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Abstract

Named Entity Recognition (NER) is a challenging task that extracts named

entities from unstructured text data, including news, articles, social comments,

etc. The NER system has been studied for decades. Recently, the development

of Deep Neural Networks and the progress of pre-trained word embedding have

become a driving force for NER. Under such circumstances, how to make full use

of the information extracted by word embedding requires more in-depth research.

In this paper, we propose an Adversarial Trained LSTM-CNN (ASTRAL) system

to improve the current NER method from both the model structure and the

training process. In order to make use of the spatial information between

adjacent words, Gated-CNN is introduced to fuse the information of adjacent

words. Besides, a specific Adversarial training method is proposed to deal with

the overfitting problem in NER. We add perturbation to variables in the network

during the training process, making the variables more diverse, improving the

generalization and robustness of the model. Our model is evaluated on three

benchmarks, CoNLL-03, OntoNotes 5.0, and WNUT-17, achieving state-of-the-

art results. Ablation study and case study also show that our system can

converge faster and is less prone to overfitting.
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Adversarial training

1. Introduction

Named Entity Recognition (NER) [1] is a challenging and fundamental task

in natural language processing. The NER aims to recognize named entities

such as person, location, organization from unstructured text, converting free

text into the structured one. For several tasks, such as question answering and

information retrieval, a NER system is often used to preprocess the data. Thus

the performance of the NER would directly affect the overall performance of

these advanced tasks. Besides, scientists, especially those working on medical,

biographical, and geographical, usually need to find out name entities in the

literature for further research. For example, extracting the geographic locations

automatically and then displaying them on electronic maps will help people

better understand and utilize the literature [2].

Over the past few years, NER has been widely investigated. The development

of the NER system is highly related to the evolution of the natural language

processing system. In the 1990s, rule-based natural language processing meth-

ods [3, 4] prevailed, solved some easy problems. However, it turns out that

rule-based methods had poor versatility and are hard to transfer between do-

mains. NER models could also take traditional statistic methods, such as Naive

Bayes Classification [5], CRF (Conditional Random Field) [6] and HMM (Hidden

Macov Model) [7]. However, these models rely on resources and features that are

costly to collect. In recent years, deep neural networks provide a more practical

solution. By learning the statistical features in a large-scale corpus, deep neural

networks summarize and extract the features for specific tasks. In this paradigm,

some breakthroughs appear in many tasks such as text classification, syntactic

analysis, named entity recognition, information retrieval, question answering

systems, etc. Furthermore, Collobert et al. proposed SENNA [8], a unified

neural network architecture and learning algorithm, which can be applied to

various natural language processing including NER.
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Recently, researchers are concerned about generating high-quality text rep-

resentation, mapping natural language symbols into a high-dimensional vector

space. Latest works for text representation includes ELMo [9], BERT [10],

XLNET [11], etc. However, only improving the feature generation ability is not

enough. It is an important issue to build a suitable network model and better use

these text representation. BLSTM-CNN [12] firstly combines the Bi-directional

LSTM and CNN for the NER task. CNN in this model is used to extract char-

acter features and generate character embedding. Similarly, [13] proposes CNN

structure by gating mechanism, which allows more flexible information control

on the CNN features. However, these methods ignore the spatial characteristic

that the “neighbor words” can reflect the label of a certain word. For example,

some words are often adjacent to the named entity, such as the articles (e.g.,

a, the, to) or the verbs (e.g., love, play). In this paper, we propose a special

CNN module to process spatial features, helping to extract spatial information

from adjacent words. Benefited from CNN’s filter structure, the representation

of each word can be closely related to the semantic information of its adjacent

words. In order to control the information extracted from surrounding words,

we also apply a gated mechanism within the CNN module.

Under the stronger text representation and model structure, the performance

of the NER system can be significantly improved. However, there is still a gap

between the capabilities of the NER system and the industry requirements. Since

the size of NER datasets is usually not large enough, overfitting is an urgent

problem for the deep neural network based NER. So it is easy for the model to

identify words that have appeared before, but hard to understand unfamiliar

words. Therefore, the model needs to have a stronger generalization ability to

obtain stable performance. Adversarial training is a method to train the network

with both the primal examples and adversarial examples. Here adversarial

example means the primal example added a small adversarial perturbation which

is designed to make the target model perform bad. Adversarial training is

now widely used in the image classification task, significantly increasing the

generalization ability of the network against the input perturbation. For the
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NER task, the input is usually discrete one-hot vectors that do not meet the

infinitesimal perturbation. Instead of applying the adversarial examples to the

word input, we add perturbations to the continuous word embeddings and other

variables learned in the network. The adversarial examples are trained together

with raw examples, improving the model’s ability to withstand disturbances,

and accelerating the converging process.

We achieve a robust NER system ASTRAL (Adversarial Trained LSTM-

CNN) by augmenting the network structure and enhancing the training process.

The contributions of our work are as follows:

• We introduced the Gated-CNN into named entity recognition task, as an

enhancement of feature extraction. We apply CNN modules on the word

level, which helps the system to pay more attention to adjacent words. In

order to flexibly control the spatial information extracted by CNN, we

apply a gating mechanism to merge the spatial information and combine

them with the original features.

• We also refine the training process to make the NER system more stable.

With adversarial training, we construct perturbations and add them to

arbitrary variables in the model during each training step, making the

model have a better generalization ability. When generating perturbations,

we use the target variable to constrain the norm, so that adversarial training

can be applied to any variable within the model, even to multiple variables

at the same time. The experiment shows that with adversarial training,

the network is much easier to converge than the basic model.

• We quantitatively evaluate our system on three benchmarks, which achieves

the state of the art results. The experiments show that Gated-CNN has

a different influence on various types of named entities, and adversarial

training is beneficial to reduce training loss and prevent overfitting. We

also perform a qualitative case study to analyze both the success and

failure cases in the system. It shows the advantages of our system and the

problems that need to be fixed.
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The remainder of this paper is organized as follows. Section 2 presents an

overview of traditional and deep neural network based methods on NER, as

well as the methods for text representation and adversarial training. Section 3

describes the methodology used by our model. Section 4 verifies the effectiveness

of our model by performing comparisons with the state-of-the-art methods as

well as ablation experiments. Section 5 concludes the paper with discussions

and outlooks.

2. Related Work

2.1. Named Entity Recognition

Named Entity Recognition (NER) aims at detecting named entities (e.g.,

person, location, time, and organization) from unstructured text. In this subsec-

tion, we will introduce the traditional high-performance approaches and deep

neural network based models. Over the last decades, numerous approaches based

on traditional machine learning algorithms are carried out on the NER task.

Those methods include Naive Bayes Classifier [5], Conditional Random Fields

models (CRF) [14], and Knowledge-driven models [15]. However, traditional

methods such as Naive Bayes Classifier and Knowledge-driven models need to

write too many rules according to different scenarios. Thus a specific task cannot

be generalized to all the applications, making the transfer between different

domains cumbersome. Besides, CRF mainly focuses on the transition probability

of each word, and it does not pay enough attention to the name entity attributes

of the word.

Now, most of the NER methods are based on sequence labelling [12, 16,

17, 18, 19, 20]. These methods classify every word in the corpus into different

categories. These categories are corresponding to different application scenarios,

such as person, location, time and organizations, etc. In this way, a sequence

of labels which contains the entity information can be generated from these

words. With the developing of deep learning techniques, the neural network has

gained state-of-the-art performance on NER. Some researchers try to reduce the
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manual efforts for getting labeled data. Yanyao et al. [21] carry out incremental

active learning, in which the required amount of labeled training data can be

dramatically reduced. And the lightweight architecture also speeds up the

training process. These models aim to minimize the annotation cost while

maintaining the performance of NER models [22]. The generalization of the

model is also a vital problem worth studying. Zhenghui et al. [15] propose

label-aware feature transfer learning and parameter transfer learning for cross-

specialty NER. In this way, a medical NER system designed for one specialty

could be conveniently applied to another one with minimal annotation efforts. In

order to combine the advantages of previous work and get a better model ability,

many researchers combine Bidirectional LSTM (Bi-LSTM) [23] and CRF [14] to

perform NER task [24, 17]. They first use Bi-LSTM to extract the text feature,

then construct the CRF layer to get the output label.

2.2. Text Representation

Text representation is a crucial technique in natural language processing.

Bengio proposed the concept of NNLM (neural network language model) [25]

in 2003, which made the theoretical foundation for using neural networks to

generate word embedding. Hence a paradigm is formed that mapping linguistic

symbols to high-dimensional spaces for further processing. After word2vec [26]

and glove [27] are proposed, word embedding gained a better representation

ability. With large-scale corpus, the neural network based language model exerts

analytical ability and achieves a lower perplexity. Since then, word embedding

has become a necessary method in the field of natural language processing,

performing as the representation of text in various tasks.

The text representation has great progress in recent years. There are a series

of excellent works such as ELMo [9], GPT [28], BERT [10], and XLNET [11].

These tasks divide natural language processing into two-step: firstly use the

language model to pre-train, and then use the fine-tuning module to solve various

tasks. ELMo [9] can dynamically adjust the word embedding according to the

current context. GPT (Generative Pre-Training) [28] uses Transformer [29] as a
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feature extractor instead of RNN to obtain stronger feature extraction ability.

BERT [10] uses the masked language model and the next sentence prediction

to enhance the mining of context. XLNET [11] incorporates the Transformer-

XL [30] idea for relative segment encodings and expands the size of the dataset.

These text representation methods are deeply studied in terms of pre-training,

while the construction of the application module supporting the second stage

is not focused. In this paper, instead of improving the text representation, we

focus on building a better model to make use of these text representations.

2.3. Adversarial Training

Adversarial training [31] is a method to enhance the training process with

adversarial examples. Szegedy Christian et al. [32] indicates that if the input

sample is added with a well-designed perturbation, that human would not

even notice, the neural network may get the wrong prediction. The sample

with well-designed small perturbation is called the adversarial example. There

are two main kinds of research on adversarial examples recently. The first

way is adversarial attacking [33, 34]. The adversarial examples are utilized to

evaluate the robustness of various models by attacking them. Additionally, the

adversarial examples could be considered as extended training data to enhance

the generalization and robustness of the model, which is named adversarial

training.

The adversarial training method is first used on image classification task [31].

Before updating parameters in each training step, adversarial training examples

are generated by adding perturbation to current parameters. So the adversarial

training method is an augmentation of training data. Following the idea of

adversarial training, Park Sungrae et al. [35] propose adversarial dropout by

generating the mask of dropout according to the weak point of the model, which

could also lead to a better training process. Adversarial training is also used in

text classification [36]. In the natural language processing domain, the input of

the model is discrete. So the perturbation is added to the word embedding and

achieves state-of-the-art performance with a quite simple LSTM structure. After
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Figure 1: The overall architecture of ASTRAL. The model consists of five modules: embedding

module, Gated-CNN module, Bi-LSTM module, CRF module, and adversarial training module.

that, adversarial training is used to benefit the task of relation extraction [37].

In this paper, we explore the advantage of adversarial training on the NER task.

3. Methodology

In this section, we will first demonstrate the architecture of our ASTRAL

(AdverSarial TRAined LSTM-CNN) model, then illustrate the implementation

detail of adversarial training.

The overall structure of ASTRAL is illustrated in Figure 1. As shown in

this figure, the goal of ASTRAL is to predict tags Ypre with the same length of

the input sentence W . Here W = (w1, w2, . . . , wn) represents a sentence with n

tokens, Ypre = (y1, y2, . . . , yn) represents n predicted tags for tokens in W . In

our model, IOB format (short for inside, outside, and beginning) is used as the

label standard. Since there are multiple types of named entities, suffixes are

attached to represent their entity type after the B and I. So the tag in Ypre could
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be B-#, where # is related to the specific named entity type, e.g., ORG, MISC.

For example, in Figure 1, when identifying the sentence “EU rejects German call

to boycott British lamb”, we can determine that “EU” belongs to organization

(ORG), while “German” and “British” belong to miscellaneous (MISC), thus

the sequence of tags would be “B-ORG, O, B-MISC, O, O, O, B-MISC, O”.

The ASTRAL model is composed of five modules: embedding module, Gated-

CNN module, Bi-LSTM module, CRF module, and adversarial training module.

Embedding module transforms the words into vectors. Bi-LSTM module is

a variant of RNN (Recurrent Neural Network), which generate features from

word vectors. CNN can enhance the refine of spatial features, and the gate

mechanism further filters the obtained information. The CRF module combines

the information acquired by the Bi-LSTM and the Gated-CNN, then generates

the final tags as the output. During training, the adversarial training module

generates adversarial perturbation to make the model more generalized and

obtain better training accuracy.

3.1. Embedding Module

Given a sentence W = (w1, w2, . . . , wn) with n tokens, the embedding

module aims at transferring W ∈ Rnid×n into its embedding representation

E = (e1, e2, . . . , en), where wi ∈ Z+ denotes the index of the i-th token in the

sentence, ei ∈ Rde corresponds to the i-th token, nid is the number of all used

tokens. In our model, E ∈ Rde×n is the concatenation of Ew and Ef as

E = [Ew;Ef ] , (1)

where [·; ·] denotes the concatenation of different vectors, Ew ∈ Rdw×n denotes

the pooled contextualized embedding [38], Ef ∈ Rdf×n denotes the feature

embedding, de = dw + df , dw = 300 and df = 20 in our experiments. We then

introduce the definition and function of these two submodules in detail. Pooled

contextualized embedding [38] Ew is a kind of general word embedding

Ew = Mw ·W , (2)
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where Mw ∈ Rdw×nid denotes the matric of pre-trained pooled contextualized

embedding. Ew contains contextual meaning around the target word and previous

memory meaning appeared in the dataset before. Contextualized embedding

can produce meaningful embeddings for even rare string by using the memory

mechanism instances. And pooling operation helps to distill word representation

from all contextualized tokens. Then we utilize feature embedding Ef to extract

rule-based information

Ef = Mf ·Wf , (3)

where Mf ∈ Rdf×nf denotes the parameter matric of feature embedding, and

Wf ∈ Rnf×n denotes the features indicator of given tokens. The capitalization

of words is obviously useful when discriminating named entities, e.g., a location

usually starts with an upper character. So following the previous work [39],

our selected five features are all-lower, upper-first, upper-not-first, numeric, and

no-alpha-num, which means nf = 5. Then the sentence feature Wf is mapped

by the random initialized lookup table Mf to Ef ∈ Rdf×n which contains n

vectors with df dimension. After training, feature embedding Ef can establish

an effective representation relationship with named entities.

3.2. Gated-CNN Module

In this model, the Gated-CNN module is proposed to integrate the spatial

information extracted by the adjacent words. The structure of the Gated-CNN

module is shown in Figure 2, which consists of one CNN and two linear layers.

Given the input sentence variable with n tokens V = (v1, v2, ..., vn), we first

calculate the integrated representation for each token with its adjacent tokens:

Vc = fCNN (V ) (4)

where fCNN (·) denotes the function of CNN. This is achieved by one filter

with a size of Nw × No, where window size Nw is set in [3,5,7], meaning the

number of tokens that are processed at a time and No is a hyperparameter

related to the output vector size. So the feature vector of each token is related

to its adjacent tokens. Under the effect of padding, each column of the vector
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<PAD> v1      v2      v3       v4         v5    <PAD>

Input

CNN

Gate

Gated-CNN Feature

V

Vc

Vg

LinearLinear

Concatenate

Output V’

Figure 2: The structure of Gated-CNN. V denotes the input variable which could be embedding

E or hidden states of Bi-LSTM H. The input variable V passes a CNN with the filter size

3 ∗N and get the feature containing spatial information (represented in yellow). Then two

linear functions are used to get the Gated-CNN feature Vg .

Vc = (vc1, vc2, ..., vcn) obtained by CNN can still correspond to the original token.

Therefore, the vector representation of the i-th token vci synthesizes the spatial

information of its two sides’ surrounding words.

Then a gated linear layer is proposed to control the feature vectors produced

by the CNN layer:

Vg = (W1 · Vc + b1)⊗ σ(W2 · Vc + b2) (5)

where W1, W2, b1, b2 are training parameters of linear functions, ⊗ denotes

element-wise product, and σ denotes the sigmoid function. The gate is trained

through the dataset, and it roughly decreases the task-independent vectors

to reduce the noise, while amplifying the task-related vectors to enhance the

network focus. The gate makes the variables more responsive to the task by

changing the focus on the feature map Vc.

Finally, we concatenate the variable Vg with V , integrating spatial information
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LSTMF LSTMF LSTMF

LSTMB LSTMB LSTMB

h0 h1 h2

EU rejects German

Figure 3: The structure of Bi-LSTM. LSTMF is the forward LSTM, LSTMB is the backward

LSTM. The output of Bi-LSTM H is the concatenation of these two sub LSTMs’ output.

and the original information to get a more vibrant text representation V ′ as

V ′ = [V ;Vg] . (6)

In this model, the Gated-CNN module is used twice, one for embedding and

the other for contextual extraction. As it is shown in Figure 1, for Gated-CNN I,

the input variable E is the embedding representation of the sentence, and we get

E′ = G(E). For Gated-CNN II, the integrated high-level variable H is processed.

It is the same for H ′ = G(H) when Gated-CNN is used for the hidden state

variable of Bi-LSTM H.

3.3. Bi-LSTM Module

LSTM (Long Short Term Memory) [40] is a kind of RNN (Recurrent neural

network), which extracts the features in the chronological order of the input.

And the formulation of Bi-LSTM can be described as:

→
H= LSTMF (E′)
←
H= LSTMB(E′)

H = [
→
H;
←
H] .

(7)
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In this paper, we use Bi-LSTM (Bidirectional LSTM) to extracts the features

from both forward direction as
→
H and backward direction as

←
H. The network

structure is shown in Figure 3. It obtains the representation of each token in turn

from both the forward and the backward directions, finding out the correlation

between other surrounding words.

3.4. CRF Module

The use of CRF (Conditional Random Field) in conjunction with Bi-LSTM

is a standard method for the sequence labeling task. As shown in Figure 1,

the input variable of CRF is H ′ generated by Gated-CNN II, and its output is

predicted tags Ypre = (y1, y2, ..., yn). CRF generates sequence tags Ypre by status

feature function sk(yi, H
′, i) and the transition feature function tj(yi+1, yi, H

′, i).

And the sk(yi, H
′, i) indicates the influence of the input variable H ′ on yi. The

tj(yi+1, yi, H
′, i) depicts the effect of H ′ on the adjacent tag changes in Ypre.

The predicted tags Ypre is generated by maximum the score

P (y|x) =
1

Z
exp(

∑
j

n−1∑
i=1

λitj(yi+1, yi, H
′, i) +

∑
k

n∑
i=1

µksk(yi, H
′, i)) , (8)

where λi and µk are hyperparameters, and Z is the normalization factor. The

CRF module can learn the constraints of the sequence tags. For example, the

beginning of a sentence should be “B” or “O” instead of “I”. “O I” is impossible

since the beginning of the named entity should be “B” instead of “I”.

3.5. Adversarial Training Module

In general, the purpose of the deep neural network is to get predicted output

Ypre by the input Vin, making the predicted result Ypre and the ground truth Y

closer. The model learns the parameters θ to minimize the loss function

L = loss(Ypre, Y ) , (9)

where commonly used loss function includes L1Loss, MSELoss (mean squared

error), CrossEntropyLoss, NLLLoss (Negative Log Likelihood), etc. We use

CrossEntropyLoss in our experiments.
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Structure after X

Input

Output

Input

model structure 

before X

target 
variable 

X

model structure 

after X

Ypre-adv Ladv

Ypre

Y

Lpri

L+
ground 
truth

adversarial 
perturbation
Radv

fbef(·) faft(·)

Figure 4: The flowchart of adversarial training. The solid line (blue) shows the first round

process of obtaining primal loss Lpri. The dashed line (orange) shows the second round process

of calculating Radv according to L and X, further obtaining Ladv , and then finally generating

final loss L. Here � denotes the loss function, ⊕ denotes add operation; Ypre and Ypre−adv

represent prediction results with and without adversarial perturbation respectively. The final

optimized loss L is the sum of primal loss Lpri and adversarial loss Ladv .

In this section, we describe how to use normalized adversarial training to

strengthen the training process. As shown in Figure 4, for every variable X in

the model, we can regard it as the adversarial training target variable and add

perturbation on it. We represent the model before X as fbef (·), and the model

after X as faft(·). In our model, we choose the output of Gated-CNN modules

E′ and H ′ as the target variables.

The adversarial training process in our model can be divided into two rounds.

In the first round, our model generates primal loss Lpri based on the input.

X = fbef (Vin; θ), Ypre = faft(X; θ) , (10)

where Vin is the input variable for the model. And the primal loss is

Lpri = F (X,Y ; θ) = loss(faft(X; θ), Y ) . (11)

In the second round, Lpri is derived from X and normalized to obtain adversarial

perturbation radv. Here radv should theoretically be obtained from the following

optimization problems:

radv = arg max
r,||r||≤ε

F (X + r, Y ; θ̂) , (12)

where ε constraints the norm of radv, and θ̂ indicates the instantaneous value of

the parameter for each solution. The parameters are constantly updated, thus
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the value of θ̂ is different for each training sample and training step. In order to

get the numerical solution for radv, we apply an approximate solution [31]. The

F (X,Y ; θ̂) is assumed as a linear function around X, so the approximated value

of radv can be defined as:

radv = εX ⊗ d/||d||, d = ∇XF (X,Y ; θ̂) , (13)

where d is the gradient of the primal loss
∂Lpri

∂X , ε is a hyperparameter, ⊗ denotes

element-wise product and radv is the adversarial perturbation designed to ascend

the current loss. X is introduced as the multiplicator when calculating radv,

because it is more robust when simultaneously using radv of multiple target

variables under such normalization. Then the sum of radv and X is put into the

faft(·) (structure after X) to get adversarial loss Ladv as

Ladv = loss(faft(X + radv; θ), Y ) . (14)

The final optimized loss is the sum of these two losses as

L = Lpri + Ladv . (15)

The model parameters θ optimized in this way can be adapted to both the

original data and the disturbing data.

4. Experiments and Results

4.1. Dataset and Criteria

4.1.1. Dataset

In this paper, we apply our NER system to three English datasets, CoNLL-

03 [41], OntoNotes 5.0 [42] and WNUT-17 [43], showcasing the effectiveness

and robustness of our system. CoNLL-03 [41] is a large dataset widely used

by NER researchers, whose data source is Reuters RCV1 corpus, leading its

main content to be newswire. Its named entities include location, organization,

person, and miscellaneous. OntoNotes 5.0 [42] is a larger dataset which was

initially built for CoNLL 2012 shared task. The source of the text in the dataset
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Table 1: Dataset statistics. The size of datasets is in the number of entities/tokens.

Dataset Train Dev Test
Entities

Frequency

Entity

Types

CoNLL-03 23,499 / 204,567 5,942 / 51,578 5,648 / 46,666 11.6% 4

OntoNotes 5.0 81,828 / 1,088,503 11,066 / 147,724 11,257 / 152,728 7.5% 18

WNUT-17 3,160 / 62,729 1,250 / 15,733 1,589 / 23,394 5.9% 6
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Figure 5: The distribution of named entities on the three datasets. The number of named

entities within every 100 tokens is counted, and we show the percentage over that number on

each dataset. We only show the number from 0 to 50 since few cases with more than 50 named

entity tokens within 100 tokens.

was the LDC2013T19 [44] published by the Linguistic Data Consortium. It

covers a wide range of content, including telephone conversations, newswire,

newsgroups, broadcast news, broadcast conversation, and weblogs. WNUT-

17 [43] is a complex dataset from various sources, which is mainly derived from

social media. The training set is extracted from tweets, while the development

set comes from the comments of YouTube, and the testing set is based on Reddit

and StackExchange. The inconsistent data for training and testing make it

difficult to recognize named entities for WNUT-17.

We show the statistics of the above datasets in Table 1. When evaluating the

NER system, researchers are more inclined to compare their results on CoNLL-03.

From Table 1, we can see that the token and entity size of OntoNotes 5.0 is the

largest, which helps to test the generalization ability of our network on large
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datasets. WNUT-17, a dataset closer to daily lives, makes more sense for the

practical implication of the NER systems. We also analyse the distribution of

named entities by the column “Entities Frequency” in Table 1 and the curves

in Figure 5. The frequency of entities for the three datasets is quite different.

11.6% of tokens in CoNLL-03 are named entities, while only 5.9% of that in

WNUT-17. Figure 5 specifically indicates this phenomenon. We divide every

100 tokens into a group, and the percentage in CoNLL-03 that contains ten or

more entity tokens is 70%, while that in WNUT-17 is only 14%. It means the

percentage of entity tokens in WNUT-17 is relatively small.

4.1.2. Evaluation Metrics

In the experiment, we mainly measure the F1 values of different models in

the above three datasets. Precision (P ), Recall (R), and F1 value are common

indicators for measuring model performance:

P =
|A|
|Tpre|

, R =
|A|
|Tgt|

, F1 =
2PR

P +R
, (16)

where Tpre represents the predicted answer collection, Tgt denotes the ground

truth answer collection, A = Tpre ∩ Tgt is the hit answers, and | · | is the number

of elements in the collection. In detail, we measure the performance of the

system for each word. For example, as a named entity consisting of two words

with labels “B-PER I-PER”, it is considered to be two essential elements when

evaluating.

4.2. Main Results

We perform experiments on three datasets, CoNLL-03, OntoNote 5.0, and

WNUT-17, to measure the models’ ability to identify named entities. The

tested models include those focus on model improvements, such as Character-

LSTM [17] and BLSTM-CNN [12], and those focus on word embedding and

representation, such as ELMo [9] and BERT [10]. The quantitative results of

our model are shown in Table 2. Since CoNLL-03 is widely used by most of the

models, the experimental results of former research are sufficient, which is also
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Table 2: Test F1 score for different models on the datasets. In this table, “∗” indicates the

results implemented by us, and “-” indicates that the performances of the models on the

corresponding datasets are not yet obtained.

Model CoNLL-03 OntoNote 5.0 WNUT-17

Character-LSTM [17] 90.94 84.86∗ 44.79∗

BLSTM-CNN [12] 91.62 86.28 45.14∗

Stacked Multitask [18] - - 45.55

ELMo [9] 92.22 - -

CVT+Multitask [19] 92.6 - -

BERT [10] 92.81 88.28∗ 49.23∗

Contextual String Embedding [20] 92.86 88.75 49.49

ASTRAL (ours) 93.32 89.44 49.72

the most convincing measure of system performance. In order to strengthen the

integrity of the experiment, we implement several models, i.e., Character-LSTM,

BLSTM-CNN, and BERT. And these implemented results are marked with

“∗” in Table 2. Although some other complex models still lack some results

which are marked with “-”, we believe that the current results are sufficient for

experimental analysis. Before the methods with pre-training language models

such as ELMo [9], the model could not achieve 92% in CoNLL-03. While

with the language model like ELMo [9], BERT [10], and other large-scale pre-

training methods, the performance of the model has been significantly improved

up to 92.81%. Our model follows the language model method, focusing on

improving the model structure and training method. It can achieve 93.32% F1

on the CoNLL-03. The improvement can also be found on both OntoNote 5.0

and WNUT-17 by improving the model structure or the word representation.

Especially on WNUT-17 dataset, the BERT model has a 3.68% improvement

over Stacked Multitask. It shows that the pre-training language model benefits

more on the dataset with the complex and diverse language. Our model also

performs well on more complex datasets OntoNote 5.0 and WNUT-17. The

experimental results show that ASTRAL has got state-of-the-art results in the

NER task.
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Table 3: Ablation study for our ASTRAL model. Here “Basic” denotes basic model, “GC”

denotes Gated-CNN, “AT” denotes Adversarial Training, and “ATGC” denotes the combination

of GC and AT.

Model CoNLL-03 OntoNote 5.0 WNUT-17

ASTRAL

Basic 92.92 88.77 49.15

GC 93.04 89.02 49.38

AT 93.18 89.23 49.65

ATGC 93.32 89.44 49.72

4.3. Effect of Model Architecture

Ablation Study. In order to verify the validity of our modules, we conducted

an ablation study. As it is shown in Table 3, we conducted experiments on

the four conditions of ASTRAL for three datasets. Here Basic indicates the

basic model with pre-trained word embedding and Bi-LSTM. GC indicates that

only the Gated-CNN is added to the basic model. AT indicates that only the

adversarial training method is added to the basic model. ATGC indicates that

the complete ASTRAL model includes Gated-CNN and adversarial training. As

can be seen from the results in Table 3, Gated-CNN and adversarial training

both benefit the overall results. Finally, the combination of Gated-CNN and

adversarial training can achieve better experimental results. It causes accuracy

increase for 0.42% on CoNLL-03 dataset, 0.67% on OntoNote 5.0 dataset, and

0.57% on WNUT-17 dataset respectively.

Figure 6 shows the model performance on different entity types in the two

datasets CoNLL-03 and WNUT-17. When the model structure changes, the

specific F1 values of different entity types are also different. Gated-CNN leads a

significant improvement on the ORG (organization), PER (person) in CoNLL-03,

as well as the creative-work, person in WNUT-17. One reasonable explanation

lies that the Gated-CNN emphasizes the attention of each word to its adjacent

words, and there are usually specific words (such as “at”, “to”, etc.) around

these benefited named entities. But it has little or even adverse effect on certain

entity types such as corporation and product on WNUT-17, which indicates

that the adjacent words might have a negative impact on recognizing some
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Figure 6: The impact of changes in the model structure on various entity types. The results

on CoNLL-03 dataset and WNUT-17 dataset are shown in the figure. Here “Basic” denotes

basic model, “GC” denotes Gated-CNN, “AT” denotes Adversarial Training, and “ATGC”

denotes the combination of GC and AT.
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Figure 7: Dev F1 - Train F1 curves for different model conditions. Here “Basic” denotes basic

model, “GC” denotes Gated-CNN, and “ATGC” denotes the combination of GC and AT.

kinds of entities. If the relationship between adjacent words and named entities

is not obvious, then Gated-CNN will bring some noise to the system. Unlike

Gated-CNN, adversarial training has improved the performance on almost all

kinds of entities, indicating its stability.

Model Generalization. Figure 7 shows the Dev F1 - Train F1 curve under three

conditions: basic model (the green curve), GC (the blue curve), and ATGC (the

red curve). Dev F1 and Train F1 indicate the model performance on validating

set and training set respectively in the training process.

The curves of Basic (green) and GC (blue) in Figure 7 is close, indicating

our basic model and Gated-CNN model have similar generalization ability. The

position of the red curve is on the upper side of the other curves, indicating

that the Dev F1 value of ATGC is higher under the same Train F1. So we

can conclude that ATGC model has better generalization ability. Additionally,

observing the upper right corner of Figure 7, it is obvious that Basic, GC, and

ATGC can reach upper and upper positions, respectively. It shows that the

training level of the model is deepened in these three cases. The training level of

GC is higher than that of Basic, indicating that the adjacent word information
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extracted by the model is beneficial to model training. ATGC’s training level

is the highest, indicating that the adversarial perturbation is useful for model

training.

4.4. Effect of Adversarial Training

Now we explore the effect of adversarial training by presenting the indicators

in the training process with and without it. Figure 8 shows the change of training

loss and Dev F1 as the training epoch increases. We record the first 50 epochs

to observe the situation during training. The green curve represents the basic

condition, and the carmine curve represents the AT condition. Figure 8(a) shows

that the training loss of AT condition is lower, and the convergence speed is

faster during training, especially in the first 30 epochs. And the final training

loss values of basic and AT condition are both close to 0.06 since they are both

overfitting at that time. From Figure 8(b), it can be seen that the Dev F1 of

AT condition increased faster, and its final value is higher. It indicates that

adversarial training has an inhibitory effect on overfitting.

4.5. Case Study

We show several cases in Table 4. Two sentences from each dataset are selected

to analyze the characteristics of the datasets and the changes in model results

under different conditions. Here we choose the sentences with concentrated named

entities to analyze the model performance of different conditions. The column

of Ground Truth shows the standard answers. In the following three columns,

Basic, GC, and ATGC, we list the differences between the corresponding model

and ground truth. Here “LACK”, “WRONG”, and “CORRECT” respectively

indicate the meaning of absence, misclassification, and entirely correct. We still

use the given label form for each dataset, so that different datasets have different

kinds of labels. For example, the geographically named entity labeled “LOC” in

CoNLL-03 is similar to “location” in WNUT, as well as “GPE” in OntoNote 5.0.

Table 4 indicates that the results of Basic, GC, and ATGC are getting better

and better for these samples, which is consistent with the previous statistical
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Table 4: Case study for the three datasets. Here “LACK”, “WRONG”, and “CORRECT”

indicate the meaning of absence, misclassification, and entirely correct respectively.

Dataset Sentence
Named Entity

GroundTruth Basic GC ATGC

CoNLL-03

Hosts UAE play Kuwait

and South Korea take

on Indonesia on Sat-

urday in Group A

matches.

LOC: UAE,

Kuwait, South

Korea, Indonesia

LACK - LOC: In-

donesia

CORRECT CORRECT

Top-seeded Eyles now

meets titleholder Peter

Nicol of Scotland who

overcame Simon Parke

of England.

PER: Eyles, Pe-

ter Nicol, Simon

Parke; LOC: Scot-

land, England

LACK - PER: Pe-

ter Nicol

WRONG - LOC:

Peter Nicol

CORRECT

OntoNote 5.0

The same toy is sold for

less than 40 US dollars

at Wal-Mart.

MONEY: 40 US

dollars; ORG:

Wal-Mart

LACK - MONEY:

40 US dollars

LACK - MONEY:

40 US dollars

CORRECT

Last week’s real Jack-

son story ran in the New

York Daily News.

DATA: Last week;

PERSON: Jack-

son; ORG: the

New York Daily

News

WRONG - GPE:

New York

CORRECT CORRECT

WNUT-17

I will nominate Virgin

Active at Moore Park /

Zetland for you.

corporation: Vir-

gin Active; loca-

tion: Moore Park,

Zetland

CORRECT CORRECT CORRECT

Why were Olive

and Emma’s pow-

ers changed in Miss

Peregrint’s Home for

Peculiar Children?

person: Olive,

Emma; creative-

work: Miss

Peregrint’s Home,

Peculiar Children;

WRONG - per-

son: Peregrint;

LACK - creative-

work: Miss Pere-

grint’s Home for

Peculiar Children;

WRONG - per-

son: Peregrint;

LACK - creative-

work: Miss Pere-

grint’s Home for

Peculiar Children;

LACK - creative-

work: Miss Pere-

grint’s Home for

Peculiar Children;

Table 5: An example of predicted probability distribution under different model conditions.

The example is the first case of CoNLL-03 in Table 4, and these probability values are from

the output of CRF Module. In this table, the darker background color of tokens means the

higher probability of being predicted as LOC.

Model Predicted probability of LOC

ASTRAL

Basic

Hosts UAE play Kuwait and South Korea take on Indonesia on Saturday in Group A matches.

Hosts UAE play Kuwait and South Korea take on Indonesia on Saturday in Group A matches.

Hosts UAE play Kuwait and South Korea take on Indonesia on Saturday in Group A matches.

GC

Hosts UAE play Kuwait and South Korea take on Indonesia on Saturday in Group A matches.

Hosts UAE play Kuwait and South Korea take on Indonesia on Saturday in Group A matches.

Hosts UAE play Kuwait and South Korea take on Indonesia on Saturday in Group A matches.

ATGC Hosts UAE play Kuwait and South Korea take on Indonesia on Saturday in Group A matches.

Hosts UAE play Kuwait and South Korea take on Indonesia on Saturday in Group A matches.

Hosts UAE play Kuwait and South Korea take on Indonesia on Saturday in Group A matches.
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results. From some examples, we notice that GC is benefiting from the adjacent

words. In the first sentence of CoNLL-03, thanks to the help of “on”, GC

can solve the LACK of “Indonesia”. In the second sentence of OntoNote 5.0,

GC correctly identifies “New York Daily News” as an organization instead

of recognizing “New York” itself as a location. We further analysis the first

case in Table 4 to show the actual impact of the model condition in terms of

word choice. As shown in Table 5, the darker the word’s background in this

table, the more likely the model recognizes it as LOC. Compared with Basic’s

result, GC’s attention to “ Indonesia ” has increased significantly, but words

such as “ Saturday ” and “ Group ” have also caused more interference at the

same time. And the ATGC effectively suppresses this interference. In order

to further explore the advantages of GC, we observe 50 cases per each dataset

in which location entities are misclassified by GC though their adjacent words

contain prepositions like “on”, “at”. We find that the percentages of these

location entities which correctly identified under GC are 64%, 56%, and 68% for

CoNLL-03, OntoNote 5.0 and WNUT-17 respectively. This shows that GC can

effectively reduce errors in these cases. For ATGC, the named entities in the

samples are almost extracted correctly. Benefiting from the adversarial training,

ATGC can correctly recognize a rare name “Peter Nicol” as “person” instead

of “location”. Overall, the model has strong extraction capabilities for simple

locations and organizational structures. However, specific words that require

background knowledge, such as “Miss Peregrint’s Home for Peculiar Children”,

are still hard to be extracted.

5. Conclusion and Future Work

In this paper, a NER system named ASTRAL is proposed, whose model

structure and training process are augmented. We incorporated a Gated-CNN

module with the network, helping the model to extract spatial information

between adjacent words. In the training process, normalized adversarial training

is introduced to enhance the model’s robustness and generalization ability. We

25



performed experiments on three benchmarks, and have shown that our system

gets a significant improvement over previous work and achieves state-of-the-art

performance.

Our ASTRAL system has a notable performance on recognizing named

entities from practical text, such as news, books, comments, etc. Thus this

system could meet the requirement of users and advanced systems who need these

named entities for further processing. Compared to the recent research on the

general language model such as ELMo [9] and BERT [10], our experiments show

that stronger task-related modules could also have excellent effects. Meanwhile,

the Gated-CNN and normalized adversarial training in this paper could be

introduced into other neural language processing systems.

In the future, we will mainly focus on the following two aspects. Firstly, the

effect of different task-related modules combined with different language models

is worth studying. Based on the characteristics of different language models, we

will design matching task-related modules for each language model. Secondly,

we will study the data enhancement methods, such as distant supervision, to

solve the problem of insufficient training data. It is considered to be a direct

means of solving the overfitting problem.
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