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Abstract

Online social network (OSN) applications provide different experiences; for
example, posting a short text on Twitter and sharing photographs on Insta-
gram. Multiple OSNs constitute a multiplex network. For privacy protection
and usage purposes, accounts belonging to the same user in different OSNs
may have different usernames, photographs, and introductions. Interlayer
link prediction in multiplex network aims at identifying whether the accounts
in different OSNs belong to the same person, which can aid in tasks includ-
ing cybercriminal behavior modeling and customer interest analysis. Many
real-world OSNs exhibit a scale-free degree distribution; thus, neighbors with
different degrees may exert different influences on the node matching degrees
across different OSNs. We developed an iterative degree penalty (IDP) al-
gorithm for interlayer link prediction in the multiplex network. First, we
proposed a degree penalty principle that assigns a greater weight to a com-
mon matched neighbor with fewer connections. Second, we applied node
adjacency matrix multiplication for efficiently obtaining the matching degree
of all unmatched node pairs. Thereafter, we used the approved maximum
value method to obtain the interlayer link prediction results from the match-
ing degree matrix. Finally, the prediction results were inserted into the priori
interlayer node pair set and the above processes were performed iteratively
until all unmatched nodes in one layer were matched or all matching degrees
of the unmatched node pairs were equal to 0. Experiments demonstrated
that our advanced IDP algorithm significantly outperforms current network
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structure-based methods when the multiplex network average degree and
node overlapping rate are low.

Keywords: Social networks, Multiplex network, Interlayer link prediction,
Scale-free

1. Introduction

With rapid developments in Internet technology, Internet surfing has be-
come increasingly convenient and efficient in recent years. Online social
network (OSN) applications, such as Twitter, Facebook, Instagram, and
LinkedIn, have rapidly been integrated into people’s everyday lives and have
become major social communication tools. These multiple OSNs constitute a
multiplex network, where each OSN can be represented as a layer within the
multiplex network. In this multiplex network, nodes represent user accounts
and intralayer links capture friendships or follower-followee relations. If two
accounts in different OSNs belong to the same user, an interlayer link will
exist between the nodes. The various OSN applications provide users with
different functional experiences. For example, people generally use LinkedIn
to follow work-related contents, post short text descriptions on Twitter to
express their experiences at the time, and share their photographs on Insta-
gram. Analyzing these OSNs has a significant impact on society, politics,
economy, etc [1, 2, 3, 4].

In general, the OSN can be characterized by a complex network, in
which nodes represent individuals and links capture the relationships be-
tween them [5]. Several researchers have conducted studies in this field
relating to clustering [6], link prediction [7], information diffusion [1], and
community detection [8, 9], among others. However, it is difficult to ap-
ply such a representation to describe multilayer structures such as multiple
OSNs, multiple transportation networks [10] as well as the dynamic net-
works [7, 9]. The multilayer structures have a significant influence on the
aspects of cascade [11, 12], propagation [13, 14, 15, 16], synchronization [17],
and game [18, 19, 20]. In recent years, the multiplex network [11, 21, 22]
has emerged to characterize these multilayer structures. It explicitly incor-
porates multiple connectivity channels into a system and provides a natural
description for systems in which entities have a different set of neighbors in
each layer [23].

A user may always be active in different OSNs using different accounts; in
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most cases, it is not known whether accounts across different OSNs belong to
the same person. This means that most of the interlayer links are not given in
advance. To identify whether accounts in different OSNs belong to the same
person, the structure or feature information should be leveraged to predict
the interlayer links, which is a challenging problem in network analysis in
recent years [2]. It has been established that no OSN application can com-
pletely replace all other similar software at present. Therefore, online users
generally register multiple accounts for using these OSNs. When one person
registers his or her accounts in different OSNs, he or she may use different
usernames, photographs, and introductions for the purpose of privacy pro-
tection or anonymity. In this manner, users can confidently use the Internet
to chat, make friends, and share information on different social media, ac-
cording to their personal preferences. However, anonymity also poses harms
to society to a certain extent. For example, criminals may register large
quantities of different accounts on OSN applications. They subsequently en-
gage in illegal activities, such as spreading rumors, spreading viral links, and
inducing financial fraud on these applications [6]. Given effective methods to
determine the correspondence between accounts of the same user on differ-
ent OSNs, we can establish the patterns of criminal violations of laws, model
their online behavior, lock their geographical locations, and even determine
their real identities, thereby effectively striking against them.

Moreover, numerous other benefits are offered when predicting the in-
terlayer links in the multiplex network consisting of multiple OSNs. For
example, business site owners can be aided in studying user behaviors, ana-
lyzing the interests of customers, and analyzing the factors that affect their
decisions [24]. Furthermore, OSN users can be kept up to date with their
virtual contacts from different OSNs in an integrated environment [25].

Three main approaches are available for interlayer link prediction in the
multiplex social network: (i) feature-based interlayer link prediction, (ii)
network-based interlayer link prediction, and (iii) a combination of multiple
approaches. Among these, network-based methods have been applied exten-
sively in recent years [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41]. Its strategies for predicting interlayer links rely on examining the
structures of social graphs on different OSN platforms [32].

In the process of using network structures for interlayer link prediction, in
general, only the attributes of the nodes to be predicted are considered, along
with the importance of the attributes of their neighbors, such as ignoring the
neighbors’ degrees [36]. Many real-world OSNs exhibit a scale-free property.
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Their degree distribution follows a power law distribution, which is common
knowledge in numerous real-world networks [42, 43]. The number of common
matched neighbors and their degree attributes may have different effects on
the matching degree of two nodes in different layers for the prediction of their
interlayer link.

In this study, we developed an iterative degree penalty (IDP) algorithm
for interlayer link prediction in the multiplex network. The major contribu-
tions of this paper can be summarized as follows:

• We propose a degree penalty principle to calculate the matching degree
between the unmatched nodes across different layers in the multiplex
network. In the real world, people’s friend relationship cycles are highly
individual [36]. Therefore, with more common matched neighbors, a
higher probability exists that two unmatched nodes across different
layers have an interlayer link. However, common matched neighbors
with fewer connections are assigned higher weights for the matching
degree between two unmatched nodes. Our degree penalty principle
uses the inverse log frequency of the common matched neighbors of two
unmatched nodes to calculate the matching degree, thereby effectively
addressing the above two situations.

• We develop an iterative algorithm to determine additional hidden inter-
layer links. We use node adjacency matrix multiplication for efficiently
obtaining the matching degree of all unmatched node pairs. Thereafter,
we use the approved maximum value method to obtain the interlayer
link prediction results from the matching degree matrix. Finally, the
prediction results are inserted into the priori interlayer node pair set,
and the above processes are performed iteratively until all of the un-
matched nodes in one layer are matched or all the matching degrees of
the unmatched node pairs are equal to 0.

• We verify the effectiveness of our advanced IDP algorithm on both
artificial scale-free and real-world networks. The results demonstrate
that the IDP algorithm significantly outperforms the existing network
structure-based method FRUI: the recall rate increases by a maximum
of 36.6% and an average of 7.0% when the priori interlayer link rates
are less than 10% on the real-world networks.

The remainder of this paper is organized as follows. Section 2 reviews
related works. Section 3 describes the preliminaries and presents the prob-
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lem definitions. Section 4 explains the proposed IDP algorithm. Section 5
presents the experimental results. Section 6 concludes the paper and provides
future research directions.

2. Related Works

The problem of interlayer link prediction in a multiplex network consti-
tuted by multiple OSNs has attracted substantial research attention in the
past decade [2]. Existing research efforts can be divided into three categories:
feature-based prediction, network-based prediction, and a combination of
multiple approaches.

2.1. Feature-based prediction

In several works, features have been extracted from profiles and contents.
These studies have adopted machine learning techniques to predict the inter-
layer links across multiple OSNs [2]. Profile attributes include the username,
gender, birthday, address, experience, and image, among others [44]. The
username has been found to be the most important attribute in the pro-
file and has been explored extensively. Zafarani and Liu [45] formalized the
problem of mapping among identities across multiple websites, and conducted
similar empirical tests on thousands of usernames across 12 social networks,
thereby empirically validating several hypotheses. They further developed a
supervised methodology for the same problem in Ref. [46], which extracted
behavioral features of usernames based on the priori knowledge of linguistics
and human behavior according to three aspects: human limitations, exoge-
nous factors, and endogenous factors. Perito et al. [47] determined that a
significant portion of the users can be linked by means of their usernames,
and identified users with binary classifiers. Liu et al. [48] differentiated
among users with the same usernames and proposed an unsupervised ap-
proach to match users. Among usernames, the recognition of photographs
may provide a means of mapping users. Although usernames can be used
to predict the interlayer links of the multiplex social network, it is difficult
to use them in large-scale situations because some users may have the same
username. Acquisti et al. [49] used publicly available photos for large-scale
individual re-identification. However, users tend to publish different pieces
of information in different OSNs [50]. Only a handful of users may put their
personal photos on different OSNs. Therefore, using photos for identification
is appropriate for these specific users.
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Apart from usernames and images, several researchers have focused on
considering various profile attributes to improve the prediction performance [51,
52, 53, 54, 55, 56]. A heuristic approach based on using the username, e-mail,
and birth city attributes was proposed by Carmagnola et al. [51]. Iofciu et
al. [52] divided profile information into two types: usernames and tags. They
determined that users can be identified by analyzing their tagging, and the
performance can be improved by combining tags and usernames. Mu et
al. [56] explored the concept of latent user space to describe the user profiles
in different social platforms, so that two individuals with greater similari-
ties would have closer profiles in the latent user space. Similar areas were
also studied in Refs. [53, 54, 55]. Leveraging more profile attributes could
improve the prediction performance effectively, but profile attributes may
contain information which are null or are not sufficiently strong to indicate
user identity.

Content attributes for individuals can reveal their activities, such as post-
ing, mentioning, and commenting in OSNs [2]. These properties can capture
unique characteristics for the interlayer link prediction of multiplex OSNs.
Zheng et al. [57] extracted four types of writing-style features (syntactic, lexi-
cal, structural, and content) to identify authorship. Goga et al. [58] exploited
the geo-location, timestamp, and writing style of user posts to identify ac-
counts on different OSNs. Zafarani and Liu [59] extracted trajectory-based
content features to capture the unique footprints of user activities for linking
the same user accounts across platforms. Nevertheless, the methods based
on content attributes often face the problem of data sparsity, because the
amount of location data or posted content of different users varies signifi-
cantly. These approaches are usually confined to some specific OSN applica-
tions, which makes it harder to leveraged them on a general multiplex social
network.

2.2. Network-based prediction

Personal data available on OSNs are usually anonymized owing to privacy
concerns, with users often removing their profile and attribute information
or replacing these with fake information [40]. Therefore, using network struc-
tures to predict the interlayer links has been the focus of substantial research.
Narayanan and Shmatikov [60] assumed that a natural person usually has a
similar social network in the virtual world. Based on this assumption, Zhou
et al. [36] developed a network structure-based method known as the Friend
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Relationship-based User Identification (FRUI) algorithm. The FRUI algo-
rithm identifies the same user across different OSNs by leveraging the shared
friend cycle, and requires several priori matched pairs. They subsequently
proposed an approach that did not require priori matched pairs in Ref. [33].
Interlayer link prediction in a multiplex network consisting of multiple OSNs
formed the maximum common subgraph problem in Ref. [61], which max-
imized the number of standard links to obtain one-to-one mapping. The
maximum common subgraph problem is an NP-hard problem, and is there-
fore hardly used in real scenarios. Tan et al. [41] leveraged a hypergraph
to model user relationships and correlate accounts across different OSNs by
projecting the manifolds of two networks onto a commonly embedded space.
Moreover, neighborhood-based network features were used for account align-
ment in [62]. Zhang et al. [63] proposed a joint link fusion algorithm to
predict the social links and anchor links of two OSNs simultaneously. This
algorithm transferred information relating to social links from one network to
another. Its time complexity is approximately O(n3). Numerous researchers
have used network embedding [64], also known as representation learning
[65], to predict interlayer links in recent years. Liu et al. [37] adopted a
network embedding approach to align users across multiple directed OSNs.
Their method embedded two OSNs into a common space to capture the so-
cial links of user accounts. Man et al. [38] proposed a supervised model
to learn cross-layer mapping for interlayer link prediction, which leveraged
network embedding to capture the underlying structural regularities. Zhou
et al. [31] proposed an unsupervised algorithm for user identification, using
network embedding and scalable nearest neighbors. A deep reinforcement
learning-based framework was developed in Ref. [32], which could embed the
global network structure, thereby achieving higher correlation accuracy than
other network embedding methods. Similar studies can also be found in
Refs. [26, 27, 28, 29, 31, 34, 35, 39]. Most of the network embedding-based
methods implicitly assume that the input networks are complete without
missing edges, and it is not easy to add user attribution into the representa-
tion vectors.

2.3. Combination of multiple approaches

Other relevant approaches have combined the feature-based and structure-
based methods for interlayer link prediction; for example, searching the same
username from the friend lists of seed users across Facebook and Twitter [66].
Nunes et al. [67] introduced a binary classification method to classify account
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pairs as belonging to the same person or not. The feature vectors of the clas-
sifier were constructed by profile information, descriptions of interests, and
friend lists. Kong et al. [68] studied two fully aligned OSN datasets collected
from Foursquare and Twitter to determine the correspondence between dif-
ferent user accounts. They extracted multiple features and formulated the
correspondence problem as a stable matching problem. The network struc-
ture features were one type among multiple features. Zhang et al. [69] ex-
plored a probabilistic approach for mapping individuals, in which the user
friend or connection count was used as a feature. Lu et al. [24] introduced a
methodology to identify customers between customer accounts, e-commerce
sites, and OSN applications. The network structure was used to extract user
interest features.

In the majority of combination approaches, the problem of attempting
to obtain user profile features for the sake of privacy protection exists. Our
study focuses on structure-based prediction. Numerous real-world OSNs ex-
hibit a scale-free degree distribution [43]. Common matched neighbors with
different degrees may have different influences on the matching degrees of
nodes across two OSNs. In this study, we developed an IDP algorithm to
address this issue.

3. Preliminaries and problem

In this section, we introduce the conception of the multiplex network for
representing multiple OSN applications, and describe the problem of inter-
layer link prediction on the multiplex network. The symbols and notations
frequently used in this paper are displayed in Table 1. We use bold uppercase
letters for matrices, bold lowercase letters for vectors, and lowercase letters
for scalars.

3.1. Definitions

To distinguish the different OSN platforms, we represent the relationship
between nodes in one OSN as the graph Gα(V α, Eα), where V α and Eα ⊆
V α × V α are the sets of nodes and edges of the graph Gα. The elements of
Eα are referred to as intralayer links. The scenario of multiple OSNs is repre-
sented by the multiplex networkM = (g, c), where g = {Gα|α ∈ {1, · · · , m}}
is the set of graphs and c = {Eαβ ⊆ V α × V β|α, β ∈ {1, · · · , m}, α 6= β} is
the set of connections between the nodes of graphs Gα and Gβ . If there exists
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Figure 1: Example of representing relations across multiple OSNs using multiplex network.
(a) Real scenario: There are two OSN applications. OSNα has six user accounts, while
OSNβ has 7. Each account exhibits certain connections with other accounts on the same
OSN. In the red circle, three pairs of accounts belong to three users, and the correspondence
among these accounts is revealed in advance. The task is to determine the correspondence
of the other accounts. (b) Multiplex network: We use a multiplex networkM to represent
multiple OSNs. The two OSNs are denoted by layers α and β. The user accounts are
denoted by nodes vαi or v

β
j . The relationships of the accounts connected in an OSN

are denoted by interlayer links eαij or eβij . The correspondence of two accounts across two

OSNs is denoted by the interlayer link e
αβ
ij . The task of determining the correspondence of

accounts across OSNs becomes the prediction of interlayer links in the multiplex network.

an edge eαβij between node vαi in graph Gα and node vβj in graph Gβ, the ac-
counts represented by the two nodes belong to the same user. The elements
of Eαβ are known as interlayer links. Each subnetwork in g is referred to
as a layer in multiplex networkM. An illustration of multiplex networks is
provided in Fig. 1. Prior to introducing the details of our proposed method,
we present the formal definitions of various important concepts in this paper.

Definition 1: Interlayer node pair (INP).Given a multiplex network
M, if an interlayer link exists between a node vαi in layer α and a node vβj in
layer β, we refer to the pair consisting of these two nodes as an INP, which is
represented by INP(vαi ,vβj ). Moreover, the nodes belonging to the INP are
known as interlayer nodes.

Definition 2: Matched interlayer node pair (MINP). Given a mul-
tiplex network M, if a node pair consisting of node vαi in layer α and node

9



Table 1: Symbols and notations

Symbol Description
M The multiplex network.
G A social network that is one layer ofM.
u, v Nodes inM.
α, β Layer indices ofM.
eα, eβ Intralayer connections in Gα and Gβ.
e,E Intralayer connection vector and intralayer connection matrix, re-

spectively.
eαβ Interlayer connection.
i, j, a, b Node indices.
nα, nβ Number of nodes in Gα and Gβ.
n Number of MINPs.
Γ(vi) Neighbors set of node vi.
r,R Matching degree between two interlayer nodes and matching degree

matrix for all interlayer nodes, respectively.
k Degree of a node.
d Degree vector of all nodes in a layer.
h Reciprocal of logarithm for a priori interlayer node degree
h,H Reciprocal vector of logarithm for a priori interlayer node degree

and reciprocal matrix of logarithm for all priori interlayer node
degrees.

δ Control parameter for selecting candidate matched interlayer nodes.
A Adjacency matrix of a layer.
p The ratio of PINPs to INPs.
s The percentage of remaining nodes when extracting subnetworks

to construct the multiplex network.
Φ Set of PINPs.
ϕα, ϕβ Set of priori interlayer nodes in layers α and β.
Ψ Set of MINPs.
ψα, ψβ Set of matched interlayer nodes in layer α and β.
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vβj in layer β is matched as an INP, we refer to this pair as an MINP and

denote it by MINP (vαi ,vβj ). An MINP is not necessarily an INP, because
the results calculated by the algorithm may be incorrect.

Definition 3: Priori interlayer node pair (PINP).Given a multiplex
networkM, if several INPs are provided in advance, we refer to these INPs
as PINPs. Furthermore, the nodes belonging to the PINP are known as priori
interlayer nodes.

Definition 4: Unmatched node pair (UNP). Given a multiplex net-
work M, if a node vαi in layer α and a node vβj in layer β have not been
matched, we refer to the pair consisting of these two nodes as a UNP, which
is represented by UNP(vαi ,vβj ).

Definition 5: Common matched neighbor (CMN).Given a PINP(vαi ,v
β
j ),

if node vαa in layer α has an intralayer link with node vαi , and node vβb in layer

β has an intralayer link with node vβj , we can state that the PINP(vαi ,v
β
j ) is

the CMN of nodes vαa and vβb .
It is worth noting that the terms graph and layer, link and connection,

and interlayer node pair and interlayer link are used interchangeably in this
paper.

3.2. Problem statement

Supposing that we have a two-layer multiplex networkM with a small set
of priori interlayer links, the purpose of the interlayer link prediction problem
is to predict which node pairs are most likely to have the interlayer links.

Given a UNP (uαi , u
β
j ) in the multiplex networkM, the objective function

of the interlayer link prediction can be defined as follows:

f(uαi , u
β
j ) = J(rij) =

{

1, if eαβij exist,
0, otherwise,

(1)

where rij represents the matching degree of the unmatched nodes vαi and vβj .
The interlayer link prediction problem is converted into the calculation of rij
and the definition of the objective function J .

In a real scenario, certain people may possess two or more accounts in
the same OSN application. For simplicity, we assume that these multiple
accounts belong to different users. This means that the interlayer link pre-
diction problem in this study is a one-to-one matching problem; that is, no
two interlayer links share the same node.
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Figure 2: Examples of interlayer link prediction with IDP. (a) A two-layer multiplex
network with nine nodes in layer α and ten nodes in layer β. All of the interlayer links
and three of the interlayer links are provided, respectively. Now, we need to use the IDP
algorithm to predict the remaining interlayer links. (b) The first iteration to output a
prediction result. We use the degree penalty principle to calculate the matching degree of
each candidate node pair and set δ = 1 to select the maximum pair (5,5) as a result in
this iteration. (c) The next iteration for predicting the interlayer links. In this iteration,
there are four MINPs. We use the same method to calculate the matching degree, and
the result is (4,4). (d) The results in the later iterations, which are (3,3), (2,2), (7,7), and
(9,9).

4. IDP algorithm

In this section, we introduce the iterative interlayer link prediction al-
gorithm, known as the IDP, into the multiplex network to predict the in-
terlayer links based on only a small part of these. Firstly, we propose a
degree penalty principle that assigns a greater weight to a CMN with fewer
connections. Secondly, we propose node adjacency matrix multiplication for
efficiently obtaining the matching degree of all of the UNPs. Thereafter,
we use the approved maximum value method to obtain the interlayer link
prediction results from the matching degree matrix. Finally, the prediction
results are inserted into the PINP set, and the above processes are performed
iteratively until all of the unmatched nodes in one layer are matched or all
of the match degrees of the UNPs are equal to 0.

4.1. Degree penalty principle

Researchers have established that numerous natural and artificial net-
works exhibit certain common topological characteristics, such as small world,
scale free, and core periphery [70]. The scale-free property is valuable in that
the degree distribution of a scale-free network follows a power law. Zhou et al.
analyzed four leading OSN sites (Delicious, Flickr, Twitter, and YouTube),
and found that these sites all exhibit scale-free degree distributions [43].
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This means that there exist large nodes with a small degree, as well as sev-
eral nodes with a large degree. The CMNs with different degrees will have
different weights for the UNP matching degrees. For example, if a person
has only one friend and he or she follows an account vα on OSN Gα and an
account vβ on OSN Gβ, it is highly likely that vα and vβ belong to the same
person, namely his or her friend. In contrast, if this person has many friends,
it is difficult to determine whether or not the accounts that he or she follows
on different OSNs belong to the same person.

Based on the above statements, we propose the principle of the degree
penalty of CMNs for calculating the matching degree of the unmatched nodes,
which assigns more weights to smaller-degree CMNs. We define

rij =
∑

∀(vαa ,v
β
b
)∈Φ,

vαa∈Γ(u
α
i ),

v
β
b
∈Γ(uβ

j )

log−1(kvαa + 1) + log−1(k
v
β
b
+ 1) (2)

as the matching degree of UNP (uαi , u
β
j ). In Eq. (2), Φ represents the

set of PINPs, Γ(uαi ) and Γ(uβj ) represent the neighbor sets of nodes uαi and

uβj , respectively, k represents the node degree, and the constraints in the

equation indicate that the PINP (vαa , v
β
b ) is the CMN of UNP (uαi , u

β
j ). It

is noteworthy that, if kvαa = 1, log(kvαa ) will be equal to 0, and log−1(kvαa )
becomes meaningless. To overcome this problem, we add 1 to each log by
means of Laplace smoothing.

The degree penalty principle has the following characteristics:
(i) It can reflect the contribution of the number of CMNs to the matching

degree. For any two unmatched nodes uαi and uβj , a greater number of CMNs
results in their matching degree rij being larger.

(ii) It can reflect the influence of the degree of CMNs on the matching
degree. For any CMNs, a smaller degree results in the weights of these CMNs
making a greater contribution to the matching degree of the UNPs connected
to them.

4.2. Calculation of matching degree

The matching degree of each UNP can be calculated by the degree penalty
principle proposed above. Given all of the nodes, interlayer links, and pri-
ori interlayer links, the question is how to obtain all matching degrees of
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the UNPs efficiently. We propose an approach based on matrix operation,
inspired by Ref. [71].

Given a multiplex networkM, nα and nβ are denoted as the number of
nodes in layers α and β, respectively, while n is the number of PINPs. The
number of unmatched nodes in layer α can be represented by nα − n, while
the number of unmatched nodes in layer β can be represented by nβ − n.

For a node vαa ∈ ϕ
α, where ϕα represents the set of priori interlayer nodes

in layer α, the degree of vαa can be expressed as

kvαa =
nα
∑

b=1

eαab, (3)

where eαab is equal to 1 if an intralayer link exists between nodes vαa and vβb ,
and 0 otherwise.

By hαa = log−1(kvαa + 1), we can rewrite Eq. (2) as

rij =
∑

∀(vαa ,v
β
b
)∈Φ,

vαa∈Γ(u
α
i ),

v
β
b
∈Γ(uβ

j )

hαa + hβb . (4)

This equation will facilitate the subsequent introduction of matrix oper-
ations.

It is clear that, if PINP (vαa , v
β
b ) is the CMN of UNP (uαi , u

β
j ), e

α
ia and eβjb

will be equal to 1; thus, eαia ·h
α
a · e

β
jb = hαa and eαia ·h

β
b · e

β
jb = hβb . In contrast, if

PINP (vαa , v
β
b ) is not the CMN of UNP (uαi , u

β
j ), e

α
ia or eβjb will be equal to 0;

thus, eαia · h
α
a · e

β
jb = 0 and eαia · h

β
b · e

β
jb = 0. Therefore, Eq. (4) can be replaced

with
rij =

∑

∀(vαa ,v
β
b
)∈Φ

eαia · h
α
a · e

β
jb + eαia · h

β
b · e

β
jb. (5)

If node vαa is a matched interlayer node in layer α, a counterpart node
must exist in layer β, and vice versa. Naturally, it is possible to make the
PINPs uniform, as follows: (vα1 , v

β
1 ), (v

α
2 , v

β
2 ), · · · , (v

α
n , v

β
n). Therefore, Eq. (5)

can be rewritten as

rij =

n
∑

a=1

hαa · e
α
ia · e

β
aj + eαia · e

β
aj · h

β
a . (6)
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Using the vector form, Eq. (6) can be represented as

rij = [hα1 · e
α
i1, h

α
2 · e

α
i2, · · · , h

α
n · e

α
in] ·











eβ1j
eβ2j
...

eβnj











+ [eαi1, e
α
i2, · · · , e

α
in] ·











eβ1j · h
β
1

eβ2j · h
β
2

...

eβnj · h
β
n











.

(7)

It is known that the Hadamard product of A ≡ [aij ] and B ≡ [bij ] with
the same dimensions is the matrix A ◦ B = [aijbij ]. Therefore, [hα1 · e

α
i1, h

α
2 ·

eαi2, · · · , h
α
n · e

α
in] can be represented as [hα1 , h

α
2 , · · · , h

α
n] ◦ [e

α
i1, e

α
i2, · · · , e

α
in]. De-

noting hα
i = [hα1 , h

α
2 , · · · , h

α
n]

T , hβ
j = [hβ1 , h

β
2 , · · · , h

β
n]

T , eα
i = [eαi1, e

α
i2, · · · , e

α
in]

T ,

e
β
j = [eβ1j , e

β
2j , · · · , e

β
nj ]

T , where (·)T is the transposition of (·), Eq. (7) can be
rewritten as

rij = ((hα
i )

T ◦ (eα
i )

T ) · eβ
j + (eα

i )
T · (eβ

j ◦ h
β
j ). (8)

Using Eq. (8), the matching degree of UNP (uαi , u
β
j ) is represented by

the form of the vector operation. Then, we can express the matching de-
gree of all UNPs in the matrix operation form. In a similar manner, we
denote Hα = [hα

1 , hα
2 , · · · , hα

nα−n], E
α = [eα

1 , e
α
2 , · · · , e

α
nα−n], H

β =

[hβ
1 ,h

β
2 , · · · ,h

β

nβ−n
], Eβ = [eβ

1 , e
β
2 , · · · , e

β

nβ−n
]. The matching degree of all

UNPs can be calculated as follows:

R = ([Hα]T ◦ [Eα]T ) ·Eβ + [Eα]T · (Eβ ◦Hβ). (9)

It is worth noting that Hα consists of nα − n copies of hα
i , because

hα
1 = hα

2 = · · · = hα
n = [hα1 , h

α
2 , · · · , h

α
n]

T . Similarly, Hβ consists of nβ − n
copies of hβ

j . Moreover, Eα and Eβ are the submatrices of the adjacency

matrix of Gα and Gβ, respectively. Each row of the submatrix represents
one of the matched interlayer nodes, while each column represents one of the
unmatched nodes.

Based on the above statements, the four matrices Hα, Eα, Eβ, and Hβ

can be obtained. The matching degree of all unmatched nodes between the
different layers of the multiplex networkM can be calculated efficiently.
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4.3. Selecting matched interlayer node pairs

After obtaining the values of all elements of the matching degree matrix
R, we need to determine which UNPs can be selected as MINPs. This means
that we should formulate the objective function J . This function clarifies that
a node pair can be selected as an MINP when its matching degree satisfies
certain conditions. A larger value of the matching degree rij indicates a

higher probability that the node pair (uαi , u
β
j ) is the MINP. Therefore, we

define the objective function as:

J(rij) = 1(rij ≥ δ ·max(R)),

s.t. uαi /∈ ψα, uβj /∈ ψ
β , (10)

where (i) 1(·) is an indicator function that takes 1 if the condition inside the
parenthesis is true, and zero otherwise; (ii) max(·) is the maximum function
that takes the maximum value inside the parenthesis; (iii) ψα and ψβ are the
sets of matched interlayer nodes in layers α and β, respectively; and (iv) δ
is a control parameter that takes a value from 0 to 1. When δ = 1, only
the UNPs with the maximum value of the matching degree can be selected
as MINPs. When δ ∈ (0, 1), the UNPs with a matching degree greater than
δ ·max(R) can be selected as MINPs. Moreover, when δ = 0, all of the UNPs
can be selected as MINPs. It is obvious that a smaller value of δ means that
additional UNPs are selected as MINPs, and hence, the accuracy is lower. In
contrast, a larger value of δ indicates that less UNPs are selected as MINPs,
and hence, the efficiency is lower. The constraints in Eq. (10) are used to
ensure that each unmatched node is matched only once.

4.4. Achieving additional matched interlayer node pairs iteratively

In the previous steps, the degree penalty principle and matrix operation
are leveraged to calculate the matching degree matrix R for all unmatched
nodes among the different layers in the multiplex networkM and the node
pairs with matching degrees greater than δ times max(R) are selected as
MINPs. By performing these steps once, only one or several UNPs can be
selected as MINPs. Therefore, we propose an iterative strategy, known as
the IDP algorithm, to achieve additional MINPs.

Denoting Ψ as the set of MINPs, we can add elements of Ψ to Φ. More-
over, we execute the steps introduced above again to identify more MINPs.
This strategy can be executed iteratively until all of the unmatched nodes in
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one layer are matched or all of the matching degrees of the UNPs are equal
to 0.

The details of our suggested IDP algorithm for interlayer link prediction
are presented in Algorithm 1. In each iteration, the time complexity of the
algorithm mainly depends on the calculation of the matching degree matrix
R of Algorithm 1, which is matrix multiplication. Provided nα−n = nβ−n =
m, the running time of the matrix multiplication is nm2/q, where q is the
number of compute nodes [72]. For the whole algorithm, provided that z
is the average number of selected matched interlayer nodes per iteration,
the time complexity of IDP is O(nm3/zp). Moreover, an illustration of the
procedure of the IDP algorithm is presented in Fig. 2.

5. Experiments

In this section, we firstly describe the experimental settings. Thereafter,
the evaluation metrics are introduced. Finally, we present the experimental
results of the baseline and IDP algorithms on artificial scale-free networks
and real-world networks.

5.1. Experimental settings

We verify the effectiveness of our proposed IDP algorithm on both ar-
tificial scale-free and real-world networks. The steps for constructing the
artificial scale-free multiplex networks are as follows:

(i) We create a Barabási-Albett (BA) [73] network, the degree distribu-
tion of which follows a power law distribution, according to the generation
step proposed in Ref. [73]. This is an original network for the following
steps. (ii) Using Gorg(V org, Eorg) to represent the original BA network and s
to represent the percentage of remaining nodes, we construct two networks,
Gα = Gorg and Gβ = Gorg. (iii) For a node vαi in Gα, we generate a random
value a1 with a uniform distribution in [0,1]. If a1 ≥ s, the node vαi is dis-
carded, as are all of the intralayer links connected with node vαi . Otherwise,
node vαi is preserved in Gα. (iv) Similarly, for a node vβi in Gβ, we generate
a random value a2 with a uniform distribution in [0,1]. If a2 ≥ s, the node
vβi is discarded, as are all of the intralayer links connected with node vβi .
Otherwise, node vβi is preserved in Gβ. (v) We determine whether to add an
interlayer link between vαi and vβi . If a1 < s and a2 < s simultaneously, the
counterpart nodes of node vorgi , namely vαi and vβi , remain in layers α and β.
Therefore, we add an interlayer link between vαi and vβi . Otherwise, we do
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Algorithm 1. IDP
Input:Nodes and connections of Gα and Gβ in multiplex networkM, PINPs, parameter
δ.
Output:MINPs
1: function IDP(Gα, Gβ, PINPs, δ)
2: Aα ← adjacency matrix of Gα, Aβ ← adjacency matrix of Gβ

3: dα ← degree of nodes in Gα, dβ ← degree of nodes in Gβ

4: nα=size(Aα), nβ=size(Aβ), n=size(PINPs)
5: matchNodeα=[], unmatchNodeα=[], matchNodeβ=[], unmatchNodeβ=[], MINPs=[]
6: while n < nα and n < nβ do
7: j=1,k=1
8: foreach i in nα do
9: if i is in PINPs do
10: matchNodeα[j]=i, j++
11: else do
12: unmatchNodeα[k]=i, k++
13: j=1,k=1
14: foreach i in nβ do
15: if i is in PINPs do
16: matchNodeβ [j]=i, j++
17: else do
18: unmatchNodeβ [k]=i, k++
19: Eα=submatrix(Aα,matchNodeα,unmatchNodeα)
20: Eβ=submatrix(Aβ ,matchNodeβ ,unmatchNodeβ)
21: hα

1=1./log(submatrix(dα,matchNodeα,1).+1)

22: h
β
1=1./log(submatrix(dβ,matchNodeβ ,1).+1)

23: Hα = [hα
1 ,h

α
1 , · · · ,h

α
1 ]n×(nα−n)

24: Hβ = [hβ
1 ,h

β
1 , · · · ,h

β
1 ]n×(nβ−n)

25: R = ((Hα)T ◦ (Eα)T ) ·Eβ + [Eα]T · (Eβ ◦Hβ)
26: max = 0
27: foreach i in nα − n do
28: foreach j in nβ − n do
29: if R[i][j]> max do
30: max = R[i][j]
31: foreach i in nα − n do
32: foreach j in nβ − n do
33: if R[i][j]>= δ ·max and unmatchNodeα[j] not in MINPs do
34: MINPs ← (unmatchNodeα[i],unmatchNodeβ [j])
35: PINPs ← (unmatchNodeα[i],unmatchNodeβ [j])
36: n=size(PINPs)
37: return MINPs
38: function submatrix(A,rows,cols)
39: Q ← Extracts the rows and columns of the matrix A according to the number in
the arrays of rows and cols.
40: return Q
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Table 2: Time complexity of baselines and IDP

Methods Time Complexity
INOE O(KD(|Eα|+ |Eβ|))
NS O(m(|Eα|+ |Eβ|)dαdβ)

FRUI O(mndαdβ)
IDP O(nm3/zp)

nothing. (vi) Steps (iii) to (v) are repeated until all of the nodes in Gα and
Gβ are traversed.

The real-world datasets contain eight networks downloaded from the
websites Stanford Large Network Dataset Collection [74], Link Prediction
Group [75], and Network Analysis of Advogato [76]. In a real scenario, OSN
application users are often wary of their privacy. Therefore, it is difficult to
obtain complete ground truth. To address this problem, we perform exper-
iments on self-matching real-world networks[77]. The solution for obtaining
the self-matching real-world multiplex network is the same as that for the
BA multiplex network described above.

After constructing the multiplex networks, we use the FRUI [36], NS [78],
and INOE [37] as the baselines for the experiments, where FRUI is the closest
to the IDP algorithm for the interlayer link prediction as a state of the art.
Each experiment is repeated 500 times. For the sake of reducing computa-
tional time in each experiment, the adjacency matrices constructed by the
matched nodes and unmatched nodes of layer α and β in the tth iteration
will join to Eα and Eβ , respectively. This could avoid reconstructing Eα

and Eβ in (t+ 1)th iteration.
The time complexity of the baseline and IDP algorithms is presented

in Table 2. In particular, K is the negative sampling number, D is the
representation dimension, |Eα| and |Eβ| are the number of intralayer links
in layer α and β, respectively. dα and dβ are the maximal degrees of nodes
in layer α and β, respectively.

5.2. Evaluation metrics

We employ the recall, precision, and F1 [2] as the metrics for evaluating
the performance of the FRUI and IDP algorithms, which are widely used
in information retrieval, machine learning, and data mining, among others.
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The recall can be formulated as

Recall =
TP

TP + FN
, (11)

where TP and FN indicate the number of true positives and false negatives,
respectively [48]. In this study, the recall reflects the ratio of INPs that the
algorithm correctly predicts to the number of INPs that need to be predicted.
The precision can be formulated as

Precision =
TP

TP + FP
, (12)

where FP indicates the number of false positives [48]. In this study, the
precision reflects the ratio of INPs that the algorithm correctly predicts to
all of the results predicted by the algorithm. F1 is the harmonic mean
between the precision and recall [79]. It can be formulated as

F1 =
2 · Recall · Precision

Recall + Precision
, (13)

where the range for F1 is [0,1]. For these three metrics, a higher value
indicates superior performance of the algorithm performance.

5.3. Results on artificial networks

In this subsection, we outline the manner in which to determine an op-
timal value of δ, and demonstrate the comparison results of the baseline
and IDP algorithms on different average node degrees, node overlaps, and
network sizes.

5.3.1. Determining optimal δ

A possible solution for obtaining an optimum δ is to determine it exper-
imentally. We set the default values of δ to increase from 0.1 to 1 by 0.1
and execute the IDP algorithm. In these experiments, the BA network pa-
rameter m, which represents the number of edges for attaching a new node
to existing nodes, is equal to 10, the percentage of remaining nodes s is
equal to 0.5, the network sizes N of the original BA networks are equal to
2,000, 4,000, 6,000, 8,000, and 10,000, respectively, and the ratios of PINPs
to INPs p are equal to 0.01, 0.02, · · · , 0.1, respectively.

Table 3 displays the average F1 rates of these experiments. It can be ob-
served that the IDP algorithm exhibits the best performance at δ = 0.5 when
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Table 3: Performance of IDP algorithm on different δ

Metric N
δ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F1

2,000 0.1029 0.1113 0.1355 0.1435 0.1445 0.1389 0.1311 0.1372 0.1299 0.1015
4,000 0.1786 0.2043 0.2303 0.2462 0.2548 0.2574 0.2546 0.2559 0.2508 0.2390
6,000 0.2199 0.2515 0.2881 0.3073 0.3176 0.3287 0.3331 0.3294 0.3344 0.3227
8,000 0.2445 0.2868 0.3207 0.3398 0.3505 0.3665 0.3711 0.3674 0.3727 0.3603
10,000 0.2786 0.3207 0.3554 0.3771 0.3998 0.4133 0.4217 0.4180 0.4221 0.4151

Average 0.2049 0.2349 0.2660 0.2828 0.2934 0.3010 0.3023 0.3016 0.3020 0.2877

N is equal to 2,000. When N is equal to 4, 000, 6, 000, 8, 000, and 10, 000,
the IDP algorithm exhibits superior performance at δ = 0.5, 0.7, 0.7, and
0.7, respectively. Overall, the IDP algorithm performs the best when δ is
equal to 0.7, at which the average F1 rate is equal to 0.3023. Therefore, we
determine that the practical value of the parameter δ is equal to 0.7.

5.3.2. Effects of average degree

We evaluate the performance of the baseline and IDP algorithms at dif-
ferent average degrees. We set N = 2, 000, s = 0.5, p increasing from 0.01
to 0.1 by 0.01, and m = 5, 10, 15. Figures 3(a) to (c) display the recall,
precision, and F1 rates of the baseline and IDP algorithms under the above
experimental settings. The following observations can be made. The IDP
algorithm outperforms the baseline algorithms. This is because the IDP al-
gorithm uses the degree penalty principle to calculate the matching degree
of two unmatched nodes across different layers. This principle can reflect the
contribution of the number of CMNs and influence of the degree of CMNs on
the matching degree, while the FRUI algorithm only reflects the contribution
of the number of CMNs. The NS algorithm depends heavily on the degree of
the nodes in layer β. It limits the contribution of CMNs; hence, the perfor-
mance is not as good as FRUI. The INOE algorithm uses network embedding
to predict the interlayer links, which needs more PINPs to train the model
to show its advantage. For a given m, the recall, precision, and F1 rates of
the baseline and IDP algorithms increase with p. This is because a larger p
means that additional CMNs can be used to calculate the matching degree of
UNPs. For a given p, the recall, precision, and F1 rates of the baseline and
IDP algorithms increase with m, as the nodes with a low degree are difficult
to match. A smaller m indicates more low-degree nodes. It is noteworthy
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Figure 3: Comparison between baselines and IDP on different average degrees. (a) Recall
rate, (b) precision rate, (c) F1 rate, (d) percentages of improvement between FRUI and
IDP of recall rate, (e) percentages of improvement between FRUI and IDP of precision
rate, and (f) percentages of improvement between FRUI and IDP of F1 rate versus p.
In these experiments, we set N = 2, 000, s = 0.5, and m = 5, 10, 15. The horizontal
ordinates denote the ratios of PINPs to INPs.

that some lines in Figs. 3(a) to (c) are overlapped. We have listed their recall
rate in Table 4.

Figures 3(d) to (f) illustrate the percentages of improvement in the recall,
precision, and F1 rates for the IDP algorithm compared to the best baseline,
FRUI, algorithm under the same experimental settings as those in Figs. 3(a)
to (c). The recall rate increases by a maximum of 20.8% and an average of
6.0%. The precision rate increases by a maximum of 10.5% and an average
of 3.1%. The F1 rate increases by a maximum of 14% and an average of
4.1%. A larger m results in greater overall improvement percentages. This is
because, with a larger m, each unmatched node or matched interlayer node
has more interlayer links. For a UMP, more CMNs may be involved in the
calculation of its matching degree. Thus, the advantage of the degree penalty
principle becomes more obvious. When m = 15, the percentages of improve-
ment exhibit a trend of first increasing and then decreasing with an increase
in p. This trend is caused by the following factors. (i) When p is very small,
the number of PINPs used to calculate the matching degree is small. The
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Table 4: Recall rate of overlapped lines in Figs. 3(a) to (c)

Method m
p

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
INOE 15 0.0079 0.0108 0.0147 0.0200 0.0273 0.0365 0.0481 0.0610 0.0764 0.0950
INOE 10 0.0074 0.0106 0.0153 0.0215 0.0289 0.0383 0.0489 0.0608 0.0752 0.0912
INOE 5 0.0084 0.0123 0.0176 0.0240 0.0307 0.0386 0.0475 0.0574 0.0680 0.0795
NS 5 0.0037 0.0071 0.0113 0.0174 0.0260 0.0338 0.0414 0.0521 0.0633 0.0718

FRUI 5 0.0038 0.0077 0.0134 0.0213 0.0277 0.0385 0.0489 0.0594 0.0713 0.0843
IDP 5 0.0022 0.0060 0.0117 0.0192 0.0293 0.0382 0.0509 0.0627 0.0743 0.0866

ability of both the FRUI and IDP algorithms is poor. Thus, the percentages
of improvement are not obvious. (ii) With an increase in p, the number of
PINPs increases. Owing to the use of the degree penalty principle to calcu-
late the matching degree, the IDP algorithm can use more useful information
of the CMNs. A greater number of PINPs results in higher percentages of
improvement. (iii) When the percentages of improvement reach a maximum
value, the matching advantage offered by increasing the PINPs in the IDP
algorithm decreases. Thus, the percentages of improvement gradually de-
crease until they disappear. When m = 5 or m = 10, the percentages of
improvement only exhibit an increasing trend. This trend is consistent with
the first half when m = 15. When p is greater than 0.1 and the percentages
of improvement reach the maximum value, they will decrease as p increases.

5.3.3. Effects of node overlaps

We use the Jaccard coefficient to measure the node overlaps, as follows:

O(Gα, Gβ) =
|V α

⋂

V β|

|V α
⋃

V β|
. (14)

When s = 0.4, 0.5, 0.6, the node overlapping rate is approximately equal to
0.25, 0.33, and 0.43, respectively, according to Eq. (14).

We set N = 2000, m = 10, p increasing from 0.01 to 0.1 by 0.01, and
s = 0.4, 0.5, 0.6 to execute the experiments for the evaluation of the perfor-
mance of the FRUI and IDP algorithms with different node overlaps. Fig-
ures 4(a) to (c) illustrate the recall, precision, and F1 rates of the FRUI
and IDP algorithms under the above experimental settings. The following
observations can be made.
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Figure 4: Comparison between FRUI and IDP algorithms on different node overlaps. (a)
Recall rate, (b) precision rate, (c) F1 rate, (d) percentages of improvement of recall rate,
(e) percentages of improvement of precision rate, and (f) percentages of improvement of
F1 rate versus p. In these experiments, we set N = 2, 000, m = 10, and s = 0.4, 0.5, 0.6.
The horizontal ordinates denote the ratios of PINPs to INPs.

The IDP algorithm outperforms the FRUI algorithm. For a given s, the
recall, precision, and F1 rates of the FRUI and IDP algorithms increase with
p. The reasons are the same as those in Figs. 3(a) to (c). For a given p, the
recall, precision, and F1 rates of the FRUI and IDP algorithms increase with
s. This is because a higher overlapping rate results in a higher proportion
of interlayer nodes in all nodes, and a lower probability of incorrect match-
ing; hence, superior performance of the algorithms. For a UMP, additional
interlayer links mean that more CMNs may be involved in the calculation
of its matching degree. Thus, the advantage of the degree penalty principle
becomes more obvious.

Figures 4(d) to (f) display the percentages of improvement under the same
experimental settings as those in Figs. 4(a) to (c). The recall rate increases
by a maximum of 17.5% and an average of 4.6%. The precision rate increases
by a maximum of 10.9% and an average of 2.7%. The F1 rate increases by
a maximum of 13.4% and an average of 3.4%. A larger s results in greater
overall percentages of improvement. This is because a larger s indicates a
greater number of INPs and PINPs. For a UMP, additional CMNs may be
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Figure 5: Comparison between FRUI and IDP algorithms on different number of nodes.
(a) Recall rate, (b) precision rate, (c) F1 rate, (d) percentages of improvement of re-
call rate, (e) percentages of improvement of precision rate, and (f) percentages of im-
provement of F1 rate versus p. In these experiments, we set m = 10, s = 0.5, and
N = 2, 000, 4, 000, 6, 000, 8, 000, and 10,000. The horizontal ordinates denote the ratios
of PINPs to INPs.

involved in the calculation of its matching degree; thus, the advantage of the
degree penalty principle is more obvious. When s = 0.6, the percentages
of improvement exhibit a trend of first increasing and then decreasing with
an increase in p. Moreover, when s = 0.4 or s = 0.5, the percentages of
improvement exhibit a trend of increasing with an increase in p. The reasons
are the same as those in Figs. 3(d) to (f).

5.3.4. Effects of network size

We set s = 0.5, m = 10, p increasing from 0.01 to 0.1 by 0.01, and
N =2,000, 4,000, 6,000, 8,000, and 10,000 to execute the experiments for the
evaluation of the performance of the FRUI and IDP algorithms with different
network sizes. Figures 5(a) to (c) illustrate the recall, precision, and F1 rates
of the FRUI and IDP algorithms under the above experimental settings. The
following observations can be made.

The IDP algorithm outperforms the FRUI algorithm. For a given N , the
recall, precision, and F1 rates of the FRUI and IDP algorithms increase with
p. The reasons are the same as those in Figs. 3(a) to (c). For a given p,
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the recall, precision, and F1 rates of the FRUI and IDP algorithms increase
with N . This is because, when N is larger, more PINPs are used to calculate
the matching degree of all UNPs; hence, the performance of the algorithms
is improved. When N = 10, 000 and p ≥ 0.07, the performance of both the
FRUI and IDP algorithms decreases slightly with the increase in p, because
the number of interlayer links that can be predicted correctly has a maximum.
When the maximum number is reached, the increase in p will lead to a
slight decrease in the number of interlayer links to be predicted and that are
correctly predicted.

Figures 5(d) to (f) display the percentages of improvement under the same
experimental settings as those in Figs. 5(a) to (c). The recall rate increases
by a maximum of 23.3% and an average of 8.2%. The precision rate increases
by a maximum of 12.2% and an average of 4.5%. The F1 rate increases by
a maximum of 16.1% and by an average of 5.8%. A larger N results in
greater average percentages of improvement for the IDP algorithm compared
to the FRUI algorithm. Because the BA networks exhibit the characteristics
of preferential attachment, new vertices attach preferentially to vertices that
are already well connected [73]. A larger N means that the influence of
the degree of CMNs on the matching degree is more sensitive; hence, the
percentages of improvement are increased. When N = 4, 000, 6, 000, 8, 000
or 10,000, the percentages of improvement exhibit a trend of first increasing
and then decreasing with an increase in p. Moreover, when N = 2000, the
percentages of improvement exhibit a trend of increasing with an increase in
p. The reasons are the same as those in Figs. 3(d) to (f).

5.4. Results on real-world networks

We use eight real-world networks to construct self-matching real-world
multiplex networks, and evaluate the FRUI and IDP algorithms on these
multiplex networks. The statistical characteristics of the eight real-world
networks are presented in Table 5. Formally, we represent each of the eight
real-world networks as an undirected graph. In these experiments, s = 0.5
and p increases from 0.01 to 0.1 by 0.01.

Figures 6(a) to (f) display the recall, precision, and F1 rates of the FRUI
and IDP algorithms of the eight real-world networks. The following observa-
tions can be made. The IDP algorithm outperforms the FRUI algorithm. For
a given real-world network, the recall, precision, and F1 rates of the FRUI
and IDP algorithms increase with p. The reasons are the same as those in
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Table 5: Statistical characteristics of eight real-world networks, including network size (N),
number of edges (E), maximum degree (kmax), first (〈k〉) and second moments (〈k2〉) of
degree distribution, degree-degree correlations (r), and clustering (c).

No. Networks
Statistical characteristics of networks
N E kmax 〈k〉 〈k2〉 r c

Real-1 Email-Eu-core[80] 1005 16064 345 32.58 2386.6 −0.026 0.45
Real-2 UC Irvine messages[81] 1899 13838 255 14.57 810.7 −0.188 0.14
Real-3 Wikipedia vote[82] 7115 100762 1065 28.32 3530.5 −0.083 0.21
Real-4 Twitter[63] 5120 130576 1725 51.01 11679.7 −0.214 0.30
Real-5 Political blogs[83] 1222 16714 351 27.36 2223 −0.221 0.36
Real-6 Hamsterster friendships[84] 1788 12476 272 13.96 635.6 −0.089 0.17
Real-7 Hamsterster full[84] 2000 16098 273 16.1 704.7 0.023 0.57
Real-8 Foursquare[63] 5313 54233 552 20.42 1436.1 −0.193 0.23

Figs. 3(a) to (c). For a given p, different real-world networks exhibit vary-
ing performances, because the network sizes, average degrees, and clustering
coefficients of the real-world networks differ.

Figures 6(g) to (l) illustrate the percentages of improvement under the
same experimental settings as those in Figs. 6(a) to (f). The following obser-
vations can be made. The recall rate increases by a maximum of 36.6% and
an average of 7.0%. The precision rate increases by a maximum of 19.0%
and an average of 3.8%. The F1 rate increases by a maximum of 25.0% and
an average of 5.0%. On real-world network 2, 3, 4, and 8, the percentages
of improvement exhibit a trend of first increasing and then decreasing with
an increase in p. On real-world networks 1, 5, 6, and 7, the percentages of
improvement exhibit a trend of first increasing and then decreasing with an
increase in p. The reasons are the same as those in Figs. 3(d) to (f).

6. Conclusion

In this study, we have investigated the problem of interlayer link predic-
tion in the multiplex network. We solved this problem by leveraging network
structure attributes. We used a degree penalty principle to calculate the
matching degree of two unmatched nodes across different layers, which could
reflect the influence of the number of CMNs and their degree attributes. For
the sake of efficiency, we adopted node adjacency matrix multiplication to
obtain the matching degrees of all UNPs. Moreover, we developed an itera-
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Figure 6: Comparison between FRUI and IDP algorithms on eight real-world networks. (a)
and (d) Recall rate, (b) and (e) precision rate, (c) and (f) F1 rate, (g) and (j) percentages
of improvement of recall rate, (h) and (k) percentages of improvement of precision rate,
(i) and (l) percentages of improvement of F1 rate versus p. In these experiments, s = 0.5.
The horizontal ordinates denote the ratios of PINPs to INPs.
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tive algorithm to determine additional hidden interlayer links. Experiments
on both artificial and real-world networks demonstrated that our advanced
IDP algorithm outperformed the FRUI algorithm.

In summary, the IDP algorithm offers comparative advantages in mul-
tiplex networks with a degree distribution that follows a power law distri-
bution. When users in multiple OSN applications input different usernames
and other attribute information owing to privacy or anonymity, our proposed
algorithm can effectively associate the accounts belonging to the same person
across different OSNs. Such an association can aid in achieving the infor-
mation fusion of multiple OSN platforms, understanding the online behavior
of network users, constructing integral user profiles, and providing services
for e-commerce, cyber security, and recommendation systems, among others.
As future work, we will investigate the manner in which to use higher-order
structures, such as communicating within a group or participating in the
same online activity, to improve the performance of the interlayer link pre-
diction.
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[13] C. Granell, S. Gómez, A. Arenas, Dynamical interplay between aware-
ness and epidemic spreading in multiplex networks, Physical Review
Letters 111 (2013) 128701.

[14] W. Wang, M. Tang, H. Yang, Y. Do, Y.-C. Lai, G. Lee, Asymmetrically
interacting spreading dynamics on complex layered networks, Scientific
Reports 4 (2014) 5097.

30



[15] W. Wang, Q.-H. Liu, S.-M. Cai, M. Tang, L. A. Braunstein, H. E.
Stanley, Suppressing disease spreading by using information diffusion
on multiplex networks, Scientific Reports 6 (2016) 29259.

[16] W. Wang, Q.-H. Liu, J. Liang, Y. Hu, T. Zhou, Coevolution spreading
in complex networks, arXiv preprint arXiv:1901.02125 (2019).

[17] X. Zhang, S. Boccaletti, S. Guan, Z. Liu, Explosive synchronization in
adaptive and multilayer networks, Physical Review Letters 114 (2015)
038701.

[18] Z. Wang, A. Szolnoki, M. Perc, Optimal interdependence between net-
works for the evolution of cooperation, Scientific Reports 3 (2013) 2470.

[19] Z. Wang, A. Szolnoki, M. Perc, Interdependent network reciprocity in
evolutionary games, Scientific Reports 3 (2013) 1183.

[20] Z. Wang, A. Szolnoki, M. Perc, Self-organization towards optimally in-
terdependent networks by means of coevolution, New Journal of Physics
16 (2014) 033041.

[21] M. Kivela, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, M. A.
Porter, Multilayer networks, Journal of Complex Networks 2 (2014)
203–271.

[22] E. Cozzo, G. F. de Arruda, F. A. Rodrigues, Y. Moreno, Multiplex
Networks: Basic Formalism and Structural Properties, Springer-Verlag
GmbH, Cham, Switzerland, pp. 3–5.
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