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ABSTRACT

Classic feature selection techniques remove those features that are either irrelevant or redundant,
achieving a subset of relevant features that help to provide a better knowledge extraction. This allows
the creation of compact models that are easier to interpret. Most of these techniques work over the
whole dataset, but they are unable to provide the user with successful information when only instance
information is needed. In short, given any example, classic feature selection algorithms do not give
any information about which the most relevant information is, regarding this sample. This work aims
to overcome this handicap by developing a novel feature selection method, called Saliency-based
Feature Selection (SFS), based in deep-learning saliency techniques. Our experimental results will
prove that this algorithm can be successfully used not only in Neural Networks, but also under any
given architecture trained by using Gradient Descent techniques.

1 Introduction

With the rise of the so-called Big Data, there is an increasing need for the use of techniques that allow us to reduce
the input space [1]. These techniques are often divided into two broad groups [2]: Feature Selection (FS) and Feature
Extraction (FE). Fig. 1 shows a graphic representation about how these two approaches work.

On the one hand, Feature Extraction approaches reduce the number of characteristics by the combination (either linear
or not) of the input space features [3]. For instance, a Feature Extraction technique in Deep Learning is the so-called
deep features, which are the data representation that can be obtained if we remove the last Neural Network (NN) layer.
Thus, these techniques are able to create a new feature set, which is often more compact and with higher discrimination
capacity. This is the most used technique in image analysis, signal processing and information retrieval [4, 5, 6].

On the other hand, Feature Selection approaches achieve the dimensionality reduction by removing either irrelevant
and redundant features [7]. Due to the fact that these techniques are able to preserve the original features, it is an
useful approach specially in applications where these attributes are essential to both understanding the model and for
the knowledge inferring [8, 9, 10].

Often, FS techniques are divided in three big groups: filters, that work independently of the inductive model (can be
viewed as a data pre-processing step); and wrappers and embedded methods, which measure the feature relevance
according to a classifiers’ performance. However, the idea is quite similar: having any given dataset, the task is to
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Figure 1: Feature Extraction (FE) creates new features by combining elements of the original input, whereas Fea-
ture Selection (FS) removes those features that are considered either irrelevant or redundant, while the rest are kept
unaltered.

select which are the features that contains the most discriminative information, in a global way. However, we aim
to create an algorithm that, instead of using dataset-level information, takes sample-level information to build a FS
model.

For example: suppose we have a medical dataset, and we aim to predict if a patient is prone to have cancer. Classic
Feature Selection algorithms select which are the most important features that help the classifier to make a good
prediction. On the contrary, we propose to infer, for any specific patient, which are the features the classifier is using
to predict a certain output, building a FS algorithm by using this information. We believe this approach can keep all
Classic Feature Selection advantages, while adding a new powerful tool: the ability to provide customized feature
relevance information for each sample.

The most important work in model explainability is the LIME algorithm [11]. The idea is to apply small perturbations
to the input, establishing the importance of each feature in the model’s decision. Although this is a black box method
that can be used in any given classifier model, it has two main drawbacks: 1) it is slow, as it requires too much time to
evaluate each sample (up to 10 minutos in the ImageNet dataset, as the authors have mentioned in their work); and 2)
it cannot help the model to improve its explainability, as it is designed to be used after the model is properly trained.

In this work we propose to solve this problem by introducing a novel Feature Selection algorithm, called Saliency-
based Feature Selection (SFS). Our proposal consists in using techniques that are able to provide personalized in-
formation for any given example. Once this information is collected, a Feature Selection algorithm is created by
including those features that contain a higher discrimination coefficient. As at present, scalability is also an important
requirement in Machine Learning algorithms, our algorithm must fulfill also another specific requisite: it must be able
to work under Big Data environments.

The rest of the paper is organized as follows: section 2 will explain the personalized information algorithm we are
going to use; section 3 will provide the metrics used to compute our saliency; section 4 will propose our novel SFS
algorithm; section 5 will show an ablation study regarding our approach; finally, section 6 will show some experimental
results over public datasets, and section 7 will offer some conclusions and future work.

2 Personalized Information Algorithm

There are only a few research works that address the problem of FS in Big Data environments. In [12, 8] the authors
use Deep Bayesian Networks (Deep BN) to select the most relevant features. Although Deep BN can be used in Big
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Data, they only provide results in small datasets (either few examples or few features). In [13], the authors claimed to
use a deep feature selection technique to reduce the input space in short-term wind forecasting models. However, their
approach uses Recursive Feature Elimination (RFE) which requires to exponentially train several different models,
making it unable to be used with a high number of features.

Perhaps the most interesting work is presented in [14]. It is called Deep Feature Selection (DFS), and consists on
a Elastic Net variant, that can be introduced as an extra layer into any Neural Network (NN). However, the authors
claim that the number of layers has to be reduced so as to have the method properly working. Thus, it is not suitable
for working with Convolutional Neural Networks (CNN) models. This method introduces a mask in the input data,
adding a l1 and l2-regularization to that mask, in the same way the Elastic Net is defined. Furthermore, Elastic Net
penalties are also applied to the hidden layers.

However, as early mentioned, none of these approaches is able to, for any given example, give personalized informa-
tion. To address this issue, we propose to use a well-known computer vision technique, which is called saliency.

2.1 Saliency

Saliency is a technique that was first developed in computer vision problems. Its goal is to evaluate the degree of quality
for each pixel within an image [15]. Often, NNs are seen like a black box where, given any input and any desired
output, it is possible to obtain an accurate prediction that is somehow close to what we should expect. However, NNs
do not provide any kind of transparent explanation about how the system reaches the predicted solution. Saliency was
created with the purpose of seeing what is happening inside the NN. Nowadays, there are two different approximations
to calculate this saliency: supervised or semi-supervised.

The first works used a semi-supervised approach [15, 16]. The idea is simple: having any given trained NN for clas-
sification, and any given image, a back-propagation routine is used to detect which are the pixels that most influenced
the desired output.

Supervised approaches are more recent [17, 18], and they are also trained in a different way. In this case, the NN has
the same input and output size. Furthermore, we also know, for any given image in the training set, which are the most
relevant features. For instance, if we are detecting a cat, the important features are the pixels in the image that belong
to the cat. The model is trained so that the predicted output matches our previous segmentation of important features.
This is the reason why these networks are also called Semantic Segmentation Networks. They are also called Attention
Models [19, 20] whenever a Recurrent Neural Network is used at the end to evaluate the quality of the feature.

Supervised techniques achieve better results than semi-supervised, but they have a major drawback: it is necessary to
know, a priori, which are the most relevant features for each instance, in order to successfully train the model. In the
case of an image dataset it is easy, but it is not always possible to obtain this information in other environments, like in
the case of DNA microarrays, for instance. Furthermore, the supervised techniques can only be used in classification
problems. They are not suitable for other approaches, like regression.

Because of that, we propose to use a semi-supervised saliency technique.

2.2 Our Approach

For our model, we are going to use a generalization of the idea proposed in [15]. Let X ∈ RN×R be our input
data, with N being the number of samples and R the number of features; and let Ỹ = f(X; Θ) ∈ RN×C be our
classification model (just for the purposes of explaining the model; later we will show how our approach can also be
applied in regression problems). It does not matter which type of model we are employing, as long as it can be trained
by using a loss minimization function (NN, CNN, SVM, . . . ). C is the number of different classes to evaluate, and Θ
are the classifier weights, which are adjusted during the training procedure.

For the purpose of explanining the idea, we can assume that f(X; Θ) is the result of applying the softmax function to
a one layer model (Θ ∈ RC×R). Thus, we have that

C∑
c=1

y(i)c = 1, (1)

where
y(i)c = softmax(θTc X(i)). (2)

y
(i)
c is the probability that the instance i belongs to the class c. θc is the c-th column of Θ.
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To train this model, a loss function `(Θ; f,X,Y) is minimized, where Y ∈ RN×C is the class one-hot encoding.
Since we are using the softmax function as our output, our minimization function is the categorical cross-entropy,
defined as

`(Θ; f,X,Y) = − 1

N

N∑
i=1

C∑
c=1

y(i)c log
(
f(x(i); Θ)c

)
(3)

2.2.1 Classic Saliency

In order to know which the features most contribute to activating the class c, the solution proposed in [15] is to
evaluate the gradient of y(i)c with respect to the input. To put it in mathematical terms,

σ(i)
c =

∣∣∣∣ ∂y(i)c

∂X(i)

∣∣∣∣. (4)

To give an intuition behind the idea, this gradient indicates how we should modify the input instance in order to
maximize its belonging to class c. This technique, however, only works in classification problems. Thus, we need to
create a generalization of this method for our purposes.

2.2.2 Generalization Approach

Instead of applying a gradient function for each class c, our idea is similar to the one that is used to update the
weights during the training procedure. As the loss function usually gives higher gradients whenever there is a strong
training misclassification, we propose the definition of a Gain Function (g(Θ; f,X,Y)), that will bring high gradients
whenever a sample is correctly classified. Thus, our Saliency Function σ will be defined as

σ(ỹ(i), y(i)) =

∣∣∣∣∂g(ỹ(i))

∂x(i)

∣∣∣∣ , (5)

where ỹ = f(X; Θ) is our model’s predicted output for the instance i.

Below we will show how to create this Gain Function g, depending on the loss function we are trying to minimize.

3 Building the Gain Function

As early mentioned, our aim is to develop a saliency system that can work with multiple types of problems. To that
end, we are going to explain how to create our Gain Function g in three different scenarios: one for regression and two
for classification (NNs and SVMs).

3.1 Regression

First, we will introduce the Regression Gain Function, as it is the most intuitive one. As simplification, we assume our
model is trained by using the Mean Square Error Loss (MSE):

`MSE(Ỹ,Y) = − 1

N

N∑
i=1

(
ỹ(i) − y(i)

)2
, (6)

where Ỹ = f(X; Θ) is our model’s predicted output. It does not matter if you choose a different loss function,
because all regression losses have the same structure: the loss is 0 if the prediction is perfect, and the loss increases as
the prediction moves away from the expected result.

On the contrary, our Gain Function must behave in the opposite way: it must have high values whenever the prediction
is good, and values close to zero with poor predictions. Thus, our solution is to use the inverse of the MSE loss
function:

gMSE(Ỹ,Y) =
α

`MSE(Ỹ,Y),+ε
, (7)

where α is a multiplication factor and ε > 0 is a factor to avoid division by zero. By default, we set α = 1 and
ε = 10−3.
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3.2 Classification

Although Eq. 7 might also be used as the Gain Function in classification problems, we found it not very suitable. The
reason is its behavior when a total misclassification (ỹ(i)c = 0 and y(i)c = 1, for instance) occurs. Recall that we are us-
ing the saliency function to build a feature selection algorithm. Thus, we do not want to receive any information when
a total misclassification occurs. That is, our Gain Function should return 0 values when this happens. Unfortunately,
the Gain Function provided in Eq. 7 does not satisfy this requirement.

Consequently, we have developed two different gain functions for two different classification losses: cross-entropy
and hinge loss, the ones most commonly used.

3.2.1 Cross-entropy Gain Function

The cross-entropy loss (Eq. 3) is the most common used loss function when dealing with NN for Classification,
including CNNs. Since our Gain Function should operate in the opposite way, as discussed above, our proposed
solution is

gCE(Ỹ,Y) = − α
N

N∑
i=1

C∑
c=1

y(i)c log
(

1− ŷ(i)c

)
, (8)

where
ŷ(i)c = min

{
1− ε, ỹ(i)c

}
, (9)

in order to avoid a zero-logarithm. α and ε have the same behavior exposed in Eq. 7. This function will ensure that no
saliency is obtained whenever a total misclassification occurs (log(1− 0) = log(1) = 0). Note that we do not want to
kill the gradient when clipping the value in Eq. 9. Thus, the gradient should remain unaltered (∇ŷ(i)c = 1).

Note that this idea is somehow similar to the one proposed in [15]. It only differs in one point: while the method
proposed in [15] decomposes the last layer network to obtain the saliency, we applied our model directly to a Gain
Function, which makes it suitable to use it in other machine learning approaches, as regression. Another advantage of
our approach is that it returns close-to-zero gradients whenever there is a misclasification. In this sense, our algorithm
is able to indicate that there are no relevant features in a misclassification. On the contrary, the saliency defined in [15]
does not take into account this crucial information.

3.2.2 Hinge Gain Function

The hinge loss is often used to train SVMs. In a multiclass problem, it can be defined as

`H(Ỹ,Y) = − 1

N

N∑
i=1

C∑
c=1

y(i)c max(0, 1− ỹ(i)c ) + (1− y(i)c ) max(0, 1 + ỹ(i)c ), (10)

that is, our correct class prediction will have values higher than 1, whereas values lower than −1 will be obtained for
the incorrect classes, as desired.

We may note that the function does not have gradient when the values are higher than 1 in the correct class (same with
−1 in the incorrect ones). Thus, a predicted output with value of 2 should have the same information as a predicted
value of 2000. Thus, we modified the Gain Function as follows:

gH(Ỹ,Y) = − α
N

N∑
i=1

C∑
c=1

y(i)c log
(

1− y̆(i)c

)
, (11)

where

y̆(i)c = min

{
1− ε, min(1,max(−1, ỹ

(i)
c )) + 1

2

}
. (12)

Again, we do not kill the gradient after clipping (∇y̆(i)c = 1).

4 Saliency-based Feature Selection

Our approach is named as Saliency-based Feature Selection, or SFS. It is a ranker-based feature selection method, that
is, it returns an ordered vector of all features, based on their importance. In Algorithm 1 we show its schema.
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Data: X,Y, f, `,Θ, γ, ε, reps
Result: feature ranking r
nf ← R // nf is the number of Alive features
r← [1 . . . nf ];
while nf > ε > 1 do

X̂← X;
X̂[:, r[nf + 1 : R]]← 0;
σfs ← zeros(nf );
for rep← 1 to C do

Initialize f(X̂; Θ);
Train f(X̂; Θ) given Y;
Ỹ ← f(X̂; Θ);
σfs ← σfs + GetSaliency(Ỹ , Y, σ);

end
index← argsort(σfs, descend);
r[1 : nf ]← r[index];
nf ← int(nf ∗ γ);

end
Algorithm 1: Pesudocode of the SFS Algorithm

The proposed algorithm only contains three hyper-parameters: ε ≥ 1, a stopping criteria variable; 1 ≥ γ > 0, which
controls the number of alive features that are kept in the next iteration; and reps, which controls the number of times
a model is trained, in order to avoid overfitting.

We start by training the model f with all the features in the feature set. Then, we train the model and we compute
the saliency. After that, we sum up and sort all features, obtaining the feature ranking r. Then, we discard the least
relevant features, and we repeat the operation until the stopping criteria is satisfied.

Function GetSaliency(Ỹ , Y, σ):
σ ← 0;
C ← Number of classes in Y ;
for c← 1 to C do

σc ←
∑Nc

ic=1 σ(ỹ(ic),y(ic));

σ ← σ +
σc
‖σc‖1

;

end
return σ

end
Algorithm 2: Saliency Function for Classification

The way to compute the saliency differs depending on whether we are dealing with a classification or a regression
problem. In the case of the classification issue, the procedure is explained in Algorithm 2. Basically, we compute and
normalize the saliency for each class. Alter that, we sum up all features. In case of a regression problem, we just sum
up all the saliency scores, as described in Algorithm 3.

Function GetSaliency(Ỹ , Y, σ):
σ ←

∑N
i=1 σ(ỹ(i),y(i));

return σ
end

Algorithm 3: Saliency Function for Regression

The complexity of this algorithm is variable, as it completely depends on the γ parameter. In the best scenario, when
γ = 0, the complexity is lineal in the number of instances (O(N)), whereas in the worst scenario γ ≈ 1, the complexity
also depends on the number of variables (O(RN)), as we barely remove one feature in each loop.
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Table 1: NIPS 2003 Feature Selection Challenge datasets.
Name # instances (train, test) # features # relevant features % relevant features pos/neg ratio
Arcene (88, 112) 10000 7000 0.7 1.0
Dexter (300, 300) 20000 9947 0.5 1.0

Dorothea (800, 350) 100000 50000 0.5 0.11
Gisette (6000, 1000) 5000 2500 0.5 1.0

Madelon (2000, 600) 500 20 0.04 1.0

5 Ablation Study

In this section we will show how parameters γ and reps affect the behavior or our algorithm. Furthermore, we will
show how decoupling the model to obtain the feature ranking from the model that is used to classify can affect our
approach. In order to accomplish that, we first introduce the datasets that will be used to test our methodology.

5.1 Datasets

5.1.1 NIPS 2003 Feature Selection Challenge

We have selected the 5 datasets that were proposed in the NIPS 2003 Feature Selection challenge2. There are 5
synthetic datasets that were designed with the only purpose of measuring the quality of feature selection algorithms
for classification. The specific characteristics of each dataset are shown in Table 1. Although each dataset only
contains two classes, they are challenging because of these factors: few training examples (Arcene), unbalanced data
(Dorothea) or low relevant features (Madelon).

5.1.2 MNIST, FASHION-MNIST, CIFAR-10 and CIFAR-100

Due to their small number of examples, NIPS 2003 FS challenge datasets are not suitable to test the behavior of our
approach in Big Data scenarios. To overcome this issue, we have included four classic computer vision datasets:

• MNIST It is the most classic computer vision classification challenge [21]. It contains more than 50.000
handwritten digits (10 classes) stored in grayscale 28× 28 images.

• FASHION-MNIST It is a dataset of Zalando’s article images [22]. It contains 60.000 images (10 classes)
stored in grayscale 28× 28 resolution.

• CIFAR-10 and CIFAR-100 They were proposed in [23]. Each one contains more than 50.000 tiny RGB
images (32× 32× 3) of different objects (car, truck, plane, . . . ). The first one contains images belonging to
10 different labels, whereas the other contains images from 100 different classes.

5.1.3 Regression

As early mentioned, and different from classic information-based FS algorithms [24], our model is able to perform FS
in regression problems. To test it we have used two different Big Data datasets:

• Relative location of CT slices on axial axis3. Originally published in [25], its aim is to discover the relative
location of the image on the axial axis. It contains 53500 CT images that belong to 74 different patients. Each
image is reduced to two different histograms, resulting in 385 total features.

• Enery Molecule Dataset4. Originally published in [26], the dataset contains the ground state energies of
16,242 molecules, each with 1275 features. The aim of this dataset is to use Machine Learning techniques to
quickly compute the atomization energy, as the simulations needed to compute it require a high computational
time.
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Figure 2: Effect of the number of training repetitions over our algorithm. The number of repetitions significantly
affects the obtained result.

8



A PREPRINT - MAY 1, 2019

5.2 Testing the effects of the algorithm´s parameters

5.2.1 Effect of ‘reps’ parameter

As it is well-known, it is almost impossible to train the same machine learning model more than once, expecting
to achieve the very same exact result each time. Aspects like random initialization in model’s weights, or random
permutations in the training set cause the model output to be similar but not entirely exact each time the model is
trained. Thus, our first aim was to evaluate how the number of train repetitions can affect the output. Our objective
was to check if it will be necessary to, at each step, train the model more than once, computing the saliency ranking as
the mean average of all repetitions.

We have trained our algorithm using the NIPS 2003 FS Challenge datasets, fixing γ = 0, and trying different number
of repetitions. We have trained a 3-layer Fully-Connected NN (150, 100 and 50 nodes per layer, respectively). Batch
Normalization (BN) [27] and ReLU(x) = max(0, x) activation are used. Softmax function is used as output, and Eq.
3 is used as loss function.

We have included an l2 weight decay regularization with factor 0.001. We have trained the model for 100 epochs,
using Adam [28] as optimizer. To deal with unbalanced data, we have replicated the number of examples until we
achieved a true balance between classes. All models were created using Keras Framework5, along with TensorFlow
[29] as back-end.

Fig. 2 shows the results obtained. It can be seen that the number of repetitions used affects accuracy in most datasets,
and that this effect depends also in the number of features. We have conducted a Friedman test, resulting in there is
no significant difference between the models when the number of repetitions is higher than 2, except in the Madelon
dataset, where there is a low number of relevant features. We also found significant differences between these models
against the model with just one repetition. Thus, we recommend to use a number of repetitions higher than 2 to achieve
a better performance.

5.2.2 Effect of γ parameter

In order to carry out the experiments to analyze the case of the behavior of theγ parameter, we have fixed reps =
1, while rest of parameters were the same as the in previous subsection. Fig. 3 shows that the accuracy of our
algorithm improves as the γ value increases. This occurs because when removing some features, some redundancy is
also eliminated, causing some other features to become more important. Although increasing the γ value helps our
algorithm to achieve better scores, the Friedman tests we have conducted suggest there are no significant differences
when we select γ ≥ 0.3, except in the Madelon dataset. Furthermore, a Wilcoxon test suggest there is a significant
difference between γ = 0 and γ = 0.75 models over the datasets Arcene, Madelon and Gisette. However, we found no
significant difference over the Dexter and Dorothea datasets. In these datasets, we presume the high features/samples
ratio are causing this effect.

5.2.3 Effect of decoupling ranker and classifier

Our Feature Selection algorithm is an embedded model, as both selection and classification/regression tasks can be
performed at the same time. An embedded system selects features that achieve good results in the same model that is
used to perform either the classification or the regression task. However, this might led us to select features that are
only valid for the machine learning model we are using to obtain the ranking.

This fact arises one question: How good is our selection?. Consequently, we tested our proposal separating the
problem into two different tasks: ranking and classifying. By using different models for each task, we will test how
dependant is our ranking with respect to the model that was used to obtain it. To this end, we used the four kernel
implementations provided by the sklearn’s SVC dataset [30], fixing the parametersC = 1, degree = 3 and coef0 = 1.
Our algorithm meta-parameters were fixed to γ = 0.975 and reps = 1. We do not need to use more repetitions, as the
SVM SMO-training algorithm [31] is very stable. Table 2 shows the obtained results over the NIPS datasets.

Two main answers arise:

1. Only in 35% of cases the best result is provided by using the same algorithm to obtain both the ranking and
the classification. Since we are using 4 different models, this percentage is close to random.

2http://clopinet.com/isabelle/Projects/NIPS2003/
3https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
4https://www.kaggle.com/burakhmmtgl/energy-molecule
5https://keras.io/
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Figure 3: Effect of the hyper-parameter γ over our algorithm. Using γ = 0 led the system to achieve poor results
when using a low number of features. However, there is no significant performance improvement when γ > .3.
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Table 2: Decoupling ranker and classifier accuracy results. In brackets, number of features used to achieve the best
score. In black, the best score achieved by each classifier. If multiple rankers achieve the best score, only the one with
fewer features is highlighted.

Dataset SVM Ranker SVM Classifier (# of features)
Linear Poly RBF Sigmoid

Arcene

Linear 83.0 (3189) 88.0 (9750) 85.0 (48) 75.0 (327)
Poly 84.0 (5578) 88.0 (9750) 81.0 (1088) 73.0 (438)
RBF 83.0 (1269) 88.0 (9750) 88.0 (487) 74.0 (3622)

Sigmoid 84.0 (1145) 88.0 (9750) 81.0 (1088) 72.0 (3715)

Dexter

Linear 94.3 (1419) 93.3 (99) 93.7 (105) 93.0 (102)
Poly 93.6 (7071) 91.0 (66) 90.7 (33) 90.3 (68)
RBF 94.0 (7071) 92.0 (93) 92.7 (37) 91.7 (40)

Sigmoid 93.7 (3384) 93.7 (66) 92.3 (54) 92.0 (64)

Dorothea

Linear 94.9 (222) 94.6 (216) 94.6 (79) 95.1 (11318)
Poly 94.9 (69) 95.1 (88) 94.9 (65) 94.9 (150)
RBF 94.6 (26) 94.6 (25) 94.6 (23) 94.9 (27)

Sigmoid 94.3 (71) 94.6 (75) 94.9 (96) 94.9 (85)

Gisette

Linear 98.3 (1080) 98.3 (714) 98.1 (351) 97.6 (351)
Poly 98.1 (168) 98.2 (360) 98.2 (470) 97.9 (240)
RBF 98.2 (275) 98.2 (581) 98.2 (412) 98.0 (412)

Sigmoid 98.0 (315) 98.3 (483) 98.3 (351) 98.0 (351)

Madelon

Linear 58.2 (218) 71.7 (94) 73.7 (271) 57.0 (374)
Poly 61.0 (9) 76.2 (18) 88.0 (11) 52.3 (500)
RBF 60.5 (5) 70.3 (96) 89.3 (12) 53.7 (3)

Sigmoid 62.0 (4) 71.3 (108) 90.8 (17) 52.3 (500)

2. In three different datasets (Arcene, Dorothea and Gisette) the best ranker is the same for three different
classifiers. This suggests the selected features are not substantially affected by the type of classifier that is
selected. Thus, a good ranker model performs well no matter which classifier we use afterwards.

Thus, it seems clear that it is more important to have a good classifier when selecting the features, rather than trying
to use the same model for either ranking and classifying.

5.2.4 Effect of overfitting in the FS step

As we have seen in the previous subsection, a good classifier selection is crucial in order to obtain a solid feature
selection, and thus we also would like to evaluate how the overfitting of a model might affect the selection of features.
In this case, we have only used the Arcene dataset to illustrate the scenario, as it provides very meaningful results.

In the previous subsection, it can be seen that the best results for Arcene dataset were achieved using SVM-RBF for
both ranking and classifying, with C = 1.5 as meta-parameter. Thus, our experiment consists in, using the same
classifier configuration, check how the result varies as we modify the C parameter during the FS step. Our algorithm
meta-parameters were fixed to their minimum values (γ = 0 and reps = 1).

Fig. 4 shows the obtained results. The best results are achieved when using the same C value that was employed also
during the classification step. It can be seen that using a lower value does not substantially affect the result. However,
when introducing overfitting (high C values), the quality of the result is drastically reduced.

Thus, we strongly recommend, during the FS step, the use of classifiers that are able to prevent overfitting, as this is a
problem that could introduce noise in the FS ranking system.

6 A comparative study of our proposal with other FS methods

In order to test the adequacy of our proposal, we have compared it against the most representative feature selection
methods available nowadays, namely: (a) both Sklearn’s LASSO and Elastic Net implementations [32, 33]; (b) the
MIM revision developed in [34], also implemented in the Sklearn package; (c) the ReliefF algorithm [35] implemented
in the Skrebate package [36]; and (d) the DFS algorithm [14], using our own Keras implementation. In this last case,
and in order to make a fair comparison, we have used the DFS mask values as the feature ranking. This approach
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Figure 4: Effect of the overfitting problem during the FS step. As the classifier increases its overfitting, the quality of
the selection decreases substantially.

was not mentioned in the original paper mentioned above [14], as they just train the model with the new mask and
constraint (like LASSO and Elastic Net behavior). However, experimental results show that this approach achieves
better results when using our variation. The code with our implementations is available in GitHub6.

6.1 NIPS 2003 Feature Selection Challenge

As the number of instances is relatively low in all datasets, we have followed the same approach explained in the
ablation study described in the previous section, that is, we have used four SVM variants to test the performance of
every algorithm. In the case of the DFS algorithm, we have used the three-layer NN that was also explained in the
previous section as the feature selection algorithm. We also have tried the same network with our proposed approach.

6.1.1 Arcene Dataset

Table 3 shows the obtained results. Overall, the best results are achieved when using the polynomial kernel. However,
for all the other tested algorithms but our approach, these are achieved when using practically almost all features (in
the most favourable case, 81,6% of the total features). Differently, our algorithm is able to achieve the best same
results in accuracy as the polynomial kernel, but when using a RBF kernel and only 19 features, that is, the 4,87% of
the whole features of the dataset.

6.1.2 Dexter Dataset

The problem found with the polynomial kernel in the Arcene dataset appears also in Dexter dataset, although this time
with the Linear kernel, as we can see in Table 4. Again, our algorithm outperforms the other techniques, independently

6https://github.com/braisCB/SFS
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Table 3: Arcene accuracy results, and in parenthesis, number of features used to achieve the best score. The baseline is
the classifier accuracy without removing any feature. Same ranker means the same SVM model is used both as ranker
and as classifier. Bold shows the result of the best ranker-classifier combination.

FS Method Ranker SVM Classifier (# of features)
Linear Poly RBF Sigmoid

Baseline (all features) — 83.0 87.0 72.0 69.0
LASSO [32, 33] — 70.0 — — —

Elastic Net [32, 33] — 76.0 — — —
MIM [34] — 83.0 (84) 88.0 (8164) 81.0 (25) 69.0 (1817)

ReliefF [35] — 83.0 (10000) 88.0 (8818) 75.0 (600) 71.0 (2231)
DFS [8] NN 86.0 (1145) 87.0 (8810) 77.0 (302) 72.0 (4439)

SFS

Same (γ = 0) 84.0 (4328) 87.0 (10000) 83.0 (600) 74.0 (3715)
Best (γ = 0) 85.0 (318) 87.0 (9036) 86.0 (513) 78.0 (2601)

Same (γ = 0.975) 83.0 (3189) 88.0 (9760) 88.0 (487) 72.0 (3715)
Best (γ = 0.975) 84.0 (1145) 88.0 (9750) 88.0 (487) 84.0 (1145)

NN (γ = 0.9, reps = 3) 83.0 (1599) 87.0 (5869) 88.0 (19) 75.0 (465)

Table 4: Dexter accuracy results, and in parenthesis, number of features used to achieve the best score. The baseline is
the classifier accuracy without removing any feature. Same ranker means the same SVM model is used both as ranker
and as classifier. Best shows the result of the best ranker-classifier combination.

FS Method Ranker SVM Classifier (# of features)
Linear Poly RBF Sigmoid

Baseline (all features) — 93.7 89.0 89.0 89.0
LASSO [32, 33] — 89.0 — — —

Elastic Net [32, 33] — 91.3 — — —
MIM [34] — 93.7 (20000) 92.0 (166) 91.0 (152) 90.7 (1533)

ReliefF [35] — 93.7 (20000) 91.7 (31) 91.0 (68) 90.0 (111)
DFS [8] NN 93.7 (20000) 90.7 (93) 90.3 (2979) 90.3 (3746)

SFS

Same (γ = 0) 94.0 (939) 92.0 (56) 91.3 (52) 91.0 (4710)
Best (γ = 0) 94.0 (939) 92.7 (52) 91.3 (52) 91.0 (4710)

Same (γ = 0.975) 94.3 (1419) 91.0 (66) 92.7 (37) 92.0 (64)
Best (γ = 0.975) 94.3 (1419) 93.7 (7071) 94.0 (7071) 93.7 (3384)

NN (γ = 0.9, reps = 3) 94.0 (2493) 91.7 (111) 91.7 (114) 91.0 (124)

of the SVM kernel selected. This time our proposal not only reduces considerably the number of features used (100%
for the best result in other methods, while ours use 7,1%), but also improves slightly the accuracy result obtained.

6.1.3 Dorothea Dataset

Table 5 shows that the best result is achieved when using the DFS algorithm with an RBF kernel. However, our
approach is able to achieve the same accuracy, both with Polynomial and RBF kernels, but requiring more features (57
for the DFS algorithm and 283 for our proposal, respectively 0,057% and 0,3% regarding the complete set of features).

6.1.4 Gisette Dataset

Table 6 shows that our algorithm achieves the highest score when using the Neural Network as ranker, although DFS
obtains similar accuracy with fewer features (130 for DFS versus 291 for our approach, respectively 2,6% and 5,8%
of the total set of features). Compared with either MIM or ReliefF, our algorithm is able to systematically select fewer
features.

6.1.5 Madelon Dataset

The ReliefF algorithm achieves the best score, as Table 7 shows. However, we may note that our algorithm is also able
to achieve the same score, but using more features (1,8% and 5% of the total number of features).

To sum up, our algorithm is able to achieve the same, or even improve slightly, the accuracy results compared with
those obtained by the state-of-the art algorithms for all NIPS datasets. Regarding the number of features, our proposal

13



A PREPRINT - MAY 1, 2019

Table 5: Dorothea accuracy results, in parenthesis, number of features used to achieve the best score. The baseline is
the classifier accuracy without removing any feature. Same ranker means the same SVM model is used both as ranker
and as classifier. Best shows the result of the best ranker-classifier combination.

FS Method Ranker SVM Classifier (# of features)
Linear Poly RBF Sigmoid

Baseline (all features) — 93.1 90.3 9.7 92.3
LASSO [32, 33] — 93.4 — — —

Elastic Net [32, 33] — 93.7 — — —
MIM [34] — 94.0 (1677) 94.9 (112) 94.9 (77) 94.9 (77)

ReliefF [35] — 94.6 (1030) 94.3 (79) 94.3 (67) 94.3 (7)
DFS [8] NN 94.6 (59) 95.1 (61) 95.4 (57) 95.1 (53)

SFS

Same (γ = 0) 94.0 (3995) 95.4 (283) 95.1 (138) 94.9 (94)
Best (γ = 0) 94.3 (94) 95.4 (283) 95.4 (381) 94.9 (94)

Same (γ = 0.975) 94.9 (222) 95.1 (88) 94.6 (23) 94.9 (27)
Best (γ = 0.975) 94.9 (69) 95.1 (88) 94.9 (65) 95.1 (11318)

NN (γ = 0.9, reps = 3) 94.3 (193) 94.3 (85) 94.9 (381) 94.6 (402)

Table 6: Gisette accuracy results, in parenthesis number of features used to achieve the best score. The baseline is the
classifier accuracy without removing any feature. Same ranker means the same SVM model is used both as ranker and
as classifier. Best shows the result of the best ranker-classifier combination.

FS Method Ranker SVM Classifier (# of features)
Linear Poly RBF Sigmoid

Baseline (all features) — 97.7 97.5 96.9 95.7
LASSO [32, 33] — 97.4 — — —

Elastic Net [32, 33] — 97.4 — — —
MIM [34] — 97.7 (2212) 97.8 (1997) 97.6 (902) 96.7 (645)

ReliefF [35] — 98.2 (3083) 98.2 (1803) 97.7 (1850) 97.1 (1587)
DFS [8] NN 98.2 (168) 98.1 (3503) 98.3 (130) 97.5 (163)

SFS

Same (γ = 0) 98.1 (551) 98.1 (333) 98.0 (423) 97.8 (645)
Best (γ = 0) 98.1 (299) 98.3 (662) 98.1 (275) 97.8 (412)

Same (γ = 0.975) 98.3 (1080) 98.2 (360) 98.2 (412) 98.0 (351)
Best (γ = 0.975) 98.3 (1080) 98.3 (483) 98.3 (351) 98.0 (351)

NN (γ = 0.9, reps = 3) 98.0 (1397) 98.4 (291) 98.2 (333) 97.8 (324)

Table 7: Madelon accuracy results. In parenthesis, number of features used to achieve the best score. The baseline is
the classifier accuracy without removing any feature. Same ranker means the same SVM model is used both as ranker
and as classifier. Best shows the result of the best ranker-classifier combination.

FS Method Ranker SVM Classifier (# of features)
Linear Poly RBF Sigmoid

Baseline (all features) — 53.0 67.7 68.7 52.3
LASSO [32, 33] — 58.3 — — —

Elastic Net [32, 33] — 59.7 — — —
MIM [34] — 62.5 (5) 72.5 (128) 80.2 (15) 57.2 (3)

ReliefF [35] — 62.7 (4) 74.7 (36) 91.5 (9) 53.2 (111)
DFS [8] NN 62.5 (8) 72.0 (40) 90.8 (11) 53.0 (1)

SFS

Same (γ = 0) 59.2 (56) 73.5 (42) 83.9 (32) 54.7 (76)
Best (γ = 0) 62.3 (1) 73.5 (42) 83.9 (32) 62.3 (58)

Same (γ = 0.975) 58.2 (218) 76.2 (18) 89.3 (12) 52.3 (500)
Best (γ = 0.975) 62.0 (4) 76.2 (18) 90.8 (17) 57.0 (374)

NN (γ = 0.9, reps = 3) 62.8 (9) 77.8 (16) 91.5 (25) 52.8 (87)
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Table 8: SFS performance in Regression problems. Relative location of CT slices on axial axis Dataset MAE results.

FS Method # of features
19 38 96 192

DFS [8] 4.18 2.84 2.32 2.39
SFS (γ = 0) 6.55 3.70 2.71 2.24

SFS (γ = 0.9) 4.18 3.16 2.60 2.31
SFS+DFS (γ = 0) 4.41 2.94 2.25 2.40

SFS+DFS (γ = 0.9) 4.08 2.87 2.30 2.27

Table 9: SFS performance in Regression problems. Energy Molecule Dataset MAE results.

FS Method # of features
63 127 318 637

DFS [8] 0.139 0.136 0.137 0.142
SFS (γ = 0) 0.292 0.215 0.146 0.141

SFS (γ = 0.9) 0.145 0.132 0.131 0.136
SFS+DFS (γ = 0) 0.145 0.139 0.143 0.149

SFS+DFS (γ = 0.9) 0.139 0.136 0.132 0.138

behaves extraordinarily in some datasets, in which the reduction of the features needed is remarkable, while in other
cases in which the existing methods accomplish an important reduction our approach needs approximately the double.

6.2 Regression

We conducted two experiments to show the behavior of our SFS algorithm in a regression problem. As early men-
tioned, we have used both the Relative location of CT slices on axial axis and the Energy Molecule dataset . To
perform the experiments, we selected the same approach presented in Section 5.2.1: a 3-layer NN (150, 100 and 50
nodes, respectively), along with BN and ReLU activation function. Both differ only in the output (now it is just one
node) and the loss function (MSE). A 5-fold cross-validation was performed.

Table 8 shows the obtained results for the Relative location of CT slices on axial axis dataset. We compare our
approach with the DFS algorithm, using an input mask with l1 = 5 · 10−4 as weight penalty. Additionally, we also
consider using our SFS method adding the DFS mask at the input. We refer to that configuration as SFS+DFS. We
have fixed the parameter reps to 2 in all experiments. The results show that SFS and the combination SFS+DFS,
both with a 3-layer CNN, achieved the best results. For the SFS alone, 192 features, that is the whole set of features
were needed, while for the combination of DFS with our approach, only 96 (50%) were needed for an almost equal
accuracy.

Using the same configuration, Table 9 shows the obtained results for the Energy Molecule dataset. The results show
that SFS with γ = 0.9 is able to achieve almost the best score by just using 127 features (the 10% of the whole dataset).
Either SFS or SFS+DFS achieve the best scores in all different configurations.

6.3 Results of the approach in Big Data scenarios

One of the main advantages of our method is that it is possible to use it in Big Data environments, as it was developed to
be used in state-of-the-art architectures like Convolutional Neural Networks. To that end, we have tested the behavior
of our approach over four different datasets using the Wide Residual Network WRN-16-4 [37] as classifier.

As ranking method, we have tried two different configurations: the previously mentioned WRN-16-4 and a standard
3-layer CNN. It consists in two convolutional layers with 16 and 32 channels, respectively. After each convolution,
a 2 × 2 Max-Pooling Layer. Finally, two Fully Connected layers are used: the first one contains 1024 nodes, and
the last one has the size of the number of labels in the dataset (100 for CIFAR-100, 10 for the others). Both Batch
Normalization (DN) [27] and ReLU activation function are applied right after all hidden layers, and the Softmax
function is applied to the output. The Adam optimizer [28] is used to train the model.

In both networks we use the categorical cross-entropy as loss function, together with an l2 = 5 · 10−4 weight penalty.

We have conducted experiments in four well-known image databases described in sections above: MNIST, Fashion-
MNIST, CIFAR-10 and CIFAR-100.
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Table 10: MNIST accuracy results using a WRN-16-4 [37] as classifiers.

FS Method Ranker # of features
39 78 196 392

DFS [8] 3-layer CNN 95.73 98.56 99.32 99.46
DFS [8] WRN-16-4 92.92 97.36 98.72 98.98

SFS 3-layer CNN (γ = 0) 89.78 95.66 99.14 99.53
SFS 3-layer CNN (γ = 0.9) 97.08 98.49 99.13 99.56
SFS WRN-16-4 (γ = 0) 88.18 94.98 98.70 99.41
SFS WRN-16-4 (γ = 0.9) 96.76 98.62 99.10 99.30

SFS+DFS 3-layer CNN (γ = 0) 95.60 98.47 99.38 99.48
SFS+DFS WRN-16-4 (γ = 0) 92.92 97.36 98.72 98.98

Table 11: Fashion-MNIST accuracy results using a WRN-16-4 [37] as classifiers.

FS Method Ranker # of features
39 78 196 392

DFS [8] 3-layer CNN 78.85 85.5 90.45 92.41
DFS [8] WRN-16-4 72.58 76.52 87.05 92.61

SFS 3-layer CNN (γ = 0) 67.85 81.86 89.33 92.36
SFS 3-layer CNN (γ = 0.9) 82.63 86.33 90.09 92.60
SFS WRN-16-4 (γ = 0) 64.17 73.53 85.60 92.48
SFS WRN-16-4 (γ = 0.9) 77.99 82.58 88.16 91.72

SFS+DFS 3-layer CNN (γ = 0) 79.81 86.29 90.44 92.59
SFS+DFS WRN-16-4 (γ = 0) 65.09 73.87 85.86 92.40

Table 12: CIFAR-10 accuracy results using a WRN-16-4 [37] as classifiers.

FS Method Ranker # of features
153 307 768 1536

DFS [8] 3-layer CNN 67.43 79.92 87.71 90.69
DFS [8] WRN-16-4 61.51 71.19 83.94 89.47

SFS 3-layer CNN (γ = 0) 61.00 72.49 84.31 89.31
SFS 3-layer CNN (γ = 0.9) 63.52 77.96 89.60 91.5
SFS WRN-16-4 (γ = 0) 53.03 60.42 85.55 90.44
SFS WRN-16-4 (γ = 0.9) 64.15 79.27 89.85 91.58

SFS+DFS 3-layer CNN (γ = 0) 68.13 79.03 88.04 91.06
SFS+DFS WRN-16-4 (γ = 0) 54.05 68.65 82.47 89.54

Table 13: CIFAR-100 accuracy results using a WRN-16-4 [37] as classifiers.

FS Method Ranker # of features
153 307 768 1536

DFS [8] 3-layer CNN 34.55 49.68 57.92 62.22
DFS [8] WRN-16-4 28.24 40.77 56.98 67.42

SFS 3-layer CNN (γ = 0) 24.53 34.14 52.67 63.45
SFS 3-layer CNN (γ = 0.9) 30.74 44.55 61.49 66.96
SFS WRN-16-4 (γ = 0) 24.66 37.86 56.66 66.39
SFS WRN-16-4 (γ = 0.9) 27.88 44.45 62.83 67.22

SFS+DFS 3-layer CNN (γ = 0) 36.86 46.64 60.46 63.55
SFS+DFS WRN-16-4 (γ = 0) 25.08 37.29 54.07 64.94
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6.3.1 MNIST

No data augmentation techniques were used to train the models. The 3-layer CNN was trained for 40 epochs, while the
WRN-16-4 required 80 epochs. Table 10 shows the obtained results. As it can be observed, our approach achieved the
best scores balancing accuracy and number of features used. It is worth mentioning that the accuracy of the classifier
highly improves when using a high γ value. In the next section we will show our intuition behind this effect.

6.3.2 Fashion-MNIST

In this case, as data augmentation we used random horizontal flips, along with horizontal and vertical random shifts
(up to 4 pixels). As this dataset is more complex than MNIST, we increased the number of training epochs to 80 in the
case of the 3-layer CNN, and 130 when using the WRN-16-4. Table 11 shows the obtained results. Overall, our SFS
approach with γ = 0.9 achieved the best scores.

6.3.3 CIFAR-10

We used for this case the same data augmentation and training configuration that was presented in the previous Fashion-
MNIST dataset, but increasing the random shifts up to 5 pixels. Table 12 shows the obtained results. The use of DFS
helps the model to achieve better results whenever the number of kept features is low. On the contrary, a high γ value
is useful with a higher number of features (more than 25% of the total features).

6.3.4 CIFAR-100

We used the same training configuration as in the previous CIFAR-10. Table 13 shows the obtained results. In this
dataset our results are not clearly better than DFS. We believe that the overfitting problem is causing this results
(although the training accuracy is close to 100%, the test accuracy never reaches 70%).

6.4 Checking Classifier’s Reliability

As we mentioned before, to our knowledge this is the first Feature Selection algorithm, besides Tree-based techniques,
that is able to provide the feature importance for each sample. The main advantage of our proposal is that we can
provide an explanation about the classifier’s decision. However, we would like to focus on a different scenario:
checking the classifier’s reliability.

If we take a look at the MNIST results (Table 10), we can see that the best results are achieved when using as ranker
the 3-layer CNN instead of the WRN-16-4 model. This result was not expected because the latter is a better classifier
than the former. Thus, our intuition in this effect was reduced to two points:

1. Max-pooling: We think the main disadvantage of our algorithm is that it does not manage feature correlation,
unless the training algorithm does it. In the case of a CNN model, local correlations can be detected by using
Pooling layers. Contrary to the WRN-16-4 classifier, the 3-layer CNN contains 2 Max-pooling layers, which
could help our algorithm to achieve better scores.

2. Over-fitting: During the training step, the training set accuracy always reaches a perfect score when using the
WRN-16-4. This could led our algorithm to a bad generalization behavior, as explained in the ablation study
section (see Fig. 4).

Thus, we conclude that the quality of the classifier highly affects the behavior of our algorithm. And the MNIST
results also show that test accuracy is not a good metric to determine how suitable is a classifier to be used as ranker
in our algorithm.

For this reason, we carried on a different experiment, taking advantage of saliency’s properties. As we have previously
defined, our saliency function is the gradient of the gain function with respect to the input. Thus, it measures how
we have to modify our input to increase the probability of belonging to the desired class. So, we decided to use our
saliency function to do exactly the opposite. The idea is to answer this simple question:

• How much do I have to change a sample to change the classifier’s output?

This topic, called Adversarial Examples gained a lot of relevance during these years. Several techniques were created
in order to increase the reliability of a classifier. For instance, Fast Gradient Sign Method (FGSM) [38], Fast Gradient
Sign Method (FGSM) and its variants [39], and Projected Gradient Descent (PGD) [40] use the Saliency gradient to
evaluate how much an input sample must be modified to cheat the classifier. However, we want to extend these works,
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Table 14: Adversarial Images. Given an original image X , minimal perturbation needed to force a trained classifier to
predict each label with more than 95% of certainty.

X X = 0 X = 1 X = 2 X = 3 X = 4 X = 5 X = 6 X = 7 X = 8 X = 9

WRN-16-4 w/o
Input Noise

WRN-16-4 w/ In-
put Noise

in order to evaluate how reliable is a classifier. We do not focus on how much an image has to be modified, but to see
if the generated image can also cheat a human eye.

To answer this question, we have conducted an experiment, that is shown in Table 14. Given an original image and a
trained classifier, we use the saliency output to make perturbations in this image, in order to cheat the classifier and
obtain wrong predictions with a high confidence (higher than 95%). The first row shows the perturbations needed
when using a WRN-16-4 model, which achieves a 99.69% accuracy on the testing set. We can see that the resulting
images have no substantial visual difference with respect to the original one. It looks like only random noise was
added to the original image. To put it in different words, ten different images that look extremely similar are able to
achieve completely different predictions in our WRN-16-4 model.

As we conclude that introducing white noise can easily fool our WRN-16-4 model, we re-trained it again, but this time
introducing some random Gaussian noise in the training images. Apparently, the quality of the classifier decreases, as
we only obtain a 99.37% accuracy on the testing set. However,when we take a look at the images (Table 14, second
row), we can see that the perturbations look completely different from the original image, and that it should be easy to
establish the classifier prediction by just looking at the input. Therefore, we conclude that, although the second model
achieves a lower accuracy in the training set, it is a more reliable model.

This is a very interesting effect that could led to potential implications in the training algorithm. As we can easily
obtain images that are able to fool our model, we can make adjustments to our training set so we can improve the
reliability of our model. This is a very important factor in topics like decision support systems, as we can base our
conclusion in a more solid explanation.

It could also have potential implications in medical analysis, as, having any given sample, we can show to doctors
which is our conclusion, and how the input should be modified to modify the prediction. Together with a dictionary of
potential treatments and their effect to our input parameters, it could also led to treatment recommendations.

7 Conclusion

In this paper we have presented a novel Feature Selection ranking approach, called Saliency-based Feature Selection
(SFS). Contrary to classic Feature Selection approaches, our algorithm is able to rank the importance of each feature at
an instance-level, rather than as a whole dataset. Besides this advantage, experimental results in challenging datasets
show that our algorithm is able to achieve state-of-the-art results under different configurations, making it suitable
to be used in any king of problem, either is it classification or regression. Contrary to classic Information-based
Feature Selection techniques, the reduced complexity of our SFS algorithm (it can be computed simultaneously with
the classification or regression training) allows it to be used in high-dimension datasets.

As future research, we aim to use our SFS technique to define a metric that evaluates a model’s degree of robustness,
that is, to measure how hard is to fool either a classifier or a regression architecture, instead of just using visual cues.
We also want to test our adversarial images as part of a explainable model in a real scenario like medical information.
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