)

Therefore, the optimization process of (3) is convergent.

7We refer readers to [34] for more details on the convergence analysis of L-BFGS algorithms

16

4.2. Classifier Training

The next step is to use source samples combined with target samples to train

a classifier, which can then be applied to unseen samples in the target domain for

classification. Since source samples have different relevance levels with the target

domain, we propose a scheme to assign weights to source samples that reflect

their relevance. Source domain samples with large weights are kept while others

are discarded. Subsequently, a classifier is trained using both target samples and

selected source samples. For each source sample, pseudo-labels that indicate the

transferability of the source sample to different target classes are used as true

labels during classifier training, where transferability reflects the possibility of

transferring a source sample to a target domain class [37]. The transferability

values of the source samples are stored in a matrix Tr ∈ Rnsrc×Ctrg , where

Ctrg is the cardinality of Ytrg. Two pseudo-labeling schemes are proposed for

comparison. Additionally, source sample weights are taken into consideration

in classifier training. For each pseudo-labeling scheme, we evaluate both soft

and hard classification with the softmax classifier.

4.2.1. Source Domain Sample Reweighting

As mentioned in Section 4.1.1, the `2-norm value of each row of A can be

used to measure the relevance between the corresponding source sample and

target samples. We propose a scheme to assign a weight to each source sample

based on the corresponding row in A. The weight for a source sample X
(i)
src|nsrc

i=1

is set proportional to the `2-norm of the corresponding row in A. That is, for a

source sample X
(i)
src, its weight vector Wt ∈ Rnsrc has entries

Wt(i) = ‖A(i)‖2/maxj

(
‖A(j)‖2

)
. (17)

Note that the vector Wt is normalized with the maximum entry value being

1. In addition, during classifier training, all target training samples are given

weight 1.

17

4.2.2. Pseudo-Labeling

We propose two transferability measure schemes and assign pseudo-labels to

source samples based on transferability values.

Scheme A: For a given source sample X
(i)
src, its transferability to a target class

c(j) is measured by the square of the `2-norm of a sub-vector consisting of the

elements in the corresponding row of A that belong to the target samples of

c(j). That is,

Tr(i,c
(j)) = ‖A(i,J

c(j)
)‖22, (18)

where Jc(j) denotes the columns in A that correspond to class c(j).

Scheme B: By following [37], we adopt the isometric Gaussian probability

[38] computed on the hidden layer representation of the trained single-layer

autoencoder as the transferability of a given source sample X
(i)
src to a target

class c(j). More concretely, the transferability is

Tr(i,c
(j)) = N (Z(i)

src|Z̄c(j)

trg , σ
2I), (19)

where Z
(i)
src ∈ Rm is the hidden layer representation of the source sample

X
(i)
src, and Z̄c(j)

trg ∈ Rm is the mean of the hidden layer representation of target

samples belonging to class c(j). As such, the transferability is measured by

the probability that the source sample belongs to a target class given the

auxiliary information Z̄c(j)

trg .

The pseudo-labels of source samples consist of a matrix L ∈ Rnsrc×Ctrg .

We assign pseudo-labels to the source samples based on their transferability

values to different target domain classes. Given a source sample X
(i)
src, for a hard

classifier, we set

L(i,j) =

1, j = argmaxkTr(i,c
(k)),

0, otherwise.

(20)

For a soft classifier, the normalized transferability values are used as pseudo-

labels so that pseudo-labels reflect the likelihood of transferring source samples

18

to target domain classes:

L(i,j) = Tr(i,c
(j))/

Ctrg∑
k=1

Tr(i,c
(k)). (21)

Compared with hard classifiers, soft classifiers may help improve knowledge

transfer performance since they are able to capture the relationship between

each single source sample and multiple target categories instead of only one

category. This is especially necessary for image classification tasks since there

usually exist commonalities between image categories.

4.2.3. Softmax Classifier Training with Weighted Samples

We employ a softmax classifier due to its simplicity and capability to do

soft classification. The training data weights are included in classifier training,

which leads to the following cost function

J(Θc) = − 1

n

 n∑
i=1

Wt(i)

Ctrg∑
j=1

L(i,j)log
exp(Θc

(j)TX(i))∑Ctrg

l=1 exp(Θc
(l)TX(i))

 , (22)

where Θc = [Θc
(1),Θc

(2), · · · ,Θc
(Ctrg)] is the classifier parameter to be opti-

mized. We use an L-BFGS algorithm to compute the optimal value of Θ. The

gradients needed for optimization are given by

∂J(Θc)

∂Θc
(j)

= − 1

n

n∑
i=1

[
Wt(i)X(i)

(
L(i,j) − exp(Θc

(j)TX(i))∑Ctrg

l=1 exp(Θc
(l)TX(i))

)]
.

The procedure for GASTL is summarized in Algorithm 1.

4.3. Algorithm Analysis

In this section, we discuss the time complexity and the limitations of GASTL.

Time Complexity: The time complexity for the construction of a kNN graph

is O(dn2), where d is the data dimensionality and n = nsrc + ntrg. When

A is fixed, the time complexity of using L-BFGS algorithm to optimize (4)

is O(tlmd), where t is the number of iterations for parameter updating and

l is the number of steps stored in memory; when Θ is fixed, the time com-

plexity to optimize (6) is O(n3src + dn2src), where O(n3src) results from matrix

19

Algorithm 1 GASTL Algorithm

Inputs: Source dataset Xsrc; target dataset Xtrg; graph neighborhood size k ;

autoencoder hidden layer size m; balance parameters λ and γ.

Outputs: Softmax classifier parameter Θc.

Stage 1: Relevance Measure

1: Construct a k-nearest neighbor graph G on a combined dataset X =

[Xsrc Xtrg];

2: Calculate the autoencoder parameter Θ and transformation matrix A by

optimizing the objective function (3) with the alternating scheme described

in Section 4.1.2;

Stage 2: Classifier Training

3: Calculate relevance weights for source samples according to the weighting

scheme (17);

4: Calculate the transferability of each source sample to each target class ac-

cording to the transferability measure scheme (18) or (19);

5: Assign target domain class labels to source samples according to the hard

pseudo-labeling scheme (20) or the soft pseudo-labeling scheme (21);

6: Construct a softmax classifier from the target data and labels, source data,

relevance weights, and pseudo-labels by optimizing the cost function (22) to

get classifier parameters Θc.

20

inversion and O(dn2src) results from matrix multiplication. The time complex-

ity of source sample weighting is O(nsrc), which results from finding maximum

value among the `2-norm values of rows in A. The time complexity of pseudo-

labeling is O(nsrcC
2
trg). The time complexity of the softmax classifier training is

O(tclcCtrgd), where tc is the number of iterations for parameter updating and lc

is the number of steps stored in memory in the classifier training step. Since the

number of target classes Ctrg is expected to be much smaller than the number

of source and target samples nsrc and ntrg, the time complexity of GASTL is

O(dn2 + tlmd+ n3src + tclcCtrgd).

Limitation: The analysis above indicates that the time complexity of GASTL

is highly dependent on the number of samples, which will usually be dominated

by the number of source samples. This is a potential bottleneck for GASTL to

tackle with extremely large source datasets.

5. Experiments

In this section, we evaluate the knowledge transfer performance of GASTL

by comparing it with other relevant state-of-the-art transfer learning techniques.

To be more specific, we first select p source samples which are the most relevant

to the target domain, and then use those selected source samples combined with

labeled target samples to train a classifier. The classification rates and mean f1-

scores on target testing samples are then used as metrics to evaluate knowledge

transfer performance.

5.1. Dataset Preparation

Next, we provide information on the datasets used in our experiments.

21

Table 1: Details of datasets used in our experiment.

Dataset Features Samples Classes Type

Caltech101 (SIFTBOW) 1,000 3,000 100 Image

Caltech101 (VGG-19) 4,096 3,000 100 Image

IMDB 3,000 6,500 2 Text

Twitter 3,000 6,500 2 Text

• Dataset Information: We employ one visual dataset (Caltech1018) and

two natural language datasets (IMDB9 and Twitter,10 both for sentiment

analysis). In order to eliminate the side effects caused by imbalanced classes,

we set the number of samples from each class to be the same within each

dataset through random selection.

• Feature Extraction: In many cases, raw data cannot be used for knowledge

transfer due to possible dimensionality inconsistencies. Therefore, it is nec-

essary to do feature extraction on each dataset to make knowledge transfer

feasible. For Caltech101, we employ both the SIFTBOW feature11 proposed

in [39] and the output of the last fully connected layer of the pre-trained

VGG-19 model [40]. For both IMDB and Twitter, we use the method from

[41]12 to do feature extraction. We denote this feature as WORD2VEC in

the sequel.

8Dataset downloaded from http://www.vision.caltech.edu/Image_Datasets/

Caltech101/. The Caltech101 dataset contains both a “Faces“ and “Faces easy“ class,

with each consisting of different versions of the same human face images. However, the

images in “Faces“ contain more complex backgrounds. To avoid confusion between these

two similar classes of images, we do not include the “Faces easy“ images in our experiments.

Therefore, we keep 100 classes for Caltech101.
9Dataset downloaded from https://drive.google.com/file/d/

0B8yp1gOBCztyN0JaMDVoeXhHWm8/.
10Dataset downloaded from https://www.kaggle.com/c/twitter-sentiment-analysis2/

data
11Codes downloaded from http://files.is.tue.mpg.de/pgehler/projects/iccv09/.
12Codes downloaded from https://github.com/yoonkim/CNN_sentence

22

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://drive.google.com/file/d/0B8yp1gOBCztyN0JaMDVoeXhHWm8/
https://drive.google.com/file/d/0B8yp1gOBCztyN0JaMDVoeXhHWm8/
https://www.kaggle.com/c/twitter-sentiment-analysis2/data
https://www.kaggle.com/c/twitter-sentiment-analysis2/data
http://files.is.tue.mpg.de/pgehler/projects/iccv09/
https://github.com/yoonkim/CNN_sentence

• Source/Target Split: For Caltech101, we randomly separate the 100 classes

into 5 groups with 20 classes in each group. Five independent self-taught

learning experiments were conducted on Caltech101: in each experiment sam-

ples in one group are used as target samples and those in the remaining four

groups are used as source samples. For each class in the target domain, 15

samples were used for training and 15 samples were used for testing. For the

two natural language datasets, we used one as source and the other one as

target. That is, when IMDB was used as target, then Twitter was used as

source and vice versa. For computational convenience, we did not use the

entire datasets when either IMDB and Twitter is used as the source. We ran-

domly selected 3,000 samples as source for both IMDB and Twitter. For each

class in the target domain, 10, 100 and 1000 samples were used for training

and 750 samples were used for testing.

5.2. Experimental Setup

We performed classification on the target testing samples in order to evaluate

the effectiveness of the self-taught learning algorithms and two instance-based

transfer methods. The three self-taught learning methods are STL [9], RDSTL

[16], and S-Low [17], introduced in Section 3.1. The two instance-based transfer

learning methods are KMM [22] and MLS [23]. Both KMM and MLS were

tailored to the scenario of self-taught learning. The computational complexity

of GASTL and the five competitors are listed in Table 2. We also compute the

classification performance without knowledge transfer.

Both GASTL and the compared algorithms include parameters to adjust. In

this experiment, we fix some parameters and tune others through a “grid search”

strategy. For algorithms requiring source sample selection, we select the number

of source samples p ∈ {10, 20, 30, · · · , 100, 150, 200, 250, · · · , 500, 1000, 1500, nsrc}.

In GASTL, the range of hidden layer sizes is set to m ∈ {10, 50, 100, 200}, while

the balance parameters are given ranges of λ ∈ {10−4, 10−3, 10−2, 10−1, 1} and

γ ∈ {0, 10−4, 10−3, 10−2, 10−1}. The value of µ is set to 1. The number of

nearest neighbors in a kNN graph is set to 5. The value of σ2 in (19) is set to 1.

23

Table 2: Time complexity of GASTL and five competing methods. In this table, d denotes

data dimensionality, nsrc denotes number of source samples, ntrg denotes number of target

samples, and n = nsrc + ntrg, t denotes number of iterations for optimization and tc denotes

number of iterations for softmax classifier optimization used in GASTL and KMM and MLS

that are tailored to the scenario of self-taught learning. m denotes the autoencoder hidden

layer size for GASTL and dictionary learning size for STL, RDSTL, and S-Low.

Method Time Complexity

GASTL O(dn2 + tlmd+ n3
src + +tclcCtrgd)

STL O(d3 + d2n+ dm)

RDSTL O(tnmdCtrg)

S-Low O(nsrcntrg + tnmd)

KMM O(n2 + +tclcCtrgd)

MLS O(n+ +tclcCtrgd)

For the optimization of GASTL with L-BFGS, we set the number of iterations

t1 and t2 to be 400 and the number of storing updates l1 and l2 to be 100.

All three self-taught learning methods (STL, RDSTL, and S-Low) are based

on dictionary learning, where the resulting sparse code vectors were used as

features for classification. For these three methods, we first performed PCA on

training data due to three reasons: (i) the features listed in Table 1 have high di-

mensionalities and require large dictionary sizes, which would cause prohibitive

training time; (ii) we noticed that the performances of these three methods were

highly dependent on the choice of parameters, which means a smaller feature

dimensionality would significantly reduce the training time needed due to pa-

rameter search; (iii) we did not see systematical differences on the performance

when raw features and PCA features were employed for model learning, respec-

tively. Following [9], we kept the number of principal components to preserve

approximately 96% of the training sample variance.

24

For both KMM13 and MLS14, we first obtained weights for the source sam-

ples, which are also assigned pseudo-labels. Between the two pseudo-labeling

schemes, only Scheme B is applicable since Scheme A is dependent on the trans-

formation matrix A, and these two domain adaptation methods do not generate

one. We use the features listed in Table 1 instead of autoencoder activations as

we did in GASTL. Subsequent steps were exactly the same as those for GASTL.

5.3. Parameter Sensitivity

We study the performance variation of GASTL with respect to the hidden

layer size m and the two balance parameters λ and γ as measured by the clas-

sification accuracy on target testing samples. We show the results on all four

datasets.

We first study the parameter sensitivity of GASTL with respect to the hid-

den layer size m. Due to limited space, we only present a small portion of our

experimental results in Fig. 2,15 where “Soft” and “Hard” refer to whether a

soft or hard classifier is used, while “A” and “B” refer to the pseudo-labeling

schemes. Note that when m is fixed, the number of source samples used for

knowledge transfer p and the values of λ and γ are adjustable. The classifica-

tion results in Fig. 2 are the highest classification accuracy among all available

combinations of p, λ, and γ with m fixed to specific values. The results show

that the performance of GASTL is not too sensitive to hidden layer size on the

given datasets.

We also study the parameter sensitivity of GASTL with respect to the bal-

ance parameters λ and γ, under a fixed hidden layer size m. In order to do

this, we record the classification accuracy corresponding to each combination of

13Codes downloaded from http://www.gatsby.ucl.ac.uk/~gretton/

covariateShiftFiles/covariateShiftSoftware.html
14Codes downloaded from https://github.com/jindongwang/transferlearning/tree/

master/code
15For Caltech101, we use the results of one set out of five with SIFTBOW features as

autoencoder inputs. For both IMDB and Twitter, we use the results with each target dataset

having 10 training samples per category.

25

http://www.gatsby.ucl.ac.uk/~gretton/covariateShiftFiles/covariateShiftSoftware.html
http://www.gatsby.ucl.ac.uk/~gretton/covariateShiftFiles/covariateShiftSoftware.html
https://github.com/jindongwang/transferlearning/tree/master/code
https://github.com/jindongwang/transferlearning/tree/master/code

SoftA HardA SoftB HardB
0

10

20

30

40

50

60

Classification Schemes

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y
 /

 %

m = 10
m = 50

m = 100
m = 200

(a) Caltech101 (SIFTBOW)

SoftA HardA SoftB HardB
0

20

40

60

80

100

Classification Schemes

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u

ra
c
y
 /

 %

m = 10
m = 50

m = 100
m = 200

(b) Caltech101 (VGG19)

SoftA HardA SoftB HardB
0

10

20

30

40

50

60

70

Classification Schemes

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y
 /

 %

m = 10
m = 50

m = 100
m = 200

(c) IMDB

SoftA HardA SoftB HardB
0

10

20

30

40

50

60

Classification Schemes

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y
 /

 %

m = 10
m = 50

m = 100
m = 200

(d) Twitter

Figure 2: Performance of GASTL in classification as a function of the hidden layer size m of

the autoencoder. Classification accuracy (%) is used as the evaluation metric.

λ and γ, resulting in a 5 × 5 matrix of performance measurement. Note that

each entry in this matrix corresponds to the highest classification value over the

various values of p tested. We then calculate the mean and standard deviation

of these 25 elements, and the parameter sensitivity can be evaluated through

the ratio between the standard deviation and the mean value. We choose the

hidden layer size m = 10 as Fig. 2 shows that the performance of GASTL is

not sensitive to the value of m. The results are listed in Table 3, which shows

that the performance of GASTL is quite stable with respect to the balance

parameters λ and γ for Caltech101, IMDB, and Twitter.

5.4. Performance Comparison

We present the classification accuracy results of GASTL and baselines on all

datasets in Tables 4 to 6, corresponding to Caltech101 (SIFTBOW), Caltech101

26

Table 3: Performance stability of GASTL in classification with respect to balance parameters

λ and γ. Classification accuracy mean (%) and standard deviation (%) are presented.

Scheme

Dataset

Caltech101 (S) Caltech101 (V) IMDB Twitter

SoftA 48.92± 1.53 94.48± 0.47 58.22± 0.60 55.79± 0.47

HardA 44.20± 1.17 92.84± 1.45 57.91± 0.98 55.41± 1.13

SoftB 48.75± 1.65 94.44± 0.51 58.08± 0.54 55.76± 0.47

HardB 44.27± 1.45 94.39± 1.20 57.79± 0.86 55.06± 1.29

(VGG-19), IMDB and Twitter, respectively.16 respectively. Note that “Target

Only” denotes the method that performs classifier training on target samples

without knowledge transfer. In Tables 4 and 5, each column corresponds to one

subset, while in Table 6, each column corresponds to one training sample number

in each target class. We highlight the best two performances in each experiment

given that we find in many cases the best two (or even more) performance are

very close to each other.

We first provide an overall description on the comparison between GASTL

and the competitors on each dataset. We can find that in Tables 4 and 5 the

best performances are claimed by GASTL methods, and in Table 6, RDSTL is

comparable to GASTL in a few cases. In other words, GASTL provides the best

overall performance. We can also find that the classification performance of the

two pseudo-labeling schemes are quite similar to each other in almost every case

in the five tables.

Our next analysis focuses on the comparison between performance generated

by soft classifiers and hard classifiers. In Table 4, it is obvious that GASTL

methods with soft classifiers provide the best performance. For image datasets

16In the sequel, Caltech101 (S) and Caltech101 (V) are used to denote Caltech101 (SIFT-

BOW) and Caltech101 (VGG-19). Results for both IMDB and Twitter are demonstrated in

Table 6

27

Table 4: Performance of GASTL and competing feature selection algorithms in classification

on Caltech101 with SIFTBOW features. Classification accuracy (%) is used as the evaluation

metric.

Method
Set ID 1 2 3 4 5

Target Only 42.33 61.67 42.33 48.33 46.00

STL 46.00 64.33 48.33 46.33 56.00

RDSTL 36.67 51.33 37.00 39.67 42.00

S-Low 35.00 51.00 36.67 34.33 36.67

KMM-Soft 48.67 66.00 47.33 52.67 56.33

KMM-Hard 43.67 63.67 43.33 47.67 48.33

MLS-Soft 47.33 66.33 47.67 51.67 53.33

MLS-Hard 45.33 62.00 42.00 46.00 47.67

GASTL-SoftA 53.00 67.67 51.67 56.00 58.67

GASTL-HardA 47.67 64.33 47.67 48.67 52.33

GASTL-SoftB 52.33 68.00 51.33 53.33 58.67

GASTL-HardB 48.00 64.00 46.33 49.33 51.00

such as Caltech101, it is unusual for the relevance between one source sample

and a particular target class to be much larger than for other target classes. A

soft classifier is able to characterize the relationship between a source sample

and each target class during pseudo-labeling, while a hard classifier only selects

the most similar class to each source sample and ignores other target classes,

which may degrade knowledge transfer performance due to the possible useful

information from other classes. This can also be validated by the results of

KMM and MLS in Table 4, which shows the advantages of soft classifiers over

hard classifiers. However, the classification rates listed in Table 5 are quite large

and similar to each other. Therefore, these results cannot provide significant

information on validating the advantages of the soft classifier over the hard clas-

sifier on image datasets. On the other hand, the performance increase brought

28

Table 5: Performance of GASTL and competing feature selection algorithms in classification

on Caltech101 with VGG19 features. Classification accuracy (%) is used as the evaluation

metric.

Method
Set ID 1 2 3 4 5

Target Only 94.33 95.67 93.00 94.33 93.67

STL 95.00 95.33 92.00 94.67 94.33

RDSTL 91.67 93.00 85.67 90.00 89.33

S-Low 91.33 90.67 87.00 89.67 89.33

KMM-Soft 95.33 96.00 93.33 93.67 94.67

KMM-Hard 94.33 95.33 92.33 94.00 93.67

MLS-Soft 94.00 95.33 92.67 94.00 93.67

MLS-Hard 95.00 95.67 93.00 94.33 93.67

GASTL-SoftA 95.67 97.00 93.67 95.00 96.00

GASTL-HardA 95.00 97.00 94.67 95.67 96.00

GASTL-SoftB 96.00 97.00 93.67 94.67 96.00

GASTL-HardB 96.00 96.67 94.67 95.67 95.67

by knowledge transfer also depends on the difficulty of the classification prob-

lem. For example, the performance increase of Caltech101 using the SIFTBOW

features is much larger than using the VGG-19 features.

In Table 6, hard classifiers consistently provide slightly better performance

than soft classifiers for GASTL methods, while for KMM and MLS, the dif-

ferences are smaller. According to our experimental setup, IMDB and Twitter

play interchangeable roles as source and target. In each experiment both source

and target domains share a label space with two labels (“positive sentiment”

and “negative sentiment”). Therefore, in this case it is better to use hard classi-

fier than soft classifier since the two labels indicate two mutually exclusive and

largely distinguishable categories.

29

Table 6: Performance of GASTL and competing feature selection algorithms in classification

on IMDB and Twitter. Classification accuracy (%) is used as the evaluation metric. “TS” de-

notes number of training samples in each target class. “Twitter → IMDB” denotes knowledge

transfer from Twitter to IMDB, while “IMDB → Twitter” denotes the opposite direction for

knowledge transfer.

Method

TS Twitter → IMDB IMDB → Twitter

10 100 1000 10 100 1000

Target Only 57.60 68.20 73.27 55.47 58.93 77.80

STL 58.80 69.53 73.73 53.67 58.93 76.93

RDSTL 60.53 70.47 73.47 58.60 59.93 63.13

S-Low 59.93 64.87 73.07 55.87 59.47 64.47

KMM-Soft 57.13 69.13 73.53 56.27 61.20 78.27

KMM-Hard 58.00 68.60 73.33 57.47 60.33 78.47

MLS-Soft 56.40 68.47 72.87 56.27 59.40 77.93

MLS-Hard 56.80 68.80 72.53 57.27 60.40 78.13

GASTL-SoftA 59.80 69.33 74.60 56.67 61.93 78.20

GASTL-HardA 60.73 70.47 77.67 57.87 62.73 78.53

GASTL-SoftB 60.33 69.27 74.47 56.67 62.00 78.20

GASTL-HardB 60.53 70.60 77.67 58.67 61.93 78.60

5.5. Discussion

5.5.1. Effect of Local Data Structure Preservation

As mentioned in Section 4.1.1, local data structure preservation provides

similar representation for nearby data points. Intuitively, local data structure

preservation applied in the hidden layer of the autoencoder is likely to im-

prove knowledge transfer performance because it is able to reduce hidden layer

representation distortion as it is involved in data reconstruction and pseudo-

labeling. In order to measure the effect of local data structure preservation on

knowledge transfer, we compare the classification performance when γ = 0 with

the optimal one. In Fig. 3, the comparisons on one set of Caltech101 with

30

both SIFTBOW and VGG19 as the input to autoencoder and both IMDB and

Twitter with each target dataset having 10 training samples per category are

displayed. We find that in most cases setting γ = 0 cannot achieve the optimal

performance. Exceptions appear in the cases of “HardA” on Caltech101 with

SIFTBOW features and both “HardA” and “HardB” on Twitter. Due to our

observations on complete comparisons, classification rates obtained for γ = 0 are

predominantly lower than those obtained for γ 6= 0. Therefore, we regard these

counted exceptions as outliers. Nonetheless, we found that the advantages in

classification accuracy contributed by local data structure preservation are not

obvious on Twitter. One possible explanation is that the local data structures

in the WORD2VEC feature space cannot provide discriminative information

for the Twitter dataset. Therefore, local data structure preservation negatively

affected the knowledge transfer performance reflected by classification accuracy

on unlabeled target samples.

5.5.2. Effect of Source Sample Selection

We claim that transferring knowledge from source samples indiscriminately

may cause negative transfer since there is no guarantee that all source samples

have sufficient relevance to the target domain. In order to demonstrate the

advantage of source sample selection, we compare the classification accuracy for

three different cases: the optimal value of p found with GASTL, p = 0 (i.e.

no transfer learning), and p = nsrc (i.e. no sample selection). The results

shown in Fig. 3 demonstrate not only that significant performance gains are

obtained via GASTL, but also that in several cases the blind consideration of

all source samples can in fact result in negative transfer, as seen by the reduced

performance obtained with p = nsrc versus p = 0.

6. Conclusions and Future Work

In this paper, we propose a graph and autoencoder based self-taught learning

(GASTL) method. The main innovations in our self-taught learning methodol-

ogy with respect to the literature can be summarized as (a) leveraging relevance

31

SoftA HardA SoftB HardB
40

45

50

55
g = 1e−2

g = 0

g = 1e−3

g = 1e−2

Classification Schemes

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 /

 %

g = 0
optimal

(a) Caltech101 (S)

SoftA HardA SoftB HardB
90

91

92

93

94

95

96

97

98

g = 1e−4

g = 1e−4

g = 1e−1 g = 1e−1

Classification Schemes

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 /

 %

g = 0
optimal

(b) Caltech101 (V)

SoftA HardA SoftB HardB
55

56

57

58

59

60

61

62

63

g = 1e−3

g = 1e−1
g = 1e−3 g = 1e−4

Classification Schemes

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 /

 %

g = 0
optimal

(c) IMDB

SoftA HardA SoftB HardB
50

52

54

56

58

60

g = 1e−2

g = 0

g = 1e−1

g = 0

Classification Schemes

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 /

 %

g = 0
optimal

(d) Twitter

Figure 3: Comparison of GASTL performance when γ = 0 and optimal GASTL performance.

Classification accuracy (%) is used as the evaluation metric. Optimal values for γ are shown.

32

SoftA HardA SoftB HardB
35

40

45

50

55
p = 50

p = 150

p = 90

p = 100

Classification Schemes

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 /

 %

p = 0

optimal

p = n
src

(a) Caltech101 (S)

SoftA HardA SoftB HardB
90

91

92

93

94

95

96

97

98

p = 80

p = 10

p = 70 p = 30

Classification Schemes

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 /

 %

p = 0

optimal

p = n
src

(b) Caltech101 (V)

SoftA HardA SoftB HardB
55

56

57

58

59

60

61

62

63

p = 1500

p = 70
p = 1500p = 40

Classification Schemes

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 /

 %

p = 0

optimal

p = n
src

(c) IMDB

SoftA HardA SoftB HardB
50

52

54

56

58

60

p = 70

p = 250

p = 30

p = 150

Classification Schemes

C
la

ss
ifi

ca
ti

o
n

 A
cc

u
ra

cy
 /

 %

p = 0

optimal

p = n
src

(d) Twitter

Figure 4: Comparison of GASTL performance when all source samples are used for classi-

fier training and optimal GASTL performance. Classification accuracy (%) is used as the

evaluation metric. Optimal values for p are shown.

33

metrics to select a subset of source samples in transfer learning; (b) considering

cross-domain relevance for classifier training; and (c) developing our method

for hard as well as soft classification problems. With our proposed framework,

we decrease negative transfer and improve knowledge transfer performance in

many scenarios. Experimental results demonstrate the advantages of GASTL

versus methods in the literature.

For future work, we will focus on extending our work from a single-layer

autoencoder-based design to one based on deep neural networks [42, 43] as well

as reducing time complexity. We also plan to integrate discriminative informa-

tion of target samples into our framework.

Acknowledgment

We thank Dr. Sheng Li for providing the code of paper [17].

This research is supported in part by the Nanyang Assistant Professor-

ship (NAP); AISG-GC-2019-003; NRF-NRFI05-2019-0002; NTU-SDU-CFAIR

(NSC-2019-011); and NTU-WeBank JRI (NWJ-2019-007).

References

[1] T. G. Dietterich, Approximate Statistical Tests for Comparing Supervised

Classification Learning Algorithms, Neural Comput. 10 (7) (1998) 1895–

1923.

[2] J. Cohen, P. Cohen, S. G. West, L. S. Aiken, Applied Multiple Regres-

sion/Correlation Analysis for the Behavioral Sciences, Routledge, 2013.

[3] C. Hong, J. Yu, J. Zhang, X. Jin, K.-H. Lee, Multi-Modal Face Pose Es-

timation with Multi-Task Manifold Deep Learning, IEEE Trans. Ind. Inf.

15 (7) (2018) 3952–3961.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., Imagenet Large Scale Visual

Recognition Challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252.

34

[5] A. Rozantsev, M. Salzmann, P. Fua, Beyond Sharing Weights for Deep

Domain Adaptation, IEEE Trans. Pattern Anal. Mach. Intell. 41 (4) (2018)

801–814.

[6] X. Zhu, X. Wu, Class Noise Handling for Effective Cost-Sensitive Learning

by Cost-Guided Iterative Classification Filtering, IEEE Trans. Knowl. Data

Eng. 18 (10) (2006) 1435–1440.

[7] K. Nigam, A. K. McCallum, S. Thrun, T. Mitchell, Text Classification

from Labeled and Unlabeled Documents Using EM, Mach. Learn. 39 (2–3)

(2000) 103–134.

[8] S. J. Pan, Q. Yang, A Survey on Transfer Learning, IEEE Trans. Knowl.

Data Eng. 22 (10) (2010) 1345–1359.

[9] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-Taught Learning:

Transfer Learning from Unlabeled Data, in: Int. Conf. Mach. Learn., 2007,

pp. 759–766.

[10] W. Dai, Q. Yang, G.-R. Xue, Y. Yu, Self-Taught Clustering, in: Int. Conf.

Mach. Learn., 2008, pp. 200–207.

[11] J. Kuen, K. M. Lim, C. P. Lee, Self-Taught Learning of a Deep Invari-

ant Representation for Visual Tracking via Temporal Slowness Principle,

Pattern Recognit. 48 (10) (2015) 2964–2982.

[12] L. Bazzani, A. Bergamo, D. Anguelov, L. Torresani, Self-Taught Object

Localization with Deep Networks, in: IEEE Winter Conf. Appl. Comput.

Vis., 2016, pp. 1–9.

[13] Z. Jie, Y. Wei, X. Jin, J. Feng, W. Liu, Deep Self-Taught Learning for

Weakly Supervised Object Localization, arXiv preprint arXiv:1704.05188.

[14] R. Kemker, C. Kanan, Self-Taught Feature Learning for Hyperspectral

Image Classification, IEEE Trans. Geosci. Remote Sens. 55 (5) (2017) 2693–

2705.

35

http://arxiv.org/abs/1704.05188

[15] P. He, P. Jia, S. Qiao, S. Duan, Self-Taught Learning Based on Sparse

Autoencoder for E-Nose in Wound Infection Detection, Sensors 17 (10)

(2017) 2279.

[16] H. Wang, F. Nie, H. Huang, Robust and Discriminative Self-Taught Learn-

ing, in: Int. Conf. Mach. Learn., 2013, pp. 298–306.

[17] S. Li, K. Li, Y. Fu, Self-Taught Low-Rank Coding for Visual Learning,

IEEE Trans. Neural. Netw. Learn. Syst. 29 (3) (2018) 645–656.

[18] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, T. G. Dietterich, To Transfer

or Not to Transfer, in: Adv. Neural Inf. Proc. Syst. Workshop on Transfer

Learning, Vol. 898, 2015, pp. 1–4.

[19] L. Duan, D. Xu, S.-F. Chang, Exploiting Web Images for Event Recognition

in Consumer Videos: A Multiple Source Domain Adaptation Approach, in:

IEEE Conf. Comp. Vis. and Pattern Recognit., 2012, pp. 1338–1345.

[20] L. Yang, L. Jing, J. Yu, M. K. Ng, Learning Transferred Weights from

Co-Occurrence Data for Heterogeneous Transfer Learning, IEEE Trans.

Neural Networks Learn. Syst. 27 (11) (2015) 2187–2200.

[21] Y. Zhu, X. Hu, Y. Zhang, P. Li, Transfer Learning with Stacked Recon-

struction Independent Component Analysis, Knowledge-Based Syst. 152

(2018) 100–106.

[22] J. Huang, A. Gretton, K. M. Borgwardt, B. Schölkopf, A. J. Smola, Cor-

recting Sample Selection Bias by Unlabeled Data, in: Adv. Neural Inf.

Process. Syst., 2007, pp. 601–608.

[23] R. Aljundi, R. Emonet, D. Muselet, M. Sebban, Landmarks-Based Kernel-

ized Subspace Alignment for Unsupervised Domain Adaptation, in: IEEE

Conf. Comp. Vis. and Pattern Recognit., 2015, pp. 56–63.

[24] R. K. Sanodiya, J. Mathew, A Framework for Semi-Supervised Metric

Transfer Learning on Manifolds, Knowledge-Based Syst. 176 (2019) 1–14.

36

[25] X. Hu, J. Pan, P. Li, H. Li, W. He, Y. Zhang, Multi-Bridge Transfer

Learning, Knowledge-Based Syst. 97 (2016) 60–74.

[26] M. Shao, D. Kit, Y. Fu, Generalized Transfer Subspace Learning through

Low-Rank Constraint, Int. J. Comput. Vis. 109 (1–2) (2014) 74–93.

[27] D. Cai, C. Zhang, X. He, Unsupervised Feature Selection for Multi-Cluster

Data, in: ACM Int. Conf. Knowl. Dis. Data Mining, 2010, pp. 333–342.

[28] R. Shang, W. Wang, R. Stolkin, L. Jiao, Subspace Learning-Based Graph

Regularized Feature Selection, Knowl.-Based Syst. 112 (2016) 152–165.

[29] R. Shang, W. Wang, R. Stolkin, L. Jiao, Non-Negative Spectral Learning

and Sparse Regression-Based Dual-Graph Regularized Feature Selection,

IEEE Trans. Cybern. 48 (2) (2017) 793–806.

[30] R. Shang, Y. Meng, C. Liu, L. Jiao, A. M. G. Esfahani, R. Stolkin, Unsu-

pervised Feature Selection Based on Kernel Fisher Discriminant Analysis

and Regression Learning, Mach. Learn. 108 (4) (2019) 659–686.

[31] J. Yu, D. Tao, M. Wang, Y. Rui, Learning to Rank Using User Clicks and

Visual Features for Image Retrieval, IEEE Trans. Cybern. 45 (4) (2014)

767–779.

[32] C. Hong, J. Yu, D. Tao, M. Wang, Image-Based Three-Dimensional Hu-

man Pose Recovery by Multiview Locality-Sensitive Sparse Retrieval, IEEE

Trans. Ind. Electron. 62 (6) (2014) 3742–3751.

[33] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, A. Y. Ng, On

Optimization Methods for Deep Learning, in: Int. Conf. Mach. Learn.,

2011, pp. 265–272.

[34] D. C. Liu, J. Nocedal, On the Limited Memory BFGS Method for Large

Scale Optimization, Math. Program. 45 (1) (1989) 501–528.

37

[35] M. Schmidt, minFunc: Unconstrained Differentiable Multivariate Opti-

mization in Matlab, Available at: http://www.cs.ubc.ca/~schmidtm/

Software/minFunc.html (2005).

[36] C. Hou, F. Nie, X. Li, D. Yi, Y. Wu, Joint Embedding Learning and Sparse

Regression: A Framework for Unsupervised Feature Selection, IEEE Trans.

Cybern. 44 (6) (2014) 793–804.

[37] Y. Guo, G. Ding, J. Han, Y. Gao, Zero-Shot Learning with Transferred

Samples, IEEE Trans. Image Proc. 26 (7) (2017) 3277–3290.

[38] R. Socher, M. Ganjoo, C. D. Manning, A. Ng, Zero-shot Learning through

Cross-Modal Transfer, in: Adv. Neural Inf. Proc. Syst., 2013, pp. 935–943.

[39] P. Gehler, S. Nowozin, On Feature Combination for Multiclass Object Clas-

sification, in: IEEE Int. Conf. Comput. Vis., 2009, pp. 221–228.

[40] K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-

Scale Image Recognition, in: Int. Conf. Learn. Represent., 2015.

[41] Y. Kim, Convolutional Neural Networks for Sentence Classification, in:

Conf. Empir. Methods Nat. Lang. Process., 2014, pp. 1746–1751.

[42] J. Yu, X. Yang, F. Gao, D. Tao, Deep Multimodal Distance Metric Learning

Using Click Constraints for Image Ranking, IEEE Trans. Cybern. 47 (12)

(2016) 4014–4024.

[43] C. Hong, J. Yu, J. Wan, D. Tao, M. Wang, Multimodal Deep Autoencoder

for Human Pose Recovery, IEEE Trans. Image Process. 24 (12) (2015)

5659–5670.

38

http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

	1 Introduction
	2 Notation
	3 Background and Related Work
	3.1 Self-Taught Learning
	3.2 Single-Layer Autoencoder
	3.3 Instance-Based Transfer Learning

	4 Proposed Method
	4.1 Knowledge Transfer and Relevance Measure
	4.1.1 Objective Function
	4.1.2 Optimization
	4.1.3 Convergence Analysis

	4.2 Classifier Training
	4.2.1 Source Domain Sample Reweighting
	4.2.2 Pseudo-Labeling
	4.2.3 Softmax Classifier Training with Weighted Samples

	4.3 Algorithm Analysis

	5 Experiments
	5.1 Dataset Preparation
	5.2 Experimental Setup
	5.3 Parameter Sensitivity
	5.4 Performance Comparison
	5.5 Discussion
	5.5.1 Effect of Local Data Structure Preservation
	5.5.2 Effect of Source Sample Selection

	6 Conclusions and Future Work

