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ABSTRACT

Clustering is widely used in unsupervised learning method that deals with unlabeled data. Deep
clustering has become a popular study area that relates clustering with Deep Neural Network (DNN)
architecture. Deep clustering method downsamples high dimensional data, which may also relate
clustering loss. Deep clustering is also introduced in semi-supervised learning (SSL). Most SSL
methods depend on pairwise constraint information, which is a matrix containing knowledge if data
pairs can be in the same cluster or not. This paper introduces a novel embedding system named
AutoEmbedder, that downsamples higher dimensional data to clusterable embedding points. To the
best of our knowledge, this is the first research endeavor that relates to traditional classifier DNN
architecture with a pairwise loss reduction technique. The training process is semi-supervised and
uses Siamese network architecture to compute pairwise constraint loss in the feature learning phase.
The AutoEmbedder outperforms most of the existing DNN based semi-supervised methods tested on
famous datasets.

Keywords Deep Neural Network · Unsupervised learning · Semi-supervised learning · Transfer learning · Embedding ·
Clustering · Dimensionality reduction · Pairwise constraint

Source code of the architecture: github.com/QuwsarOhi/AutoEmbedder
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1 Introduction

Clustering is a fundamental approach to perform unsupervised learning. It is a very widely studied topic and is applied
on a wide range of applications, including image segmentation [1], image processing [2], network analysis [3], document
analysis [4, 5], and so on. Clustering remains an active research area due to its simplicity and ability to find a pattern in
unlabeled data. Although clustering is a broadly used method, the performance of clustering methods degrades when it
is applied to high dimensional data. To overcome the limitation of higher-dimensional data, researchers perform feature
reduction strategies to reduce the higher dimensional features while keeping the necessary features.

Principal Component Analysis (PCA), is a common method, used for data dimensionality reduction [6, 7]. Dimen-
sionality reduction of data can be achieved through feature extraction or feature selection. However, in this paper, we
attain dimensionality reduction of data through PCA, which reduces the dimension of data through feature extraction
only. The critical part of this process lies in ignoring the relativity between clustering and feature learning procedure.
To eliminate this issue, Discriminative Cluster Analysis (DCA) was introduced [8]. The process combines Linear
Discriminant Analysis (LDA) and K-means into a joint framework. However, the aforementioned method fails to
represent a better estimation.

Currently, due to the recent advancement, Deep Neural Network (DNN) has been widely applied in supervised learning
as well as unsupervised learning. The usage of DNN on clustering methods is often derived as deep clustering. Almost
all the deep clustering architectures contain two phases: feature transformation and clustering. However, some deep
clustering methods learn feature transformation and clustering jointly [9]. Although most unsupervised deep clustering
methods fail to generate appreciable performance on complex datasets, the current state of the art models generate
promising results on simple datasets [9, 10].

Some studies also use a feature mapping network. The most used one is the basic Convolutional Deep Neural Network
(CDNN), which is pre-trained on a bigger dataset. The trained CDNN is further used to generate embedding points
from unseen data. The embedding points are used to perform cluster [11]. This type of learning is often interpreted as
transfer learning method. However, until now, no studies attempted to improve the accuracy of CDNN networks by
calculating cluster loss.

Although clustering is unsupervised, there may exist some pre-knowledge of the dataset that is to be used for a
particular task. This pre-knowledge is often used in Semi-Supervised Clustering (SSC). SSC methods rely on a pairwise
constrained matrix to gain better accuracy than unsupervised deep clustering [12]. A pairwise constraint matrix contains
information if two instances are related or not. If they are related, then they must be in the same cluster, otherwise, in a
different cluster. SSC can use this information to improve its learning.

This paper contributes to a semi-supervised clustering process via DNN architecture. We introduce a semi-supervised
embedding system named AutoEmbedder that is aimed to generate clusterable embedding points based on pairwise
constraints. The AutoEmbedder is built upon traditional DNN architecture. The training process of AutoEmbedder
uses pairwise constraints and this type of training procedure is termed as an SSL process [12]. The AutoEmbedder
is iteratively trained on a Siamese Neural Network (SNN) architecture. SNN architecture uses two same weighted
AutoEmbedders in parallel. Therefore, the SNN receives a pair of input and generates a pair of output. From the SNN
architecture, a pairwise loss is computed by calculating the pairwise distance of the SNN-AutoEmbedder generated
embedding. This loss is further reduced using the traditional backpropagation technique along with an optimization
function. The AutoEmbedder is extracted from the SNN, and the finally trained AutoEmbedder is further used to
generate meaningful embeddings, on which clustering is performed.

Overall, our main contributions include:

• We develop a semi-supervised embedding system named AutoEmbedder that learns to produce cluster
separable meaningful embedding points based on pairwise constraints.

• We introduce DNN as an embedding system.

• We introduce a procedure of using DNN architectures that links to the embedding system and clustering.

• We carry out experiments addressing unsupervised and semi-supervised DNN based algorithms and validate
that the AutoEmbedder performs better in most of the complex datasets.

The rest of this paper is organized as follows: Section 2 presents the related work. Section 3 introduces the overall
architecture and AutoEmbedder training procedure. Section 4 contains empirical results done on the architecture.
Finally, Section 5 concludes the paper.
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2 Related Work

Unsupervised learning is the process of identifying unknown patterns from an unlabeled dataset. Before the advancement
of neural networks, clustering algorithms were the only methods used to perform unsupervised learning. Clustering
defines the process of separating data points based on their dissimilarity. Before the full phase implementation of
the deep neural network, unsupervised clustering was performed based on generalization techniques. Through a
generalization technique, a machine learning model can identify specific unseen example classes based on some specific
feature patterns. Nevertheless, these unseen examples must contain the appropriate feature patterns. Otherwise, machine
learning models may generate inappropriate cluster regions. This process of causing a general feature/concept between
seen and unseen data is often termed as a generalization process. There exist generalization techniques based on PCA
as well [13]. However, down-sampling higher dimensional data with PCA does not greatly improve clustering accuracy.

After the advancement of neural network architectures, researchers have introduced many unsupervised learning methods
that are based on neural networks. Autoencoders (AE), Variational Autoencoders (VAE), Generative Adversarial
Networks (GAN), Deep Belief Net (DBN), etc. are common architectures that are used to create the recent state of
the art unsupervised learning architectures [14]. Most of the methods relying on autoencoders require a pre-training
process for calibration. Deep Clustering Network (DCN) represents a combined approach of autoencoders and k-means
algorithm [15]. Deep Embedding Network (DEN) only rely on reconstruction loss of autoencoders and converges to
a cluster friendly representation [16]. Deep Continuous Clustering (DCC), Deep Embedded Regularized Clustering
(DEPICT), Deep Multi-Manifold Clustering (DMC), and Deep Subspace Clustering Networks (DSC-Nets) perform
similar reconstruction loss of autoencoders to perform clustering [17, 18, 19, 20]. The Deep Embedding Clustering
(DEC) is a renowned model, which uses a pre-trained autoencoder [9]. Later, the model is fine-tuned using the
combination of cluster loss and autoencoder loss, which is described as hardening loss. Unsupervised CDNN depends
on features extracted from deep neural networks, and fine-tunes the network based on clustering loss, where clustering
loss defines the error of combining different cluster data points into the same cluster and vice versa. It is also proven that
a supervised CDNN architecture, pre-trained on a large dataset, acquire better accuracy than traditional unsupervised
pre-trained CDNN based methods [21]. On the contrary, Joint Unsupervised Learning (JULE), and Deep Adaptive
Image Clustering (DAC) are non-pre-trained CDNN architectures [22, 23]. The drawback of JULE is the computational
cost and memory complexity of the learning process is greater than average for large datasets. Unlike JULE, DAC
achieves better performance in some challenging datasets. Compared to the vast implementation of AE and CDNN,
there are quite a few implementations based on VAE and GAN architectures. Most VAE and GAN based architectures
fall behind due to their high complexity and hard to converge architectures. Gaussian Mixture VAE (GMVAE), and
Variational Deep Embedding (VaDE) uses VAE architecture [24, 25]. Categorical Generative Adversarial (CatGAN),
and Information Maximizing Generative Adversarial Network (InfoGAN) are well-recognized architectures that are
based on GAN. Although these procedures present outstanding performance on simple datasets, they fail to produce a
reasonable performance on complex datasets. To improve performance measures, semi-supervised training architecture
is used.

SSL process contains a small portion of labeled data with a large portion of unlabeled data. In the aspect of clustering,
there are some variants of semi-supervised methods [26]. In SSL, some data may contain information suitable to train
the unsupervised architecture. This information might be the label of data or cluster linkage. Cluster linkage defines
pairwise information by establishing connections among data pairs [27, 28, 29, 30]. Cluster linkage is also named
as a pairwise constraint because it contains pairwise data linkage information. Most SSL use pairwise constraints as
their basic training information. The main point of improving the overall process is selecting the appropriate data
dimensional reduction technique or objective function, the pairwise constraints as well as the pairwise loss calculation.
Gang Chen used a Restricted Boltzmann Machine (RBM) as the objective function [31]. Although the approach is
promising, it fails to generate better accuracy with lesser data. A semi-supervised implementation of the renowned DEC
method, named Semi-supervised Deep Embedded Clustering (SDEC), proved to give better accuracy than traditional
DEC architecture [12]. However, the method fails to give better estimations on famous datasets.

To further strengthen the position, many neural network architectures on unsupervised learning that are pre-trained on
complex datasets are used to perform clustering on the different datasets. This type of training is often referred to as
transfer learning. Transfer learning relies on data dependency [32] and is actively used in many domains, including
unsupervised learning [11]. Convolutional Neural Networks (CNN) are also proven to perform better on complex image
datasets [21]. Therefore, feed-forward CNN is used to perform semi-supervised classification that is referred to as
Semi-Supervised Feed-Forward CNN (SSFF-CNN) [33]. The SSFF-CNN architecture relates Feed-Forward CNN
(FF-CNN) with SSL [34]. The parameters of FF-CNN target layers are generated by the statistics of the previous
layers. Again, the CNN methods that learn from backpropagation are referred to as BP-CNN methods [34] which are
used in SSL. Most promising CNN based semi-supervised network architectures are built using an ensemble system,
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where multiple weak architectures are connected to obtain a stronger one [35]. Nevertheless, higher time and memory
complexity is the burden of these ensemble systems.

SSL is mostly suitable for large datasets in which no sufficient information is available. SSL becomes essential when
there exists a large unlabeled dataset. The challenge of SSL is to acquire higher accuracy when it is trained with a
small amount of labeled dataset. Most semi-supervised and unsupervised learning architecture relates AE for data
dimensionality reduction. In most cases, the AE is to be pre-trained using similar types of datasets to achieve a good
performance. On the contrary, AE stores most of the information of data, which in some cases, may or may not be used
as a feature. Instead of relying on AE, we propose a DNN architecture that performs data dimensionality reduction and
can be used as an embedding system. The recent CDNN semi-supervised architectures rely on BP-CNN and FF-CNN
architectures. But both of the architectures exhibit poor accuracy while they are trained with fewer data. Although
ensemble-based CDNN architectures show better performance on complex datasets, they have higher time and memory
complexity due to the overall fusion of multiple DNNs in the architecture. We solve the difficulty by implementing a
better training method that requires a CDNN architecture for producing clusterable embedding points.

This paper refers to DNN as an embedding system on which clustering is applied. Although this architecture can be
applied to most types of datasets, this paper specifically relates the AutoEmbedder to image-based datasets and most
evaluations are performed on image-based datasets. The AutoEmbedder extracts features from higher dimensional data
and compresses the features into a lower dimension embedding point, in which clustering is performed. The DCNN
network performs the dimensionality reduction based on backpropagation distance loss calculation that is generated
from Siamese network architecture.

3 Methodology

The proposed approach of this paper relates the dimension reduction technique of DNN networks [21] with a semi-
supervised deep embedding system. Firstly, an embedding function is generated using DNN architecture, and it is
trained using SNN architecture. Finally, the trained embedding function is used to transform higher dimensional data
into meaningful low dimensional embedding points, on which clustering can be performed. The algorithm of the
AutoEmbedder training process is presented in Algorithm 1. In the following subsections, we first derive the properties
of the AutoEmbedder along with its training process. In the subsequent section 3.6, we emphasize the intuition and
the proof of the overall training architecture of the AutoEmbedder. Finally, in the last subsection 3.7, we present a
randomized training data selection scheme that boosts the accuracy of the AutoEmbedder.

Figure 1: AutoEmbedder extraction from classifier CNN.

3.1 AutoEmbedder Architecture

A classifier neural network classifies inputs based on the activation node, which resides on the output layer. The output
layer is also referred to as a softmax layer of a DNN architecture. In this paper, the previous layer of the last softmax
layer of any classifier architecture is represented as the ‘feature space’ layer, which is illustrated in Figure 1. The feature
space layer extracts final features from which the output layer performs the classification task. The feature space layer
will work as an output layer of the AutoEmbedder after completing the AutoEmbedder training process. The number of
nodes that reside in the feature space layer denotes the dimension of embedding points. The existing DNN architecture
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is defined as AutoEmbedder. Mathematically, the AutoEmbedder can be represented as f(x) = Rk, such that k being
the dimension of the embedding subspace. Like the autoencoder, the DNN architecture of the AutoEmbedder performs
better in downsampling higher dimensional data, while keeping the required clusterable properties.

Figure 2: The SNN training architecture of AutoEmbedder.

3.2 AutoEmbedder Training Network

The training process of AutoEmbedder uses an SNN architecture as shown in Figure 2. In Siamese network architecture,
a pair of AutoEmbedders with the same initial weights are placed parallelly. However, it is to be noted that the pair of
networks does not share weights. The output of the AutoEmbedder pair is connected to a Euclidian distance calculation
function as,

d(p, q) = d(q, p) =

√√√√ k∑
i=1

(pi − qi)2 (1)

Where f(x) = p = [p1, p2, ..., pk]
T is the output of the first AutoEmbedder, and g(x) = q = [q1, q2, ..., qk]

T is the
output of the second AutoEmbedder. The functions f(x) and g(x) are the AutoEmbedder pairs. The output of the
distance calculation layer is further passed through a Rectified Linear Unit (ReLU) activation function with an upper
bound value α, defined as,

ReLU(x) =

{
x if 0 ≤ x < α

α if x ≥ α (2)

Where x the input of the ReLU activation function and α is a hyperparameter set on the AutoEmbedder training phase.
The hyperparameter α is also used in pairwise constraints. Due to the upper bound value set on the ReLU activation
layer, the output of the SNN architecture will be in the range [0, α]. The defined SNN architecture receives a pair of
data and outputs the Euclidean distance of the embedding vector pairs. Combining equation 1 and 2, the overall training
framework of the SNN can be represented as,

S(x1, x2) = ReLU(d(f(x1), g(x2))) = R+
≤α (3)

Where S(x1, x2) represents the SNN architecture function.

3.3 AutoEmbedder Pairwise Constraints

To train the SNN architecture of the AutoEmbedder with a precise target value, a distance hyperparameter α is to
be decided. For any input data pair xi and xj , the pairwise constraint is rated to be α if there exists a can-not-link
constraint. Otherwise, the distance value is estimated to be 0. This can be mathematically stated as,

cij =

{
0 if xi and xj must link
α if xi and xj can not link

(4)

5



AutoEmbedder: A semi-supervised DNN embedding system for clustering A.Q. OHI ET AL.

The pairwise constraints instruct the AutoEmbedder to create clusterable points. By equation 4, the AutoEmbedder
pair is instructed to generate embedding vectors closer to zero if the input pair refer to the same class. Otherwise, it is
instructed to generate embedding vectors greater or equal to α, if the input pair refer to mixed classes.

(a) The actions performed in each training iteration. (b) After some iterations.

Figure 3: The AutoEmbedder training process moves can-not-link embedding pairs at a distance greater than or equal to
α and moves embedding points of the must link pairs to a closer distance. Subfigures 3a and 3b illustrates the scenario.

3.4 AutoEmbedder Training

In each iteration of the AutoEmbedder training, the pair of AutoEmbedder is trained twice. Let the SNN architecture is
trained though the function S.train(), which receives three parameters. The first two parameters are the inputs of the
first and second AutoEmbedder, respectively, and the third parameter is the ground pairwise constraint output. At each
iteration, the model is trained as,

S.train(I, I ′, Y )

S.train(I ′, I, Y )
(5)

Here I and I ′ define two subsets of data, and Y defines the pairwise constraints. After completing the training of
the AutoEmbedder pairs, any one of the two trained AutoEmbedders can be used from the SNN architecture. The
backpropagation phase of each training iteration reduces the AutoEmbedder pairwise loss by moving the can-not-link
pairs (mixed-class input pairs) at a distance and must-link pairs (same-class input pairs) closer as illustrated in Figure 3.
This is the basic requirement of a data embedding for being clusterable.

3.5 AutoEmbedder Pairwise Loss Calculation

The output of the SNN architecture is a thresholded pairwise input distance, which is a continuous output in the range
[0, α]. Due to the criteria, the SNN architecture is trained based on regression. Most SNN based architectures often
implement contrastive loss function [36]. However, due to the threshold of the final ReLU activation function derived in
equation 2, the contrastive loss function may generate improper results. Table 1 illustrates a comparison of accuracy,
while the AutoEmbedder is trained based on mean squared error (MSE) and contrastive loss. The training parameters
used in the comparison are reported in Table 4. The comparison apprises that MSE is the most suitable for SNN training
architecture. Hence, the pairwise loss is calculated using MSE.

Let the pairwise ground truth vector be Y , and the predicted pairwise vector be Ŷ . The MSE for each iteration batch is
calculated as,

MSE(Y, Ŷ ) =
1

batchSize

batchSize∑
i=1

(yi − ŷi)2 (6)

Adam optimizer [37] and backpropagation is used to reduce the MSE.
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Table 1: A comparison between mean square error loss and contrastive loss based on ACC, NMI, and ARI metrics.

Dataset Contrastive
Loss ACC

MSE
Loss
ACC

Contrastive
Loss NMI

MSE
Loss
NMI

Contrastive
Loss ARI

MSE
Loss
ARI

MNIST 13± 4.1 98.4± 0.5 0.95± 0.02 0.02± 0.01 0.01± 0.01 0.98± 0.01
Fashion-MNIST 11.07± 1.2 91.9± 1.7 0.0± 0.03 0.87± 0.03 0.0± 0.03 0.84± 0.03

CIFAR10 4.7± 2.1 87.1± 2.7 0± 0 0.78± 0.04 0± 0 0.72± 0.05
REUTERS 6.7± 1.2 72.2± 1.2 0± 0 0.80± 0.03 0± 0 0.72± 0.06

Figure 4: An illustration of an optimal clusterable data points. Each pair of clusters tries to maintain a distance of α,
which is maintained by the SNN architecture through the pairwise constraints.

3.6 Proof of AutoEmbedder Training Architecture

The significance of SNN architecture is to train the AutoEmbedder so that, a) must link embedding vector pairs remains
as close as possible, and b) the can-not-link embedding vector pairs obtain at least α distance from each other. If it
is possible to construct a function that maintains the aforementioned properties, it can be concluded that the function
generates clusterable embedding vectors. Also, the role of hyperparameter α is to construct a minimum margin or
distance between the dissimilar data embeddings. Let us consider the two AutoEmbedders of the SNN architecture as
two functions, f(x) and g(x). Let us also consider that u and v are two different data class sets, and they contain a
can-not-link constraint for each other (cuv = α), and a must link constraint for themselves (cuu = 0, cvv = 0).

By considering the aforementioned cluster characteristics, it can be assumed that a function f(x) generates clusterable
embedding points if it maintains the following properties,

‖f(ui)− f(uj)‖ ≈ 0 [∀i ui ∈ u,∀j uj ∈ u] (7)
and, ‖f(ui)− f(vj)‖ ≥ α [∀i ui ∈ u,∀j vj ∈ v] (8)

The abovementioned property must satisfy for function g(x), since in subsection 3.4, we discussed any of the functions
can be used as AutoEmbedder.
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Through the training process of the SNN architecture, let us consider that both functions converge to an optimal state
such that both functions optimally maintain the pairwise constraints. Therefore, the functions hold the following
properties due to the must-link constraints,

f(ui) ≈ g(uj) (9)

Also, due to the can-not-link constraint, the functions hold the following properties,

‖f(vi)− g(uj)‖ ≥ α (10)

By placing the approximate value from equation 9,

‖f(vi)− f(uj)‖ ≥ α
or, ‖f(ui)− f(vj)‖ ≥ α (11)

The above equation proves that the SNN architecture maintains the property described in equation, 8.

Furthermore, let us consider that, the function f(x) produces embedding points for all input pairs ui and w, which are
in the distance greater than zero. Consider w as random data input. This can be stated as,

‖f(ui)− f(w)‖ > 0 (12)

However, if we consider w ∈ u and w is equal to the kth input of the class u. Mathematically this can be formed as,

‖f(ui)− f(uk)‖ > 0 (13)

If we place relevant value from equation 9, we get,

‖f(ui)− g(uk)‖ > 0 (14)

The above equations 13 and 14 are contradictory to equation 9. Because, it is considered that both functions satisfies
equation 9 and 10 after they are trained through SNN. As the distance can not be negative, we can reform equation 13
as,

‖f(ui)− f(uk)‖ = 0

or, ‖f(ui)− f(uk)‖ ≈ 0 (15)
similarly, ‖f(ui)− f(uj)‖ ≈ 0 (16)

The above equation proves that SNN architecture maintains the property of equation 7. We can also construct a similar
proof for function g(x). Hence, it can be concluded that the SNN architecture can train two functions such that they
generate clusterable embedding points based on the pairwise constraints.

From the general implementation of the AutoEmbedder training architecture, it can be understood that the hyperparam-
eter α works as a cluster margin. The margin states that two inputs are considered to be in separate clusters if their
distance is greater than or equal to the margin value. Maintaining the pairwise constraints, the AutoEmbedder can
obtain an optimal knowledge to downsample higher dimensional data into clusterable points, as illustrated in Figure 4.
Also, the threshold of the ReLU activation function (equation 2) serves to reduce the distance of the can-not-link pairs
if they are farther than α. This scenario is illustrated in Figure 4 for cluster pair A and C.

3.7 AutoEmbedder Random Train Data Selection

The AutoEmbedder is trained by selecting a fixed number of input pairs per training iteration. At each training iteration
of the AutoEmbedder, two data-subset I and I ′ are created where, |I| = |I ′| = batchSize, I ∈ X , and I ′ ∈ X . Here,
batchSize is the number of inputs in each iteration. The elements of the respective sets I and I ′ are randomly selected
from the dataset X . The two data-subsets I and I ′ are used to train the AutoEmbedder at each iteration.

Let P be the approximate probability of randomly selecting a data pair of same class, s be the number of data of the
same class, and c be the total number of classes. Then P can be defined as,

P =

(
s

1

)/(
s ∗ c
1

)
(17)

As s < s ∗ c, the approximate probability of randomly selecting a pair of input data of different class P ′ is greater than
P . Due to the fact, the randomized selection of data pairs will contain more can-not-link constraints than must-link
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Figure 5: Accuracy measurement of two datasets by selecting different α values and containing balanced and imbalanced
pairwise constraints while training. The illustrated result is obtained based on 300 epochs.

constraints. This leads to biased training data. If these link constraints are kept fully random or imbalanced, it is
observed that the accuracy of AutoEmbedder is much lower after completing the training process of the AutoEmbedder,
as depicted in Figure 5. Hence, for each iteration, half of the data pair is randomly selected, which contains must-link
pairs, and the other half is randomly selected containing can-not-link pairs. Mathematically it can be viewed as,

nML = nCL (18)

Where nML is the number of pairs containing must-link constraint, nCL is the number of pairs containing can-not-link
constraint, and nML+nCL = batchSize. By maintaining this criterion, a massive accuracy improvement is observed
that is illustrated in Figure 5.

4 Empirical Results

In this section, we describe evaluation metrics along with the experimental setup of the AutoEmbedder architecture,
and the information of the datasets on which the tests were performed. Finally, we demonstrate the result of the
AutoEmbedder.

4.1 Evaluation Metric

To evaluate the correctness of the proposed method, three well known and standard accuracy metrics are used. The
evaluation metrics are presented below.

Accuracy: Accuracy (ACC) defines the unsupervised clustering accuracy, stated as,

ACC(c, c′) =

(
max
m

∑n
i=1 l{ci = m(c′i)}

2

)
× 100% (19)

Where li defines the ground-truth label, ci defines the cluster assignment produced by the algorithm, and m(.) ranges
over all possible one-to-one mapping of the labels and clusters, from which the best mapping is taken. The mapping
using the Hungarian algorithm is found to be efficient.

Normalized Mutual Information: The normalized mutual information (NMI) is defined as,

NMI(c, c′) =
I(c; c′)

max(H(c), H(c′))
(20)
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Algorithm 1: AutoEmbedder Training Algorithm
Input: Subset of the dataset to be clustered X , AutoEmbedder model M , Number of iterations e, Training batch per

iteration batchSize, Distance hyperparameter α
Result: Trained AutoEmbedder
initialize two AutoEmbedder models m1, m2 with the same architecture and weight as M ;
build a siamese network S with AutoEmbedders m1 and m2;
iter ← 0;
while iter < e do

initialize two empty input data set I and I ′;
initialize an empty target output set Y ;
b← 0;
while b < batchSize

2 do
select two random data input xi and xj containing must link constraint cij == 0;
append xi to I , xj to I ′ and cij to Y ;
b = b+ 1;

b← 0;
while b < batchSize

2 do
select two random data input xi and xj containing must link constraint cij == α;
append xi to I , xj to I ′ and cij to Y ;
b = b+ 1;

train siamese network S with inputs I , I ′ and Y ;
train siamese network S with inputs I ′, I and Y ;
iter = iter + 1;

Where c is the ground truth and c′ is the predicted cluster. I(.) refers to the mutual information between c and c′. H(.)
denotes the entropy.

Adjusted Rand Index: The adjusted random index (ARI) is calculated using the contingency table [38]. The ARI can
be derived as,

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/(
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑
j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/(
n
2

) (21)

Here, nij , ai, and bj are the values from the contingency table.

Both NMI and ARI produce a result in the range [0, 1] whereas, ACC produces a result in the scale [0, 100]. The higher
value of these indices indicates a better correspondence between the cluster and the ground truth.

4.2 Experimental Setup

The neural network architecture is implemented using Keras [39]. To perform mathematical operations numpy is used
[40]. The overall clustering is performed using K-means via scikit-learn library [41] with the default parameters. As an
AutoEmbedder, Keras implemented MobileNet architecture is used. The parameters of the MobileNet architecture is
defned in Table 2.

The ‘input_shape’ parameter of Table 2 is a variable that is based on the applied datasets. Also, the last layer of the
MobileNet is ‘conv_pw_13_relu’ with a shape of (1, 1, 1024). To reduce the dimension for each dataset, a feature space
layer is added. The shape of the feature space layer is reported in column ‘Embedding Dimensions’ of Table 4. The
number of nodes residing in the feature space layer denotes the embedding dimension of the AutoEmbedder. As the
MobileNet can handle a minimum image shape of (32, 32, 3), the datasets with lesser image shapes are zero-padded.
To convert a single channel of a black and white image to a three-channel image, a copy of the black and white image
is generated into each of the three channels. A graphical process of this image conversion is shown in Figure 6. The
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Table 2: The MobileNet parameters set for AutoEmbedder.

Argument Value
alpha 1

depth_multiplier 1
dropout 0.2

include_top False
pooling None

input_tensor None
weights None

Figure 6: Conversion process of MNIST (28, 28, 1) input image shape to (32, 32, 3).

converted dimension is reported in Table 3. The must-link and can-not link constraints are defined using the available
data labels of the tested datasets.

The AutoEmbedder for REUTERS dataset contains four dense layers of nodes 512, 256, 128, and 64, respectively, with
a default ReLU activation function. Keras implemented mean squared error and Adam optimization function is used to
train the AutoEmbedder for all the datasets.

Table 3: Information on the datasets on which AutoEmbedder is evaluated. The reported image dimension is given by
the format (height, width, channel).

Dataset Classes Size Description Input Dimen-
sion

Converted
Input Dimen-
sion

MNIST 10 60,000 Handwritten Digits (28, 28, 1) (32, 32, 3)
Fashion-MNIST 10 60,000 Shoes/Clothing (28, 28, 1) (32, 32, 3)

CIFAR10 10 50,000 Vehicle/Animals (32, 32, 3) (32, 32, 3)
COIL20 20 1,440 Objects (128, 128, 1) (128, 128, 3)
SVHN 10 99,289 Street View House

Number
(32, 32, 3) (32, 32, 3)

REUTERS 46 11,228 Word Sequence - -

4.3 Datasets

The AutoEmbedder is tested on well-known datasets. A short description of the datasets on which the AutoEmbedder is
evaluated is presented in Table 3.
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Table 4: The parameters used to train the AutoEmbedder on different datasets.

Dataset Embedding
Dimension Batch Size Epochs Distance (α)

MNIST 2 128 3,000 100
Fashion-MNIST 2 128 3,000 100

CIFAR10 3 128 3,000 100
COIL20 2 128 3,000 100
SVHN 3 128 3,000 100

REUTERS 16 128 3,000 100

Table 5: Accuracy, NMI, and ARI score comparison of different unsupervised and semi-supervised architectures tested
on MNIST, Fashion-MNIST, CIFAR10, and COIL20 dataset. The semi-supervised architectures are marked with an
asterisk (*). Methods that are unsuitable for calculating NMI and ARI are kept blank.

Model MNIST Fashion-MNIST CIFAR10 COIL20
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

ADC [42] 98.2± 0.6 - - 56.1± 2.9 - - 28.1± 2.9 - - 61.2± 2.1 - -
CatGAN [43] 97± 0.8 - - 87.49± 1.2 - - 80.42± 1.5 - - 92.38± 0.7 - -

ClusterGAN [45] 92.4± 1.1 0.86± 0.06 0.89± 0.04 62± 1.7 0.65± 0.07 0.50± 0.08 41± 2.1 0.16± 0.04 0.30± 0.02 69± 1.1 0.68± 0.07 0.59± 0.2
DAE Network [46] 95.4± 0.7 0.93± 0.04 0.91± 0.03 63.8± 1.4 0.61± 0.07 0.53± 0.04 42.1± 2.3 0.28± 0.04 0.31± 0.03 69.4± 1.3 0.72± 0.04 0.59± 0.3

DBC [47] 94.7± 1.1 0.90± 0.03 0.93± 0.02 63.1± 1.9 0.65± 0.06 0.52± 0.03 34.2± 1.4 0.33± 0.04 0.22± 0.03 77.1± 1.6 0.87± 0.05 0.63± 0.2
DEC-DA [48] 95± 1.6 0.95± 0.07 0.94± 0.02 55.2± 1.1 0.64± 0.04 0.46± 0.04 18.9± 3.1 0.35± 0.08 0.07± 0.03 59.7± 2.1 0.82± 0.08 0.47± 0.04

DEN [16] 96.2± 1.4 0.91± 0.03 0.94± 0.03 78.5± 2.1 0.47± 0.07 0.67± 0.03 38.3± 2.7 0.22± 0.04 0.24± 0.02 86± 1.8 0.82± 0.07 0.71± 0.2
DEPICT [18] 95.5± 0.6 0.90± 0.07 0.93± 0.02 39.1± 1.1 0.37± 0.04 0.30± 0.04 43.7± 1.3 0.18± 0.05 0.31± 0.03 67.2± 1.8 0.43± 0.03 0.56± 0.2

JULE [22] 95.1± 0.7 0.91± 0.02 0.92± 0.03 54.1± 1.9 0.58± 0.08 0.39± 0.06 26.5± 2 0.34± 0.07 0.12± 0.01 89.8± 1.2 0.96± 0.04 0.88± 0.05
RTM [49] 94.8± 0.9 0.93± 0.03 0.92± 0.02 69.1± 1.5 0.68± 0.6 0.58± 0.02 28.5± 2.3 0.19± 0.08 0.13± 0.03 82± 2.1 0.70± 0.09 0.68± 0.03

SpectralNet [10] 96.1± 0.8 0.91± 0.01 0.95± 0.02 53.3± 2.1 0.53± 0.04 0.47± 0.04 20.8± 2.5 0.32± 0.04 0.10± 0.02 69± 1.6 0.62± 0.07 0.59± 0.02
TAGnet [50] 68± 0.8 0.64± 0.09 0.58± 0.05 58.7± 1.4 0.28± 0.07 0.46± 0.02 24.1± 2.9 0.12± 0.02 0.11± 0.04 89.9± 1.1 0.91± 0.05 0.72± 0.04
VaDE [25] 93.9± 0.6 0.88± 0.06 0.91± 0.03 56.1± 1.7 0.47± 0.02 0.42± 0.03 31.7± 2.1 0.27± 0.07 0.21± 0.03 88± 1.4 0.67± 0.05 0.72± 0.03

SS-KM* [44] 52.6± 3.1 0.48± 0.09 0.42± 0.08 22.3± 1.4 0.17± 0.04 0.16± 0.04 20.7± 2.4 0.14± 0.08 0.11± 0.09 21.5± 1.7 0.17± 0.5 0.18± 0.06
SS-DEC* [12] 84.7± 0.7 0.83± 0.04 0.81± 0.03 44.2± 1.1 0.39± 0.05 0.41± 0.03 26.2± 1.6 0.19± 0.06 0.20± 0.09 78.4± 1.3 0.72± 0.07 0.71± 0.08
CatGAN* [43] 98.4± 0.3 - - 89.2± 1.2 - - 86.4± 1.7 - - 98± 1.3 - -

AutoEmbedder* 98.4± 0.5 0.95± 0.02 0.98± 0.01 91.9± 1.7 0.87± 0.03 0.84± 0.03 87.1± 2.7 0.78± 0.04 0.72± 0.05 100± 0 0.98± 0.01 0.89± 0.02

4.4 Results

The test results are obtained by calculating mean of the maximum ACC, NMI, and ARI scores for six runs. The results
are reported in the mean±std format. The batch size, the epochs, the embedding dimension used for each dataset,
and the distance hyperparameter α is reported in Table 4. The training iteration (e) stated in Algorithm 1 can be
calculated as, e = Epochs×DatasetSize

BatchSize . The AutoEmbedder is compared with both unsupervised and semi-supervised
methods. All of the comparisons were performed in the same environment, and the other methods were implemented by
maintaining the optimal hyperparameters.

Table 5 illustrates a comparison based on the ACC, NMI, and ARI scores tested over different image datasets. The
table contains both unsupervised and semi-supervised methods, whereas the semi-supervised methods are marked with
an asterisk (*). Furthermore, the highest scores are marked bold. In this comparison, some implemented methods
generate pseudo labeling instead of generating embeddings [42, 43]. Therefore it is not possible to calculate NMI and
ARI scores for these methods, and they are kept blank. From the comparison of Table 5, it can be observed that some
semi-supervised methods perform less accurately than some unsupervised methods [44, 12]. However, it can also be
witnessed that unsupervised methods fail to generate better accuracy in complex datasets, such as Fashion-MNIST
and CIFAR-10. Yet, GAN based semi-supervised and unsupervised methods [43, 45] perform better than most other
methods. However, GAN based methods suffer from some unfortunate circumstances due to the unstable learning
of generators and discriminators [43]. On the contrary, the AutoEmbedder does not suffer from any instability and
outperforms all of the other implemented semi-supervised and unsupervised methods.

The AutoEmbedder architecture also outperforms other unsupervised methods that are applied to textual data. It is
tested on the REUTERS dataset, and the evaluation report is presented in Table 6.
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(a) Accuracy on MNIST dataset.

(b) Accuracy on CIFAR10 dataset.

(c) Accuracy on SVHN dataset.

Figure 7: A comparison of the AutoEmbedder with different label-based semi-supervised classifiers. Subfigure 7a, 7b,
and 7c illustrate comparisons on MNIST, CIFAR10, and SVHN dataset, respectively. The accuracy of AutoEmbedder is
reported using the ACC metric of the equation 19 and the accuracy of the label-based semi-supervised methods reported
based on the percentage of positive prediction by total predictions.
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Table 6: ACC, NMI, and ARI score of different unsupervised architectures tested on the REUTERS dataset.

Model ACC NMI ARI
DEC [9] 51.4± 1.9 0.68± 0.04 0.49± 0.09
AP [51] 1.8± 0.3 0.27± 0.07 0.03± 0.04

HDB [52] 19.7± 1.4 0.20± 0.04 0.15± 0.07
RCC [53] 1.9± 0.6 0.32± 0.03 0.08± 0.04

RCC-DR [53] 1.9± 0.7 0.31± 0.02 0.08± 0.05
AutoEmbedder 72.2± 1.2 0.80± 0.03 0.72± 0.06

We also compare the AutoEmbedder architecture with other label-based semi-supervised architectures [33, 34]. The
label-based semi-supervised architectures are trained on a small portion of labeled data. Furthermore, as these DCNN
methods are trained on labeled data, they contain activation functions in the last layer. Therefore the final outputs
of these architectures are class labels, instead of embeddings. Although the training criteria of these methods and
the AutoEmbedder is different, we perform a comparison among the architectures. Also, as the final labels of the
label-based DCNN methods are not pseudo labels, the accuracy of these methods is calculated based on the ratio of the
percentage of positive predictions by total predictions. Figure 7 presents comparisons based on MNIST, CIFAR-10,
and SVHN datasets. In the comparisons, the AutoEmbedder is compared with label-based semi-supervised FF-CNN,
BP-CNN, and ensemble architectures [33, 34]. The methods are compared based on different numbers of known
labels of the dataset. The label-based semi-supervised methods are trained based on the known labels, whereas the
AutoEmbedder is trained by constructing pairwise constraints from the known labels. The AutoEmbedder outperforms
all the label-based DCNN architectures on CIFAR10 and SVHN datasets. However, it fails to produce the best results
in the simple MNIST dataset, since MobileNet is not a suitable architecture for single-channel image datasets. The
label-based DCNN architectures perform less accurately because the final layer activation functions are not optimized
to generate optimal hyperplanes, while they are trained on fewer data. On the contrary, the AutoEmbedder generates
embeddings based on the distance hyperparameter α, which promises to generate low-dimensional clusterable points.

5 Conclusion

This paper introduces an embedding architecture, AutoEmbedder that produces meaningful clusterable embedding
points. The end-to-end training process of the architecture is semi-supervised and requires a pairwise cluster linking
information in the training phase. The training procedure does not include any clustering loss measures, instead, it
uses Euclidean distance loss that is minimized by backpropagation. The AutoEmbedder only produces clusterable
embedding points. The AutoEmbedder can be built based on any classification architecture with the required embedding
dimension. From the benchmarks of this paper, it is to report that the AutoEmbedder presents better results on almost all
the datasets. The embedding system constructs three-dimension embedding points from complex three-channel image
datasets CIFAR10 along with SVHN and still produces better results. From the statistics of the empirical results, it may
be concluded that the proposed method is beneficial to perform semi-supervised learning. We strongly believe that the
overall contribution of this paper inaugurates a wider perception in the scope of embedding systems, semi-supervised
learning, and image clustering research works.
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