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Abstract

Early recognition of abnormal rhythms in ECG signals is crucial for monitoring and

diagnosing patients’ cardiac conditions, increasing the success rate of the treatment.

Classifying abnormal rhythms into exact categories is very challenging due to the broad

taxonomy of rhythms, noises and lack of large-scale real-world annotated data. Dif-

ferent from previous methods that utilize hand-crafted features or learn features from

the original signal domain, we propose a novel ECG classification method by learning

deep time-frequency representation and progressive decision fusion at different tem-

poral scales in an end-to-end manner. First, the ECG wave signal is transformed into

the time-frequency domain by using the Short-Time Fourier Transform. Next, sev-

eral scale-specific deep convolutional neural networks are trained on ECG samples of

a specific length. Finally, a progressive online decision fusion method is proposed to

fuse decisions from the scale-specific models into a more accurate and stable one. Ex-

tensive experiments on both synthetic and real-world ECG datasets demonstrate the

effectiveness and efficiency of the proposed method.
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1. Introduction

Electrocardiogram (ECG), which records the electrical depolarization-repolarization

patterns of the heart’s electrical activity in the cardiac cycle, is widely used for mon-

itoring or diagnosing patients’ cardiac conditions [1, 2, 3]. The diagnosis is usually

made by well-trained and experienced cardiologists, which is laborious and expensive.

Therefore, automatic monitoring and diagnosing systems are in great demand in clinics,

community medical centers, and home health care programs. Although advances have

been made in ECG filtering, detection and classification in the past decades [3, 4, 5, 6],

it is still challenging for efficient and accurate ECG classification due to noises, various

types of symptoms, and diversity between patients.

Before classification, a pre-processing filtering step is usually needed to remove

a variety of noises from the ECG signal, including the power-line interference, base-

line wander, muscle contraction noise, etc. Traditional approaches like low-pass filters

and filter banks can reduce noise but may also lead some artifacts [7]. Combining

signal modeling and filtering together may alleviate this problem, but it is limited to a

single type noise [8, 9]. Recently, different noise removal methods based on wavelet

transform has been proposed by leveraging its superiority in multi-resolution signal

analysis [10, 11, 12]. For instance, S. Poungponsri and X.H. Yu proposed a novel

adaptive filtering approach based on wavelet transform and artificial neural networks

that can efficiently removal different types of noises [12].

For ECG classification, classical methods usually consist of two sequential mod-

ules: feature extraction and classifier training. Hand-crafted features are extracted in

the time domain or frequency domain, including amplitudes, intervals, and higher-

order statistics, etc. Various methods have been proposed such as filter banks [13],

Kalman filter [14], Principal Component Analysis (PCA)[15, 16], and wavelet trans-

form (WT) [17, 18, 19, 4, 20]. Classifier models including Hidden Markov Models

(HMM), Support Vector Machines (SVM) [21], Artificial Neural Networks (ANN)

[4, 5, 17, 22, 6, 23], and mixture-of-experts method [24] have also been studied.

Among them, a large number of methods are based on artificial neural networks due

to its better modeling capacity. For example, L.Y. Shyu et al. propose a novel method
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for detecting Ventricular Premature Contraction (VPC) using the wavelet transform

and fuzzy neural network [4]. By using the wavelet transform for QRS detection and

VPC classification, their method has less computational complexity. I. Guler and E.D.

Ubeyli propose to use a combined neural network model for ECG beat classification

[5]. Statistical features based on discrete wavelet transform are extracted and used as

the input of first level networks. Then, sequential networks were trained using the out-

puts of the previous level networks as input. Unlike previous methods, T. Ince et al.

propose a new method that uses a robust and generic ANN architecture and trains a

patient-specific model with morphological wavelet transform features and temporal

features for each patient [17]. Besides, some approaches have been proposed by com-

bining several hand-crafted features to provide enhanced performance [25, 26]. Despite

their usefulness, these methods have some common drawbacks: 1) the hand-crafted

features rely on domain knowledge of experts and should be designed and tested care-

fully; 2) the classifier should have appropriate modeling capacity of such features; 2)

The types of ECG signals are usually limited.

In the past few years, deep neural networks (DNN) have been widely used in many

research fields and achieve remarkable performance. Recently, S. Kiranyaz et al. pro-

pose a 1-D convolutional neural network (CNN) for patient-specific ECG classification

[3]. They design a simple but effective network architecture and utilize 1-D convolu-

tions to processing the ECG wave signal directly. G. Clifford et al. organized the Phy-

sioNet/Computing in Cardiology Challenge 2017 for AF rhythm classification from a

short single lead ECG recording. A large number of real-world ECG samples from

patients are collected and annotated. It facilitates research on the challenging AF clas-

sification problem. Both hand-crafted feature-based methods and deep learning-based

methods have been proposed [27, 28, 29]. For example, S. Hong et al. propose an

ensemble classifier based method by combining expert features and deep features [27].

T. Teijeiro et al. propose a combined two classifiers based method, i.e., the first clas-

sifier evaluates the record globally using aggregated values for a set of high-level and

clinically meaningful features, and the second classifier utilizes a Recurrent Neural

Network fed with the individual features for each detected heartbeat [29]. M. Zabihi

et al. propose a hand-crafted feature extraction and selection method based on a ran-
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dom forest classifier [28].

In this paper, we propose a novel deep CNN based method for ECG classifica-

tion by learning deep time-frequency representation and progressive decision fusion

at different temporal scales in an end-to-end manner. Different from previous meth-

ods, 1) We first transform the original ECG signal into the time-frequency domain by

Short-Time Fourier Transform (STFT). 2) Then, the time-frequency characteristics at

different scales are learned by several scale-specific CNNs with 2-D convolutions. 3)

Finally, we propose an online decision fusion method to fuse past and current decisions

from different models into a more accurate one. We conducted extensive experiments

on a synthetic ECG dataset consisting of 20 types of ECG signals and a real-world

ECG dataset to validate the effectiveness of the proposed methods. The experimental

results demonstrate its superiority over representative state-of-the-art methods.

2. Problem formulation

Given a set of ECG signals and their corresponding labels, the target of a classifi-

cation method is to predict their labels correctly. As depicted in Section 1, it usually

consists of two sequential modules: feature extraction and classifier training. Once the

classifier is obtained, it can be used for unseen samples prediction, i.e., testing phase.

Mathematically, we denote the set of ECG wave signals as:

X = {(xi, yi) |i ∈ Λ} , (1)

where xi is the ith sequence withN samples : xi = [xi (0) , xi (1) , ..., xi (N − 1)]T ∈

RN . yi ∈ {0, .., C − 1} is the category of xi, and C is the number of total categories.

Λ is the index set of all samples. The feature extraction can be described as follows:

fi = f (xi, θf ) , (2)

where fi ∈ RM is the corresponding feature representation of signal xi. Usually, the

feature vector fi is more compact than the original signal xi, i.e., M � N . f (·, θf )

is a mapping function from the original signal space to the feature space, and θf is the

parameters associated with the mapping f (·). It is usually determined according to
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Figure 1: The pipeline of the proposed method for ECG classification.

domain knowledge of experts and cross-validation. Given the feature representation, a

classifier g (·, θg) predicts its category as follows:

ci = g (f (xi, θf ) , θg) , (3)

where θg is the parameters associated with the classifier g (·). ci ∈ {0, .., C − 1} is

the prediction. The frequently-used classifiers include SVM [21], ANN [22, 6, 23],

Random Forest, Deep CNN [3], etc. Given the training samples, the training of a

classifier can be formulated as an optimization problem of its parameter θg as follows:

θ∗g = arg min
θg

∑
i∈ΛT

L (g (f (xi, θf ) , θg) , yi), (4)

where ΛT is the index set of training samples. L (·) is a loss function which depicts

the loss of assigning a prediction category ci for a sample xi with label yi, e.g., margin

loss in SVM model and cross-entropy loss in models of ANN or Random Forest.

For deep neural networks models, feature extraction (learning) and classifier train-

ing are integrated together in the neural network architecture as an end-to-end model.

The parameters are optimized for training samples by using the error back propagation

algorithm. Mathematically, it can be formulated as:

θ∗h = arg min
θh

∑
i∈ΛT

L (h (xi, θh) , yi), (5)

where h (·, θh) is the deep neural networks model with parameters θh. For a modern

deep neural networks architecture, e.g., Deep CNN, it usually consists of many se-

quential layers like convolutional layers, pooling layer, nonlinear activation layer, and

fully connected layer, etc. Therefore, h (·, θh) is a nonlinear mapping function with
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(a)

(b)

Figure 2: (a) Exemplar original ECG wave signals from each category. (b) Spectrograms of (a) using Short-

Time Fourier Transform.

strong representation capacity and maps the original high-dimension input data to a

low-dimension feature space, where features are more discriminative and compact.

3. The proposed approach

3.1. Short-Time Fourier Transform

Although wave signals in the original time domain can be used as input of DNN to

learn features, a time-frequency representation calculated within a short-window may

be a better choice [30]. Inspired by the work in speech recognition areas [31], where

they show spectrogram features of speech are superior to Mel Frequency Cepstrum

Coefficient (MFCC) with DNN, we first transform the original ECG wave signal into

the time-frequency domain by using Short-Time Fourier Transform to obtain the ECG

spectrogram representation. Mathematically, it can be described as follows:

si (k,m) =

N−1∑
n=0

xi (n)w (m− n) e−j
2π
N kn, (6)

where w(·) is the window function, e.g., Hamming window. si (k,m) is the two-

dimension spectrogram of xi. Figure 2 shows some examples of spectrograms.
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Table 1: The proposed network architectures for ECG classification.

Network Type Input Size Channels Filter Pad stride

Proposed Network (h1)

Conv1 1x32x4 32 3x3 1 1

Pool1 32x32x4 - 4x1 0 (4,1)

Conv2 32x8x4 32 3x3 1 1

Pool2 32x8x4 - 4x2 0 (4,2)

Fc3 32x2x2 64 - - -

Fc4 64x1x1 20 - - -

Params 18,976

Complexity1 3.5x105

Network in [3]

Conv1 1x1x512 32 1x15 (0,7) (1,6)

Conv2 32x1x86 16 1x15 (0,7) (1,6)

Conv3 16x1x15 16 1x15 (0,7) (1,6)

Pool3 16x1x3 - 1x3 0 1

Fc4 16x1x1 10 - - -

Fc5 10x1x1 20 - - -

Params 12,360

Complexity 1.7x105
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3.2. Architecture of the proposed CNN

Since we use the two-dimension spectrogram as input, we design a deep CNN

architecture that involves 2-D convolutions. Specifically, the proposed architecture

consists of 3 convolutional layers and 2 fully-connected layers. There is a max-pooling

layer and a ReLU layer after the first two convolutional layers and a max-pooling layer

after the last convolutional layer, respectively. Details are shown in Table 1. As can

be seen, it is quite light-weight with 18,976 parameters and 3.5x105 FLOPs. We also

present the network architecture in [3] as a comparison. Filter sizes and strides are

adapted to the data length used in this paper. It can be seen that the proposed network

has a comparable amount of parameters and computational cost with the one in [3].

As will be shown in Section 4, the proposed method is computationally efficient and

achieves a real-time performance even in an embedded device.

With the spectrogram si as input, the CNN model predicts a probability vector

pi = h (si, θh) ∈ RC subjected to
C−1∑
c=0

pic = 1 and pic ≥ 0. Then the model parameter

θh can be learned by minimizing the cross-entropy loss as follows:

θ∗h = arg min
θh

∑
i∈ΛT

L (h (si, θh) , yi)

= arg min
θh

−
∑
i∈ΛT

C−1∑
c=0

qic log (pic),

(7)

where qi ∈ RC is the one-hot vector of label yi, i.e., qic = δ (yi, c) ∈ {0, 1}.

Usually, single beat is detected and classified [5]. However, since long signals

contain more beats given the sampling rate, prediction on it will be more accurate.

In this paper, the length of each sample in the synthetic ECG dataset is 16384 at a

sampling rate of 512Hz, which lasts 32s. We split each sample into sub-samples which

have the same length of 512. Therefore, each sample contains about ∼ 1 beats. It is

noteworthy that we do not explicitly extract the beat from the raw signal but use it as the

input directly after the Short-Time Fourier Transform. Then, we train our CNN model

on this dataset. Besides, to compare the performance of models for longer samples, we

also split each sample into sub-samples of different lengths, e.g., 2s, 4s, 8s, 16s. We use

1Evaluated with FLOPs, i.e., the number of floating-point multiplication-adds.
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them to train our CNN models accordingly and denote all these scale-specific models as

h1 ∼ h6, respectively. The width of the spectrogram is determined by the length of the

wave signal given the window function, which varies for each model. Nevertheless, we

use the same architecture for all models and change the pooling strides along columns

accordingly while keeping the fully-connected layers fixed.

3.3. Optimization

The optimization of Eq. (7) is not trivial since the objective function L (·) is non-

linear and non-convex. Instead of using deterministic optimization methods [32, 33],

we adopt the mini-batch Stochastic Gradient Descent (SGD) algorithm [34, 35] in this

paper. Mathematically, it can be formulated as:

θt+1
h = θth − γt

1

B

B∑
i=1

∇θhL (h (si, θh) , yi), (8)

where B is the number of training samples in each mini-batch, γt is the learning rate

at step t. It can be proved that as long as the learning rate γt are small enough, the

algorithm converges towards a local minimum of the empirical risk [34]. Specifically,

to keep the optimization direction and prevent oscillations, we leverage the SGD algo-

rithm with a momentum term [36, 37], i.e.,

∆θt+1
h = α∆θth − γt

1

B

B∑
i=1

∇θhL (h (si, θh) , yi), (9)

and

θt+1
h = θth + ∆θt+1

h , (10)

where ∆θh is the momentum term and α is the momentum parameter. The setting of

α, γ, and B will be presented in Section 4.2.1.

3.4. Progressive online decision fusion

For online testing, as the length of signal is growing, we can test it sequentially by

using the scale-specific models. As illustrated in Figure 1, lower level models make

decisions based on local patterns within short signals, while higher level models make

decisions based on global patterns within long signals. These models can be seen as
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different experts focusing on different scales, whose decisions are complementary and

could be fused as a more accurate and stable one [38, 39]. To this end, we propose

a progressive online decision fusion method. Mathematically, it can be described as

follows:

h̃ (x) =

s=sl∑
s=1

ws

(
1

ks

k=ks∑
k=1

hs
(
xsk
))
, (11)

where h̃ (·) represents the fusion result, sl ∈ {1, 2, 3, 4, 5, 6} is the maximum level for

a signal x of specific length. xsk is the kth segment of x for the sth level model hs,

and ks is the number of segments at sth level, i.e., ks = 2sl−s. For example, when the

length of x is 2048, sl will be 3, and k1 ∼ k3 will be 4, 2, 1, respectively. ws is the

fusion weight of hs subjected to
s=sl∑
s=1

ws = 1. It can be seen from Eq. (11), decision at

each segment at the same level is treated equally. It is reasonable since there is no prior

knowledge favouring specific segment and the decision is made by the same model.

Assuming that the distribution of hs (·) is independent from each other for any s,

with a mean µs and variance σs, the expectation of Eq. (11) can be derived as:

E
[
h̃ (x)

]
=

s=sl∑
s=1

ws

(
1

ks

k=ks∑
k=1

E
[
hs
(
xsk
)])

=

s=sl∑
s=1

ws

(
1

ks

k=ks∑
k=1

µs

)

=

s=sl∑
s=1

wsµs.

(12)

For a given training sample xi, hs (·) shares the same training targets yi. Therefore, µs

should be the same for any s, denoted as µ. Accordingly, we have the unbiased estimate

E
[
h̃ (x)

]
= µ. Similarly, we can derive the variance of h̃ (x) as: V ar

[
h̃ (x)

]
=

s=sl∑
s=1

w2
s

ks
σs. Usually, the variance σs is decreased with the growth of sample length

(scale s) since more “evidence” is accumulated. For instance, if we assume σs = 1
ks
σ,

then we will have V ar
[
h̃ (x)

]
= 22sl+2−22

22sls2l (2
2−1)

σ ≤ σ for uniform weightsws = 1
sl

, and

V ar
[
h̃ (x)

]
= 24sl+2−22

22sl (2sl−1)2(24−1)
σ ≤ σ for non-uniform weights defined in Eq. (18).

Taking sl = 6 as an example, we will have V ar
[
h̃ (x)

]
≈ 0.037σ and V ar

[
h̃ (x)

]
≈

0.2752σ for uniform and non-uniform weights, respectively. As can be seen, using a

fusion decision will reduce the variance and get a more stable result.

10



4. Experiments

4.1. Evaluation metrics

First, we present the definition of the evaluation metrics used in this paper. Denot-

ing the confusion matrix as CM = [cij ], where cij is number of samples belonging

to the ith category but being predicted as the jth one, the Accuracy, Sensitivity, Speci-

ficity and F1 score can be calculated as follows.

Accuracy =

i=C∑
i=1

cii

/
i=C∑
i=1

j=C∑
j=1

cij . (13)

Sensitivityi = cii

/
j=C∑
j=1

cij , (14)

where class i represents the symptomatic classes, e.g., RAF, FAF, etc.

Specificityk = ckk

/
j=C∑
j=1

ckj , (15)

where class k represents the normal class.

F1i = 2cii

/j=C∑
j=1

cij +

i=C∑
i=1

cij

. (16)

F1 =
1

C

i=C∑
i=1

F1i. (17)

4.2. Experiments on a synthetic ECG dataset

4.2.1. Dataset and parameter settings

To verify the effectiveness of the proposed method, we construct a synthetic dataset

by using an ECG simulator. The simulator can generate different types of ECG sig-

nals with different parameter settings. Generally, the ECG signals consist of four

types of features, namely, trend, cycle, irregularities, and burst [40]. To cover these
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Table 2: Sensitivity and Specificity scores of different methods on the training set. Mean scores and the

Standard deviations (mean±std) are reported.

Sensitivity

Methods RAF FAF AF SA AT ST PAC

SVM+FFT 0.95±0.02 0.73±0.01 0.77±0.08 0.77±0.05 0.85±0.02 0.78±0.10 0.76±0.08

1D CNN [3] 0.96±0.01 0.92±0.04 0.84±0.06 0.39±0.03 0.90±0.01 0.96±0.02 0.20±0.09

Proposed 0.97±0.01 0.99±0.01 0.94±0.01 0.71±0.02 0.94±0.01 0.99±0.01 0.59±0.20

SVM+CNN Feature 0.98±0.01 0.99±0.01 0.97±0.01 0.75±0.01 0.97±0.01 0.99±0.01 0.82±0.04

Sensitivity

Methods VB VTr PVCCI VTa RVF FVF AVB-I

SVM+FFT 0.81±0.04 0.71±0.10 0.82±0.03 0.84±0.02 0.86±0.03 0.78±0.06 0.82±0.02

1D CNN [3] 0.92±0.03 0.19±0.11 0.87±0.02 0.97±0.01 0.97±0.02 0.96±0.02 0.70±0.17

Proposed 0.93±0.01 0.18±0.19 0.89±0.03 0.99±0.01 0.99±0.01 0.98±0.01 0.77±0.15

SVM+CNN Feature 0.96±0.01 0.34±0.12 0.95±0.01 1.00±0.00 1.00±0.00 0.99±0.01 0.95±0.01

Sensitivity Specificity

Methods AVB-II AVB-III RBBB LBBB PVC N

SVM+FFT 0.84±0.05 0.76±0.07 0.72±0.09 0.81±0.05 0.76±0.10 0.86±0.02

1D CNN [3] 0.94±0.03 0.68±0.05 0.91±0.04 0.98±0.01 0.68±0.05 0.95±0.01

Proposed 0.92±0.03 0.86±0.04 0.95±0.01 0.98±0.01 0.72±0.05 0.96±0.01

SVM+CNN Feature 0.98±0.01 0.93±0.03 0.97±0.01 0.98±0.01 0.75±0.04 0.98±0.01
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Table 3: Sensitivity and Specificity scores of different methods on the test set. Mean scores and the Standard

deviations (mean±std) are reported.

Sensitivity

Methods RAF FAF AF SA AT ST PAC

SVM+FFT 0.88±0.11 0.44±0.14 0.50±0.21 0.69±0.13 0.53±0.27 0.56±0.21 0.57±0.13

1D CNN [3] 0.96±0.01 0.93±0.04 0.83±0.07 0.38±0.04 0.90±0.02 0.95±0.03 0.20±0.05

Proposed 0.98±0.01 0.99±0.01 0.95±0.03 0.72±0.02 0.94±0.02 0.96±0.03 0.62±0.22

SVM+CNN Feature 0.97±0.01 0.98±0.01 0.96±0.01 0.72±0.02 0.95±0.01 0.96±0.04 0.85±0.03

Proposed(Fusion) 0.99±0.01 1.00±0.00 0.99±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Sensitivity

Methods VB VTr PVCCI VTa RVF FVF AVB-I

SVM+FFT 0.42±0.29 0.38±0.14 0.54±0.24 0.73±0.09 0.60±0.18 0.45±0.32 0.50±0.30

1D CNN [3] 0.93±0.02 0.15±0.15 0.85±0.03 0.96±0.01 0.96±0.02 0.94±0.04 0.50±0.35

Proposed 0.94±0.01 0.32±0.23 0.91±0.02 0.99±0.01 0.98±0.02 0.99±0.01 0.56±0.30

SVM+CNN Feature 0.96±0.01 0.02±0.02 0.95±0.03 0.98±0.01 0.97±0.02 0.98±0.02 0.48±0.15

Proposed(Fusion) 1.00±0.00 0.99±0.01 0.99±0.01 1.00±0.00 1.00±0.00 0.99±0.01 0.86±0.20

Sensitivity Specificity

Methods AVB-II AVB-III RBBB LBBB PVC N

SVM+FFT 0.66±0.14 0.56±0.21 0.46±0.07 0.48±0.33 0.40±0.24 0.60±0.18

1D CNN [3] 0.93±0.08 0.64±0.07 0.89±0.10 0.98±0.01 0.69±0.05 0.95±0.02

Proposed 0.93±0.06 0.87±0.05 0.95±0.02 0.98±0.01 0.57±0.25 0.96±0.02

SVM+CNN Feature 0.95±0.05 0.89±0.05 0.95±0.02 0.98±0.01 0.57±0.22 0.97±0.02

Proposed(Fusion) 1.00±0.00 0.95±0.05 0.98±0.02 1.00±0.00 0.99±0.01 0.99±0.01
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features, we choose 20 categories of ECG signals in this paper, which include Nor-

mal (N), Rough Atrial Fibrillation (RAF), Fine Atrial Fibrillation (FAF), Atrial Flut-

ter (AF), Sinus Arrhythmia (SA), Atrial Tachycardia (AT), Supraventricular Tachycar-

dia (ST), Premature Atrial Contraction (PAC), Ventricular Bigeminy (VB), Ventricular

Trigeminy (VTr), Premature Ventricular Contraction Coupling Interval (PVCCI), Ven-

tricular Tachycardia (VTa), Rough Ventricular Fibrillation (RVF), Fine Ventricular Fib-

rillation (FVF), Atrio-Ventricular Block I (AVB-I), Atrio-Ventricular Block (AVB-II),

Atrio-Ventricular Block (AVB-III), Right Bundle Branch Block (RBBB), Left Bundle

Branch Block (LBBB), and Premature Ventricular Contractions (PVC). There are a to-

tal of 2426 samples, about 120 samples per category. Each sample has a maximum

length of 16384 points sampled at 512Hz. We split the sequence at a random position

and merge them by changing their orders. In this way, we augment the dataset and

simulate the time delay such that the model can capture the regularity and irregularity

in the time series [41]. We use the 3-fold cross-validation to evaluate the proposed

method.

Parameters are set as follows. We use the Hamming window of length 256 in

Short-Time Fourier Transform and the overlap size is 128. The CNN model is trained

in a total of 20,000 iterations with a batch size of 128. The learning rate decreases

by half every 5,000 iterations from 0.01 to 6.25x10−4. The momentum and the decay

parameter are set to 0.9 and 5x10−6, respectively. We implement the proposed method

in CAFFE [42] on a workstation with NVIDIA GTX Titan X GPUs if not specified.

4.2.2. Comparisons with previous methods

We compare the performance of the proposed method with previous methods in-

cluding SVM based on Fourier transform, the pilot Deep CNN method in [3] which

uses 1-D convolutions, and SVM based on the learned features of the proposed method.

We report the sensitivity and specificity scores of different methods on both the train-

ing set and test set. We also report the average classification accuracy. The standard

deviations of each index on the 3-fold cross-validation are also reported. Results are

summarized in Table 2, Table 3 and Table 4.

It can be seen that the method in [3] outperforms the traditional method using the
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Table 4: Average classification accuracy of different methods on the training set and test test. Standard

deviations (Std.) are listed in the brackets.

Methods Training Set Test Set

SVM+FFT 0.81(±0.04) 0.56(±0.12)
1D CNN [3] 0.83(±0.01) 0.81(±0.04)

Proposed 0.88(±0.03) 0.87(±0.03)
SVM+CNN Feature 0.93(±0.01) 0.87(±0.02)
Proposed (Fusion) 0.99(±0.01) 0.99(±0.01)

FFT coefficients and SVM classifier. However, it is inferior to the proposed one which

uses the 2-dimensional spectrogram as input, which benefits from the learned features

of time-frequency characteristics. Besides, we use the learned features from the pro-

posed method to train an SVM classifier. The results are denoted as “SVM+CNN

Feature”. Compared with the SVM with FFT features, the performance of this classi-

fier is significantly boosted. It demonstrates that the proposed method learns a more

discriminative feature representation of the ECG signal. Interestingly, it is marginally

better than the proposed CNN model which employs a linear classifier. It is reasonable

since a more sophisticated nonlinear radial basis kernel is used in the SVM classifier.

However, it shows a tendency toward overfitting i.e., a larger gain on the training set.

Moreover, from Table 2 and Table 3, we can find that categories of SA, PAC, VTr,

AVB-I, and PVC are hard to be distinguished. We’ll shed light on the phenomenon by

inspecting the learned features through the visualization technique and analyzing the

confusion matrix between categories as follows.

4.2.3. Analysis on learned features and confusion matrix between categories

First, we calculate the learned features from the penultimate layer for all test data.

Then, we employ the t-Distributed Stochastic Neighbor Embedding (t-SNE) method

proposed in [43, 44] to visually inspect them. The visualization results are shown

in Figure 3(a). As can be seen, some categories such as Normal(N), RVF, FVF, ST,

RBBB, LBBB, PVCCI, VTa and RAF, are separated from other categories. However,

some categories such as SA, PAC, PVC, VTr, AVB-I, and AVB-III, are overlapped
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Figure 3: Visualization of the learned features from the proposed network by using t-SNE [43]. (a): Feature

clusters of all categories on the test set. (b)-(e): Feature clusters of most confusion categories (denoted by

the red circles). Best viewed on screen.

with other categories as indicated by the red circles. We further plot them separately in

Figure 3(b)-(e). For example, SA tends to be overlapped with AT and PVC, and PVC

tends to be overlapped with PAC and VB. Nevertheless, they are separated from the

Normal category, coinciding with the high specificity scores in Table 2 and Table 3.

Besides, we also calculate the confusion matrix of the proposed method at the first

level on the test set, which is shown in Figure 4(a). It is clear that some categories

are overlapped with others, e.g., SA, VTr, AVB-I, and PVC. The results are consistent

with the visual inspection results in Figure 3.

4.2.4. Online decision fusion performance

We test the fusion method in Section 3.4 at different levels sl: 2, 3, 4, 5, and 6.

Two kinds of fusion weights are compared: the uniform one and the one favouring

high level models which is calculated as:

ws =
2s−1

2sl − 1
. (18)
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(a) (b)

Figure 4: (a) Confusion matrix of the proposed method at level 1 on the test set. (b) Confusion matrix of

the proposed online decision fusion method on the test set. From top to down (top to down), the ground

truth (predicted) categories are RAF, FAF, AF, SA, AT, ST, PAC, VB, VTr, PVCCI, VTa, RVF, FVF, AVB-I,

AVB-II, AVB-III, RBBB, LBBB, PVC and N, respectively.

(a) (b)

Figure 5: Results of the proposed online decision fusion method. (a) Means of the classification accuracy.

(b) Standard deviations (Std) of the classification accuracy.
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Figure5 shows the classification accuracy of the proposed fusion method and the

proposed single scale method at different levels. First, it can be seen that h4 achieves

the best performance among all the single models at different levels. The reason may

be that it makes a trade-off between data length and the number of model decisions.

Compared with h1, the input data length is 16 times larger. Compared with h6, which

only makes a single decision on the whole sequence, h4 can make 4 decisions from

different scale-specific models and fuse them into a more accurate one.

Then, it can be seen that the fusion results are consistently better than the results of

the single-scale model. The performance is improved consistently with the growth of

data length. It validates the idea that fusing the complementary decisions from different

models leads to a more accurate and stable one. Besides, using non-uniform weights

does not provide any advantage over the uniform one. The non-uniform weight strategy

favors the higher-level models than the decisions from the lower-level models. Though

it is better than the single model, the gains are indeed very marginal. Especially at

higher levels, the performance is largely dominated by the model at the highest level.

Please refer to Section 3.4 for more details. In conclusion, the proposed online decision

fusion method with uniform weights at level 6 achieves the best result. For example,

the accuracy is boosted from 87% (single model at level 1) to 99%, and the standard

deviation is reduced from 0.03 (single model at level 1) to 0.011. Its sensitivity and

specificity scores are shown in Table 3, which shows a significant boost than other

methods. The confusion matrix in Figure 4(b) shows the similar results. These results

demonstrate the effectiveness of the proposed online decision fusion method.

4.2.5. Computational complexity and running time analysis

We record the running times of the proposed method at GPU and CPU modes, re-

spectively. Results are summarized in Table 5. As can be seen, the running time is

only 0.33ms even if it is tested for the whole sequence (level 6). To further examine the

computational efficiency of the proposed method, we test it on an NVIDIA Jetson TX2

embedded board. Again, the proposed method can achieve a real-time speed. Interest-

ingly, the running times at GPU mode and CPU mode are comparable. We hypothesize

that enlarging the batch size may make full advantage of the GPU acceleration. Af-
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Table 5: Running times (millisecond, ms) of the proposed method at different settings.

Device Titan X TX2 TX2 (BatchSize: x10)

Level GPU CPU GPU CPU GPU CPU
1 0.01 0.17 0.17 0.46 0.12 0.44
2 0.03 0.21 0.27 0.59 0.13 0.55
3 0.05 0.26 0.37 0.80 0.14 0.72
4 0.10 0.42 1.22 1.57 0.18 1.39
5 0.21 0.82 2.01 2.91 0.27 2.79
6 0.33 1.33 2.73 5.38 0.56 5.66

ter enlarging the batch size 10 times, the superiority of GPU mode is significant. In

conclusion, the proposed method is very efficient and promising to be integrated into a

portable ECG monitor with limited computational resources.

4.3. Experiments on a real-world ECG dataset

We also conducted extensive experiments on a real-world ECG dataset used in the

2017 PhysioNet/Computing in Cardiology Challenge [45]. The dataset is split into the

training set, validation set, and test set. The training set contains 8,528 single-lead ECG

recordings lasting from 9s to 60s. The validation set and test set contain 300 and 3,658

ECG recordings of similar lengths, respectively. The ECG recordings were sampled

as 300 Hz. Each sample is labeled into four categories: Normal rhythm, AF rhythm,

Other rhythm, and Noisy recordings. Only labels of the training set and validation set

are publicly available. Some examples of the ECG waves are shown in Figure 6.

We train our model on the training set. Scores both on the training set and validation

set are reported and compared with the top entries in the challenge. It is noteworthy that

we add two more convolutional layers after the first and second convolutional layers

in the network depicted in Table 1 such that it has a stronger representation capacity

to handle the real-world ECG signals better. The number of convolutional filters and

kernel sizes are the same as their preceding counterparts. The first fully-connected

layer is kept the same. The output number of the last fully-connected layer is modified

to be four to keep consistent with the number of categories. Each sample in the dataset
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Figure 6: Examples of the ECG waveforms in PhysioNet dataset [45].

is cropped or duplicated to have a length of 16,384. All other hyper-parameters are kept

the same as the above experiments if not specified. We train the model at each level

three times with random seeds and report the average scores and standard deviations.

4.3.1. Comparisons of the proposed method and the top entries in the challenge

We report the results on this dataset in terms of mean accuracy and F1 score. To

keep consistent with the evaluation protocol in [45], we report the average F1 scores

for the first three categories. Besides, we also include the average F1 scores for all

categories. As can be seen from Figure 7 and Figure 8, the best results are achieved at

level 4 (h4) and level 5 (h5) by the proposed online fusion method, i.e., 100% ± 0%

classification accuracy and 100% ± 0% F1 score. Meanwhile, the results of single

models are also competitive. Best results are achieved at level 2 (h2) with a 99.44%±

0.57% accuracy and a 99.21% ± 0.81% F1 score. It is consistent with the result in

Section 4.2.4, where model h4 makes a trade-off between data length and the number

of model decisions. The comparison results between the proposed method and the top
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(a) (b)

Figure 7: Results of the proposed online decision fusion method on the PhysioNet dataset [45]. (a) Mean

values of the classification accuracy. (b) Standard deviations (Std) of the classification accuracy.

(a) (b)

Figure 8: Results of the proposed online decision fusion method on the PhysioNet dataset [45]. (a) Mean

values of F1 scores. (b) Standard deviations (Std) of the F1 scores.
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Figure 9: Visualization of the learned features from the proposed network on the PhysioNet dataset [45].

entries in the challenge are listed in Table 6. The proposed methods achieve comparable

or better results than the top entries on both the training set and validation set.

4.3.2. Analysis on learned features

Similar to Section 4.2.3, we plot the learned features from model h4 on the valida-

tion set in Figure 9. As can be seen, samples in each category are almost clustered to-

gether and separated from other clusters. For several samples in the category of ”Other

rhythm”, they are near the clusters of ”Normal” and ”Noisy”. It implies that these

samples are either with noise labels or hard cases which should be carefully handled.

In addition, we plot the spectrograms and their corresponding feature maps from

Conv1, Pool1, Conv2 and Pool2 layers in Figure 10. As can be seen, the first convo-

lutional layer acts like a basic feature extractor which strengthens the informative parts

in the spectrograms. Then, features in low and medium frequencies are pooled and

contribute to the final classification. From the Conv2 feature maps, we can see that the

proposed network generates strong responses in specific frequency zones and accumu-

late them along the temporal axis. By doing so and together with the online fusion, it

learns effective and discriminative features to make an accurate classification.
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Table 6: Accuracy and F1 scores on the PhysioNet dataset of the proposed methods and the top entries in the

challenge. “F1 score” stands for the average F1 score for the first three categories, i.e., Normal rhythm, AF

rhythm, and Other rhythm. “F1 score (all categories)” stands for the average F1 score for all categories.

Rank Entry accuracy F1 score F1 score (all categories)

Validation Train Validation Train Validation Train

1 Teijeiro et al. [29] - - 0.912 0.893 - -

1 Datta et al. - - 0.990 0.970 - -

1 Zabihi et al. [28] - - 0.968 0.951 - -

1 Hong et al. [27] - - 0.990 0.970 - -

5 Baydoun et al. - - 0.859 0.965 - -

5 Bin et al. - - 0.870 0.875 - -

5 Zihlmann et al. - - 0.913 0.889 - -

5 Xiong et al. - - 0.905 0.877 - -

- Proposed (level 4) 0.992±0.002 0.998±0.001 0.989±0.002 0.996±0.002 0.992±0.002 0.995±0.003

- Proposed (fusion, level 4) 1.0±0.0 0.999±0.001 1.0±0.0 0.994±0.006 1.0±0.0 0.991±0.009

(a) (b)

(c) (d)

Figure 10: Spectrograms and corresponding feature maps. (a)-(d) shows the results of two samples from AF

rhythm, Normal rhythm, Other rhythm, and Noisy rhythm, respectively. In each figure, the spectrograms and

corresponding feature maps from Conv1, Pool1, Conv2 and Pool2 layers are plotted from the top row to

the bottom row, respectively. Hot color represents a strong response.
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5. Conclusion and future work

In this paper, we propose a novel deep CNN based method for ECG signal classifi-

cation. It learns discriminative feature representation from the time-frequency domain

by calculating the Short-Time Fourier Transform of the original wave signal. Besides,

the proposed online decision fusion method fuses complementary decisions from dif-

ferent scale-specific models into a more accurate one. Extensive experiments on a

synthetic 20-category ECG dataset and a real-world AF classification dataset demon-

strate its effectiveness. Moreover, the proposed method is computationally efficient and

promising to be integrated into a portable ECG monitor with limited computational re-

sources. Future research may include: 1) devising or searching compact and efficient

networks to handle complex real-world ECG data; 2) improving the online fusion by

integrating both the decisions and learned features at different levels; 3) exploring the

potential of the proposed method for nonlinear time series beyond ECG.
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