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Abstract

To avoid the curse of dimensionality resulting from a large number of features,

the most relevant features should be selected. Several scores involving must-

link and cannot-link constraints have been proposed to estimate the relevance

of features. However, these constraint scores evaluate features one by one and

ignore any correlations between features. In addition, they compute distances

in the high-dimensional original feature space to evaluate the similarity between

samples. So, they would be corrupted by the curse of dimensionality. To deal

with these drawbacks, we propose a new constraint score based on a similarity

matrix that is computed in the selected feature subspace and that makes it

possible to evaluate the relevance of a feature subset at once. Experiments on

benchmark databases demonstrate the improvement brought by the proposed

constraint score in the context of both supervised and semi-supervised learnings.

Keywords: Constraint score, Feature selection, Pairwise constraints,

Similarity matrix.

1. Introduction

In machine learning and pattern recognition applications, such as data min-

ing and image analysis, datasets are often characterized by a large number of
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features. The processing of such high-dimensional data requires large memory

storage and high computational time, and may lead to poor learning perfor-

mance [1, 2]. To address these drawbacks, the dimensionality of data is often

reduced by using feature selection to remove redundant or irrelevant features.

Typically, feature selection methods can be categorized into three types: fil-

ter, wrapper, and embedded methods [2, 3]. Filter methods evaluate features

independently of the classification algorithm, while wrapper methods exploit a

classification algorithm to evaluate the relevance of features. Embedded meth-

ods embed feature selection into the learning algorithm. Because filter methods

are not dependent on any classification scheme, they have better generalization

ability than wrapper and embedded methods [2, 3].

According to the availability of prototypes (i.e., labeled data samples that

represent classes), feature selection methods can also be divided into unsuper-

vised, supervised, and semi-supervised approaches [1, 2, 3]. Supervised feature

selection only uses prototypes to measure the correlation of each feature with

the class labels, while unsupervised feature selection uses only unlabeled data

samples to evaluate the feature capacity to preserve the intrinsic data structure

[1]. Semi-supervised feature selection takes into account both prototypes and

unlabeled data samples to evaluate the relevance of features.

In supervised and semi-supervised learning frameworks, besides class labels

of prototypes, the available information can be also expressed by must-link and

cannot-link constraints. A must-link constraint specifies that two data samples

belong to the same class, while a cannot-link constraint specifies that two data

samples belong to different classes [4]. Pairwise constraints can be provided by

the user or easily generated from a small number of prototypes.

Must-link and cannot-link constraints are used to estimate the relevance of

features via score functions, called constraint scores [1, 2]. Zhang et al. [5]

proposed two supervised constraint scores that use only pairwise constraints to

evaluate the relevance of features. Zhao et al. [6] defined a semi-supervised con-

straint score that analyzes both pairwise constraints and unlabeled data samples

for feature selection. Kalakech et al. [1] combined an unsupervised score com-
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puted from unlabeled data samples with a supervised score that is computed

from the pairwise constraints. This score is predicted to be less sensitive to

constraint changes. Two semi-supervised constraint scores that assess the abil-

ity of a feature to preserve the local properties of unlabeled data samples while

respecting pairwise constraints, have been proposed by Benabdeslem et al. in

[7] for the former and in [8] for the latter. More recently, Yang et al. intro-

duced a new semi-supervised constraint score which takes advantage of the local

geometrical structure of unlabeled data samples as well as constraints deduced

from prototypes [9, 10].

Because the above-mentioned constraint scores are part of the filter ap-

proach, they all evaluate features one by one [2]. The score of a feature subset is

estimated by the sum of the individual feature scores, and the evaluation of a fea-

ture subspace ignores correlations between features. Thus, learning algorithms

that operate in a subspace of individually relevant features do not necessarily

provide favorable results [8]. In addition, the constraint scores proposed in the

literature are based on the Laplacian of a similarity matrix. Because the simi-

larity matrix is computed in the original feature space, state-of-the-art feature

scores can also be corrupted by the curse of dimensionality.

In this paper, we propose a new constraint score that evaluates the relevance

of features in the context of both supervised and semi-supervised learning. Our

score assesses the ability of features to respect the available set of pairwise

constraints. As this score can be used for feature selection, it is based on a

similarity matrix that is computed in the considered feature subspace. Unlike

existing constraint scores that are applied to each feature, our score can evaluate

a subset of several features simultaneously. The proposed score is then used as a

criterion by a sequential forward selection scheme to identify the most relevant

subset of features with tractable computation [11].

The performance of the constraint scores is measured by the classification

accuracy of the test data commonly obtained by the nearest neighbor classifier.

Previous studies use the entire training dataset with true class labels as pro-

totypes by the classifier, while only few prototypes are used by the constraint
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scores. By using conditions that are similar to those in real-life applications,

in this paper we propose using only available information. In the supervised

context, only the prototypes involved in pairwise constraint generation are used

by the classifier. In the semi-supervised context, we follow the same strategy

proposed by Kalakech et al. [12] that first uses the constrained K-means al-

gorithm [4] to classify the unlabeled training data samples and then uses the

classified samples as prototypes in classifying the test data. However, in our

case, instead of using the constrained K-means algorithm, we use constrained

spectral clustering, which is based on the same similarity matrix concept used

by the constraint scores.

The remainder of this paper is organized as follows. Section 2 provides

a brief definitions on spectral graph theory and pairwise constraints genera-

tion. In Section 3 a primary state-of-the-art constraint scores is presented. Our

proposed constraint score and the feature selection procedure are presented in

Section 4. Experimental results achieved with benchmark databases pertaining

to supervised and semi-supervised feature selection are provided and discussed

in Section 5.

2. Preliminaries

Constraint scores are based on the concepts of spectral graph theory and

pairwise constraints. In this section, we briefly give some notations and defini-

tions related to these two concepts.

2.1. Spectral graph theory

Let X = [x1, x2, . . . , xn] ∈ Rn×d denote the set of n training data samples

defined in a d-dimensional feature space, where xi = [xi1, xi2, . . . , xir, . . . , xid] ∈

Rd is the i-th data sample of X, and xir,(r = 1, . . . , d) is the r-th feature value

of the i-th data sample. Let Fd = {f1, f2, . . . , fr, . . . , fd} denote the set of d fea-

ture vectors of X, where fr = [x1r, x2r, . . . , xnr]T ∈ Rn is the r-th feature vector.
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In spectral graph theory, dataset X is represented by a complete undirected

weighted similarity graph G = (V,E,W ) in which each data sample in X cor-

responds to a node. V is a non-empty set that contains all nodes, and E is

the set of edges between any two nodes in V . Each edge in E is weighted by a

similarity value wij (i, j = 1, 2, . . . , n) between two nodes. The similarity matrix

W that gathers similarities between all pairs of nodes is positive semi-definite

and symmetric. Generally, the similarity wij between two data samples xi and

xj is computed by the following Gaussian kernel function [13]:

wij = exp

(
− δ2(xi, xj)

2σ2

)
i, j = 1, 2, . . . , n (1)

where δ(xi, xj) is the Euclidean distance between two data samples xi and xj ,

and σ is a scaling parameter.

Dataset X can also be represented by the similarity matrix WKNN of the

nearest neighbor subgraph GKNN whose node vi is connected to vj when xj is

one of the K-nearest neighbors (KNNs) of xi such that:

wKNN
ij =

 wij if xi ∈ KNN(xj) or xj ∈ KNN(xi)

0 otherwise
(2)

The constraint scores are often formulated from a given unnormalized Lapla-

cian matrix of W , that is defined as follows:

L = D −W (3)

where D ∈ Rn×n is the diagonal degree matrix whose elements are dii =∑n
j=1 wij [13, 14].

2.2. Pairwise constraint

In supervised and semi-supervised learning frameworks, often a limited amount

of information on the training dataset is available. This prior knowledge is ex-

pressed by only few labeled data samples. It can also be expressed by pairwise

constraints that mention if data samples belong to the same class (must-link)
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or to different classes (cannot-link). Pairwise constraints can be given by the

user or are generated from labeled data samples.

In this paper, we consider that only few labeled data samples (prototypes)

characterize the k classes ωl, l = 1, . . . , k. LetX l ∈ Rp×d, (X l ⊂ X) be the set of

p prototypes that are associated with class ωl. From the overall set of prototypes

denoted XP
(
XP =

⋃
l=1,...,k

X l
)

, we can build set M of (k·p2−k·p = k·p·(p−1))

must-link pairs that are composed of two prototypes belonging to the same class:

M =
{

(xi, xj) ∈ X2 | ∃ l = 1, . . . , k so that xi ∈ X l and xj ∈ X l
}

(4)

We can also build set C of (k · (k− 1) · p2) cannot-link pairs that are composed

of two prototypes belonging to different classes:

C =
{

(xi, xj) ∈ X2 | ∃ (l,m); l 6= m; so that xi ∈ X l and xj ∈ Xm
}

(5)

Of all possible data pairs that can be extracted from X, those belonging to

M or C are called constrained pairs, while the remaining pairs are called uncon-

strained pairs. Furthermore, data that are not prototypes are called unlabeled

data samples and are gathered in subset XU = X/XP .

In the context of spectral graph theory, two graphs GM and GC are built

from the sets of must-link constraints M and cannot-link constraints C. The

similarity matrices WM ∈ Rn×n and WC ∈ Rn×n are defined as follows:

wM
ij =

 1 if (xi, xj) ∈M

0 otherwise
(6)

wC
ij =

 1 if (xi, xj) ∈ C

0 otherwise
(7)

3. Constraint scores

The performance achieved by learning algorithms such as classification or

clustering depends on similarity, which is based on the Euclidean distance in

the original d-dimensional feature space. Because these features are not always

relevant, many authors select the best ones based on constraint scores that

combine the concepts of spectral graph theory and pairwise constraints.
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3.1. Constraint scores for supervised feature selection

In a supervised learning framework, only pairwise constraints are used to

evaluate the relevance of features while unconstrained data samples are ignored.

Two constraint scores C1
r and C2

r of feature fr are defined by Zhang et al.

[5] as follows:

C1
r =

∑
(xi,xj)∈M (xir − xjr)2∑
(xi,xj)∈C(xir − xjr)2

=

∑n
i=1

∑n
j=1(xir − xjr)2wM

ij∑n
i=1

∑n
j=1(xir − xjr)2wC

ij

(8)

C2
r =

∑
(xi,xj)∈M (xir − xjr)2 − λ

∑
(xi,xj)∈C(xir − xjr)2

=
∑n

i=1

∑n
j=1(xir − xjr)2wM

ij − λ
∑n

i=1

∑n
j=1(xir − xjr)2wC

ij

(9)

where λ ∈ [0, 1] is a regularization parameter. In our experiments, λ is set to

1, as in [5]. These scores assume that the distance between the must-link data

samples should be as low as possible, while the distance between the cannot-link

data samples should be as high as possible.

The two scores can be formulated from the unnormalized constrained Lapla-

cian matrices LM = DM −WM and LC = DC −WC :

C1
r =

fTr L
Mfr

fTr L
Cfr

(10)

C2
r = fTr L

Mfr − λfTr LCfr (11)

Lower scores indicate a more relevant feature.

3.2. Constraint scores for semi-supervised feature selection

Semi-supervised feature selection involves the analysis of both pairwise con-

straints and unlabeled data samples. It considers both the discriminating power

of the pairwise constraints and the local properties of the unlabeled data sam-

ples.

Zhao et al. [6] introduced the semi-supervised constraint score C3
r , called

the locality sensitive discriminant analysis score, which combines the similarity
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matrix WC constructed from the cannot-link constraints (Eq. (7)) and the sim-

ilarity matrix WKNN1 ∈ Rn×n which is constructed from the set of must-link

constraints and unlabeled data samples as follows:

wKNN1
ij =


γ if (xi, xj) ∈M

1 if (xi ∈ XU or xj ∈ XU ) and
(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
0 otherwise

(12)

where γ is a constant parameter. In our experiments, γ is set to 100 and K is

set to 5 as in [6].

The constraint score C3
r is defined as

C3
r =

∑n
i=1

∑n
j=1(xir − xjr)2wKNN1

ij∑n
i=1

∑n
j=1(xir − xjr)2wC

ij

=
fTr L

KNN1fr
fTr L

Cfr
(13)

where LKNN1 = DKNN1 − WKNN1 is the unnormalized Laplacian matrix of

WKNN1, DKNN1 being the degree matrix computed from WKNN1.

This score ensures that two data samples related by a cannot-link constraint are

well separated. It also implicitly takes into account the unlabeled data samples

but favors pairs of must-link data samples by assigning them high weights in the

matrix WKNN1. Moreover, the similarity matrix WKNN1 represents the links

between the KNNs of the unlabeled data samples by binary weighting them.

Kalakech et al. [1] proposed a semi-supervised constraint score C4
r that is less

sensitive to the constraint sets by a simple combination of scores computed on

prototypes and unlabeled data samples. More precisely, C4
r attempts to identify

a trade-off between the unsupervised Laplacian score Lr and the supervised

constraint score C1
r (see Eq. (8)) by multiplying both scores :

C4
r = Lr · C1

r (14)

The Laplacian score Lr of a feature fr is defined as in [15] as follows:

Lr =

∑n
i=1

∑n
j=1(xir − xjr)2wij∑n

i=1(xir − f̄r)2dii
=
f̃Tr Lf̃r

f̃Tr Df̃r
(15)
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where f̄r =
∑n

i=1 xirdii∑n
i=1 dii

=
fT
r D1

1TD1
, f̃r = fr − f̄r and 1 = [1, . . . , 1]T .

Lr favors features with high variance and tends to select those with a strong

ability to preserve locality, while C1
r seeks to select features with a strong ability

to preserve pairwise constraints.

Finally, C4
r is defined in terms of Laplacian matrices as follows:

C4
r =

f̃Tr Lf̃r

f̃Tr Df̃r
· f

T
r L

Mfr
fTr L

Cfr
(16)

L and D are deduced from similarity matrix W (Eq. (1)).

Benabdeslem and Hindawi proposed another constraint score called the con-

strained Laplacian score that combines the similarity matrices WC and WKNN2

for semi-supervised feature selection [7]. The similarity matrix WKNN2 is ex-

pressed as

wKNN2
ij =

 wij if
(
(xi, xj) ∈M

)
or
(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
0 otherwise

(17)

The score C5
r is defined as follows [7, 16]:

C5
r =

∑n
i=1

∑n
j=1(xir − xjr)2wKNN2

ij∑n
i=1

∑n
j=1|∃l,(xl,xj)∈C(xir − αi

jr)2dKNN2
ii

(18)

where

αi
jr =


xir if (xi, xj) ∈ C

f̄r if
(
i = j

)
and

(
xi ∈ XU

)
xir otherwise

(19)

C5
r represents an enhanced version of both scores: the Laplacian score Lr and

the supervised constraint score C1
r . In fact, the Laplacian score Lr can be seen

as a special version of C5
r when there are no labeled data samples (αi

jr = f̄r), and

when (αi
jr = xir), C5

r can be considered as an adjusted version of the constraint

score C1
r . Subsequently, C5

r is defined in terms of Laplacian matrices as follows

[7]:

C5
r =

fTr L
KNN2fr

fTr L
CDKNN2fr

(20)
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Finally, on the one hand, this score ensures that data samples that are neigh-

bors or related by must-link constraints should be close together when they are

projected to relevant features. On the other hand, the distance between data

samples that are related by cannot-link constraints should be as high as possible.

A second semi-supervised constrained Laplacian score, referred to C6
r , has

been proposed by Benabdeslem and Hindawi in [8] as follows:

C6
r =

∑n
i=1

∑n
j=1(xir − xjr)2(wKNN

ij +Nij)∑n
i=1

∑n
j=1(xir − αi

jr)2dKNN
ii

=
fTr L

KNN3fr
fTr L

CDKNNfr
(21)

where the diagonal matrix DKNN is deduced from the similarity matrix WKNN

(see Eq. 2). Nij is given as follows:

Nij =



−wij if
(
(xi, xj) ∈M

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
w2

ij if
[(

(xi, xj) ∈M
)

and
(
xi /∈ KNN(xj) and xj /∈ KNN(xi)

)]
or
[(

(xi, xj) ∈ C
)

and
(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)]
0 otherwise

(22)

The Laplacian matrix LKNN3 is computed from the similarity matrix WKNN3 =

wKNN
ij +Nij defined as follows:

wKNN3
ij =



w2
ij + wij if

(
(xi, xj) ∈ C

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
w2

ij if
(
(xi, xj) ∈M

)
and

(
xi /∈ KNN(xj) and xj /∈ KNN(xi)

)
wij if

(
xi ∈ XU or xj ∈ XU

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
0 otherwise

(23)

C6
r combines the power of the local geometric structure offered by unlabeled

data samples, with the constraint preserving ability offered by prototypes. The

additional weight w2
ij was introduced in order to more differentiate the features

in the both bad cases, i.e., when two data samples are related by a must-link

constraint but are not neighbors and when two neighboring data samples are

related by a cannot-link constraint.
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Recently, Yang et al. introduced the new semi-supervised constraint score

C7
r , called constraint compensated Laplacian score, which takes advantage of

the local geometrical structure of unlabeled data samples as well as constraint

information deduced from labeled data samples [9, 10]:

C7
r =

∑n
i=1

∑n
j=1(xir − xjr)2(wKNN

ij + N̄ij)∑
r +
∑b

r −
∑w

r

(24)

N̄ij is given as follows:

N̄ij =



1− wij if
(
(xi, xj) ∈M

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
γwij if

(
(xi, xj) ∈ C

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
λ if

(
(xi, xj) ∈M

)
and

(
xi /∈ KNN(xj) and xj /∈ KNN(xi)

)
0 otherwise

(25)

where γ and λ are the parameters set to the empirical values of 0.9 and 0.5,

respectively [9, 10].∑
r is the variance of the rth feature of the whole dataset X,

∑b
r and

∑w
r are

within-class variance and between-class variance of the rth feature of the labeled

dataset (protoypes) XP , respectively.

∑
r =

∑n
i=1(xir − f̄r)2dii (26)

∑b
r =

∑k
l=1 |X l|(f̄ (l)r − f̄Pr )2 (27)∑w

r =
∑k

l=1 |X l|(σ(l)
r )2 (28)

where |X l| = p is the number of prototypes of the lth class, f̄Pr =
∑n

i=1|xi∈XP
xir

k.p

is the mean of the rth feature of the labeled dataset, f̄
(l)
r =

∑n
i=1|xi∈Xl

xir

p and

σ
(l)
r denote the mean and variance of the rth feature of the lth class, respec-

tively.

The semi-supervised constraint score C7
r can be expressed in terms of Laplacian

matrices as follows [10]:

C7
r =

2(fr)TLKNN4fr

(f̃r)TDKNN4f̃r + 2(f̃Pr )TLP f̃Pr − (f̃Pr )TDP f̃Pr
(29)
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The Laplacian matrix LKNN4 is computed from the similarity matrix WKNN4 =

WKNN + N̄ij that is expressed as

wKNN4
ij =



1 if
(
(xi, xj) ∈M

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
λ if

(
(xi, xj) ∈M

)
and

(
xi /∈ KNN(xj) and xj /∈ KNN(xi)

)
(1− γ)wij if

(
(xi, xj) ∈ C

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
wij if

(
xi ∈ XU or xj ∈ XU

)
and

(
xi ∈ KNN(xj) or xj ∈ KNN(xi)

)
0 otherwise

(30)

LP = DP −WP is the unnormalized Laplacian matrix of WP , DP being the

degree matrix computed from WP . The cells of WP are set to 1/|X l| when two

data samples are prototypes that belong to the same class and to 0, otherwise:

wP
ij =

 1/|X l| if xi ∈ X l and xj ∈ X l

0 otherwise
(31)

Note that f̃Pr = fPr − f̄Pr .

The features providing the lowest scores C3, C4, C5 C6 and C7 are the most

relevant features. However, because these scores are based on the Laplacian

matrices and the diagonal degree matrices, which are deduced from the similar-

ity matrices, they are computed in the original d-dimensional feature space and

can be corrupted by the curse of dimensionality.

4. Proposed constrained feature selection

Existing constraint scores estimate the relevance of each feature considered

independently and separately from each other. Because these scores do not take

into account the correlation between features, we propose a new constraint score

that estimates the relevance of a subset of features at once.

4.1. Proposed constraint score

Unlike previous constraint scores that are based on Laplacian matrices,

we propose a constraint score that is based only on similarity matrices to
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evaluate the relevance of a subset of m features denoted Fm = {f1, . . . , fm}

(m = 1, 2, . . . , d). The proposed score, denoted ε∗(Fm), can be used in one of

two learning contexts: ∗ = supervised (S) or semi-supervised (SS). In the su-

pervised learning context, we use only the must-link and cannot-link constraint

sets to select features using εS(Fm). In the semi-supervised learning context,

we exploit both the pairwise constraint sets and the information contributed by

the unlabeled data samples to select features using εSS(Fm).

The relevance of Fm is evaluated by means of the distance between the target

similarity matrix Ŵ ∗, ∗ = S or SS, which is defined from the given constraints

and a similarity matrix W (Fm) that is computed with the subset Fm of fea-

tures. The score ε∗(Fm), which should be as low as possible, is expressed as the

following square error:

ε∗(Fm) = ‖W (Fm)− Ŵ ∗‖2 with ∗ = S or SS (32)

where ‖ · ‖2 is the Euclidean norm. Thus, ε∗(Fm) can be rewritten as

ε∗(Fm) =

n∑
i=1

n∑
j=1

(
wij(Fm)− ŵ∗ij

)2
(33)

W (Fm) ∈ Rn×n is the similarity matrix computed on the dataset X with the

subset of features Fm:

wij(Fm) = exp

(
−
δ2
(
x
(m)
i , x

(m)
j

)
2σ2

)
i, j = 1, 2, . . . , n (34)

where x
(m)
i is the vector of the i-th data point characterized by the subset Fm.

Ŵ ∗ ∈ Rn×n is the target matrix whose cells correspond to must-link pairs

are set to 1, while the cells corresponding to the cannot-link pairs are set to 0.

4.1.1. Supervised constraint score

For supervised learning, the target similarity matrix ŴS is defined as follows:

ŵS
ij =


1 if (xi, xj) ∈M

0 if (xi, xj) ∈ C

wij(Fm) otherwise

(35)
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The cells of ŴS corresponding to the unconstrained pairs are set to wij(Fm) so

that they are not taken into account by εS(Fm), (wij(Fm)−ŵS
ij = 0). Therefore,

from Eqs. (33) and (35), it can be easily demonstrated that εS(Fm) can be

expressed as

εS(Fm) =
∑

(xi, xj) ∈M

(xi, xj) ∈ C

(
wij(Fm)− ŵS

ij

)2
(36)

Finally, εS(Fm) makes it possible to select the set of features with the best

constraint preserving ability and without taking into account the unlabeled

data samples. The concept behind εS(Fm) is simple and natural. A relevant

feature subset produces similarity wij(Fm) between two must-link samples that

is close to 1; however, a good feature subset should provide a similarity between

cannot-link samples close to 0.

4.1.2. Semi-supervised constraint score

For semi-supervised learning new must-link pairs are constructed from the

prototypes and unlabeled data samples to compute the binary target similarity

matrix ŴSS :

ŵSS
ij =

 1 if (xi, xj) ∈MSS

0 otherwise
(37)

The cell (i, j) of ŴSS is set to 1 (0 otherwise) when (xi, xj) belongs to MSS ,

which is a new set of must-link pairs deduced from prototype subsets X l, l =

1, . . . , k and unlabeled data samples as follows:

MSS =
{

(xi, xj) ∈ X2|∃l = 1, . . . , k so that NP (xi) ∈ X l and NP (xj) ∈ X l
}

(38)

The nearest prototype NP (xi) is the prototype whose distance from a sample

data point xi ∈ X in the original d-dimensional feature space is the smallest

one:

NP (xi) = arg min
y ∈

⋃
l=1,...,k

Xl

(
δ2(xi, y)

)
(39)
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Thus, pair (xi, xj) belongs to MSS when the nearest prototype of xi and xj

both belong to the same subset X l of prototypes. Because NP (xi) is xi when

xi belongs to prototype subset X l, set M is included in MSS (M ⊂ MSS).

Therefore, MSS increases the contribution of the pairwise constraints M for

semi-supervised feature selection. An illustration of MSS is provided in Fig. 1,

in which only must-link pairs are represented for clarity. For comparison pur-

poses, Fig. 1(d) displays the links corresponding to similarity matrix WKNN1

of Eq. (12), WKNN2 of Eq. (17), WKNN3 of Eq. (23) and WKNN4 of Eq. (30),

which is used by the semi-supervised constraint score C3, C5, C6 and C7, re-

spectively. These links are established from the pairwise constraints and the

K-nearest neighbors (KNNs) of the data samples. To compare them with

our set MSS , we set K to 1 for WKNN1, WKNN2, WKNN3 and WKNN4 and

define 1NN = {(xi, xj) ∈ X2 | xi ∈ XU or xj ∈ XU but xi = 1NN(xj) or xj =

1NN(xi)} to describe links that are generated by these four matrices. Figure 1

demonstrates that MSS better respects the geometric structure of classes than

WKNN1, WKNN2, WKNN3 and WKNN4 1NN by taking into account the margin

between unlabeled samples and prototypes of different classes.

(a) (b) (c) (d)

Figure 1: Must-link pairs in a semi-supervised learning context. (a) Set of unlabeled data

samples (displayed with color of class labels for a better interpretation of results) and two

prototype sets X1 and X2. (b) Set M . (c) Set MSS . (d) Set 1NN Links corresponding to

similarity matrices WKNN1, WKNN2, WKNN3 and WKNN4.

Finally, εSS(Fm) =
∑n

i=1

∑n
j=1

(
wij(Fm) − ŵSS

ij

)2
makes it possible to as-

sess the ability of a feature subset to preserve the pairwise constraints provided
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by the user and the extended pairwise constraints provided by MSS . These ex-

tended pairwise constraints well represent the geometric structure of the classes.

The supervised constraint scores C1 and C2 do not compute the similarity

between prototypes in any feature space, while the classical semi-supervised

constraint scores Cc (c = 3, . . . , 7) evaluate the similarity between samples only

in the original feature space. In contrast, our scores εS and εSS evaluate the

similarity matrix W (Fm) in the selected feature subspace Fm. This difference is

essential because the classification or clustering of the data samples is performed

in the selected feature subspace.

4.2. Feature selection procedure

Feature selection reduces data dimensionality by selecting the most relevant

sets of original features. Because the state-of-the-art scores Cc (c = 1, . . . , 7)

evaluate the relevance of each feature, the selection procedure ranks features

with respect to one of the scores to identify the most relevant sets of features.

For illustration purposes, we consider the Dermatology database from UCI

repository [17], which contains 366 samples characterized by 34 features and is

regrouped into 6 classes. We randomly pick out p = 3 prototypes for each class.

Figure 2 presents the variation in scores Cc (c = 1, . . . , 7) with respect to the

number m of features. It should be noted that the score of a subset composed

of the best m features in Fig. 2 is computed as the cumulative sum of the

lowest scores divided by m. It can be seen that the C1, C3, C4, C5, C6 and

C7 curves monotonically increase while C2 monotonically decreases. As these

scores monotonically vary, they do not allow for the identification of the optimal

number of features.

Because our score ε∗ can evaluate the relevance of a feature subset at once,

it is more advantageous to use a selection procedure capable of combining fea-

tures between them. For this, we use the sequential forward feature selection

technique due to its simplicity [11].

To evaluate the relative relevance of d features, we first consider each feature
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2: State-of-the-art constraint scores with respect to the number of selected features m

for the Dermatology database: (a) C1

m
, (b) C2

m
, (c) C3

m
, (d) C4

m
, (e) C5

m
, (f) C6

m
, (g) C7

m
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one by one (m = 1). The feature fr that minimizes ε∗(F1) with F1 = {fr}

is selected and is combined with each of the remaining d − 1 features. The

corresponding d − 1 scores ε∗(F2) are then computed, and the pair of features

that minimizes ε∗(F2) is retained. When m of d features have been selected,

the (m + 1)-th feature that minimizes ε∗(Fm+1) when combined with the m

previously chosen features is selected. This suboptimal procedure is iterated

until d features have been ordered. The subset Fm̂ that corresponds to the

minimum of ε∗(Fm) is finally selected (see Algorithm 1). The pseudo-code for

this feature selection procedure is outlined in Algorithm 1.

Algorithm 1 Feature selection procedure.

Input: Set of d feature Fd = {f1, . . . , fr, . . . , fd}.

1. Create empty set of features F0 = {∅}.

2. For m = 1 to d

a. Select the most relevant feature f+r

f+r = arg min
fr ∈ Fd\Fm−1

(
εSS(Fm−1 ∪ {fr})

)
.

b. Update Fm = Fm−1 ∪ {f+r }.

3. Select the number m̂ of features such that

m̂ = arg min
m=1,2,...,d

(
εSS(Fm)

)
.

Output: Subset of m̂ relevant features Fm̂.

Figure 3 illustrates the variation of the proposed constraint scores εS and

εSS with respect to the number of features m in the Dermatology database,

from which p = 3 prototypes have been selected for each class. It should also be

noted that as for all state-of-the-art scores Cc (c = 1, . . . , 7), εS is normalized

by the total number (k · p)2 of constraints, and εSS is normalized by the total

number n2 of cells in the similarity matrix W . The curves of εS and εSS are

both pseudo-convex . The proposed supervised and semi-supervised constraint

scores and their minima can thus help used to identify the optimal number of

features.

It should be emphasized that although this feature selection procedure eval-
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(a) (b)

Figure 3: Proposed constraint scores with respect to the number of selected features m for

the Dermatology database: (a) εS

(k·p)2 and (b) εSS

n2

uates the features jointly and considers the dependency among them by virtue

of our proposed constraint score, it belongs to the filter approach and retains

all the advantages of this approach comparatively to wrapper approach (i.e.,

independence from the classifier, high computation speed, simple and rapid im-

plementation).

5. Experiments on benchmark databases

We evaluated and compared our proposed constraint score with several con-

straint scores and several well-known feature selection methods on datasets orig-

inating from benchmark databases. We first examined the supervised feature

scores (εS , C1, and C2). Then, we assessed the performance attained by semi-

supervised feature scores (εSS , C3, C4, C5, C6 and C7). Because the data were

scaled between 0 and 1, the scaling parameter σ used to compute the similar-

ity matrices was set to 1. Feature selection procedures were performed on the

training datasets and repeated over 100 runs. In each feature selection run,

we automatically generated a set of pairwise constraints as follows. For each

class, we randomly selected from the training dataset X, k prototype subsets X l

(|X l| = p). Then, we deduced sets M , C, and MSS of the pairwise constraints

using Eqs. (4), (5), and (38), respectively.
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5.1. Databases

Our experiments were performed using twelve six well-known and commonly

used benchmark databases in the feature selection framework, namely, the Wis-

consin Breast Cancer (WBCD), Image Segmentation, Wisconsin Diagnostic

Breast Cancer (WDBC), Ionosphere, Dermatology, Libras Movement, Multiple

Features and CNAE-9 databases from the UCI repository [17], and the Olivetti

Research Laboratory (ORL), Yale, Pie10P, and ALLAML databases from the

ASU feature selection repository [18]. The details of these databases are pro-

vided in Table 1. All the databases had numerical features, and the class label

of each data sample was clearly defined. We normalized each dataset between

0 and 1 to ensure that the scales of all features were equal. For WBCD, 410

samples were used as the training dataset and 273 samples were used as the

test dataset, while for WDBC, 376 samples were used as the training dataset

and 193 samples were used as the test dataset [2]. For the remaining databases,

Ionosphere, Dermatology, Libras Movement, and ORL, we used half of the data

samples from each class as the training dataset and the remaining data samples

as the test dataset [1]. It should be noted that the classes were not equiprobable

for all databases with the exception of the WBCD, WDBC, Ionosphere, Der-

matology and ALLAML Libras Movement and ORL databases. We extracted

(k · p) prototypes from the training sample set of each database with p ranging

from 2 to 4. Table 1 also displays the number (k · p) of prototypes extracted

from the training sample set of each database with p ranging from 2 to 4. These

prototypes were used to build pairwise constraints and select relevant features.

They were also used in the classification step to evaluate the relevance of the

selected features. It can be seen that the curse of dimensionality is faced, as the

number of prototypes always remains less than the number of features d.

5.2. Supervised feature selection

For supervised learning, only k prototype subsets X l are used to select fea-

tures. The performance obtained by the proposed supervised constraint score

εS is compared first with that attained by supervised constraint scores C1 and
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Table 1: Description of benchmark databases used in experiments

Database #Features #Samples #Training/#Test #Classes

WBCD 09 683 410/273 2

Image Segmentation 19 2310 1155/1155 7

WDBC 30 569 376/193 2

Ionosphere 34 351 176/175 2

Dermatology 34 366 183/183 6

Libras Movement 90 360 180/180 15

Multiple Feature 649 2000 1000/1000 10

CNAE-9 856 1080 540/540 9

Yale 1024 165 90/75 15

ORL 1024 400 200/200 40

Pie10P 2420 210 110/100 10

ALLAML 7129 72 37/35 2

C2, then with that achieved by supervised feature selection methods including

ReliefF [19] and minimal-redundancy-maximal relevance (mRMR) [20]. In addi-

tion to these filter feature selection methods, a wrapper-type supervised feature

selection [21] is used for the comparison.

The relevance of the selected subset of features is evaluated by the accuracy

measure of the test dataset. Each test data point is projected onto the retained

feature space and is assigned to one of the k classes according to the nearest

neighbor rule. In general, the entire training dataset is used as prototypes

by the nearest neighbor classifier to classify the test data, whereas only few

prototypes are used by the supervised constraint scores [1, 5, 7]. Here, we

propose performing the selection and evaluation with only the same available k

prototype subsets X l (|X l| = p). In this way, these two steps are performed in

conditions similar to those of real-life applications.

Because the accuracy highly depends on the number of selected features and

prototypes, we first evaluate accuracy with respect to the number of features m
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for a given number of prototypes p. Then, for a relevant number of features, we

compare the accuracy obtained by the supervised constraint scores with different

numbers of prototypes.

5.2.1. Accuracy versus number of selected features

Figure 4 illustrates the average accuracy for εS , C1, and C2 obtained when

the number of prototypes p is set to 3. From this figure, it can be seen that in

most cases, the average accuracy obtained with the proposed scores εS is higher

than that obtained with constraint scores C1 and C2. The curves of εS differ

from the curves of C1 and C2 for the Image Segmentation, Ionosphere, Derma-

tology, and Libras Movement databases. However, the curves of εS , C1, and

C2 overlap for the other databases. Because the performance of these scores is

averaged over 100 runs with different generations of constraints, comparing them

is difficult. As a result, we compare these scores by examining their accuracy

at each of the 100 runs.

For a fixed number of selected features, in each of the 100 runs, we propose

ranking the supervised constraint scores εS , C1, and C2 in descending order of

accuracy. Let us denote rank
[c]
q the rank of the supervised constraint scores c =

εS , C1, or C2 at run q. The score with the highest accuracy is ranked 1, while

the score with the lowest accuracy is ranked 3. Scores with the same accuracy

have the same rank. We compute the rank sum R[c] for each score as follows:

R[c] =

100∑
q=1

rank[c]q (40)

The method with the lowest rank sum is considered to be the score that

provides the best results.

For the WBCD, Image Segmentation, WDBC, Ionosphere, Dermatology, Li-

bras Movement, Multiple Features, and ORL databases, the accuracy of the

supervised constraint scores appears to be stable when the number of selected

features is higher than 5, 11, 12, 13, 15, 45, 100, and 300, respectively (see Fig. 4).

The rank sum of each supervised constraint score is then computed by consid-

ering the first 5, 11, 12, 13, 15, 45, 100, and 300 features for the WBCD, Image
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(a) WBCD (b) Image Segmentation

(c) WDBC (d) Ionosphere

(e) Dermatology (f) Libras Movement

(g) Multiple Features (h) ORL

Figure 4: Accuracy versus number of selected features m by the supervised constraint scores

on eight six benchmark databases
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Segmentation, WDBC, Ionosphere, Dermatology, Libras Movement, Multiple

Features, and ORL databases, respectively.

In Table 2, the row with an asterisk for each of the eight six databases,

provides the rank sum when the number of prototypes p is set to 3. These

rows indicate that εS provides the lowest rank sum for all databases (indicated

in bold) except for the WDBC database. Thus, the accuracy provided by the

features selected by εS is higher than those obtained by C1 and C2.

5.2.2. Accuracy versus number of prototypes

In this section, we compare the accuracy obtained by the supervised con-

straint scores εS , C1, and C2 for various number of prototypes p. For this

purpose, we use the number of selected features that is provided in the previous

section. Because the number of prototypes p must be higher than or equal to 2

to generate at least one must-link constraint by class, it ranges from 2 to 4.

Table 2 displays the rank sums obtained for the eight databases and demon-

strates that the features selected by εS provide higher accuracy rates than those

obtained by the features selected by C1 and C2. In fact, the score εS provides

the lowest rank sum (indicated in bold) 19 times out of the 24 rows in Table 2.

The improvement provided by εS has two main causes. First, because εS es-

timates the relevance of a subset of features, it takes into account the correlation

between them, whereas C1 and C2 ignore this correlation. Second, εS computes

the similarity matrix between samples in the considered subset of features (see.

Eq. (36)) whereas C1 and C2 do not compute the similarity between samples.

5.2.3. Comparison with other supervised feature selection methods

To further illustrate the effectiveness of our supervised constraint score εS , it

is compared with well-established supervised feature selection methods includ-

ing ReliefF [19] and mRMR [20]. A wrapper-type supervised feature selection

that selects features in a forward sequential manner by means of nearest neigh-

bor classifier (SFS-1NN) is also used for the comparison [21]. Figure 5 displays
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Table 2: Rank sum of different supervised constraint scores for different numbers of prototypes

Database m p εS C1 C2

WBCD 5

2 148 171 161

3∗ 160∗ 169∗ 160∗

4 172 167 158

Image Segmentation 11

2 196 183 192

3∗ 170∗ 209∗ 184∗

4 184 202 182

WDBC 12

2 171 188 171

3∗ 186∗ 194∗ 176∗

4 183 176 194

Ionosphere 13

2 185 192 185

3∗ 184∗ 194∗ 197∗

4 179 192 203

Dermatology 15

2 170 194 223

3∗ 164∗ 199∗ 227∗

4 160 202 223

Libras Movement 45

2 127 233 232

3∗ 118∗ 225∗ 251∗

4 125 223 234

Multiple Features 100

2 156 216 226

3∗ 133∗ 218∗ 246∗

4 116 238 245

ORL 300

2 141 184 248

3∗ 151∗ 160∗ 278∗

4 100 100 100

the average accuracies over 100 runs achieved by the supervised feature selec-

tion methods on high dimensionality databases compared with the r% selected

features, when the number p of prototypes is set to 3. r is set to 5 for datasets
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with a number d of features greater than 3000, 10 for datasets with a number

of features in the range [2000− 3000], 20 for datasets with a dimensionality in

the range [300− 2000] and 100 for lower dimensionality (less than 300). Figure

5 shows that the averaged accuracy on the features selected by εS is usually

higher than that of the filter methods but remains lower than that of the wrap-

per method SFS-1NN. This observation is confirmed by the averaged accuracies

over the top r% features that are reported in Table 3. To better assess the

results obtained for each algorithm, we ranks the algorithms for each dataset

separately, the best performing algorithm obtaining the rank of 1, the second

best rank 2, etc. In case of ties, we assigns the same rank. Finally, the average

rank over all databases is depicted in the bottom row of Table 3. We can find

overall that our score εS outperforms the four other filter methods, but remains

behind the wrapper method.
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(a) Multiple Features (b) ORL

(c) CNAE-9 (d) Yale

(e) Pie10P (f) ALLAML

Figure 5: Accuracy versus number of selected features m by supervised feature selection

methods on six high dimensionality databases
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5.3. Semi-supervised feature selection

Semi-supervised learning analyzes the k prototype subsets X l in addition to

unlabeled samples that belong to the learning dataset X. Because our score

εSS uses unlabeled samples to construct the new set MSS of must-link pairwise

constraints, it is interesting to first evaluate the relevance of MSS . Then, the

performance obtained by the proposed semi-supervised constraint score εSS is

compared with that attained by the semi-supervised constraint scores Cc (c =

3, . . . , 7) and by two semi-supervised feature selection methods namely the semi-

supervised pairwise constraint-guided sparse (SCGS) learning method [22] and

the ensemble constrained Laplacian score (EnsCLS) method [16].

For this purpose, we follow the same experimental scheme as that of su-

pervised learning. First, we evaluate the accuracy with respect to the number

of features m for a given number of prototypes p. Then, for a number of fea-

tures m that are considered relevant, we compare the accuracy achieved by the

semi-supervised constraint scores with different numbers of prototypes.

5.3.1. Correct must-link pairs of MSS

The proposed semi-supervised constraint score εSS builds the set of new

must-link pairsMSS (see Eq. (38)), which extends setM . To assess the resulting

set MSS , we propose comparing it with M by computing the rate of new must-

link pairs (NML). Then, the rate of correct new must-link pairs (CNML) is

computed as follows to evaluate the relevance of these new constraints:

NML =
|MSS |
|M |

(41)

CNML =
| {(xi, xj) ∈MSS \M | ω(xi) = ω(xj)} |

|MSS \M |
(42)

where ω(xi) is the true class of the data sample xi. Here, NML ≥ 1 and

0 ≤ CNML ≤ 1, and higher NML and CNML lead to an improved MSS .

Table 4 lists the means of NML and CNML for eight databases over 100

different sets of prototypes when the number of prototypes p ranges from 2 to
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4. To interpret NML with set M , Table 4 also displays its size |M | = k ·p2−k ·p.

Table 4: NML and CNML achieved for eight databases

Database p |M | NML CNML

WBCD

2 04 24037 0.8596

3 12 7956.2 0.8647

4 24 3915.4 0.8799

Image Segmentation

2 14 15234 0.4690

3 42 4922.4 0.4966

4 84 2408.2 0.5126

WDBC

2 04 19638 0.7962

3 12 6392 0.8094

4 24 3140.9 0.8337

Ionosphere

2 04 5450.1 0.5826

3 12 1752.6 0.5962

4 24 879.9 0.6008

Dermatology

2 12 534.2 0.8050

3 36 174.4 0.8504

4 72 86.5 0.8630

Libras Movement

2 30 81.19 0.4305

3 90 25.0 0.5077

4 180 12.0 0.5684

Multiple Features

2 20 5198.6 0.6269

3 60 1698.3 0.6939

4 120 841.3 0.7401

ORL

2 80 11.1 0.6324

3 240 3.4 0.7694

4 480 1.7 0.8780

This table demonstrates that for each database, NML decreases when the
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number of prototypes p increases. NML also varies strongly from one database

to another and tends to be high when the number |M | of available must-link

pairs is low. Furthermore, CNML is close to or exceeds 0.7 for all databases

except for the Image Segmentation, Libras Movement and Ionosphere databases.

Therefore, we can deduce that the majority of these new must-link pairwise

constraints should be used to select features.

5.3.2. Accuracy versus number of selected features

The performance of semi-supervised constraint scores is measured according

to the classification accuracy of the test dataset. In semi-supervised learning,

the evaluation step is generally performed in the supervised context, in which

the training dataset is used as prototypes by the nearest neighbor classifier to

classify the test data [1, 6, 7]. Instead, the features are selected in the semi-

supervised learning context in which only few prototypes are considered. To

perform selection and evaluation in the same semi-supervised context that is

similar to real-life applications, we follow the strategy proposed by Kalakech et

al. [12] by applying the constrained spectral clustering detailed in [23] instead

of the constrained K-means algorithm to classify the unlabeled training data

samples. Then, we use the sample as prototypes to classify the test data subset.

Finally, each test data point is projected onto the same retained feature subspace

and is assigned to a class using the nearest neighbor rule, which uses the available

prototypes in addition to the training data samples that have been previously

classified.

Figure 6 presents the average accuracy for εSS , C3, C4, C5, C6 and C7

obtained in the eight test sets using the semi-supervised learning evaluation over

100 runs when the number of prototypes p was set to 3. This figure indicates

that our semi-supervised constraint score εSS provides higher accuracy than

that achieved by the other semi-supervised constraint scores Cc (c = 3, . . . , 7).

The curves of εSS clearly differ from those of Cc (c = 3, . . . , 7), which overlap.

We also determined the rank sum R[c] obtained by the semi-supervised con-

straint scores εSS and Cc (c = 3, . . . , 7) for the eight databases over 100 runs
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(a) WBCD (b) Image Segmentation

(c) WDBC (d) Ionosphere

(e) Dermatology (f) Libras Movement

(g) Multiple Features (h) ORL

Figure 6: Accuracy versus number of selected features m by the semi-supervised constraint

scores for eight benchmark databases
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with p = 3 prototypes. The rank sum of each score was computed by considering

the first 5, 12, 16, 17, 15, 45, 100 and 300 features for the WBCD, Image Segmen-

tation, WDBC, Ionosphere, Dermatology, Libras Movement, Multiple Features,

and ORL databases, respectively (see Fig. 6). The rows with an asterisk in

Table 5 indicate that εSS provides the lowest rank sum for all the databases

(indicated in bold) except for the WDBC Ionosphere database. Thus, the ac-

curacy provided by the features selected by εSS is higher than that obtained by

Cc (c = 3, . . . , 7) in the majority of cases.

5.3.3. Accuracy versus number of prototypes

In this section, we compare the accuracy obtained by the semi-supervised

constraint scores εSS , C3, C4, C5, C6 and C7 versus the number of prototypes p.

For this purpose, we use the number of selected features provided in Sect.5.3.2.

Table 5 displays the rank sum over 100 different sets of prototypes when the

number of prototypes p ranges from 2 to 4. It can be seen that εSS provides

the lowest rank sum 20 out of 24 times. These results indicate that the accu-

racy provided by features selected by εSS is higher than the accuracy of those

obtained by Cc (c = 3, . . . , 7) in most cases.

In addition, εSS outperforms Cc (c = 3, . . . , 7) because it takes into account

the correlation between features. Furthermore, it computes the similarity ma-

trix between samples in the selected feature subspace, while Cc (c = 3, . . . , 7)

compute the similarities in the high-dimensional original feature space.

5.3.4. Comparison with other semi-supervised feature selection methods

To further illustrate the effectiveness of our semi-supervised constraint score

εSS , it is compared with other semi-supervised feature selection methods, namely

the SCGS [22] and EnsCLS [16]. In addition, two unsupervised feature selec-

tion methods including the Laplacian score (LS) [15] and the spectral feature

selection (Spec) method [24], which are based on graph theory and similarity

matrices, are used for the comparison. Note that EnsCLS combines both a
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Table 5: Rank sum of different semi-supervised constraint scores for different number of

prototypes

Database m p εSS C3 C4 C5 C6 C7

WBCD 5

2 254 257 374 246 244 251

3∗ 192∗ 304∗ 347∗ 250∗ 251∗ 209∗

4 206 307 332 253 250 221

Image Segmentation 12

2 179 271 284 211 218 179

3∗ 155∗ 282∗ 292∗ 160∗ 164∗ 156∗

4 176 210 242 192 196 176

WDBC 16

2 282 358 359 305 314 324

3∗ 299∗ 351∗ 372∗ 303∗ 306∗ 282∗

4 308 314 341 316 301 306

Ionosphere 17

2 262 334 332 321 323 379

3∗ 283∗ 326∗ 334∗ 314∗ 307∗ 414∗

4 291 332 333 307 303 434

Dermatology 15

2 208 316 367 282 292 482

3∗ 166∗ 319∗ 343∗ 314∗ 318∗ 498∗

4 177 306 374 309 324 466

Libras Movement 45

2 132 318 331 409 404 432

3∗ 128∗ 306∗ 326∗ 462∗ 458∗ 358∗

4 138 312 323 464 483 313

Multiple Features 100

2 149 486 369 311 311 364

3∗ 119∗ 422∗ 407∗ 378∗ 375∗ 300∗

4 108 375 454 382 379 297

ORL 300

2 154 246 378 508 518 240

3∗ 174∗ 210∗ 416∗ 567∗ 497∗ 189∗

4 200 100 500 600 200 400

resampling of data (bagging) and a random selection of features (random sub-

spaces) strategy for generating different data views. The constraint score C6 is
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then used to measure feature relevance on each data replicate, and the score av-

erage of all features across all ensemble components is used to rank all features.

In SCGS the semi-supervised feature selection is formulated as a optimization

problem where the objective function contains three terms. The first term is

the empirical loss on labeled data sample, the second term is a discriminant

regularization term focusing on the local structure of data reflected by pair-

wise constraints, and the last term is an unsupervised estimation on intrinsic

geometry distribution of the whole training data. The wrapper-type supervised

feature selection (SFS-1NN) is used as baseline. For the sake of fairness, the

selection and evaluation are performed in the same conditions as for the semi-

supervised constraint scores. For the unsupervised methods, only the unlabeled

training data samples are used for the feature selection and are then labeled

by the constrained spectral clustering before being used as prototypes by the

nearest neighbor classifier. Figure 7 displays the average accuracies over 100

runs achieved by the above feature selection approaches on high dimensionality

datasets compared with the r% most relevant features, when the number of pro-

totypes p is set to 3. The mean and standard deviation of accuracies, computed

over the top r% features for all databases, are reported in Table 6. The averaged

rank of each algorithm over all datasets, is reported in the bottom row of the

Table 6. From Fig. 7 and Table 6, we can make the following observations:

- When we compare εSS with semi-supervised features selection methods, we no-

tice that SCGS outperforms εSS for only 3 out 12 databases (CNAE9, Pie10P

and ALLAML), and EnsCLS works better than εSS for only two databases

(Ionosphere and Pie10P). εSS outperforms the two constraint scores C4 and

C7 for all databases except for the ALLAML database where C7 appears more

efficient.

- By comparing εSS with the unsupervised features selection methods, we find

that εSS outperforms LS and Spec for all databases except for ALLAML where

Spec produces a better averaged accuracy and WDBC where LS displays the

same averaged accuracy than εSS .

However, overall, εSS outperforms all of these competitive methods given its
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lower average rank value. In some cases, εSS performs better results than the

wrapper method SFS-1NN as for Multiple Features, Yale and ORL databases.

(a) Multiple Features (b) ORL

(c) CNAE-9 (d) Yale

(e) Pie10P (f) ALLAML

Figure 7: Accuracy versus number of selected features m by semi-supervised and unsupervised

feature selection methods on six high dimensionality databases
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5.4. Discussion

In this section, we first discuss the influence of the scaling parameter σ,

the time running and the optimal number of selected features of the proposed

constraint scores εS and εSS for feature selection. Then, we compare the ac-

curacy provided by the supervised constraint score εS and the semi-supervised

constraint score εSS .

5.4.1. Influence of the scaling parameter σ

Like the constraint scores Cc, (c = 1, 2, ..., 7), our constraint scores εS and

εSS depend on the scaling parameter σ used to compute the similarity matrices

(see Eqs. 32 to 34). In previous experiments, the scaling parameter σ was set to

1. To analyze its effect on the performance of our constraint scores, we display

in Fig. 8 the average accuracy over 100 runs obtained by our constraint scores

εS and εSS on the both WBCD, WDBC and Dermatology databases with a

number of prototypes p set to 3, when σ ranges from 0.2 to 1.4. To avoid the

influence of the spectral clustering, the accuracy is assessed on the test dataset

under the same conditions for the both scores, i.e., by using the same nearest

neighbor classifier based only on the k prototype subsets X l (|X l| = p). The

curves show that overall, σ has a significant influence on the results, but that a

value between 0.6 and 1.2 is best suited to the experimented databases.

5.4.2. Time running

Our proposed score ε∗ has the advantage to evaluate the relevance of a fea-

ture subset at once thanks to the sequential forward feature selection technique.

In order to quantify the computational effort required by the feature selection

based on our constraint scores εS and εSS , its running time is compared with

that consumed by the wrapper method SFS-1NN that also uses the sequential

forward selection as search algorithm. The running times of the mRMR and
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(a) WBCD (b) WDBC (c) Dermatology

(d) WBCD (e) WDBC (f) Dermatology

Figure 8: Influence of the scaling parameter σ versus number of selected features m by the

proposed constraint scores εS and εSS . Top row: results obtained by using εS . Bottom row:

results obtained by using εSS

EnsCLS methods are also represented as an indication. Table 7 displays the

computation times obtained by the above algorithms on some datasets of Table

1 with a Intel Core i7 3.60GHz, with 8GB RAM computer. Although the run-

ning times are computer dependent, they give an idea of the computation time

required by the algorithms for various dimensionalities d, class numbers k, sam-

ple numbers n and numbers m of selected features. εS and εSS are relatively

more time-consuming than mRMR and EnsCLS, even if that of εS remains

comparable. In fact, the computation time of εS and εSS in itself is not very

high, but it is rather the sequential forward selection procedure which increases

their computation time. For εSS , the high computational time is mainly due to

the procedure for propagating labels on unlabeled data samples, the complexity

of which is proportional to the size of the data samples. Indeed, we can see

on Table 7 that the time consumed by εSS on the Multiple Features dataset

which contains 2000 data samples of dimension 649 is much larger than that

obtained on the ALLAML dataset which contains 72 data samples of higher
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dimension (7129). However, εS and εSS remain always faster than the wrapper

method SFS-1NN. This proves that the calculation of scores is faster than the

calculation of the accuracy by the 1NN classifier. It should be emphasized that

the computational time cannot be considered as a crucial drawback because it

is always possible to reduce it by adopting a faster search strategy, instead of

the sequential forward selection, or by reducing the number of unlabeled data

samples by clustering as in [8],[16].

Table 7: Run-time (in seconds) of feature selection methods

Database m mRMR EnsCLS SFS-1NN εS εSS

Multiple Features

20 0.135 3.207 318,66 0.491 202.35

50 0.329 5.488 981,91 2.142 521.60

100 0.651 8.277 2752.06 8.416 1111.0

ORL

20 0.241 1.605 85.478 2.783 6.429

50 0.614 2.752 248,34 7.925 18.614

100 1.190 4.117 602,79 20.78 46.412

ALLAML

20 1.343 0.067 97.033 0.294 3.603

50 3.417 0.102 250,72 1.045 9.467

100 7.021 0.146 535.37 3.560 22.452

5.4.3. Optimal number of selected features

The choice of feature number to select is open challenge. It is often speci-

fied in advance. The state-of-the-art constraint scores and the feature selection

methods used in previous experiments are not able to determine the number

of selected features. On the contrary, our scores εS and εSS offer a possibility

to automatically determine the optimal number of features. Indeed, as men-

tioned in Sec. 4.2, the curve of constraint scores εS and εSS versus number of

features presents a minimum that can be considered as the optimal number of

features. To illustrate this strategy, in Fig. 9 we simultaneously display the

average curves of εS and εSS and the average accuracies obtained with εS and
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Table 8: Average accuracy and optimal number of selected features

Database
Constraint score εS Constraint score εSS

Acc(m∗) Acc(m̂) Acc(m∗) Acc(m̂)

WBCD 96.48 (9) 96.35 (6) 97.41 (6) 96.90 (7)

Image Segmentation 58.07 (9) 57.70 (18) 58.47 (7) 58.28 (18)

WDBC 88.54 (14) 87.97 (25) 86.33 (12) 85.24 (25)

Ionosphere 68.85 (9) 68.73 (12) 65.57 (18) 62.73 (7)

Dermatology 91.07 (32) 90.82 (25) 92.14 (22) 91.86 (21)

Libras Movement 42.03 (89) 41.95 (90) 41.73 (41) 39.73 (85)

Multiple Feature 82.06 (130) 75.27 (24) 87.85 (63) 84.24 (23)

CNAE-9 45.68 (49) 44.29 (86) 49.43 (65) 46.44 (172)

Yale 59.24 (205) 49.05 (61) 61.00 (205) 49.19 (51)

ORL 80.06 (125) 79.91 (115) 81.79 (136) 81.28 (108)

Pie10P 53.66 (91) 53.26 (67) 65.58 (34) 59.30 (60)

ALLAML 70.11 (351) 66.29 (29) 71.20 (132) 68.71 (20)

εSS versus number of features on Dermatology database. We can show that

the average accuracy Acc(m̂) obtained with the subset of features F (m̂) that

correspond to the minimum of εSS coincides or is close to the maximum value of

accuracy Acc(m∗). The average accuracies Acc(m̂) and Acc(m∗) as well as the

corresponding optimal number m̂ and m∗ of features obtained on all databases

are depicted in Table 8. From Table 8, we find that, in most cases, the average

accuracies Acc(m̂) and Acc(m∗) are close but with a number m̂ of features less

than m∗.

5.4.4. Comparison between supervised constraint score εS and semi-supervised

constraint score εSS

In this section, we compare the accuracy provided by the supervised con-

straint score εS and the semi-supervised constraint score εSS . For this purpose,

the accuracy of the test dataset is obtained using the same nearest neighbor clas-

sifier based only on the k prototype subsets X l (|X l| = p). Figure 10 illustrates
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(a) εS (b) εSS

Figure 9: Accuracy-scores εS and εSS versus number of selected features for the Dermatology

database

the accuracy obtained when the number of prototypes p is set to 3.

This figure indicates that the average accuracy over 100 runs obtained by

the semi-supervised constraint score εSS is higher than that obtained by the

supervised constraint score εS for all databases, with the exception of the Im-

age Segmentation, Ionosphere and Libras Movement databases. These results

can be explained by the relevance of the set MSS of new must-link pairwise

constraints used by the score εSS . Table 4 indicates that CNML is close to

0.7 for all databases except for the Image Segmentation, Ionosphere and Libras

Movement databases, in which CNML remains less than or equal to 0.6. It

can be deduced from this table that the improvement caused by εSS compared

with εS is dependent on the relevance of MSS compared to that of M . When

most of the new must-link constraints in MSS are correct, our semi-supervised

constraint score outperforms the supervised constraint score in the majority of

cases.

6. Conclusion

In this paper, we presented a new constraint score for feature selection in

the context of both supervised and semi-supervised learning. This score evalu-

ates a subset of features at one time, whereas state-of-the-art constraint scores

evaluate only one feature at a time. This makes it possible to identify redun-
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(a) WBCD (b) Image Segmentation

(c) WDBC (d) Ionosphere

(e) Dermatology (f) Libras Movement

(g) Multiple Features (h) ORL

Figure 10: Comparison of accuracy rates obtained by εSS and εS scores for eight benchmark

databases using nearest neighbor classifier
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dant features and avoid the problem of correlation between features. Because

our score evaluates the similarity between data samples in the examined feature

subspace, selected features can be advantageously used by clustering.

In the context of supervised learning, our proposed score assesses the constraint-

preserving ability of a feature subset. In the context of semi-supervised learning,

new must-link constraints are deduced from those supplied by the user and from

unlabeled data samples. When the majority of the new must-link constraints

correspond to the structure of classes, they serve to improve the relevance of

features selected by our score. Experiments with twelve six well-known bench-

mark databases demonstrate that in the context of both supervised and semi-

supervised learning, the proposed constraint score outperforms the main state-

of-the-art constraint scores and the well-established feature selection methods.

The proposed scores have the advantage of determining the number of char-

acteristics to select. Preliminary tests have shown promising results, but more

work is needed to improve them.

A possible way to increase the performance of our scores in terms of accuracy

is to adaptively determine the scaling parameter σ. One solution envisaged is

to proceed as for the calculation of our score, i.e., by means of the distance

between the target similarity matrix defined from the given constraints and a

similarity matrix that is computed with the candidate values of σ. Another

possible solution for improving the relevance of selected features is to ensure of

the coherence of pairwise constraints.

The proposed scores, especially in the semi-supervised context, are time-

consuming. However, the computational time cannot be considered as a crucial

drawback because it is always possible to reduce it. We plan to further investi-

gate this in our future work.

In this paper, we consider that prior knowledge is represented by class proto-

types from which pairwise constraints are deduced. In this case, we can compute

new pairwise constraints from prototypes, and all available constraints con-

tribute to efficient feature selection. In future work, we intend to generalize our

score to prior knowledge that is formalized only by pairwise constraints. This
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new score can then evaluate the relevance of each pairwise constraint provided

by the user.
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