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Abstract

Finding hidden structural patterns is a critical problem for all types of net-
works, including signed networks. Among all of the methods for structural
analysis of complex network, stochastic blockmodel (SBM) is an important
research tool because it is flexible and can generate networks with many
different types of structures. However, most existing SBM learning meth-
ods for signed networks are unsupervised, leading to poor performance in
terms of finding hidden structural patterns, especially when handling noisy
and sparse networks. Learning SBM in a semi-supervised way is a promising
avenue for overcoming the above difficulty. In this type of model, a small
number of labelled nodes and a large number of unlabelled nodes, coupled
with their network structures, are simultaneously used to train SBM. We pro-
pose a novel semi-supervised signed stochastic blockmodel and its learning
algorithm based on variational Bayesian inference, with the goal of discover-
ing both assortative (the nodes connect more densely in same clusters than
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that in different clusters) and disassortative (the nodes link more sparsely
in same clusters than that in different clusters) structures from signed net-
works. The proposed model is validated through a number of experiments
wherein it compared with the state-of-the-art methods using both synthetic
and real-world data. The carefully designed tests, allowing to account for
different scenarios, show our method outperforms other approaches existing
in this space. It is especially relevant in the case of noisy and sparse networks
as they constitute the majority of the real-world networks.

Keywords: network data mining, signed networks, semi-supervised
learning, stochastic blockmodel

1. Introduction

Signed networks, which denote the positive and negative relationships
between individuals, exist in various fields, including biology, sociology, in-
formation science [1, 2]. For example, the two countries can be allies or not
when it comes to international relations. A person may like or dislike others
in social activities. In signed networks, positive links represent “cooperative”
or “like” and negative links denote “hostile” or “dislike”. Compared with un-
signed networks, containing just one type of relationship, signed networks are
capable of representing more information.

Community or multipartite structures detection is a particularly impor-
tant task for signed networks because it aids us to understand the hidden
patterns or the rules of the networks. Communities and multipartite struc-
tures [3] are both defined as groups, but the definition of a group itself is
substantially different in both cases. For communities, the nodes in the same
groups link densely and between the different groups the links are sparse. For
example, scholars from the same field are more likely to be connected as op-
posed to scholars coming from different research areas. They can cooperate
with each other or, quite opposite, compete with each other. For multipar-
tite structures, if the nodes are from different types or groups, they connect
densely and otherwise sparsely. For instance, users make positive or negative
comments about the product, while a user rarely connects to other users
in user-product rating networks. Detecting these two types of structures is
important from the perspective of analysing, understanding, and forecasting
the function, the hidden regularity, and the evolution of the signed networks.
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In recent years, many methods have appeared for detecting hidden struc-
tural patterns in signed networks, including methods based on random walk
[4, 5], methods based on social balance theory [6, 7, 8], spectral clustering
algorithms [9, 10], and generative methods [11, 12, 13, 14]. However, all
of them are unsupervised, i.e., they only focus on topology information, ig-
noring other potentially available information. Thus, it is hard for them to
deal with noisy and sparse signed networks, which commonly exist in the
real world. Semi-supervised learning methods that utilize side information,
such as partial node labels or pair-wise constraints, are more suitable to han-
dle complicated networks than unsupervised methods [15]. Nowadays, many
semi-supervised learning methods have been proposed for network analysis
[16, 17, 18, 19, 20]. However, these methods are only designed for unsigned
networks. Therefore, this work raises a more complex question: Can we de-
velop a more flexible model for semi-supervised learning that can detect both
community and multipartite structures in signed networks?

To address the above problem, we propose a novel semi-supervised signed
stochastic blockmodel (S4BM) as well as an effective learning algorithm
(S4BL) in this paper. We choose to work with the stochastic blockmodel
(SBM) as it is a powerful tool to discover and characterize both the commu-
nities and multipartite structures in networks (for details, please see Section
3 on Model and Method). Proposed S4BM and S4BL can accurately detect
communities and multipartite structures in signed networks using partially
available node labels under the semi-supervised learning technique. Specifi-
cally, S4BM assumes that few labels of the nodes are known, and it introduces
a parameter to describe the relations between the nodes’ blocks and the la-
bels. Thus, the known labels will aid to infer the hidden blocks. Besides,
it uses two 3-dimension vectors to characterize the probabilities of existing
positive, negative, and nonexistent links between two nodes that are from the
same blocks and different blocks. Also, these two vectors depict the types
of hidden structures. In this way, S4BM combines the label information and
the sign information.

In summary, the main contributions of this work are as follows:
(1) A novel generative semi-supervised signed stochastic block-

model (S4BM). The current semi-supervised methods can handle only un-
signed networks. Meanwhile, the methods for analyzing signed networks can
only use topology information. Proposed S4BM is capable of utilizing het-
erogeneous information, i.e., both signed information and label information.
Thus, it can deal with a more complex situation, such as noisy and sparse
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networks. To the best of our knowledge, S4BM is the first semi-supervised
model for signed networks.

(2) Based on variational Bayesian inference, an efficient semi-supervised
learning algorithm (S4BL) is proposed to estimate the parameters
and latent variables of the proposed model.

(3) Extensive validations and comparisons are performed on both
synthetic and real-world data sets to test the efficacy of the proposed model
and algorithm.

The organization of the rest paper is as follows. In section 2, the state-
of-the-art methods for signed networks mining as well as semi-supervised
learning approaches for complex networks are summarized and analyzed. In
section 3, we present the semi-supervised signed stochastic blockmodel and
its learning method. Section 4 tests the performance of the proposed model
and learning algorithm on synthetic and real-world datasets. Finally, Section
5 summarizes the proposed work.

2. Related Work

2.1. Structural Analysis of Signed Networks

Recently, many methods have been developed for structural analysis of
signed networks. Methods based on random walk concept are extended from
the stochastic process for unsigned networks. For example, Yang et al. as-
sumed that the agents walk only on positive links for finding communities
and then used both positive and negative links to compute a cutoff for ex-
tracting communities [4]. Zhou et al. assumed that the agents walk on
positive links with a higher probability than on negative links [5]. Methods
based on social balance theory assume that there are more intra-community
positive links and inter-community negative links in a signed network. For
instance, Traag et al. [6] and Anchuri et al. [7] combined together the social
balance theory with the modularity function for detecting communities in
signed networks. Shen and Chung [8] first learned node embeddings by using
stacked auto-encoder and a constraint in terms of structural balance theory,
and then used K-means to divide embeddings for signed network clustering.
Spectral clustering methods constructed signed Laplacian by integrating two
Laplacians of the networks containing only the positive relationships or nega-
tive relationships in the original signed networks. Then, they calculated and
partitioned the eigenvectors, which correspond to the smallest K (i.e., the
number of clusters) eigenvalues of signed Laplacian. For example, Chiang
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et al. [9] and Mercado et al. [10] combined the Laplacians using arithmetic
mean and geometric mean, respectively. The methods discussed above are
discriminative ones, which need to predefine the heuristic rules and the ob-
jective functions. The performance of such methods is greatly affected by
the quality of the predefined rules or functions for detecting clusters, which
are hard to designed manually well due to insufficient prior knowledge about
structures.

Unlike the discriminative methods, the generative methods can model
the generative process of the signed networks with the hidden structures.
And the structures can be discovered by fitting the generative model to a
given network and estimating the parameters of the generative process. In
2014 and 2015, Jiang and Chen et al. proposed signed probabilistic mixture
models to detect overlapping communities from signed networks [11, 12].
Yang et al. presented signed SBM (SSBM), which can find communities or
multipartite structures in signed networks in 2017 [13]. In 2018, Zhao et al.
improved SSBM for discovering more types of structures, including not only
communities or multipartite structures but also outliers, hubs, and hybrid
structures, from signed networks [14]. All the above methods only consider
the topology information, leading to unsatisfied performance for noisy and
sparse signed network clustering. However, in the real world, most of the
signed networks have noisy links and are sparse [21, 13]. Thus, it is vital to
introduce the semi-supervised technique, which uses some known node labels
for network mining tasks.

2.2. Semi-supervised Learning for Complex Networks Clustering

Semi-supervised settings are common in many real scenarios. For exam-
ple, node labels, which contain ground truth information for the network, are
often partially available. Supplementary information such as node labels or
pair-wise constraints can improve the accuracy of clustering [15, 17]. Accord-
ing to the type of supplementary information, the existing semi-supervised
methods for detecting structural patterns fall into two categories: label-
based methods [15, 22, 19], which use specific labels of some nodes, and
pair-wise constraints based methods [23, 17, 24], which require information
about whether two nodes are in the same cluster or not. It is important to
note that these existing semi-supervised learning techniques focus only on
the discriminative methods for community detection in unsigned networks.

Some studies have investigated side information-oriented SBMs. For ex-
ample, Moore et al. proposed active learning for SBM based on a Gibbs
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sampling method [25]. Peel proposed a supervised SBM to use available
node labels [26]. Zhang et al. studied the phase transitions of sparse net-
works clustering with a fraction of known labels [16]. Mossel et al. explored
how side information affects the performance of the belief propagation al-
gorithm on sparse networks [18]. Ganij et al. transferred the partial label
information to the constraint and then they added it to the existing SBM al-
gorithms [20]. However, the above existing semi-supervised learning methods
are designed only for unsigned networks. These methods can not be directly
used for signed networks, because they only model whether there is a link or
not between two nodes, ignoring the type of relationship.

3. Model and Method

In this section, we propose a semi-supervised signed stochastic blockmodel
and a variational Bayes learning algorithm for parameter estimation. To give
background information for the developed concepts, we start the section with
a brief introduction of what stochastic blockmodel (SBM) is.

3.1. Stochastic Blockmodel Concept

The stochastic blockmodel (SBM) is a powerful tool to discover and char-
acterize both the communities and multipartite structures in networks. SBM
assumes that a network consists of several groups (also known as blocks), and
the nodes in the same blocks have similar linkage patterns. Mathematically,
SBM [27] is defined as a tuple X = (K,Ω,Π). K determines the number of
blocks in the network. Ω is a K-dimension vector, and each element denotes
the probability of a node belonging to a specific block. Π is a K×K matrix,
and its element πkl refers to the link probability of arbitrary two nodes from
block k and block l, respectively. Different values of Π depict different struc-
tures contained in the networks. For example, we can describe a network
containing several communities by a specific Π in which the main diagonal
entries are higher than the off-diagonal entries. Similarly, a network contain-
ing multipartite structures can be characterized as that the main diagonal
entries of Π are lower than off-diagonal entries. Based on SBM, we can gen-
erate a network if we know its parameters by the following steps: a) assign
each node to one of K blocks according to the assignment probability Ω; b)
generate links between two nodes according to their blocks and link proba-
bility Π. Also, we can assume that an observed network is generated by an
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SBM and then fit the SBM to it to infer the parameters which characterize
its generate process.

3.2. Semi-supervised Signed Stochastic Blockmodel (S4BM)

A signed network N containing n nodes, which are partially labelled by
integers ranged from 1 to M , can be denoted by n × n adjacency matrix A
and n ×M label matrix C. For the adjacency matrix A, aij = 1 or −1 if
there is a positive or negative link between node i and node j; otherwise,
aij = 0. For the label matrix C, each row of which is a one-of-M vector,
cic = 1 if the label of node i is c; otherwise cic = 0. A is the observed data.
If the label of node i is known, then Ci is the observed data; otherwise, it is
a latent variable.

We propose S4BM to model a partially labelled signed networks repre-
sented as:

< N,C >= (K,Π,Θ,Ω, α). (1)

This model assumes that there are K latent blocks in network N , and the
nodes in the same blocks have similar linkage patterns. Ω = (ω1, ω2, ..., ωK)
denotes the proportion of nodes in each block or the probability that a node
is assigned to one of K blocks. In addition, let an n × K matrix Z be a
latent variable that indicates the assignment relationship between nodes and
blocks. Furthermore, zi is a one-of-K vector. If node i belongs to block k,
zik = 1; otherwise, zik = 0. Π = (π1, π−1, π0) denotes the probability that
there is a positive, negative, or nonexistent link between two nodes in the
same block. Similarly, Θ = (θ1, θ−1, θ0) denotes the probability that there
is a positive, negative, or nonexistent link between two nodes belonging to
different blocks. Let an M × K matrix α denote the mapping relations of
labels and blocks, where αck is higher if label c is more relevant to block k.

In the S4BM model, zi, aij and Ci follow multinomial distributions as
shown in Equations (2), (3), and (4), respectively. From Equations (2) and
(3), we know that p(zik = 1) = ωk, p(aij = h) = πh for h ∈ {1,−1, 0}, if
node i and node j are in the same block, otherwise, p(aij = h) = θh.

zi ∼Mul(1,Ω = {ω1, ω2, ..., ωK}), (2){
aij ∼Mul(1,Π = {π1, π−1, π0}) if zikzjl=1 and k = l,

aij ∼Mul(1,Θ = {θ1, θ−1, θ0}) if zikzjl=1 and k 6= l,
(3)
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Ci ∼Mul(1, pC = {p(1|zi, α), p(2|zi, α), ..., p(M |zi, α)}), (4)

For Equation (4), we define p(c|zi, α) by the following softmax function:

p(c|zi, α) = exp(αcz
T
i )/

M∑
c=1

exp(αcz
T
i ).

αcz
T
i denotes the level of consistency between the block of node i and

the label c. If the value of αcz
T
i is larger, block and label of node i are

more consistent and the label of node i is more likely to be c. In that case,
the nodes within the same blocks are more likely to have the same labels.
Otherwise, they tend to have different labels.

According to the S4BM, a signed network with labels can be generated
according to the following steps:

1. Assign nodes to blocks according to Ω;

2. Generate the label of node i according to pC ;

3. Generate positive and negative links between nodes within the same
blocks according to Π;

4. Generate positive and negative links between nodes belonging to dif-
ferent blocks according to Θ.

Accordingly, the log-likelihood of complete data is as follows (please see Ap-
pendix A.1 for the detailed derivation):

log p(N,C,Z|α,Π,Θ,Ω)=
n∑
i=1

K∑
k=1

ziklogωk+
∑
i<j

(
∑
k

zikzjk logM(aij; Π)

+
∑
l 6=k

zikzjl logM(aij; Θ)) +
N∑
i=1

M∑
c=1

Cic logp(c|Zi, α),

(5)

where M(aij; Π)=
∏

h π
δ(aij ,h)
h , M(aij; Θ)=

∏
h θ

δ(aij ,h)
h , and h ∈ {1,−1, 0}.

δ(aij, h) = 1 if aij = h; otherwise δ(aij, h) = 0.
The S4BM can be described in a Bayesian framework. Let the Dirichlet

distribution be the prior distribution of the parameters Ω, Π, and Θ, as
follows:

p(Ω|ρρρ0 ={ρ0
1, ..., ρ

0
K}) = Dir(Ω;ρρρ0),
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Figure 1: The graphical model of S4BM (a) and corresponding variational distribution
(b).

p(Π|ηηη0 ={η0
1, η

0
−1, η

0
0}) = Dir(Π;ηηη0),

p(Θ|µµµ0 ={µ0
1, µ

0
−1, µ

0
0}) = Dir(Θ;µµµ0),

where ∀k ∈ [1, K]: ρ0
k, ∀h ∈ {1,−1, 0}: η0

h, and ∀h ∈ {1,−1, 0}: µ0
h are super-

parameters, which can be interpreted as effective prior pseudo-occupations of
respective blocks, prior pseudo-observations of three types of links (positive,
negative, and nonexistent) within or between blocks, respectively. In other
words, Ω, Π and Θ are regarded as random variables. The graphical model
of S4BM is shown in Figure 1 (a).

3.3. S4BM Learning Algorithm (S4BL)

This section presents the S4BM learning algorithm (S4BL). Because the
network structure is generated by S4BM according to the defined parame-
ters and the hidden variables Z and C, we must fit the model to the ob-
served network in order to estimate the distributions of parameters and
variables. The expectation maximization (EM) method can be used to
solve the problem. While the summation in the likelihood involves (KM)N

terms, we adopt the variational Bayes approximate inference to learn the ap-
proximate distributions of parameters and hidden variables by introducing
q(Z,C,Π,Θ,Ω|τ,ηηη,µµµ,ρρρ). q(Z,C,Π,Θ,Ω|τ,ηηη,µµµ,ρρρ) is a decomposable varia-
tional distribution to approximating to the intractable posteriori distribution
p(Z,C,Π,Θ,Ω|N, τ,ηηη,µµµ,ρρρ) [28].

Based on Equation (5) and Figure 1 (a), the log-likelihood of N can be

9



written as follows:

log p(N |α,ηηη0,µµµ0, ρρρ0) = log
∑
Z

∑
C

∫ ∫ ∫
p(N,C,Z,Π,Θ,Ω|α,ηηη0,µµµ0, ρρρ0)dΠdΘdΩ,

(6)
where the parameters Ω, Π and Θ are regarded as variables with prior dis-
tributions.

Using Jensen’s inequality, the log-likelihood in Eq. (6) can be rewritten
as follows:

log p(N |α,ηηη0,µµµ0, ρρρ0)

= log
∑
Z

∑
C

∫ ∫ ∫
q(Z,C,Π,Θ,Ω|τ,ηηη,µµµ,ρρρ)

×
{
p(N,C,Z,Π,Θ,Ω|α,ηηη0,µµµ0, ρρρ0)/q(Z,C,Π,Θ,Ω|τ,ηηη,µµµ,ρρρ)

}
dΠdΘdΩ

≥
∑
Z

∑
C

∫ ∫ ∫
q(Z,C,Π,Θ,Ω|τ,ηηη,µµµ,ρρρ)

× log

{
p(N,C,Z,Π,Θ,Ω|α,ηηη0,µµµ0, ρρρ0)/q(Z,C,Π,Θ,Ω|τ,ηηη,µµµ,ρρρ)

}
dΠdΘdΩ

= Eq[log p(N,C,Z,Π,Θ,Ω|α,ηηη0,µµµ0, ρρρ0)]− Eq[log q(Z,C,Π,Θ,Ω|τ,ηηη,µµµ,ρρρ)]

= L(q(·)),
(7)

where L(q(·)) is the evidence lower bound (ELBO), which can be maximized
to learn parameters.

According to the mean-field theory, the variational distribution q(Z,C,Π,Θ,
Ω|τ, γ,ηηη,µµµ,ρρρ) can be approximately factorized as follows:

q(Z,C,Π,Θ,Ω|τ, γ,ηηη,µµµ,ρρρ) = q(Π|ηηη)q(Θ|µµµ)q(Ω|ρρρ)
n∏
i=1

q(zi|τi)
n∏
i=1

q(Ci|γi),

(8)
where q(Π), q(Θ), and q(Ω) are Dirichlet distributions with parameters ηηη,
µµµ, and ρρρ, respectively; q(zi) and q(Ci) are multinomial distributions with
parameters τ and γ, respectively; τik denotes the probability of node i be-
longing to block k; and γic is the probability of node i being labelled with c.
The variational model of S4BM is shown in Figure 1 (b).
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Then, the ELBO can be rewritten as follows by substituting the facterized
distribution in Eq. (8) to Eq. (7):

L(q(·))
= Eq[log p(N,C,Z,Π,Θ,Ω|α,ηηη0,µµµ0, ρρρ0)]

− Eq[log q(Z,C,Π,Θ,Ω|τ,ηηη,µµµ,ρρρ)]

= Eq[log p(N |Z,Π,Θ)] + Eq[log p(C|Z, α)] + Eq[log p(Z|Ω)]

+ Eq[log p(Π|ηηη0)] + Eq[log p(Θ|µµµ0)] + Eq[log p(Ω|ρρρ0)]

− Eq[log q(Z|τ)]− Eq[log q(C|γ)]− Eq[log q(Π|ηηη)]

− Eq[log q(Θ|µµµ)]− Eq[log q(Ω|ρρρ)].

(9)

In order to maximize the ELBO, we can optimize q(Π), q(Θ), q(Ω),
q(Z) and q(C) by coordinate descent and α by gradient descent because
∂L[αck]/∂αck = 0 does not produce a closed form solution. In other words,
one of the parameters is updated in each iteration while the others are fixed
(for details of derivation please see the Appendix A.2).

Updating the parameters of the variational distribution of latent variables
Z and C by

τik∝e
ψ(ρk)−ψ(

∑
k
ρk)+

∑M
c=1 γic(αck−(β(τoldi )T )−1βk)

×
n∏
j 6=i

(
e
τjk

∑
h

δ(aij ,h)(ψ(ηh)−ψ(
∑
h

ηh))

×
∏
l 6=k

e
τjl

∑
h

δ(aij ,h)(ψ(µh)−ψ(
∑
h

µh)))
,

(10)

and

γic = e
∑K

k=1 αckτik−1/

M∑
c=1

K∑
k=1

τike
αck , (11)

where β = [β1, β2, ..., βK ], βk =
∑M

c=1 exp(αck), and ψ(·) is the digamma
function.

We update the hyperparameters of the variational distribution q(Ω), q(Π),
and q(Θ) by

ρk = ρ0
k +

n∑
i=1

τik, (12)
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ηh=η0
h+

n∑
i<j

K∑
k=1

τikτjkδ(aij, h), (13)

and

µh =µ0
h+

n∑
i<j

K∑
k 6=l

τiqτjlδ(aij, h), (14)

Finally, α is optimized by gradient descent with the following derivative:

∂L[αck]/∂αck =
N∑
i=1

γic(τik − τikeαck/

M∑
c=1

K∑
k=1

τike
αck). (15)

The semi-supervised learning algorithm S4BL is presented in Algorithm 1.
In S4BL, τ , γ, and α are initialized by sampling from a uniform distribution.
After that, τi and γi are aligned to the given labels if available. ρ0ρ0ρ0 is initialized
to be K dimension vector, wherein each element is 1 and we set ρρρ = ρ0ρ0ρ0.
The 3-dimension vectors η0η0η0, ηηη, µ0µ0µ0 and µµµ are all initialized according to the
percentage of positive, negative, and nonexistent links in a network. Similar
to our previous work [13], we assume that there are two types of networks
when considering the social balance theory: (i) in one type of the network,
most of the links follow the theory (η0

1 > µ0
1 and η0

−1 < µ0
−1) and (ii) in

another type of the network, most of the links violate the theory (η0
1 < µ0

1

and η0
−1 > µ0

−1). Thus, we set η0η0η0 = ηηη = (0.6 × rp, 0.4 × rn, 0.5 × ro),
µ0µ0µ0 = µµµ = (0.4 × rp, 0.6 × rn, 0.5 × ro) for the first type and η0η0η0 = ηηη =
(0.4 × rp, 0.6 × rn, 0.5 × ro), µ0µ0µ0 = µµµ = (0.6 × rp, 0.4 × rn, 0.5 × ro) for the
second type, where rp, rn, and ro denote the ratios of positive, negative
and nonexistent links to the total links in the network. Because we do not
know the type of the most of the networks, we run S4BL twice using theses
two initialization settings, respectively, and then choose the result with the
higher ELBO.

3.4. Time Complexity Analysis

Updating the posteriors of Z and C takes O(K2n2) and O(KM2n) respec-
tively by the for loop in line 04-11 from Algorithm 1. The time complexities
of updating the posterior of Ω and calculating parameter α by the for loop in
line 12-17 are O(Kn) and O(K2M2n · t) respectively, where t is the number
of iterations of gradient descent. It takes O(Kn2) to update the posteriors
of Π and Θ by the for loop in line 18-21. In total, the time complexity of
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Algorithm 1 S4BL
Input: N,K,C;
Output: Z;
1: initialize τ, γ, µ, η, ρ, α;
2: Let S={x|the label of node x is unknown};
3: repeat
4: for node i ∈ S do
5: for k = 1 to K do
6: update τik according to Equation (10);
7: end for
8: for c = 1 to M do
9: update γic according to Equation (11);

10: end for
11: end for
12: for k = 1 to K do
13: update ρk according to Equation (12);
14: for c = 1 to M do
15: update αck by gradient descent using Equation (15);
16: end for
17: end for
18: for h ∈ {1,−1, 0} do
19: update ηh according to Equation (13);
20: update µh according to Equation (14);
21: end for
22: until convergence
23: calculate Z according to τ ;
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S4BL is O(K2n(n+M2 · t) · T ), where K � n, M � n and T is the number
of iterations of the repeat loop until convergence.

4. Experiments

In this section, we first introduce the experimental settings. Then, we
evaluate the performance of the S4BL algorithm on synthetic networks. We
compare S4BL with signed network clustering approaches by using different
numbers of labels to show the effectiveness of S4BL. Also, we test S4BL on
networks with varying levels of noise and sparsity to demonstrate the capabil-
ities of S4BL to deal with noisy and sparse networks. After that, we compare
S4BL with unsupervised signed network clustering methods and unsigned
network clustering methods that can use both link and label information for
fairness on real-world networks, since the existing methods for signed net-
work mining can use only link information. Finally, we test the quality of
parameter estimation of S4BL.

4.1. Experimental Settings

4.1.1. Compared algorithms

To the best of our knowledge, our method is the first semi-supervised
method for both community and multipartite structure mining in signed
networks; therefore, we can conduct a comparative analysis with six unsu-
pervised algorithms: SSL (SSBM learning algorithm) [13], PSA (Potts model
algorithm) [6], and FEC (finding and extracting communities) [4], VBS (vari-
ational Bayes approach for improved SSBM) [14], DNE-SBP (deep network
embedding with structural balance preservation) [8], and GM (geometric
mean Laplacian) [10]. In addition, we also include a baseline method that
only uses labels in the experiments (see Table 1).

It is worth noting that we can extend S4BM to unsigned networks by
setting π−1 = 0 and θ−1 = 0. Thus, we also compare S4BM with methods
which can use label information on unsigned real-world networks to further
show the performance of S4BM. In this experiments, we select four methods
for unsigned network mining: BLOS (unsupervised block-wise SBM) [29],
LP (semi-supervised community detection) [30], SMMB (supervised mixed
membership blockmodel) [26], and a baseline method.
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Table 1: Compared algorithms

Methods Rationale
PSA [6] modularity optimization
FEC [4] random walk model
SSL [13] variational Bayes inference
VBS [14] variational Bayes inference for improved SSBM

DNE-SBP [8]
signed network embedding using stacked auto-encoder and
pairwise constraints about structural balance theory

GM [10] extended spectral clustering using geometric mean Laplacian

Baseline
labeled nodes are assigned to correct blocks and unlabeled
nodes are randomly assigned

4.1.2. Evaluation metric

To evaluate the performance of the algorithms, we adopt the normalized
mutual information (NMI) [31], which measures the agreement between two
partitions. The definition of NMI is as follows:

NMI(A,B) = −2

cA∑
i=1

cB∑
j=1

mij log(
mijn

mi.m.j

)/
( cA∑
i=1

mi. log(
mi.

n
) +

cB∑
j=1

m.j log(
m.j

n
)
)

where A and B are the real and detected partitions, respectively; cA and cB
are the numbers of real blocks and detected blocks, respectively; mij is the
number of nodes in both real block i and detected block j; and mi. and m.j

denote the numbers of nodes in real block i and detected block j, respectively.

4.2. Validation of Synthetic Networks

In this study, we generate synthetic signed networks using two models:
SSBM (signed SBM), which was proposed in our previous work [32, 13], and
SLFR (signed LFR), which is an extension of LFR (Lancichinetti, Fortunato
and Radicchi) [33]. In the networks generated by SSBM, the distributions of
both node degrees and block sizes are uniform; in contrast, in the networks
generated by SLFR, these distributions are both power law.

SSBM is described as follows:

X = SSBM(K,n,Π,Θ,Ω)

= SSBM
(
K,n, (π1, π−1, π0), (θ1, θ−1, θ0),Ω

) (16)
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where K, Π, Θ and Ω are equally defined in Eq. (1) in Section 3, and n is
the number of nodes in a network.

The description of SLFR is as follows:

X = SLFR(n, kavg, kmax, λ1, λ2, smin, smax, υ, p+1, p−1) (17)

where n is the number of nodes; kavg and kmax are the average and the
maximum degree respectively, of each node; λ1 and λ2 are the exponents of
the power law distributions of node degrees and block sizes, respectively; smin
and smax are the minimum and maximum block size, respectively; υ is the
proportion of inter-block links of each node; p+1 and p−1 are the proportions
of intra-block positive links and inter-block negative links, respectively.

Note that both SSBM and SLFR can generate networks with commu-
nity and multipartite structures by regulating π0 and θ0 simultaneously, or
υ, respectively. For example, if we set π0 < θ0 or υ < 0.5, we can gener-
ate networks with communities, otherwise, we will generate networks with
multipartite structures.

4.2.1. Test S4BL on networks with different numbers of labels

In this part, we generate random signed networks with high levels of noise
according to the following model settings:

• SSBM-I :
X = SSBM

(
4, 128, (0.4, 0.4, 0.2), (0.1, 0.1, 0.8), (1/4, 1/4, 1/4, 1/4)

)
.

• SSBM-II:
X = SSBM

(
4, 128, (0.1, 0.1, 0.8), (0.4, 0.4, 0.2), (1/4, 1/4, 1/4, 1/4)

)
.

• SLFR-I:
X = SLFR(128, 16, 20, 2, 1, 20, 40, 0.3, 0.5, 0.5).

• SLFR-II:
X = SLFR(128, 16, 20, 2, 1, 20, 40, 0.9, 0.5, 0.5).

SSBM-I and SLFR-I generate networks with community structures, in
which nodes are densely linked in the same block and sparsely linked among
different blocks (see Figure 2 (a) and (c)). SSBM-II and SLFR-II generate
networks with multipartite structures, in which nodes are sparsely linked in
the same block and densely linked among different blocks (see Figure 2 (b)

16



(a)
32 64 96 128

32

64

96

128

(b)
32 64 96 128

32

64

96

128

(c)
32 64 96 128

32

64

96

128

(d)
32 64 96 128

32

64

96

128

Figure 2: The adjacency matrix of generated networks, where dark and light grey denote,
respectively, dense and sparse link distributions. (a) and (b) are networks with uniform
distributions, while (c) and (d) are networks with power law distributions. (a) and (c)
show community structures, while (b) and (d) show multipartite structures.

and (d)). For the SSBM-I and SSBM-II networks, we set π1 = π−1 and
θ1 = θ−1; for the SLFR-I and SLFR-II networks, we set p+1 = p−1. In
other words, we generate as many noisy links as normal links, which makes
clustering much more challenging.

For the networks generated by SSBM, in which block size and node degree
are uniformly distributed (we denote this kind of network as homogeneous
signed networks), we randomly selected the same number of nodes from each
block as labelled nodes. The labels of the selected nodes were fed into the
S4BL algorithm as priors. In the experiment, nodes were selected according
to the following schemes:

I1. Nodes are randomly selected out of two blocks.

I2. Nodes are randomly selected out of four blocks.

Figures 3 (a) and (b) show the performance of the algorithms on the
SSBM-I networks with communities. The results indicate that VBS performs
best among the six unsupervised algorithms, and achieving 0.71 of the NMI.
Fig. 3 (a) shows that S4BL achieves 0.93 of the NMI when 6 labels for each of
two blocks are available. This value approaches 1 when 12 labels are available
for each block. In other words, S4BL can assign almost all nodes to their
correct blocks when 24 out of a total of 128 nodes are labelled as priors. As
shown in Figure 3 (b), S4BL can find all blocks when 4 labels are available
for each of four blocks. These two figures demonstrate that, compared with
unsupervised methods, S4BL can use no more than 20% additional labels to
upgrade at almost 0.3 of the NMI.
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Figure 3: NMI by Baseline, six unsupervised methods, and S4BL (our method) on homo-
geneous signed networks. (a) and (b) show the results on SSBM-I signed networks with
settings I1 and I2, respectively. (c) and (d) show the results on SSBM-II signed networks
with settings I1 and I2, respectively. I1 denotes the labeled node are from two of four
blocks. I2 denotes the labeled nodes are from each of four blocks. S4BL can improve the
NMI a lot with a small amount of labeled nodes.

Figures 3 (c) and (d) depict the performance of the algorithms on the
SSBM-II networks with multipartite structures. Multipartite structure de-
tection is more difficult than community detection and most of the unsu-
pervised algorithms like SSL, FEC, PSA, DNE-SBP, and GM perform only
slightly better than random assignment. The NMI of VBS, which is the best
performing unsupervised method, is only at the level of 0.2. As indicated in
Figure 3 (c), however, S4BL can assign almost all nodes to the correct blocks
when 8 labels are available for each of two blocks. Figure 3 (d) shows that
S4BL can detect all correct communities when 4 labels are provided for each
of four blocks. In this case, compared with unsupervised methods, S4BL
upgrade more than 0.8 of the NMI with an increase in labels of no more than
15%.
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Comparing settings I1 and I2 for S4BL, the most results on setting I2 are
slightly better than those on setting I1 when the number of labelled nodes
in the network are equal for this two settings, i.e., the number of labelled
nodes in a block as shown in Figure 3 (a) (or (c)) is twice of that in Figure
3 (b) (or (d)). It suggests that S4BL performs better when the node labels
directly impact each block.
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Figure 4: NMI by Baseline, six unsupervised methods and S4BL (our method) on the het-
erogeneous signed networks. (a) shows the results on networks with communities generated
by SLFR-I and (b) shows the results on networks with multipartite structures generated
by SLFR-II.

For the networks generated by SLFR, in which block size and node degree
are both heterogeneous with power law distributions, we selected nodes with
high degrees for labelling. Figure 4 shows the experimental results. Among
all unsupervised methods, the NMI of VBS is the largest, with 0.65, when
detecting communities from SLFR-I networks as shown in Figure 4 (a). How-
ever, S4BM can achieve 1 in terms of NMI by using less than 15% additional
labels. From Figure 4 (b), we know that all unsupervised methods perform
poorly on SLFR-II networks, for which NMIs are less than 0.06. However,
the NMI of S4BL is more than 0.25 if we label 15.6% nodes.

Figures 3 and 4 indicate that the performance of SBM can be significantly
improved with the aid of semi-supervised learning mechanism, in which both
labelled and unlabelled nodes are simultaneously used, for learning the net-
work structures. In our comparison, S4BL outperformed the unsupervised
methods and the baseline, which only use either topological information of

19



unlabelled nodes or prior information of labelled nodes for learning, but not
both.

4.2.2. Test S4BL on networks with different levels of noise

We test S4BL on networks with different levels of noise and fixed sparsity,
which means networks with different proportions of negative links in blocks
and positive links between different blocks. We use SSBM as shown in Eq.
(16) to generate networks by fixing the link sparsity and varying the noise.
For generating networks with communities, we set π0 = 0.8 and θ0 = 0.9
and then increasing π−1 from 0.01 to 0.1 by 0.01 step and increasing θ1

from 0.005 to 0.05 by 0.005 step, respectively. For generating networks with
multipartite structures, we set π0 = 0.9 and θ0 = 0.8 and then increasing π−1

from 0.005 to 0.05 by 0.005 step and increasing θ1 from 0.01 to 0.1 by 0.01
step, respectively. With π−1 and θ+1 increasing, the noisy links increase until
the noisy links are as many as normal links, and detecting hidden structural
in networks becomes more challenging. For each setting, we generated 30
instances of network having characteristics as defined in a given setting.
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Figure 5: The results of SSL (a), i.e., NMISSL, S4BL (b), i.e., NMIS4BL and the increased
NMI (c), i.e., NMIinc = NMIS4BL−NMISSL, on the networks with communities under
different levels of noise. θ1 (or π−1) represents the probability of noisy links inter-block
(or intra-block).

We test the unsupervised algorithm SSL (which can be regarded as the
unsupervised version of S4BL) and our proposed semi-supervised algorithm
S4BL with 4 known labels in each group by using above generated networks.
First, we apply SSL and S4BL to the generated networks and calculate the
NMI of each algorithm. Then, we calculate and report the average NMI of
SSL (NMISSL) and S4BL (NMIS4BL) for each setting. Finally, we report
the increased NMI, i.e., NMIinc = NMIS4BL − NMISSL, to show the im-
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provement of our method on signed networks with various levels of noise.
The larger NMIinc, the more improvement of S4BL.
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Figure 6: The results of SSL (a), i.e., NMISSL, S4BL (b), i.e., NMIS4BL and the in-
creased NMI (c), i.e., NMIinc = NMIS4BL−NMISSL, on the networks with multipartite
structures under different levels of noise. θ1 (or π−1) represents the probability of noisy
links inter-block (or intra-block).

Figures 5 (a) and (b) show the NMIs of SSL and S4BM on networks with
communities, respectively, and (c) shows their differences in terms of NMIs.
Similarly, Figures 6 (a), (b), and (c) show the NMIs of SSL and S4BM, and
their differences on networks with multipartite structures, respectively. θ1

and π−1 are the positive inter-block and negative intra-block link probability
respectively.

When the noisy levels are low, i.e., 1/2θ1 + π−1 < 0.045 in Figure 5 (c)
or θ1 + π−1 < 0.045 in Figure 6 (c) as shown in the the bottom left of each
panel, NMIinc is less than 0.1 , which denotes that there is little room for
improvement. This is because that the most of NMIs of SSL are lager than
0.8 as shown in Figure 5 (a) and Figure 6 (a). Thus the unsupervised methods
is capable to deal with networks with low level of noise. As the noisy links
increase, the NMIs of SSL rapidly decrease to around 0.2 and then almost
to 0. However, with the aid of known labels, S4BL performs still well when
1/2θ1 + π−1 < 0.75 in Figure 5 (b) and θ1 + π−1 < 0.8 in Figure 6 (b). In
theses cases, NMIinc > 0.2 in Figures 5 (c) and 6 (c).

From Figures 5 and 6, we can conclude that S4BL can handle signed net-
works with high noise better than unsupervised methods in terms of detecting
hidden structural patterns.

4.2.3. Test S4BL on networks with different levels of sparsity

In this part, we test S4BL on networks with different levels of sparsity
and fixed noise. Similarly, we use SSBM to generate networks by fixing the
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noise and varying the sparsity. For convenience, we denote pin = π1 + π−1

and pout = θ1 + θ−1. To fix the noise, we set π−1 = 0.4 × pin and θ1 =
0.4×pout, in other words, the noisy links account for 40% of all links. The link
probability in the blocks is higher than between different blocks in networks
with communities, and it is smaller in networks with multipartite structures.
Thus, we set pin > pout for generating networks with communities and pin <
pout for generating networks with multipartite structures. Specifically, we
increase pin from 0.1 to 0.9 by 0.1 step and vary pout from 0.1×pin to 0.9×pin
by 0.1× pin step for each pin to generate networks with communities. In the
same way, we increase pout from 0.1 to 0.9 by 0.1 step and vary pin from
0.1 × pout to 0.9 × pout by 0.1 × pout step for each pout to generate networks
with multipartite structures. For the same ratio of pout to pin or pin to pout,
the networks become sparser and sparser and the mining task becomes more
and more challenging as pin or pout decreases. We generate 30 networks for
each setting.
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Figure 7: The results of SSL (a), i.e., NMISSL, S4BL (b), i.e., NMIS4BL and the increased
NMI (c), i.e., NMIinc = NMIS4BL−NMISSL, on the networks with communities under
different levels of sparsity. pin = π1 + π−1 and pout = θ1 + θ−1 denote the link probability
intra-block and inter-block, respectively.

Similarly to Section 4.2.2, We test SSL and S4BL with 4 known la-
bels in each block on the above generated networks. Figures 7 and 8 show
the NMIs of SSL (NMISSL), the NMIs of S4BL (NMIs4BL), the increased
NMIs (NMIinc) on networks with, respectively, communities and multipar-
tite structures. pout/pin in Figure 7 and pin/pout in Figure 8 both determine
whether the hidden structure is clear or not in networks. pout/pin or pin/pout
is lower, the structure is clearer.

From each row of Figures 7 (a)-(b) and Figures 8 (a)-(b), we know that
both SSL and S4BL perform worse and worse with the network becoming
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Figure 8: The results of SSL (a), i.e., NMISSL, S4BL (b), i.e., NMIS4BL and the in-
creased NMI (c), i.e., NMIinc = NMIS4BL−NMISSL, on the networks with multipartite
structures under different levels of sparsity. pin = π1 + π−1 and pout = θ1 + θ−1 denote
the link probability intra-block and inter-block, respectively.

sparser and sparser. However, the performance of S4BL is superior to SSL in
the same network. For example, when the network is sparse (pin = 0.2), NMI
of SSL is less than 0.3 even if the community is really clear (pout/pin = 0.1)
in Figure 7 (a). In this case, the NMI of S4BL, however, is larger than 0.85
in Figure 7 (b).

Figure 7 one can note that when links are dense in networks with commu-
nities, i.e., pin ≥ 0.7, the NMIs of SSL are lager than 0.8 if the communities
are clear (pout/pin < 0.5). When the links are sparse, i.e., pin < 0.4, al-
most NMIs of SSL become less than 0.5 no matter how clear the structures
are. However, the NMIs of S4BL are larger than 0.75 when 0.1 < pin < 0.4
and pout/pin < 0.3. The improvement of NMIs between SSL and S4BL, i.e.,
NMIinc, are larger than 0.4 in this area. From Figure 8, SSL almost can not
deal with networks with multipartite structures when the noise links occupy
40% of the total links. However, the NMIs of S4BL are larger than 0.8 when
the networks are dense (pout > 0.6) and the multipartite structures are clear
(pin/pout < 0.4).

From Figures 7 and 8, we can conclude that S4BL can deal with networks
with sparse links better than unsupervised methods in terms of mining struc-
tural patterns in signed networks.

4.3. Validation on the Real-World Networks

4.3.1. Test S4BL on signed networks

We test S4BL using one of the Monastery network [34] and WikiEditor
network [35], which both have the ground-truth and are shown to be chal-
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Table 2: Statistics for the real-world networks used in the experiments.

Networks n e K Block Structure
Monastery [34] 18 78 3 community
WikiEditor [35] 20,198 347,218 2 community and bipartite

langing from the perspective of unsupervised methods. Monastery network,
which is much more vague in terms of network structure, is the affect rela-
tionship among 18 monks at time T2. WikiEditor network, which has both
community and bipartite structures, denotes the relationships among 20, 198
users who edited the Wikipedia items. Table 2 exhibits the statistics for
these two networks, where n, e, K are the numbers of nodes, edges and
blocks. For the real-world network testing, we select nodes with high degrees
for labelling.

3 6 9 12 15 18

The number of labeled nodes in a network

0

0.2

0.4

0.6

0.8

1

N
M

I

(a)

Baseline FEC PSA SSL VBS DNE-SBP GM S
4
BL

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The fraction of labeled nodes in network

0

0.2

0.4

0.6

0.8

1

N
M

I

(b)

Figure 9: NMI by Baseline, six unsupervised methods, and S4BL (our method) on two
real-world signed networks: (a) Monastery; (b) WikiEditor.

The experimental results are shown in Figure 9. For the Monastery net-
work as shown in Figure 9 (a), when the number of labels is kept small, the
performance of S4BL fluctuates around DNE-SBP and PSA; however, S4BL
achieves better NMI and can assign all nodes to correct communities when
the number of labelled nodes exceeds 7. From Figure 9 (b), the NMI of the
best performed unsupervised method, SSL, could barely achieve 0.2 because
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Table 3: Statistics for real-world unsigned networks.

Networks n e K Block Structure
Dolphins [36] 62 159 2 community
Football [37] 115 613 12 community
Karate [38] 34 78 2 community

Polbooks [39] 105 441 3 community
Polblogs [40] 1224 16715 2 community

WikiEditor network is sparse and its hidden structure is intricate. But if we
labelled 2% nodes, the NMI of S4BM will be 0.255. The results in Figure 9
(b) shows that our method can deal with large-scale networks.

4.3.2. Test S4BL on unsigned networks

For fairness, we use five common real-world unsigned networks, dolphins
network [36], football network [37], karate network [38], polbooks network[39]
and polblogs [40], to test the performance of the S4BL algorithm when com-
pared with unsigned networks clustering methods that can use additional la-
bel information. We do it as there are no semi-supervised methods for signed
network detecting hidden structural patterns. Table 3 shows the statistics
for these networks, where n, e and K are the numbers of nodes, edges, and
communities, respectively. Like in the real-world signed networks discussed
above, the nodes with high degrees are selected for labelling with high prior-
ities.

S4BL, SMMB and LP perform well on the dolphins network, karate net-
work and polblogs network, but the performances of S4BL and LP are more
stable than SMMB, as shown in Fig. 10 (a), (c) and (e). S4BL performs bet-
ter than the other algorithms on the football network and polbooks network,
as shown in Fig. 10 (b) and (d). From the results, we can conclude that (1)
S4BM achieves high NMI with fewer labels compared with other methods;
(2) the NMIs of S4BL steadily increase with using more and more labels;
(3) the results of S4BM outperform algorithms that can use additional label
information on unsigned networks.

4.4. Test the Quality of the Parameter Estimation

In this section, we test the quality of the parameter estimation of S4BL.
To do this, we first derive the parameters of generative models based on the
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Figure 10: Results on unsigned networks: (a) dolphins; (b) football; (c) karate; (d) pol-
books; and (e) polblogs.

estimated hyper-parameters as follows:

π
′

h = (η0
h +

∑
k

mh
k)/

∑
h=1,−1,0

(η0
h +

∑
k

mh
k),

θ
′

h = (µ0
h +

∑
k 6=l

mh
kl)/

∑
h=1,−1,0

(µ0
h +

∑
k 6=l

mh
kl),

ω
′

k = (ρ0
k + nk)/

K∑
k=1

(ρ0
k + nk),

where h ∈ {1,−1, 0}; η0
h and µ0

h are hyper-parameters as defined in paper;
mh
k and mh

kl are, respectively, the number of h−links in block k and between
blocks k and l; and nk is the number of nodes in block k.

We first use the modelX = SSBM
(
4, 128, (0.4, 0.4, 0.2), (0.1, 0.1, 0.8), (1/4,

1/4, 1/4, 1/4)
)

to generate networks; then, we apply S4BM to the networks
to estimate the hyper-parameters and thereafter calculate the model param-
eters according to the above formulas; finally, we compare the estimated
model parameters to the ground truth Π = {0.4, 0.4, 0.1}, Θ = {0.1, 0.1, 0.8}
and Ω = (1/4, 1/4, 1/4, 1/4).
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Figure 11: Testing the quality of parameter estimation. (a) The landscapes of the esti-
mated model parameters obtained on 30 networks. (b) The boxplot of the statistics of the
estimated model parameters.

We performed 30 trials by generating 30 networks. The results are shown
in Figure 11. For all cases, the estimated Ω′ are identical with the ground
truth Ω. The landscapes of π

′

h and θ
′

h are shown in Figure 11(a). As we see,
these estimated model parameters are very close to their respective ground
truth. In addition, Figure 11(b) shows the detailed statistics of these esti-
mated values.

5. Conclusions

Unsupervised stochastic blockmodels perform very poorly on noisy and
sparse signed networks because they only use the networks’ topological infor-
mation. In order to solve this problem, we proposed a semi-supervised signed
stochastic blockmodel, or S4BM, to utilize side information such as available
labels. We then proposed a variational Bayes learning method, called S4BL
to estimate hyper-parameters and latent variables of the S4BM. S4BM is a
flexible stochastic model which can detect both community and multipartite
structures. To the best of our knowledge, this is the first method using addi-
tional information for signed network detecting hidden structural patterns.
Extensive experiments were performed to validate S4BL and compare its ef-
fectiveness to existing methods on both synthetic and real-world networks.
The results indicate that S4BL can significantly improve the performance of
SSL through its proposed semi-supervised learning mechanism, and the new
model outperforms state-of-the-art methods.
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Appendix A. Detailed Derivation of the Log-Likelihood of Com-
plete Data and Parameter Estimation

In this section, we will show the detailed derivation of the log-likelihood
of complete data (Eq. (5)) and parameter estimation (Eqs. (10)-(15)).

Appendix A.1. The Derivation of the Log-likelihood of Complete Data

According to multiplication law of probability, we know

log p(N,C,Z|α,Π,Θ,Ω) = log p(N |Z,Π,Θ) + log p(C|Z, α) + log p(Z|Ω).
(A.1)

According to the generative process of links, the logarithmic probability of
network N conditioned on the node assignment and the block-block link
probability is

log p(N |Z,Π,Θ) =
∑
i<j

log p(aij|zi, zj,Π,Θ)

=
∑
i<j

(
∑
k

zikzjk logM(aij; Π) +
∑
k 6=l

zikzjl logM(aij; Θ)),
(A.2)

the node assignment logarithmic probability is

log p(Z|Ω) =
n∑
i=1

logM(zi; Ω) =
n∑
i=1

K∑
k=1

zik logωk, (A.3)

and the logarithmic probability of node labels conditioned on node assign-
ment and the relations between labels and blocks is

log p(C|Z, α) =
n∑
i=1

M∑
c=1

Cic log p(c|Zi, α). (A.4)

Substitute Eqs. (A.2)-(A.4) into Eq. (A.1), we can obtain Eq. (5).
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Appendix A.2. The Derivation of Parameter Estimation

After derive each term in Eq. (9) and substituting them to (9), we can
obtain:

L =
∑
h

(
η0
h−ηh+

n∑
i<j

K∑
q=1

τiqτjqδ(aij, h)
)(
ψ(ηh)−ψ(

∑
h

ηh)
)

+
∑
h

(
µ0
h−µh+

n∑
i<j

K∑
q 6=l

τiqτjlδ(aij, h)
)(
ψ(µh)−ψ(

∑
h

µh)
)

+
K∑
q=1

((
ρ0
q − ρq +

n∑
i=1

τiq
)(
ψ(ρq)− ψ(

∑
q

ρq)
))

+
N∑
i=1

M∑
c=1

γic(
K∑
k=1

αckτik − log
M∑
c=1

K∑
k=1

τik exp(αck)− log γic)

−
n∑
i=1

K∑
q=1

τiq log τiq + log
{(

Γ(
K∑
q=1

ρ0
q)

K∏
q=1

Γ(ρq)
)
/
(
Γ(

K∑
q=1

ρq)
K∏
q=1

Γ(ρ0
q)
)}

+ log
{(

Γ(
∑
h

η0
h)
∏
h

Γ(ηh)
)
/
(
Γ(
∑
h

ηh)
∏
h

Γ(η0
h)
)}

+ log
{(

Γ(
∑
h

µ0
h)
∏
h

Γ(µh)
)
/
(
Γ(
∑
h

µh)
∏
h

Γ(µ0
h)
)}
,

(A.5)

where Γ(·) is a gamma function and ψ(·) is the digamma function. Then we
estimate the parameters by maximizing Eq. (A.5).

Appendix A.2.1. Estimating q(zik)

In Eq. (A.5), the calculation about the term log
∑M

c=1

∑K
k=1 τik exp(αck) is

hard. Here, we define βτTi =
∑M

c=1

∑K
k=1 τik exp(αck), where β = [β1, β2, ..., βK ],

βk =
∑M

c=1 exp(αck). For log(x), we know that log(x) ≤ ζ−1x + log(ζ) −
1,∀x > 0, ζ > 0, and the equality holds iff x = ζ. We set x = βτTi , and
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ζ = β(τ oldi )T . So L′[τik] denotes the lower bound of L[τik]:

L′[τik] =
∑
j 6=i

(τikτjk
∑
h

δ(aij, h)(ψ(ηh)− ψ(
∑
h

ηh))

+
∑
k 6=l

τikτjl
∑
h

δ(aij, h)(ψ(µh)− ψ(
∑
h

µh)))

+ τik(ψ(ρq)− ψ(
K∑
k=1

ρk))− τik log τik

+
M∑
c=1

γic(αckτik − (β(τ oldi )T )−1βkτik − log(β(τ oldi )T ) + 1).

We set the derivative of L′[τik] with respect to τik to 0, that is,

∂L′[τik]/∂τik =
∑
j 6=i

(
K∑
k=1

τjk
∑
h

δ(aij, h)(ψ(ηh)− ψ(
∑
h

ηh))

+
∑
k 6=l

τjl
∑
h

δ(aij, h)(ψ(µh)− ψ(
∑
h

µh)))

+ (ψ(ρk)− ψ(
K∑
k=1

ρk))− log τik − 1

+
M∑
c=1

γic(αck − (β(τ oldi )T )−1βk) = 0,

and we can obtain Eq. (10).

Appendix A.2.2. Estimating q(Cic)

The items with respect to γic in Eq. (A.5) are

L[γic] = γic(
K∑
k=1

αckτik − log
M∑
c=1

K∑
k=1

τike
αck − log γic).

Set the derivative of L[γic] with respect to γic to 0, that is,

∂L[γic]/∂γic =
K∑
k=1

αckτik − log
M∑
c=1

K∑
k=1

τik exp(αck)− log γic − 1 = 0,

and we can obtain Eq. (11).
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Appendix A.2.3. Estimating q(ωk)

The items with respect to ρk in Eq. (A.5) are

L[ρk] =
N∑
i=1

τik(ψ(ρk)− ψ(
K∑
k=1

ρk)) + (ρ0
k − 1)(ψ(ρk)− ψ(

K∑
k=1

ρk))

− (log Γ(
K∑
k=1

ρk)− log Γ(ρk) + (ρk − 1)(ψ(ρk)− ψ(
K∑
k=1

ρk))).

Set the derivative of L[ρk] with respect to ρk to 0, that is,

∂L[ρk]/∂ρk =
N∑
i=1

τik(ψ
′
(ρk)− ψ

′
(
K∑
k=1

ρk)) + (ρ0
k − 1)(ψ

′
(ρk)− ψ

′
(
K∑
k=1

ρk))

− (ψ(
K∑
k=1

ρk)− ψ(ρk) + ψ(ρk)− ψ(
K∑
k=1

ρk) + (ρk − 1)(ψ
′
(ρk)− ψ

′
(
K∑
k=1

ρk)))

= (
N∑
i=1

τik + ρ0
k − ρk)(ψ

′
(ρk)− ψ

′
(
K∑
k=1

ρk)) = 0,

and we can obtain Eq. (12).

Appendix A.2.4. Estimating q(πh)

The items with respect to ηh in Eq. (A.5) are

L[ηh] =
∑
i<j

(
K∑
k=1

τikτjk(ψ(ηh)− ψ(
∑
h

ηh))) + (η0
h − 1)(ψ(ηh)− ψ(

∑
h

ηh))

− (log Γ(
∑
h

ηh)− log Γ(ηh) + (ηh − 1)(ψ(ηh)− ψ(
∑
h

ηh))).
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Set the derivative of L[ηh] with respect to ηh to 0, that is,

∂L[ηh]/∂ηh =
∑
i<j

(
K∑
k=1

τikτjk(ψ
′
(ηh)− ψ

′
(
∑
h

ηh))) + (η0
h − 1)(ψ

′
(ηh)− ψ

′
(
∑
h

ηh))

− (ψ(
∑
h

ηh)− ψ(ηh) + (ψ(ηh)− ψ(
∑
h

ηh)) + (ηh − 1)(ψ
′
(ηh)− ψ

′
(
∑
h

ηh)))

= (
∑
i<j

K∑
k=1

τikτjk + η0
h − ηh)(ψ

′
(ηh)− ψ

′
(
∑
h

ηh)) = 0,

and we can obtain Eq. (13).

Appendix A.2.5. Estimating q(θh)

The items with respect to µh in Eq. (A.5) are

L[µh] =
∑
i<j

(
K∑
k 6=l

τikτjl(ψ(µh)− ψ(
∑
h

µh))) + (µ0
h − 1)(ψ(µh)− ψ(

∑
h

µh))

− (log Γ(
∑
h

µh)− log Γ(µh) + (µh − 1)(ψ(µh)− ψ(
∑
h

µh))).

Set the derivative of L[µh] with respect to µh to 0, that is,

∂L[µh]/∂µh =
∑
i<j

K∑
k 6=l

τikτjl(ψ
′
(µh)− ψ

′
(
∑
h

µh)) + (µ0
h − 1)(ψ

′
(µh)− ψ

′
(
∑
h

µh))

− (ψ(
∑
h

µh)− ψ(µh) + (ψ(µh)− ψ(
∑
h

µh)) + (µh − 1)(ψ
′
(µh)− ψ

′
(
∑
h

µh)))

= (
∑
i<j

K∑
k 6=l

τikτjl + µ0
h − µh)(ψ

′
(µh)− ψ

′
(
∑
h

µh)) = 0,

and we can obtain Eq. (14).
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Appendix A.2.6. Estimating αck
Finally, the items with respect to αck is

L[αck] =
N∑
i=1

γic(αckτik − log
M∑
c=1

K∑
k=1

τik exp(αck)).

Calculating the derivative of L[αck] with respect to αck, we obtain Eq. (15).
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