

Since January 2020 Elsevier has created a COVID-19 resource centre with

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related

research that is available on the COVID-19 resource centre - including this

research content - immediately available in PubMed Central and other

publicly funded repositories, such as the WHO COVID database with rights

for unrestricted research re-use and analyses in any form or by any means

with acknowledgement of the original source. These permissions are

granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Knowledge-Based Systems 196 (2020) 105812

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

NetNCSP: Nonoverlapping closed sequential patternmining
Youxi Wu a,b,d,∗, Changrui Zhu a, Yan Li c, Lei Guo b, Xindong Wu e,f

a School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
b State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
c School of Economics and Management, Hebei University of Technology, Tianjin 300401, China
d Hebei Key Laboratory of Big Data Computing, Tianjin 300401, China
e Mininglamp Academy of Sciences, Mininglamp Technology, Beijing 100084, China
f Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), Ministry of Education, Hefei 230009, China

a r t i c l e i n f o

Article history:
Received 5 January 2020
Received in revised form 22 March 2020
Accepted 22 March 2020
Available online 31 March 2020

Keywords:
Sequential pattern mining
Closed pattern mining
Nonoverlapping sequence pattern
Periodic wildcard gaps
Nettree
COVID-19

a b s t r a c t

Sequential pattern mining (SPM) has been applied in many fields. However, traditional SPM neglects
the pattern repetition in sequence. To solve this problem, gap constraint SPM was proposed and
can avoid finding too many useless patterns. Nonoverlapping SPM, as a branch of gap constraint
SPM, means that any two occurrences cannot use the same sequence letter in the same position as
the occurrences. Nonoverlapping SPM can make a balance between efficiency and completeness. The
frequent patterns discovered by existing methods normally contain redundant patterns. To reduce
redundant patterns and improve the mining performance, this paper adopts the closed pattern
mining strategy and proposes a complete algorithm, named Nettree for Nonoverlapping Closed
Sequential Pattern (NetNCSP) based on the Nettree structure. NetNCSP is equipped with two key steps,
support calculation and closeness determination. A backtracking strategy is employed to calculate the
nonoverlapping support of a pattern on the corresponding Nettree, which reduces the time complexity.
This paper also proposes three kinds of pruning strategies, inheriting, predicting, and determining.
These pruning strategies are able to find the redundant patterns effectively since the strategies can
predict the frequency and closeness of the patterns before the generation of the candidate patterns.
Experimental results show that NetNCSP is not only more efficient but can also discover more closed
patterns with good compressibility. Furtherly, in biological experiments NetNCSP mines the closed
patterns in SARS-CoV-2 and SARS viruses. The results show that the two viruses are of similar pattern
composition with different combinations.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Sequential pattern mining (SPM) refers to discover the sub-
sequences (also known as patterns) that satisfy the threshold
from given sequences [1–3]. It has been widely applied in various
fields, such as big data mining [4,5], big data intelligence [6],
e-commerce shopping analysis [7], biological sequence analy-
sis [8], and event analysis [9]. To handle some specific issues,
many methods have been proposed, such as negative SPM [10,
11], maximal frequent pattern mining [12,13], three-way pattern
mining [14,15], closed SPM [16,17], gap constraint SPM [18,19].

Gap constraint SPM is an important branch of traditional SPM.
In traditional SPM, a sequence database is a set of sequences,
each sequence is a list of elements, and each element is a set
of items. For example, <a(abc)(ac)c(cd)> is a sequence in tra-
ditional SPM, since (abc) is an element in the sequence. In gap

∗ Corresponding author.
E-mail address: wuc567@163.com (Y. Wu).

constraint SPM, a sequence database can be a sequence, and
each sequence is a list of items. For example, <aabcacccd> is
a sequence in gap constraint SPM. More importantly, traditional
SPM does not calculate the number of occurrences of a pattern in
a sequence, while gap constraint SPM does. For example, appar-
ently, pattern ‘‘ac’’ occurs in sequence <a(abc)(ac)c(cd)> more
than once. But traditional SPM neglects the repetition, which
leads to the loss of support information. For example, in long-
length sequences such as DNA, virus, and consumption records,
the repetitive occurrences indicate the frequency of patterns,
which reflect information discrimination between patterns, and
are of high research value.

Gap constraint SPM (or gap constraint sequence pattern min-
ing) can avoid finding many useless patterns by setting gap con-
straints, while repetitive SPM cannot [20,21] since it does not set
gap constraint. Gap constraint SPM is also different from frequent
substring mining [22] and n-gram text mining [23], since the lat-
ter mine the pattern without gaps. One key issue of gap constraint
SPM is to calculate the support (the number of occurrences) of a

https://doi.org/10.1016/j.knosys.2020.105812
0950-7051/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2020.105812
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.105812&domain=pdf
mailto:wuc567@163.com
https://doi.org/10.1016/j.knosys.2020.105812

2 Y. Wu, C. Zhu, Y. Li et al. / Knowledge-Based Systems 196 (2020) 105812

Fig. 1. The occurrences of pattern P in sequence S1 .

pattern in a sequence, which is pattern matching problem [24–
26]. Thus, gap constraint is also called a wildcard gap or flexible
wildcards [27,28] in pattern matching fields. If a pattern has many
gaps that are the same, the pattern is called a pattern with peri-
odic gaps [29], described as P = p1[a, b]p2 · · · pm−1[a, b]pm, where
a and b (0≤a≤b) are the minimum and maximum gap constraints,
respectively, and m indicates the pattern length [30]. The size
of gap constraints can be flexibly set by users, which leads to
various applications, such as correlation analysis between DNA
and diseases based on gap constraints [29]. Li et al. [31] proposed
an effective method to mine the patterns with gap constraints
that can be used for feature extraction for sequence classifica-
tions [32]. However, introducing gap constraints not only makes
the mining method more flexible but also makes the results
more complex because the number of patterns increases expo-
nentially as the pattern length increases. To solve this problem,
the nonoverlapping condition [33] was proposed, which allows
the same sequence letter to match and rematch pattern letters
at different positions. Introducing the nonoverlapping condition
not only reduces the number of occurrences but also makes the
unique patterns richer. Our previous studies have proved that the
nonoverlapping SPM is a complete mining method which satisfies
the Apriori property [34,35]. Example 1 is used to explain the
periodic gap pattern, gap constraint mining, and nonoverlapping
support.

Example 1. Given a sequence database SDB={S1=AATCATCA,
S2=AATGACTACTCAA, S3=ATCAGATCAG}. Pattern P=A[0, 2]T[0, 2]
C[0, 2]A is a periodic gapped pattern. To make it easier to de-
scribe, an occurrence will be described in the form of a sequence
landmark. For example, the first occurrence of P in S1 is s1s3s4s5,
which can be written as <1,3,4,5>. In this way, the other 2
occurrences of P in S1 are <2,3,4,5> and <5,6,7,8>. The results
are shown in Fig. 1.

Similarly, there are four occurrences of P in both S2 and S3.
If we ignore the repetition, the support of P1 in SDB is 3. If we
take the repetition into consideration, the support is 3+4+4=11.
The latter method considers occurrences in detail. However,
this method also encounters some problems. For example, there
are three occurrences for pattern Q= A[0, 2]T in sequence S4=
AAATCCC, but there are nine occurrences for its super-pattern
Q ′= A[0, 2]T[0, 2]C. This example shows that the number of
patterns increases exponentially with increasing pattern length,
which does not satisfy the Apriori property [19]. To solve the
above problem, the nonoverlapping condition was proposed [33].
With the nonoverlapping condition, any two occurrences can-
not use the same sequence letter in the same position. For
example, <1,3,4,5> and <5,6,7,8> are two nonoverlapping oc-
currences for pattern P in sequence S1, since sequence letter s5 is
matched twice with p4 and p1, respectively. However, <1,3,4,5>
and <2,3,4,5> are two overlapping occurrences, since sequence
letters s3, s4, and s5 are reused by p2, p3, and p4, respectively.

Our previous work proposed an effective algorithm NOSEP
and reported that the nonoverlapping SPM has better perfor-
mance than other state-of-the-art gap constraint SPM methods

in finding useful patterns in biology sequences and avoiding
under-expression and over-expression in time series [34]. How-
ever, all frequent patterns discovered by NOSEP can be furtherly
compressed. An illustrative example is shown as follows.

Example 2. When minsup=2, gap=[0, 2], with the nonoverlap-
ping condition, there are 16 frequent patterns in the sequence
S1= AATCATCA, which are {‘‘A’’, ‘‘AA’’, ‘‘AT’’, ‘‘AC’’, ‘‘TC’’, ‘‘CA’’,
‘‘AAA’’, ‘‘AAC’’, ‘‘AAT’’, ‘‘ATA’’, ‘‘ATC’’, ‘‘ACA’’, ‘‘AA’’, ‘‘TC’’, ‘‘AATA’’,
‘‘AACA’’, ‘‘ATCA’’}. The supports of these patterns are sup(‘‘A’’)
=4, sup(‘‘AA’’)=3, and 2 for the remaining patterns. Patterns ‘‘AT’’,
‘‘TC’’, ‘‘AAT’’, and ‘‘ATC’’ are unclosed patterns, since these pat-
terns are sub-patterns of pattern ‘‘AATC’’ and their supports are
all 2. In this way, 16 frequent patterns can be compressed into 6
closed patterns, ‘‘A’’, ‘‘AA’’, ‘‘AATC’’, ‘‘AATA’’, ‘‘AACA’’, and ‘‘ATCA’’.
This example shows that closed patterns can effectively compress
frequent patterns without losing support information.

To reduce redundant patterns and improve the mining speed,
this paper adopts the closed pattern mining strategy to obtain
lossless compression of frequent patterns. The contributions of
this paper are as follows:

1. The problem of nonoverlapping periodic gapped closed
SPM is addressed, and a complete algorithm NetNCSP (Net-
tree for Nonoverlapping Closed Sequential Pattern) is pro-
posed.

2. To calculate the support, NetNCSP employs the backtrack-
ing strategy to match the pattern in the Nettree structure,
which reduces the time complexity. More importantly, Net-
NCSP adopts three pruning strategies to find closed pat-
terns. We show that NetNCSP is a complete algorithm that
satisfies the Apriori property.

3. A large number of comparative experiments show that
NetNCSP is not only more efficient, but also possesses
remarkable pattern compressibility.

The rest of this paper is organized as follows. Section 2 intro-
duces the related work. Section 3 defines the problem. Section 4
proposes the NetNCSP algorithm, and demonstrates the com-
pleteness, complexities, and Apriori property. Section 5 makes a
comparative experimental analysis. Section 6 draws the conclu-
sion of this paper.

2. Related work

Agrawal et al. [36] proposed SPM. Based on this research,
many achievements have been made, such as high utility min-
ing [37], contrast SPM [38,39], and closed SPM [40,41]. Closed
SPM can effectively compress the frequent patterns [42,43]. For
example, assuming that the supports of patterns ‘‘A’’, ‘‘AT’’, and
‘‘ATC’’ are equal, then patterns ‘‘A’’ and ‘‘AT’’ are called redundant
patterns. Hence, patterns ‘‘A’’, ‘‘AT’’, ‘‘ATC’’ can be compressed into
‘‘ATC’’ without losing support information. Besides closed pattern
mining, there are other methods to achieve pattern compression,
such as generator mining [44] and maximal pattern mining [45].
Generator mining aims to find the set of patterns with minimal
length, while closed pattern mining focuses on finding the set
of patterns with maximal length. Maximal pattern mining finds
the set of patterns whose super-patterns are infrequent. Closed
SPM has become a research hotspot because of its impressive
compression performance [46,47] and has been widely used in
many essential fields, such as recommendation systems [48],
clustering analysis [49–51], genetic engineering [52], disease di-
agnosis [53], and software engineering [54,55]. However, these
studies ignored the repetitions that may contain more relevant
information in long sequences. Noticing this disadvantage, Ding

Y. Wu, C. Zhu, Y. Li et al. / Knowledge-Based Systems 196 (2020) 105812 3

et al. [33] proposed the CloGSgrow algorithm, which studied
the repetitive occurrences of patterns. CloGSgrow calculates the
occurrences of the super-patterns based on those of the sub-
patterns and the results show that the repetitive occurrence
pattern is compressible, which is of high research value for long
sequences. Li et al. [31] added periodic gap constraints and the
experiments show that introducing gap constraints improves the
mining results.

Another important branch of SPM is gap constraint SPM. This
method aims to discover subsequences from sequences that sat-
isfy the gap constraints and support threshold. Existing studies
are based on three types of conditions, no-condition [29,56], one-
off condition [8,57], and nonoverlapping condition [33,34,58]. The
no-condition allows sequence letters to be reused by patterns for
an unlimited time. Zhang et al. [29] first proposed SPM under
no-condition in DNA sequences. However, pattern mining under
no-condition does not satisfy the Apriori property, which means
it is necessary to expand the search space to mine all frequent
patterns [19]. The one-off condition allows the sequence letters
to be matched no more than once [59]. In Example 1, there is only
one occurrence <1,3,4,5> of P in S1 with the one-off condition.
Pattern mining under the one-off condition was applied to bio-
logical sequence mining [8], which is an NP-Hard problem, since
its computational complexity is the same as that of an iterative
shuffle problem [60]. Therefore, heuristic strategies are applied to
calculate the pattern support. Hence, pattern mining under the
one-off condition belongs to approximate mining. The nonover-
lapping condition allows the sequence letters to be rematched
by the different pattern letters and to be matched no more than
once by the same pattern letter. Although the nonoverlapping
condition is more complex than the other two, our previous
studies have demonstrated that the pattern mining under the
nonoverlapping condition is not only a complete mining method
with the Apriori property but can also discover more valuable
patterns than the other two conditions [34,35]. Consequently,
pattern mining under the nonoverlapping condition outperforms
those of the no-condition and one-off condition. A comparison of
the related research work is shown in Table 1.

As can be seen from Table 1, Reference [34] is the closest to
this paper. The differences between Reference [34] and this paper
are as follows. To obtain the maximum pattern support, NETGAP
prunes the invalid nodes after obtaining a nonoverlapping occur-
rence [34]. Hence, the time complexity of NETGAP is O(m × m × n
× W), where m, n, and W are the length of pattern and sequence,
and the maximum gap, respectively. However, in this paper,
we propose the BackTr algorithm which employs a backtracking
strategy to calculate the pattern support without pruning the
invalid nodes, which will reduce the time complexity to O(m × n
× W). In addition, Reference [34] focused on mining the frequent
patterns, while this paper mines the closed patterns and adopts
three pruning strategies, inheriting, predicting, and determining
to predict the frequency and closeness of the patterns.

3. Problem definition

Definition 1. A sequence with length n can be described as
S=s1 · · · si · · · sn, where si(1 ≤ i ≤ n) ∈ Σ , Σ denotes the set of
items, and |Σ | indicates the size. A periodic gap constraint pat-
tern P with length m can be written as P=p1[a, b]p2 · · · [a, b]pj · · ·
[a, b]pm, where a and b are integers (0≤a≤ b) that indicate the
minimum and maximum gaps, respectively.

Definition 2. L=< l1, l2 · · · lm > is an occurrence of pattern P in
sequence S, if and only if 1≤ l1 < · · · < lm ≤n and a≤ lj+1-lj-1≤b,
where slj = pj (1≤j≤m and 1≤ lj ≤n). Suppose there is another
occurrence L′

=< l′1, l
′

2 · · · l′m >. L and L′ are two nonoverlapping
occurrences if and only if ∀1≤j≤m and lj ̸= l′j . The nonoverlapping
support of pattern P in sequence S is represented by sup(P, S).

Definition 3. If sup(P, S) is no less than support thresholdminsup,
pattern P is called a frequent pattern.

Example 3. In Example 1, Σ={A, T, C, G}, |Σ |=4, minsup=2, and
len=[1,7], the nonoverlapping occurrences of P in S1 are < 1, 3, 4,
5 > and < 6, 7, 8, 9 >. We can know that sup(P, S1)=2≥minsup.
Thus, if we mine the frequent pattern in S1, P is a frequent
pattern.

Definition 4. Suppose L=< l1, l2 · · · lm > is an occurrence. If
minlen≤ lm -l1+1≤ maxlen, then L is an occurrence that sat-
isfies the length constraints, where minlen and maxlen are the
minimum and maximum length constraints, respectively.

Definition 5. Given pattern P = p1[a, b]p2[a, b] · · · [a, b]pm,
and letters r and l. Q = Pr = p1[a, b]p2[a, b] · · · [a, b]pm[a, b]r
is defined as the right gap super-pattern of P , and P is the
prefix sub-pattern of Q, i.e. prefix(Q)=P . Similarly, R=lP=l[a, b]P1[a,
b]P2[a, b]· · ·[a, b]pm is defined as the left gap super-pattern of
P and P is the suffix sub-pattern of R, i.e. suffix(R)=P . If pre-
fix(Q)=suffix(R)=P , R and Q can be connected into a super-pattern
T with length m+2, where T = R ⊕ Q = lPr . This process of
generating the super-pattern from sub-patterns is called pattern
growth [64].

Example 4. Suppose pattern P=A[0, 2]T. Patterns R=G[0, 2]A[0,
2]T and Q= A[0, 2]T[0, 2]C are the left and right gap super-
patterns of P, respectively. Therefore, patterns R and Q can be
connected into super-pattern T with length 4, i.e. T=R⊕Q=G[0,
2]A[0, 2]T[0, 2]C.

Definition 6. Suppose P is a frequent pattern. P is a closed
pattern if there is no super-pattern P ′ of P which satisfies sup(P ′)=
sup(P); otherwise, P is an unclosed pattern (or a redundant pat-
tern).

Example 5. In Example 1, P=A[0, 2]T[0, 2]C[0, 2]A. One of its
super-patterns is P ′=A[0, 2]T[0, 2]C[0, 2]A[0, 2]G. The nonoverlap-
ping occurrences of P and P ′ in S3 are {<1,2,3,4>, <4,7,8,9>} and
{<1,2,3,4,5>, <4,7,8,9,10>}, respectively, i.e. sup(P, S1)=sup(P ′,
S1)=2. Hence, pattern P is a redundant pattern.

4. Nonoverlapping closed SPM algorithm

Section 4.1 proposes the BackTr algorithm to calculate the
pattern support. Section 4.2 introduces the principle of the pat-
tern growth strategy to generate candidate patterns. Section 4.3
proposes three pruning strategies to determine closed patterns.
We show the NetNCSP algorithm in Section 4.4.

4.1. Support calculating

Given a sequence and a pattern with gap constraints, all occur-
rences can be represented by a Nettree [65] which is an extended
tree structure with multiple roots and parents. Since the nodes
with the same label can appear on a Nettree for multiple times, ni

j
is used to represent node i in the j-th level. A path from a root to a
leaf in the Nettree corresponds to an occurrence of the pattern in
the sequence. The problem of calculating the support of pattern
P in sequence S with the nonoverlapping condition means that
all Nettree nodes cannot be reused in the same level [34]. The
above properties make Nettree the most suitable for representing
the nonoverlapping occurrences of a pattern. In our previous
work [34], NETGAP was proposed employing Nettree, which is
a complete method to calculate the nonoverlapping occurrence.
However, the weakness of NETGAP is the lower efficiency since

4 Y. Wu, C. Zhu, Y. Li et al. / Knowledge-Based Systems 196 (2020) 105812

Table 1
Related work.
Research Pattern type Type of condition Pruning strategy Mining type Periodic gap constraint Repetitions of pattern

Yan et al. [61] Closed Ignore Other Exact No Ignore
Wang et al. [62] Closed Ignore Other Exact No Ignore
Lam et al [63] Compressed On–off condition Apriori Approximate No Ignore
Wu et al [8] Frequent On–off condition Apriori Approximate Yes Capture
Li et al. [31] Closed No-condition Other Exact Yes Capture
Zhang et al. [29] Frequent No-condition Apriori-like Exact Yes Capture
Wu et al. [34] Frequent Nonoverlapping condition Apriori Exact Yes Capture
This paper Closed Nonoverlapping condition Apriori, other Exact Yes Capture

Fig. 2. A Nettree.

NETGAP must prune the invalid nodes after obtaining a nonover-
lapping occurrence. Based on the above reasons, we propose the
BackTr algorithm, which is of superior efficiency. Examples 6 and
7 will illustrate the principles of NETGAP and BackTr, respectively.

Example 6. Given pattern P=A[0,3]T[0,3]C[0,3]A and sequence
S1=ATACTTATTCGACA, a Nettree can be created as shown in Fig. 2.
The first step of NETGAP is to prune the invalid nodes which
are n5

2, n12
1 , and n14

1 . Then NETGAP selects the first root node
and finds a root–leaf path employing the leftmost child strategy.
In Fig. 2, it is easy to obtain the first root–leaf path < n1

1, n
2
2,

n4
3, n7

4 >, marked in yellow. The corresponding occurrence is
<1,2,4,7>. Then, NETGAP deletes nodes n1

1, n
2
2, n

4
3, and n7

4. After
that, NETGAP finds the invalid nodes in the new Nettree. It is
clear that there are no invalid nodes at that time. Then NETGAP
obtains the second root–leaf path < n3

1, n
6
2, n

10
3 , n12

4 >, marked
in red and its corresponding occurrence is <3,6,10,12>. After
pruning nodes n3

1, n
6
2, n

10
3 , and n12

4 , NETGAP finds an invalid node
n8
2 and prunes it. Finally, NETGAP obtains the third occurrence

<7,9,13,14>, which is marked in blue. Hence, NETGAP gets three
nonoverlapping occurrences.

Example 7. In this example, we use the same pattern and
sequence as in Example 6. BackTr does not need to find and
prune invalid nodes n5

2, n
12
1 , and n14

1 , and gets the first occurrence
<1,2,4,7>. After that, BackTr selects the second root n3

1 and finds
its first child node n5

2, which has no child node. In that case, the
algorithm backtracks to node n3

1 and finds its second child which
is node n6

2. Thus, BackTr will get another occurrence <3,6,10,12>.
Similarly, BackTr can find the third occurrence <7,9,13,14>. After
that, there is no occurrence in the rest of the Nettree. Hence,
BackTr also gets the same three nonoverlapping occurrences as
NETGAP.

From Examples 6 and 7, it can be concluded that the two
algorithms employ different methods to find the same nonover-
lapping occurrences. However, NETGAP needs to find and prune
the invalid nodes for three times, while BackTr does not need to
prune these nodes, which will reduce the time complexity.

BackTr is given in Algorithm 1.

Algorithm 1 BackTr.
Input: candidate pattern P and sequence S
Output: support sup
1: Create a periodic gap Nettree according to P and S;
2: sup=0;
3: for each root do
4: occ=Get a root–leaf path according to the leftmost child

with backtracking strategy;
5: sup + +;
6: Delete occ;
7: end for
8: return sup;

Theorem 1. BackTr is complete.

Proof. Our previous work showed that the complete algorithm
should iteratively find the minimum occurrence [34]. BackTr it-
eratively selects the leftmost child from the minimum root to get
the minimum occurrence. Hence, BackTr is complete.

Theorem 2. In the worst case, the space and time complexities
of BackTr are both O(m × n × w), and the average space and time
complexities are O(m×n×w/r/r), where m, n, w, r are the pattern
length, sequence length, b−a+1, and item number |Σ |, respectively.

Proof. Obviously, each node in a Nettree will be accessed at most
once. Hence, the time complexity of BackTr is consistent with
the space complexity of a Nettree. A Nettree has m levels. Each
level has a maximum of n nodes. Each node has a maximum of w
children. Therefore, the space complexity of a Nettree is O(m × n
× w) in the worst case. Hence, the time complexity of a Nettree
is also O(m × n × w). On average, each level has n/r nodes and
each node has w/r children. Hence, the average space and time
complexities are O(m × n × w/r/r).

As we know, the average time complexity of the NETGAP
algorithm is O(m × n × w/r/r) [34]. Hence, BackTr outperforms
NETGAP.

4.2. Candidate pattern generating

Traditional candidate pattern generation methods include
breadth-first and depth-first. In this paper, the pattern growth
strategy can effectively reduce the generation of redundant pat-
terns. An example is as follows.

Example 8. In Example 1, with minsup=2 and gap=[0,3], there
are nine frequent patterns in S3 with length 2: {‘‘AA’’, ‘‘AT’’, ‘‘AC’’,
‘‘AG’’, ‘‘TC’’, ‘‘TA’’, ‘‘TG’’, ‘‘CA’’, ‘‘CG’’}. With breadth-first or depth-
first strategy, 9 × 4=36 candidate patterns with length 3 will be
generated. On the other hand, since ‘‘TT’’ is not frequent, super-
patterns ‘‘ATT’’ and ‘‘TTG’’ are also not frequent according to the
Apriori property and can be pruned. According to the pattern

Y. Wu, C. Zhu, Y. Li et al. / Knowledge-Based Systems 196 (2020) 105812 5

growth strategy, there are 14 candidate patterns: {‘‘AAA’’, ‘‘AAT’’,
‘‘AAG’’, ‘‘AAC’’, ‘‘CAA’’, ‘‘CAT’’, ‘‘CAC’’, ‘‘CAG’’, ‘‘TAA’’, ‘‘TAT’’, ‘‘TAC’’,
‘‘TAG’’, ‘‘TCA’’, ‘‘TCG’’}. This example illustrates that the pattern
growth strategy outperforms the breadth-first and depth-first
strategies.

4.3. Closed pattern determining

In this subsection, we propose three pruning strategies to find
closed patterns.

Although BackTr can reduce the time complexity to calculate
the support, it is also very complex. Therefore, we propose an
inheriting strategy to predict the closeness of a pattern. The
unclosed patterns will be pruned before support calculation using
BackTr.

4.3.1. Inheriting

Definition 7. Given pattern P=p1p2 · · · pm, and letters l and
r. If there is a right gap super-pattern Q=Pr which satisfies
sup(Q)=sup(P), then P is called a right unclosed pattern. In the
same way, if there is a left gap super-pattern R=lP and sup(R)=
sup(P), P is called a left unclosed pattern. Otherwise, P is called a
right or left closed pattern.

Example 9. In Example 1, pattern P1=T[0, 2]A has two nonover-
lapping occurrences, ⟨2, 4⟩ and ⟨7, 9⟩ in S3=ATCAGATCAG. By
traversing the left gap of all occurrences, it can be found that
there is a common letter ‘‘A’’. Therefore, there are two nonover-
lapping occurrences for super-pattern P ′

1=A[0, 2]T[0, 2]A in S3,
i.e. sup(P ′

1, S3)=sup(P1, S3)=2. Hence, P1 is a left unclosed pat-
tern. Similarly, there exists a letter ‘‘G’’ in all occurrences of the
right gaps of P1, i.e. P ′′

1 =T[0, 2]A[0, 2]G and sup(P ′′

1 , S3)=sup(P1,
S3)=2. Hence, P1 is a right unclosed pattern. However, there are
two nonoverlapping occurrences for pattern P2=A[0,3]G in S3,
i.e. ⟨1, 5⟩ and ⟨6, 10⟩. Yet, there is no common letter found in the
left and right gaps of P2. Hence, P2 is a closed pattern.

Theorem 3. If sub-pattern P is a left unclosed pattern in sequence
S, then all its right super-patterns Q = Pr are also left unclosed pat-
terns. Therefore, pattern Q can be safely pruned. The same strategy
can be applied to the right side.

Proof. Suppose pattern P is a left unclosed pattern, which means
there is a super-pattern P ′=lP whose support is the same as that
of pattern P, i.e. sup(P ′, S)=sup(P, S). We will show that pattern
Q=Pr has a super-pattern Q ′=lQ=lPr whose support is the same
as that of pattern Q , i.e. sup(Q ′, S)=sup(Q, S).

Suppose < l′1, l
′

2 · · · l′m, lr > is an occurrence of pattern Q . < l′1,
l′2 · · · l′m > is an occurrence of pattern P. Since P is a left unclosed
pattern, i.e. sup(lP, S)= sup(P, S), we know that < ll, l′1, l

′

2 · · · l′m >

is an occurrence of pattern lP. Therefore, < ll, l′1, l
′

2 · · · l′m, lr >

is an occurrence of pattern lPr . Thus, sup(Q ′, S)=sup(Q, S). Hence,
pattern Q is also a left unclosed pattern.

It should be noticed that only the unclosed property can be
inherited not the closed property.

Example 10. In S2=AATGACTACTCAA, there are three nonover-
lapping occurrences, <3>, <7>, and <10> for pattern ‘‘T’’ in
S2, i.e. sup(‘‘T’’, S2)=3. Since there are also three nonoverlapping
occurrences, ⟨3, 5⟩, ⟨7, 8⟩, and ⟨10, 12⟩ for the right gap super-
pattern ‘‘T[0, 2]A’’ of pattern ‘‘T’’, i.e. sup(‘‘T[0, 2]A’’, S2)=sup (‘‘T’’,
S2)=3, pattern ‘‘T’’ is a right unclosed pattern. In addition, since ‘‘T’’
is a right unclosed pattern, then ‘‘A[0, 2]T’’ is also a right unclosed
pattern according to Theorem 3. The verification is as follows.

There are three nonoverlapping occurrences, ⟨1, 3⟩, ⟨5, 7⟩, and
⟨8, 10⟩ for pattern ‘‘A[0, 2]T’’, and three nonoverlapping occur-
rences, <1,3,5>, <5,7,8>, and <8,10,12> for pattern ‘‘A[0, 2]T[0,
2]A’’ in S2, i.e. sup(‘‘A[0, 2]T[0, 2]A’’, S2)=sup(‘‘A[0, 2]T’’, S2)=3.
Hence, pattern ‘‘A[0, 2]T’’ is a right unclosed pattern, which is
consistent with Theorem 3.

Theorem 4. If pattern P is either a left or a right unclosed pattern,
then P is an unclosed pattern.

Proof. If pattern P is a left unclosed pattern, then there is a
super-pattern P ′=lP which satisfies sup(P, S)= sup(P ′, S). Thus,
according to Definition 6, pattern P is an unclosed pattern. The
same strategy can be applied to the right side.

Example 11. In Example 9, pattern ‘‘T’’ is a right unclosed
pattern, since there exists a right gap super-pattern ‘‘T[0, 2]A’’,
that sup(‘‘T[0, 2]A’’, S2)= sup(‘‘T’’, S2) =3.

In the following subsections, we will propose two strategies to
detect the closeness of the frequent patterns.

4.3.2. Predicting

Theorem 5. Let pattern Q be the pattern with the highest support
of all the patterns that can be connected with pattern P. If sup(P) >
sup(Q), then P is a closed pattern.

Proof. Knowing that sup(P)>sup(Q), min(sup(P), sup(Q)) is
sup(Q). Patterns P and Q can generate super-pattern R by pattern
growth. According to Apriori, sup(R)≤min(sup(P), sup(Q)). Thus,
sup(R)≤ sup(Q)<sup (P). Therefore, there is no super-pattern R
of P that satisfies sup(R)=sup (P). Hence, P is a closed pattern.

Example 12. In Example 1, patterns ‘‘AA’’, ‘‘AT’’, ‘‘AG’’, and ‘‘AC’’
are the frequent patterns with length 2 in sequence S3. It is
known that, sup(‘‘AA’’)=3 and sup(‘‘AC’’)=sup(‘‘AT’’)=sup(‘‘AG’’)= 2.
The support of the pattern ‘‘AA’’ is greater than that of other pat-
terns. According to Theorem 3, pattern ‘‘AA’’ is a closed pattern.

4.3.3. Determining

Theorem 6. If P is both a left and right closed pattern, then P is a
closed pattern.

Proof. Suppose P is a left closed pattern which means that there
is no super-pattern lP that satisfies sup(lP) = sup(P). Similarly,
suppose P is a right closed pattern, which means there is no
super-pattern Pr that satisfies sup(Pr) = sup(P). Hence, P is a
closed pattern according to Definition 6.

Example 13. In Example 1, sup(‘‘A’’, S2)=6, there is no left or right
gap super-pattern of pattern ‘‘A’’ that has the same support as
pattern ‘‘A’’. Thus, pattern ‘‘A’’ is a left closed pattern and a right
closed pattern. Hence, pattern ‘‘A’’ is a closed pattern.

4.4. NetNCSP

In this subsection, we propose NetNCSP. At the beginning,
NetNCSP traverses the sequence to find the frequent letters, and
stores them in candidate set C . In the following procedures, three
pruning strategies are applied to check the closeness of pattern
P in C . In the first step, if P is an unclosed pattern according to
Theorem 3, then NetNCSP will add P to temporary candidate set
C1 and restart from the first step with another P in C . Otherwise,
NetNCSP goes to the second step. In the second step, BackTr will

6 Y. Wu, C. Zhu, Y. Li et al. / Knowledge-Based Systems 196 (2020) 105812

calculate the nonoverlapping support of P and store the result
in sup. If sup is less than minsup, NetNCSP will go to the first
step with another P in C . Otherwise, NetNCSP adds P to C1 and
goes to the third step. In the third step, NetNCSP will check the
closeness of pattern P according to Theorems 5 and 6. If the
pattern is closed, NetNCSP will add P to nonoverlapping closed
pattern set CP . After that, NetNCSP will restart from the first
step with another P in C . After all patterns in C being traversed,
NetNCSP employs the pattern growth strategy to generate the
candidate set using C1. NetNCSP will stop until C is empty. All
closed patterns are stored in CP .
Algorithm 2 NetNCSP.
Input: sequence S, support threshold minsup, gap constraint gap,
length constraint len
Output: nonoverlapping closed pattern set CP

1: Traverse S and store all frequent letters in candidate set C;
2: while C <> NULL do
3: for each P in C do
4: if inheriting(P)==unclosed then
5: C1=C1∪P;
6: continue;
7: end if
8: sup=BackTr(P, S);
9: if sup<minsup then

10: continue;
11: end if
12: C1=C1∪P;
13: if predicting(P)==closed or determining(P)==closed

then
14: CP=CP∪P;
15: end if
16: end for
17: C=patterngrowth(C1);
18: end while
19: return CP

Theorem 7. The time complexity of NetNCSP is O(m×N × w × t)
in the worst case and O(m× n× w × t/r/r) on average, where t is
the number of runs of the BackTr algorithm.

Proof. According to Theorem 1, the time complexity of BackTr is
O(m × n × w) in the worst case, and O(m × n × w/r/r) on average.
Since BackTr runs t times, the time complexity of NetNCSP is O(m
× n × w × t) and the average time complexity of NetNCSP is O(m
× n × w × t/r/r).

Theorem 8. The space complexity of NetNCSP, the same as that of
BackTr, is O(m × n × w) in the worst case and O(m × n × w/r/r)
in the average case.

Proof. The space of the candidate patterns and the closed pat-
terns can be neglected. Therefore, the space complexity of Net-
NCSP is the same as that of BackTr. According to Theorem 1, the
space complexity of NetNCSP is O(m × n × w) in the worst case
and O(m × n × w/r/r) in the average case.

5. Experimental analysis

Section 5.1 explains the benchmark datasets. Section 5.2 intro-
duces the competitive algorithms. Section 5.3 shows the mining
performance of different strategies, such as candidate generation
strategies, pruning strategies, and support calculation strategies.
Section 5.4 verifies the mining capability of the proposed al-
gorithm and the competitive algorithms. Section 5.5 furtherly
reports biological application in COVID-19.

All experiments are conducted on a computer with Intel Core
i5, 1.6 GHz CPU, 8 GB 1600 MHz DDR3 memory, and Mac OS
(10.14.5) operating system. All the algorithms are developed in
Visual Studio Code 1.36.1 which also runs as the experimental
environment.

5.1. Benchmark datasets

Table 2 explains the benchmark datasets used in the following
experiments.

5.2. Baseline methods

1. NetNCSP-noinh and NetNCSP-nocheck: To verify the effi-
ciency of pruning strategies, NetNCSP-noinh and NetNCSP-
nocheck are proposed. NetNCSP-noinh removes the inher-
iting strategy, while NetNCSP-nocheck removes the pre-
dicting and determining strategies to determine closed pat-
terns according to the definition.

2. NetNCSP-netgap: To analyze the effect of BackTr, NetNCSP-
netgap is proposed, which applies NETGAP strategy to mine
the closed patterns.

3. NetNCSP-bf and NetNCSP-df: To analyze the effect of pat-
tern growth strategy, NetNCSP-bf and NetNCSP-df are pro-
posed to generate candidate patterns according to breadth-
first and depth-first strategies, respectively.

4. NOSEP and CloGSgrow: To analyze the differences between
NetNCSP and classical SPM algorithms, we employ NOSEP
and CloGSgrow as competitive algorithms which were pro-
posed in References [33] and [34], respectively.

5. NetNCSP-nogap: To analyze the effect of gap constraint,
NetNCSP-nogap is proposed to mine continuous patterns
without gap.

The datasets and all algorithms can be downloaded from http:
//wuc.scse.hebut.edu.cn.

5.3. Mining performance

In this subsection, we will verify the mining performance of
NetNCSP with different strategies. Five competitive algorithms
are selected, NetNCSP-bf, NetNCSP-df, NetNCSP-noinh, NetNCSP-
nocheck, and NetNCSP-netgap. We use five databases to carry out
the experiments, DNA2, DNA4, DNA5, Potato_virus and
Ebola_virus. The parameters are len =[1,2000], gap= [0,200] and
minsup=2000. The running time, support calculation times, and
closeness determination times are shown in Figs. 3–5.

The results indicate the following observations:

1. The inheriting, predicting, and determining strategies are
significantly effective. From Fig. 3, it is clear that NetNCSP
is faster than NetNCSP-noinh and NetNCSP-nocheck. Net-
NCSP, NetNCSP-noinh, and NetNCSP-nocheck run 308.9,
403.3, and 1523.4 s in Potato_virus, respectively. From
Fig. 4, NetNCSP-noinh and NetNCSP-nocheck calculate sup-
port 1150 and 5460 times, respectively, while NetNCSP
only calculates 856 times. From Fig. 5, NetNCSP-noinh
and NetNCSP-nocheck determine closeness 1364 and 5460
times, respectively, while NetNCSP only needs 916 times.
The experiments verify that NetNCSP employs the inher-
iting, predicting, and determining strategies, which im-
prove the mining efficiency significantly. Hence, NetNCSP
outperforms NetNCSP-noinh and NetNCSP-nocheck.

http://wuc.scse.hebut.edu.cn
http://wuc.scse.hebut.edu.cn
http://wuc.scse.hebut.edu.cn

Y. Wu, C. Zhu, Y. Li et al. / Knowledge-Based Systems 196 (2020) 105812 7

Table 2
Benchmark datasets.
Dataset Type From Length

AX8291741a DNA Homo sapiens (human) 10,011
DNA1b DNA Homo sapiens AL158070 6,000
DNA2 DNA Homo sapiens AL158070 8,000
DNA3 DNA Homo sapiens AL158070 10,000
DNA4 DNA Homo sapiens AL158070 12,000
DNA5 DNA Homo sapiens AL158070 14,000
DNA6 DNA Homo sapiens AL158070 16,000
Potato_virusc Virus Potato virus Y Wilga MV99 9,699
Ebola_virusd Virus Reston Ebola virus 18,891
SARS-CoV-2e Virus Severe acute respiratory syndrome coronavirus 2(COVID-19) 29,903
SARSf Virus Severe acute respiratory syndrome-related coronavirus 29,751

aAX829174 is used in References [31] and [29] for mining frequent patterns and closed patterns, which can be downloaded from
https://www.ncbi.nlm.nih.gov/nuccore/AX829174.1/.
bDNA1-6 databases are used in Reference [34], which can be downloaded from https://www.ncbi.nlm.nih.gov/nuccore/AL158070.11.
cPotato_virus Y is used in Reference [52] to mine continuous closed patterns and closed patterns with gap constraints and can be
downloaded from https://www.ebi.ac.uk/ena/data/view/Taxon:1107954.
dEbola_virus is commonly used in biological sequence analysis and can be downloaded with Potato_virus from https://www.ebi.ac.
uk/ena/data/view/Taxon:129003.
eThis sequence was reported in Reference [66], and can be downloaded from https://www.ncbi.nlm.nih.gov/nuccore/MN908947.
fThis sequence can be downloaded from https://www.ncbi.nlm.nih.gov/nuccore/30271926.

Fig. 3. Running time with different strategies.

Fig. 4. Support calculation times with different strategies.

2. The BackTr strategy is significantly effective. According to
Figs. 3–5, NetNCSP and NetNCSP-netgap have the same
closeness determination times and support calculation
times, but the running time of NetNCSP is less than that of
NetNCSP-netgap. For example, in Fig. 3, the running time
of NetNCSP and NetNCSP-netgap are 679.0 and 1140.3 s in
Ebola_virus, respectively. The reason is that NetNCSP em-
ploys the BackTr strategy, and reduces the running time by
pruning invalid nodes, thus reducing the time complexity

from O(m × m × n × W) to O(m × n × W). Hence, NetNCSP
outperforms NetNCSP-netgap.

3. The pattern growth strategy is significantly effective. From
Fig. 3, we can see that NetNCSP is faster than NetNCSP-
bf and NetNCSP-df. For example, NetNCSP runs 679.0 s in
Ebola_virus, while NetNCSP-bf and NetNCSP-df run 1290.7
and 1293.4 s, respectively. The reason is that NetNCSP
calculates 940 candidate patterns, while NetNCSP-bf and

https://www.ncbi.nlm.nih.gov/nuccore/AX829174.1/
https://www.ncbi.nlm.nih.gov/nuccore/AL158070.11
https://www.ebi.ac.uk/ena/data/view/Taxon:1107954
https://www.ebi.ac.uk/ena/data/view/Taxon:129003
https://www.ebi.ac.uk/ena/data/view/Taxon:129003
https://www.ncbi.nlm.nih.gov/nuccore/MN908947
https://www.ncbi.nlm.nih.gov/nuccore/30271926

8 Y. Wu, C. Zhu, Y. Li et al. / Knowledge-Based Systems 196 (2020) 105812

Fig. 5. Closeness determination times with different strategies.

NetNCSP-df calculate 1364 candidate patterns. The rea-
son lies in that NetNCSP employs pattern growth strat-
egy to generate the candidate patterns, while NetNCSP-
bf and NetNCSP-df employ the breadth-first and depth-
first strategies, respectively. The pattern growth strategy is
more effective than the other two, which is consistent with
the analysis in Example 8. Hence, NetNCSP outperforms
NetNCSP-bf and NetNCSP-df.

In conclusion, NetNCSP has better performance than all the
competitive algorithms.

5.4. Mining capability

In this subsection, we carry out two experiments to ver-
ify the nonoverlapping closed pattern mining ability and the
performance of NetNCSP.

We used the DNA1 database to conduct the first experiment
to mine patterns with pattern lengths 2 to 7. The parameters
are len=[1,1000], gap=[0,100], and minsup=1200. The results are
shown in Figs. 6–8.

To compare the mining capability of algorithms in differ-
ent databases, six sequences are included to mine closed pat-
terns with length 5, which are DNA1, DNA3, DNA6, AX829174,
Potato_virus, and Ebola_virus. The parameters are len=[1,1000],
gap=[0,100], and minsup=1200. The results are shown in Figs. 9–
11.

The results indicate the following observations:

1. NetNCSP outperforms NOSEP since NetNCSP not only com-
presses the patterns effectively but also achieves higher
efficiency. For example, in Fig. 6, when the pattern length
is 7, NOSEP gets 1864 patterns, while NetNCSP gets 1188.
The running time of NOSEP and NetNCSP are 431.1 and
351.8 s, respectively. Similar phenomena can be discovered
in different databases. For example, in Fig. 10, the running
time of NOSEP and NetNCSP are 263.8 and 189.6 s in
AX829174, respectively. The reasons are as follows. Firstly,
NetNCSP adopts a more efficient backtracking strategy in
calculating pattern support, and reduces the time com-
plexity from O(m × m × n × W) to O(m × n × W).
More importantly, NetNCSP adopts three effective pruning
strategies. The predicting and inheriting strategies prune
the redundant unclosed patterns before calculating sup-
port of candidate patterns, and the determining strategy
determines the closeness of frequent patterns avoiding the
generation of candidate pattern of longer length. Hence,
NetNCSP outperforms NOSEP.

2. NetNCSP outperforms CloGSgrow since NetNCSP mines
more closed patterns and is more efficient in terms of
ATC (Average mining Time per Closed pattern). For ex-
ample, in Fig. 6, when the pattern length is 5, NetNCSP
mines 282 closed patterns and CloGSgrow only gets 15.
Although Fig. 7 shows that when the pattern length is 5,
the running time of NetNCSP and CloGSgrow are 64.1 and
5.6 s respectively, the ATCs of NetNCSP and CloGSgrow
are 64.1/282=0.2 and 5.6/15=0.4 s, respectively. Similar
phenomena can be discovered in different databases. For
example, in Figs. 9 and 10, CloGSgrow takes 83.3 s to get 33
closed patterns in Ebola_virus, while NetNCSP takes 453.8
s to get 912. The ATCs of CloGSgrow and NetNCSP are 2.5
and 0.5 s, respectively. The reasons are as follows. First,
NetNCSP, as a complete algorithm, mines the complete
closed patterns. Thus, more closed patterns can be discov-
ered. Second, NetNCSP adopts three pruning strategies to
reduce the running time effectively. As a result, NetNCSP
outperforms CloGSgrow.

3. NetNCSP can compress the patterns effectively. For ex-
ample, in Fig. 6, NOSEP and NetNCSP find 399 frequent
patterns and 282 closed patterns with length 5, respec-
tively. Thus, the compression rate is (399-282)/399= 29.3%.
In Fig. 9, NOSEP and NetNCSP mine 1364 frequent pat-
terns and 912 closed patterns in Ebola_virus, respectively.
Thus, the compression rate is 33.1%. The reason is that
NOSEP mines the complete set of the frequent patterns
which contains redundant patterns, while NetNCSP mines
a subset of the closed patterns according to three closeness
determination pruning strategies.

4. NetNCSP reduces the support calculation times effectively.
For example, Fig. 8 shows that when mining patterns
with length 7, NetNCSP calculates the support for 1443
times, while NOSEP needs 2134 times. Similar phenomena
can be found in different databases. For example, Fig. 11
shows that NetNCSP calculates support for 932 times in
Ebola_virus, while NOSEP needs 1364 times. The reason is
that NetNCSP adopts the predicting and inheriting strate-
gies to prune the redundant patterns, thus, reducing the
support calculation times. As a result, NetNCSP reduces
support calculation times.

In conclusion, NetNCSP compresses the patterns effectively
and outperforms competitive algorithms.

5.5. Biological application

Recently, a severe respiratory syndrome named COVID-19
spreads around the world, and over 300,000 people worldwide

Y. Wu, C. Zhu, Y. Li et al. / Knowledge-Based Systems 196 (2020) 105812 9

Fig. 6. Pattern number with different pattern length.

Fig. 7. Running time and ATC with different pattern length.

Fig. 8. Support calculation times with different pattern length.

have been identified with the disease. COVID-19 is caused by the
SARS-CoV-2 virus [66], which is reported to be closely related to a
group of SARS-like coronaviruses (of 89.1% nucleotide similarity).

In this subsection, we use the proposed algorithm to study
the similarities between the two viruses. NetNCSP is employed
to mine closed frequent patterns from SARS-CoV-2 and SARS
viruses. We set the parameters with len = [1,2000], gap = [0,200],
and minsup = 2000 to mine patterns of length 2 to 10. The
comparison of closed pattern number is reported in Fig. 12.

The results report the following observations. When the pat-
tern length is less than 8, the number of closed patterns discov-
ered from SARS-CoV-2 and SARS is almost the same, while when
the pattern length is greater than 7, the number of closed patterns
is significantly different. For example, in Fig. 12, when the pattern

length is 4, the number of closed patterns discovered from SARS-
CoV-2 and SARS are the same 18. When pattern length is 9,
the closed patterns are 270 and 370, respectively. The possible
reasons for this phenomenon are as follows. The basic pattern
composition of SARS-CoV-2 and SARS is the same. Thus, the
shorter patterns are nearly the same, while the longer ones have
diversities with different pattern combinations.

6. Conclusion

In this paper, we tackle the problem of nonoverlapping pe-
riodic gapped closed SPM and propose an effective closed pat-
tern mining algorithm, named NetNCSP, which has two major
steps, support calculation and closeness determination. In the

10 Y. Wu, C. Zhu, Y. Li et al. / Knowledge-Based Systems 196 (2020) 105812

Fig. 9. Pattern number with different databases.

Fig. 10. Running time and ATC with different databases.

Fig. 11. Support calculation times with different databases.

Fig. 12. Comparison of closed pattern number in different databases.

Y. Wu, C. Zhu, Y. Li et al. / Knowledge-Based Systems 196 (2020) 105812 11

process of support calculation, NetNCSP adopts the BackTr algo-
rithm with backtracking strategy to calculate the nonoverlapping
support of patterns in Nettree. In the process of closeness de-
termination, NetNCSP adopts three pruning strategies, inheriting,
predicting, and determining. The inheriting strategy can avoid
invalid calculations on the redundant patterns. The predicting
strategy can reduce the number of candidate patterns effectively.
The determining strategy determines the closeness of the fre-
quent patterns and prunes the redundant patterns. NetNCSP is
of lower time complexity than the state-of-the-art algorithms.
Experiments are carried out on long-length sequence databases,
such as DNA and virus. The experimental results show that Net-
NCSP has better performance than competitive algorithms and
compresses the frequent patterns effectively. In the experiment
of biological application, we employ NetNCSP in mining biological
sequences in SARS-CoV-2 and SARS viruses, the results show that
the two viruses are of similar pattern composition with different
combinations.

In this paper, we focus on nonoverlapping closed sequential
pattern mining in a long sequence. Experimental results report
that NetNCSP can compress the frequent patterns effectively in
long sequences with a small item set, such as DNA/virus se-
quences. However, we notice that, NetNCSP cannot compress the
frequent patterns in a short sequence with a large item set, such
as a protein sequence, and NetNCSP is more suitable when the
gap constraints are large. Hence, generator mining and maximal
pattern mining can be explored in the future.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

CRediT authorship contribution statement

Youxi Wu: Conceptualization, Methodology, Formal analysis,
Supervision, Funding acquisition. Changrui Zhu: Software, Writ-
ing - original draft, Validation, Investigation, Data curation. Yan
Li: Investigation, Writing - review & editing. Lei Guo: Validation,
Resources. Xindong Wu: Supervision, Funding acquisition.

Acknowledgments

This work was partly supported by National Natural Science
Foundation of China (61976240, 917446209), National Key Re-
search and Development Program of China (2016YFB1000901),
and Graduate Student Innovation Program of Hebei Province,
China (CXZZBS2020024).

References

[1] R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and
performance improvements, in: International Conference on Extending
Database Technology, Springer, 1996, pp. 1–17.

[2] K.-i. Fukui, Y. Okada, K. Satoh, M. Numao, Cluster sequence mining from
event sequence data and its application to damage correlation analysis,
Knowl.-Based Syst. 179 (2019) 136–144.

[3] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.C. Hsu, FreeSpan:
Frequent pattern-projected sequential pattern mining, in: Proceedings of
the Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2000, pp. 355–359.

[4] X. Wu, X. Zhu, G.Q. Wu, W. Ding, Data mining with big data, IEEE Trans.
Knowl. Data Eng. 26 (1) (2014) 97–107.

[5] X. Wu, D. Theodoratos, Homomorphic pattern mining from a single large
data tree, Data Sci. Eng. 1 (4) (2016) 203–218.

[6] M. Wu, X. Wu, On big wisdom, Knowl. Inf. Syst. 58 (1) (2019) 1–8.
[7] B. Le, M.-T. Tran, B. Vo, Mining frequent closed inter-sequence patterns

efficiently using dynamic bit vectors, Appl. Intell. 43 (1) (2015) 74–84.

[8] X. Wu, X. Zhu, Y. He, A.N. Arslan, PMBC: Pattern mining from biological
sequences with wildcard constraints, Comput. Biol. Med. 43 (5) (2013)
481–492.

[9] P. Fournier-Viger, J. Li, J.C.W. Lin, T.T. Chi, R.U. Kiran, Mining cost-effective
patterns in event logs, Knowl.-Based Syst. (2019), http://dx.doi.org/10.
1016/j.knosys.2019.105241.

[10] X. Dong, P. Qiu, J. Lü, L. Cao, T. Xu, Mining top-k useful negative sequential
patterns via learning, IEEE Trans. Neural Netw. Learn. Syst. 30 (9) (2019)
2764–2778.

[11] X. Dong, Y. Gong, L. Cao, E-RNSP: An efficient method for mining repetition
negative sequential patterns, IEEE Trans. Cybern. (2018), http://dx.doi.org/
10.1109/TCYB.2018.2869907.

[12] U. Yun, G. Lee, K.H. Ryu, Mining maximal frequent patterns by considering
weight conditions over data streams, Knowl.-Based Syst. 55 (2014) 49–65.

[13] Y. Guo, Y. Hao, M. Yu, Image retargeting quality assessment based on
content deformation measurement, Signal Process., Image Commun. 67
(2018) 171–181.

[14] F. Min, Z.H. Zhang, W.J. Zhai, R.P. Shen, Frequent pattern discovery with
tri-partition alphabets, Inform. Sci. 507 (2020) 715–732.

[15] C. Tan, F. Min, M. Wang, H. Zhang, Z. Zhang, Discovering patterns with
weak-wildcard gaps, IEEE Access 4 (2016) 4922–4932.

[16] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed
itemsets for association rules, in: International Conference on Database
Theory, Springer, 1999, pp. 398–416.

[17] M. Fabrègue, A. Braud, S. Bringay, F. Le Ber, M. Teisseire, Mining closed
partially ordered patterns, a new optimized algorithm, Knowl.-Based Syst.
79 (2015) 68–79.

[18] H. Yang, L. Duan, B. Hu, S. Deng, W. Wang, P. Qin, Mining top-k distin-
guishing sequential patterns with gap constraint, J. Softw. 26 (11) (2015)
2994–3009.

[19] Y. Wu, L. Wang, J. Ren, W. Ding, X. Wu, Mining sequential patterns with
periodic wildcard gaps, Appl. Intell. 41 (1) (2014) 99–116.

[20] T.-L. Dam, H. Ramampiaro, K. Nørvåg, Q.-H. Duong, Towards effi-
ciently mining closed high utility itemsets from incremental databases,
Knowl.-Based Syst. 165 (2019) 13–29.

[21] J.-P. Qiang, P. Chen, W. Ding, F. Xie, X. Wu, Multi-document summarization
using closed patterns, Knowl.-Based Syst. 99 (2016) 28–38.

[22] F. Zhu, X. Yan, J. Han, S.Y. Philip, Efficient discovery of frequent approxi-
mate sequential pattern, in: Seventh IEEE International Conference on Data
Mining, 2007, pp. 751–756.

[23] J. Zhang, J. Guo, X. Yu, X. Yu, W. Guo, T. Zeng, L. Chen, Mining K-mers
of various lengths in biological sequences, in: International Symposium on
Bioinformatics Research and Applications, 2017, pp. 186–195.

[24] U. Manber, R. Baeza-Yates, An algorithm for string matching with a
sequence of don’t cares, Inform. Process. Lett. 37 (3) (1991) 133–136.

[25] P. Bille, I.L. Gørtz, H.W. Vildhøj, D.K. Wind, String matching with variable
length gaps, Theoret. Comput. Sci. 443 (2012) 25–34.

[26] X. Wang, L. Chai, Q. Xu, Y. Yang, J. Li, J. Wang, Y. Chai, Efficient subgraph
matching on large RDF graphs using mapreduce, Data Sci. Eng. 4 (1) (2019)
24–43.

[27] Y. Wu, Z. Tang, H. Jiang, X. Wu, Approximate pattern matching with gap
constraints, J. Inf. Sci. 42 (5) (2016) 99–116.

[28] Y. Wu, S. Fu, H. Jiang, X. Wu, Strict approximate pattern matching with
general gaps, Appl. Intell. 42 (3) (2015) 566–580.

[29] M. Zhang, B. Kao, D.W. Cheung, K.Y. Yip, Mining periodic patterns with
gap requirement from sequences, ACM Trans. Knowl. Discov. Data 1 (2)
(2007) 7.

[30] Q. Shi, J. Shan, W. Yan, Y. Wu, X. Wu, NetNPG: Nonoverlapping pattern
matching with general gap constraints, Appl. Intell. (2020), http://dx.doi.
org/10.1007/s10489-019-01616-z.

[31] C. Li, Q. Yang, J. Wang, M. Li, Efficient mining of gap-constrained subse-
quences and its various applications, ACM Transa. Knowl. Discov. Data 6
(1) (2012) 2.

[32] X. Chen, Y. Rao, H. Xie, F.L. Wang, Y. Zhao, J. Yin, Sentiment classification
using negative and intensive sentiment supplement information, Data Sci.
Eng. 4 (2) (2019) 109–118.

[33] B. Ding, D. Lo, J. Han, S.-C. Khoo, Efficient mining of closed repetitive
gapped subsequences from a sequence database, in: 2009 IEEE 25th
International Conference on Data Engineering, IEEE, 2009, pp. 1024–1035.

[34] Y. Wu, Y. Tong, X. Zhu, X. Wu, NOSEP: Nonoverlapping sequence pat-
tern mining with gap constraints, IEEE Trans. Cybern. 48 (10) (2018)
2809–2822.

[35] Y. Wu, C. Shen, H. Jiang, X. Wu, Strict pattern matching under
nonoverlapping condition, Sci. China Inf. Sci. 60 (1) (2017) 012101.

[36] R. Agrawal, R. Srikant, Mining sequential patterns, in: IEEE International
Conference on Data Engineering, vol. 95, 1995, pp. 3–14.

[37] W. Song, B. Jiang, Y. Qiao, Mining multi-relational high utility itemsets
from star schemas, Intell. Data Anal. 22 (1) (2018) 143–165.

[38] Y. Wu, Y. Wang, J. Liu, M. Yu, J. Liu, Y. Li, Mining distinguishing subse-
quence patterns with nonoverlapping condition, Cluster Comput. 22 (3)
(2019) 5905–5917.

http://refhub.elsevier.com/S0950-7051(20)30194-5/sb1
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb1
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb1
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb1
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb1
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb2
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb2
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb2
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb2
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb2
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb4
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb4
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb4
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb5
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb5
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb5
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb6
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb7
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb7
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb7
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb8
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb8
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb8
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb8
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb8
http://dx.doi.org/10.1016/j.knosys.2019.105241
http://dx.doi.org/10.1016/j.knosys.2019.105241
http://dx.doi.org/10.1016/j.knosys.2019.105241
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb10
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb10
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb10
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb10
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb10
http://dx.doi.org/10.1109/TCYB.2018.2869907
http://dx.doi.org/10.1109/TCYB.2018.2869907
http://dx.doi.org/10.1109/TCYB.2018.2869907
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb12
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb12
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb12
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb13
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb13
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb13
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb13
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb13
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb14
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb14
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb14
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb15
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb15
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb15
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb16
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb16
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb16
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb16
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb16
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb17
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb17
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb17
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb17
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb17
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb18
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb18
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb18
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb18
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb18
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb19
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb19
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb19
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb20
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb20
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb20
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb20
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb20
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb21
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb21
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb21
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb24
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb24
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb24
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb25
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb25
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb25
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb26
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb26
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb26
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb26
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb26
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb27
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb27
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb27
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb28
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb28
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb28
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb29
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb29
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb29
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb29
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb29
http://dx.doi.org/10.1007/s10489-019-01616-z
http://dx.doi.org/10.1007/s10489-019-01616-z
http://dx.doi.org/10.1007/s10489-019-01616-z
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb31
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb31
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb31
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb31
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb31
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb32
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb32
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb32
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb32
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb32
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb33
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb33
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb33
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb33
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb33
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb34
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb34
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb34
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb34
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb34
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb35
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb35
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb35
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb37
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb37
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb37
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb38
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb38
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb38
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb38
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb38

12 Y. Wu, C. Zhu, Y. Li et al. / Knowledge-Based Systems 196 (2020) 105812

[39] S. Ghosh, J. Li, L. Cao, K. Ramamohanarao, Septic shock prediction for
ICU patients via coupled HMM walking on sequential contrast patterns,
J. Biomed. Inform. 66 (2017) 19–31.

[40] F. Fumarola, P.F. Lanotte, M. Ceci, D. Malerba, CloFast: Closed sequential
pattern mining using sparse and vertical id-lists, Knowl. Inf. Syst. 48 (2)
(2016) 429–463.

[41] F.A.M. Zaki, N.F. Zulkurnain, RARE: Mining colossal closed itemset in high
dimensional data, Knowl.-Based Syst. 161 (2018) 1–11.

[42] T. Truong, H. Duong, B. Le, P. Fournier-Viger, FMaxCloHUSM: An efficient
algorithm for mining frequent closed and maximal high utility sequences,
Eng. Appl. Artif. Intell. 85 (2019) 1–20.

[43] B. Le, H. Duong, T. Truong, P. Fournier-Viger, M. F.C.loS, FGenSM: two
efficient algorithms for mining frequent closed and generator sequences
using the local pruning strategy, Knowl. Inf. Syst. 53 (1) (2017) 71–107.

[44] D. Lo, S.C. Khoo, J. Li, Mining and ranking generators of sequential patterns,
in: Proceedings of the 2008 SIAM International Conference on Data Mining,
Society for Industrial and Applied Mathematics, 2008, pp. 553–564..

[45] H. Fasihy, M.H.N. Shahraki, Incremental mining maximal frequent patterns
from univariate uncertain data, Knowl.-Based Syst. 152 (2018) 40–50.

[46] J. Zhang, Y. Wang, D. Yang, CCSpan: Mining closed contiguous sequential
patterns, Knowl.-Based Syst. 89 (2015) 1–13.

[47] S. Akther, M.R. Karim, M. Samiullah, C.F. Ahmed, Mining nonredundant
closed flexible periodic patterns, Eng. Appl. Artif. Intell. 69 (2018) 1–23.

[48] U. Niranjan, R. Subramanyam, V. Khanaa, Developing a web recommen-
dation system based on closed sequential patterns, in: Information &
Communication Technologies-International Conference, Springer, 2010, pp.
171–179.

[49] L. Abualigah, M. Shehab, M. Alshinwan, H. Alabool, Salp swarm algorithm:
A comprehensive survey, Neural Comput. Appl. (2019), http://dx.doi.org/
10.1007/s00521-019-04629-4.

[50] L. Abualigah, A.T. Khader, E.S. Hanandeh, Hybrid clustering analysis using
improved krill herd algorithm, Appl. Intell. 48 (11) (2018) 4047–4071.

[51] L. Abualigah, A. Khader, E. Hanandeh, A. Gandomi, A novel hybridization
strategy for krill herd algorithm applied to clustering techniques, Appl.
Soft Comput. 60 (2017) 423–435.

[52] B. Lavanya, A. Murugan, A DNA based approach to find closed repetitive
gapped subsequences from a sequence database, Int. J. Comput. Appl. 29
(5) (2011) 45–49.

[53] R. Dhanaseelan, M.J. Sutha, Diagnosis of coronary artery disease using an
efficient hash table based closed frequent itemsets mining, Med. Biol. Eng.
Comput. 56 (5) (2018) 749–759.

[54] L. Nie, H. Jiang, Z. Ren, Z. Sun, X. Li, Query expansion based on crowd
knowledge for code search, IEEE Trans. Serv. Comput. 9 (5) (2016)
771–783.

[55] H. Jiang, X. Chen, T. He, Z. Chen, X. Li, Fuzzy clustering of crowdsourced
test reports for apps, ACM Trans. Internet Technol. (TOIT) 18 (2) (2018)
1–28.

[56] F. Min, Y. Wu, X. Wu, The apriori property of sequence pattern mining
with wildcard gaps, in: IEEE International Conference on Bioinformatics &
Biomedicine Workshops, IEEE, 2011, pp. 138–143.

[57] F. Xie, X. Wu, X. Zhu, Efficient sequential pattern mining with wildcards
for keyphrase extraction, Knowl.-Based Syst. 115 (2017) 27–39.

[58] Y. Tong, L. Zhao, D. Yu, S. Ma, Z. Cheng, K. Xu, Mining compressed repetitive
gapped sequential patterns efficiently, in: International Conference on
Advanced Data Mining and Applications, Springer, 2009, pp. 652–660..

[59] D. Guo, X. Hu, F. Xie, X. Wu, Pattern matching with wildcards and gap-
length constraints based on a centrality-degree graph, Appl. Intell. 39 (1)
(2013) 57–74.

[60] M.K. Warmuth, D. Haussler, On the complexity of iterated shuffle, J.
Comput. System Sci. 28 (3) (1984) 345–358.

[61] X. Yan, J. Han, R. Afshar, CloSpan: Mining closed sequential patterns in
large datasets, in: Proceedings of the 2003 SIAM International Conference
on Data Mining, Society for Industrial and Applied Mathematics, SIAM,
2003, pp. 166–177.

[62] J. Wang, J. Han, C. Li, Frequent closed sequence mining without candidate
maintenance, IEEE Trans. Knowl. Data Eng. 19 (8) (2007) 1042–1056.

[63] T. Hoang, F. Mörchen, D. Fradkin, T. Calders, Mining compressing sequential
patterns, Stat. Anal. Data Min. 7 (1) (2014) 34–52.

[64] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,
M.-C. Hsu, Mining sequential patterns by pattern-growth: The prefixspan
approach, IEEE Trans. Knowl. Data Eng. 16 (11) (2004) 1424–1440.

[65] Y. Wu, S. Li, J. Liu, L. Guo, X. Wu, NETASPNO: Approximate strict
pattern matching under nonoverlapping condition, IEEE Access 6 (2018)
24350–24361.

[66] F. Wu, S. Zhao, B. Yu, Y. Chen, W. Wang, Z. Song, Y. Hu, Z. Tao, J. Tian, Y.
Pei, M. Yuan, Y. Zhang, F. Dai, Y. Liu, Q. Wang, J. Zheng, L. Xu, E. Holmes,
Y. Zhang, A new coronavirus associated with human respiratory disease in
China, Nature (2020) 1–5, http://dx.doi.org/10.1038/s41586-020-2008-3.

http://refhub.elsevier.com/S0950-7051(20)30194-5/sb39
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb39
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb39
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb39
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb39
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb40
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb40
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb40
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb40
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb40
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb41
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb41
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb41
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb42
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb42
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb42
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb42
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb42
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb43
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb43
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb43
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb43
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb43
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb44
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb44
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb44
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb44
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb44
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb45
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb45
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb45
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb46
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb46
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb46
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb47
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb47
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb47
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb48
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb48
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb48
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb48
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb48
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb48
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb48
http://dx.doi.org/10.1007/s00521-019-04629-4
http://dx.doi.org/10.1007/s00521-019-04629-4
http://dx.doi.org/10.1007/s00521-019-04629-4
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb50
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb50
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb50
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb51
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb51
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb51
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb51
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb51
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb52
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb52
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb52
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb52
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb52
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb53
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb53
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb53
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb53
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb53
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb54
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb54
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb54
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb54
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb54
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb55
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb55
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb55
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb55
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb55
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb56
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb56
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb56
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb56
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb56
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb57
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb57
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb57
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb58
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb58
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb58
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb58
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb58
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb59
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb59
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb59
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb59
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb59
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb60
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb60
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb60
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb61
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb61
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb61
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb61
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb61
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb61
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb61
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb62
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb62
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb62
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb63
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb63
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb63
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb64
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb64
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb64
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb64
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb64
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb65
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb65
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb65
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb65
http://refhub.elsevier.com/S0950-7051(20)30194-5/sb65
http://dx.doi.org/10.1038/s41586-020-2008-3

