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Abstract

Identifying the native language of a person by their text written in English (L1

identification) plays an important role in such tasks as authorship profiling and

identification. With the current proliferation of misinformation in social media,

these methods are especially topical. Most studies in this field have focused on

the development of supervised classification algorithms, that are trained on a

single L1 dataset. Although multiple labeled datasets are available for L1 iden-

tification, they contain texts authored by speakers of different languages and do

not completely overlap. Current approaches achieve high accuracy on available

datasets, but this is attained by training an individual classifier for each dataset.

Studies show that joint training of multiple classifiers on different datasets can

result in sharing information between the classifiers, leading to an increase in the

accuracy of both tasks. In this study, we develop a novel deep neural network

(DNN) architecture for L1 classification; it is based on an adversarial multitask

learning method that integrates shared knowledge from multiple L1 datasets.

We propose several variants of the architecture and rigorously evaluate their
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performance on multiple datasets. Our results indicate the proposed multitask

architecture is more efficient in terms of classification accuracy than previously

proposed methods.

Keywords: multitask learning; text classification; natural language processing;

deep learning

1. Introduction

With the rapid development of the World Wide Web and social media during

the early 21st century, the amount of textual data has grown exponentially.

With the growing availability of data and computational resources, the past

20 years have seen increasingly rapid advances in the field of computational5

linguistics and natural language processing; typical tasks in these fields include

text classification, document summarization, text understanding, named entity

recognition, and others. The majority of textual data on the Internet consist of

text written in English; it is estimated that English is used by 54% of websites1,

and it is the most common language used for communication on the Internet2,10

including such social media platforms as Twitter3. In contrast, only about 5% of

people use English as their first language. Indeed, there are approximately 6,500

languages in the world, each of them being unique in their own way, but only ten

languages of these are adopted as a mother tongues by approximately 3.5 billion

of people (about 50% of the world population), as estimated by Ethnologue4.15

The top three languages by number of speakers are Mandarin Chinese with 1.3

billion speakers, Spanish with 460 million speakers, and English with 379 million

speakers. Many people speak more than one language; the most common second

language is English, with about 753 million speakers. Further, we refer to the

first language as L1 and the second language as L2.20

Recently, there has been increased interest in the automatic determination

1https://w3techs.com/technologies/overview/content_language/all
2https://www.statista.com/statistics/262946/share-of-the-most-common-languages-on-the-in
3https://www.technologyreview.com/s/522376/the-many-tongues-of-twitter/
4https://www.ethnologue.com/statistics/size
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of authors’ L1 based on their text written in an L2. It is especially important

to determine the L1 based on text written in English. In part, this is motivated

by the proliferation of misinformation on social media, information that is often

alleged to be authored by individuals whose L1 is not English. Knowing the25

L1 can also facilitate such tasks as authorship profiling, authorship attribution,

and authorship identification. Indeed, writing in English is sometimes difficult

for non-native speakers. Even after they study the grammar and mechanics, it

does not have the same natural flow as their mother tongue. There are errors or

certain ways that non-native speakers write in English that are often consistent30

among speakers of the same native tongue. Below, we provide examples of

English texts written by native Arabic speakers, extracted from the Test of

English as a Foreign Language 11 (TOEFL11) dataset.

Arabic: “I agree that most advertisements make products seems to be much

more better than they really are concerning the material used and satisfaction35

to consumers. Useing a below average materials in some products and advertise

it the best”

Chinese: “Now advertisements have come to pervade every aspect of our lifes

and, as a result, we can see advertisements every where, where in the school or

in the store, where on the TV or on the newspaper. Some people think that most40

advertisements make products seem much better that they really are”.

A considerable amount of literature has been published on L1 identification.

These studies usually approach the problem using supervised classification al-

gorithms; for example, a report on a native language identification shared task

[1] described the results of a competition between 19 teams. The goal of the45

competition was to develop a machine learning method that would be capable of

classifying L1 with the highest accuracy for the given dataset. The teams used

the TOEFL11 dataset containing essays authored by speakers of 11 languages

who were taking the TOEFL exam. A predefined set of 11,000 entities were

used for training, and 1,100 entities were used for evaluation; the test entities50

were chosen by the competition organizers. The top team achieved about 88%

accuracy, with a baseline accuracy of 71%. The baseline was achieved using

3
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support vector machines (SVMs) trained on word unigrams. Data from several

other studies also suggest that L1 classification can be performed with rather

high accuracy.55

Aside from L1 classification, there has been a growing recent trend toward

the application of deep machine learning for various natural language processing

(NLP) tasks; it is estimated [2] that about 70% of papers in top-level NLP

conferences employ deep learning. Deep learning has been successfully applied

for text classification, machine translation, text understanding, part-of-speech60

(PoS) tagging, and other tasks. Indeed, many teams from the competition

reported in [1] used deep learning for L1 prediction. It has also been shown

that very deep neural networks (DNNs) often outperform other architectures in

text classification tasks [3], such as sentiment analysis or text topic prediction.

Current approaches used for L1 identification [1] demonstrate high accuracy;65

however, all existing studies develop these methods for a specific dataset at a

time, either TOEFL11, International Corpus of Learner English (ICLE), or

others; treating the problem as single-task learning.

The existing body of research on multitask learning [4] suggests that learning

efficiency can increase if multiple learners of different but related tasks would70

learn simultaneously, provided that they share the learned information between

themselves. This way, the learners would exploit the commonalities between

the tasks, allowing them to mutually increase their performance. In practice,

different learning tasks are represented as different but related datasets, and the

goal of learning is to improve performance on all the datasets at the same time.75

Multitask learning architectures may be implemented as a special class of neural

networks with shared parameters, at the same time having separate inputs and

outputs for different datasets. Multitask learning has been previously applied to

NLP; for example, adversarial multitask learning has been successfully applied

for the segmentation of Chinese texts based on multiple heterogeneous datasets80

[5]. However, to the best of our knowledge, multitask learning has not yet been

applied to the L1 identification problem.

The purpose of this paper is to develop novel L1 multitask learning ar-
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chitectures, based on DNNs and to perform a rigorous evaluation of them on

multiple datasets. Our results show the effectiveness of multitask learning, with85

increased the classification accuracy compared to previously proposed models

and the baselines.

To summarize, this paper makes the following contributions:

• We develop a multitask learning method that improves L1 classification

accuracy on both TOEFL11 and ICLE datasets.90

• We conduct extensive experiments and demonstrate the performance of

our method.

• We propose multiple architectures with shared layers and experiment with

adversarial strategies to force shared layers to be dataset-invariant.

The remainder of the paper is structured as follows. Section 2 discusses re-95

lated literature. Section 3 discusses the objectives and introduces the problem.

Section 4 describes our suggested architectures, and Section 5 describes and

analyzes the experimental results. Section 6 concludes the paper.

2. Literature overview

A number of studies have proposed different architectures of DNNs for text100

classification tasks [3]. Representative examples include convolutional neural

networks (CNNs) for sentence classification [6], and character-level CNNs [7].

These architectures are conceptually similar to CNNs used in image classifica-

tion, but they use one-dimensional convolutions. In addition deep CNNs have

been proposed for the categorization of texts in other papers, such as [8], [9]; a105

recent article [10] proposes a graph CNN for text classification, and [7] describes

architecture combining a CNN and a recurrent neural network. A related area

of text classification is language recognition. In [11], the authors propose sparse

representation of letters and words; their design shows accuracy of 95.4%. Lan-

guage recognition aims at identifying the language of a text written using that110

language. It is fundamentally different from L1 classification, the goal of which
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is to identify the native language of the person using text written in English as

an input. In recent years, there has been an increasing amount of literature on

L1 classification. All of it deals with classification using a single dataset, and as

stated, none of it deals with multitask learning. A related area, the application115

of transfer learning for NLP, is described in a survey [12].

There is a general consensus on what elements to use as features for text

processing, and they are character N-grams, word N-grams, and PoS N-grams.

In one paper [13], the authors evaluated several architectures while considering

several different versions of the N-gram features. They achieved accuracy of 0.83120

using an ensemble residual neural network with word uni-grams and character

5-grams and 6-grams as input features. This was the most accurate model in the

competition. Authors of [13] also outlined the different options for features and

architectures that can be utilized. Bjerva et al. [13] discussed PoS tagged sen-

tences, continuous bag of words features, and spelling features. One important125

note to take from [13] is that the performance of any model is lower when using

external sources, such as those features mentioned above. Another takeaway is

that DNNs are able to perform this classification, although traditional methods

such as SVMs still appear to be better. L1 classification has also been done

in [14] using SVM on N-grams, achieving 83% accuracy. In fact, most works130

in this field sport relatively simple model architectures and basic character and

word N-grams.

In another paper [15], the authors illustrate the different features used for

native language identification, including character, word, and PoS N-grams.

They achieved a maximum accuracy of 81.17% .135

In [16], the authors reference several techniques to achieve natural language

identification. They look at unique character string identification, frequent word

recognition, and bigraph/trigraph-based recognition. They found that the tri-

graph approach was the best. They define trigraphs the same way we define

character 3-grams.140

[2] discusses natural language identification using spectrogram- and cochleagram-

based features for very short speech utterances. That paper differs from our

6

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
approach in that they use speech as opposed to text. Nevertheless, it was ad-

vantageous for us to look at their experiments. For example, they use SDC

features that include the number of cepstral coefficients in each frame, time ad-145

vance and delay for delta computation, and time shift between between consec-

utive frames. They use a bidirectional long short-term memory neural network

however, they only achieved about 75% accuracy.

In [17], the authors create a model in order to classify the TOEFL11 dataset.

They achieve about 83% classification accuracy. The features they used include150

words, characters, and external features such as PoS tags. The word category

includes lexemes, lemmas, and PoS tags. Character features included character

N-grams from 1–9 grams. Their trial method contains several models, including

SVM and logistic regression.

Information from the sources cited above suggests that character N-grams155

and words are the most important features and that shallow neural network

architectures and methods such as SVM perform well for L1 identification. None

of the sources go further than the standard text prepossessing, and external

sources seem to be ineffective.

3. Objectives160

In this study, we address the following research questions:

• What is the architecture of a DNN, leveraging multitask learning for a

joint training machine learning model on multiple L1 datasets?

• Is multitask learning beneficial for L1 identification in terms of classifica-

tion accuracy?165

• How does the resulting classifier compare to the state-of-the art methods?

4. Approach

Consider a dataset Dt = {(xti, yti)}nt
i=1, where xti ∈ X is the ith observed

variable, yti ∈ Y is the corresponding ith label, and t denotes a learning task,
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t ∈ 1, ..., T . Our goal is to learn a function ŷtj = f(xtj ,θ), where ŷtj is the170

predicted class, and θ is a vector of parameters. In order to find the vector of

optimal parameters θ, we need to minimize the loss function L(y, ŷ) between

the actual and predicted classes. In the case when t = 1 we have a standard

supervised machine learning problem the goal of which is to predict labels for

items from one dataset. However, when t is greater than 1, goal of optimization175

becomes finding a shared vector of parameters θ that will predict labels for

all learning tasks t ∈ 1, ..., T . In this case, learning of vector θ is conducted

in all learning tasks simultaneously. In contrast to multitask learning, this

problem could have been solved by training multiple vectors θt separately for

each learning task. In our case, X contains essays written by non-native English180

speakers, and Y contains their native languages. In what follows, we propose

multiple DNNs to find optimal θ. To begin, we describe the general architecture

of the model and then show its multiple variations.

4.1. General architecture of the model

We represent each xti, ith input essay from dataset t as a set of sequences of185

tokens, where tokens are defined by the method of document tokenization j ∈ J
and may be either words or character N-grams W t

i
J
j = {(wj1wj2...wjmi,j,t)

t
i}Jj ,

where mi,j,t is the length of the resulting sequence for method j for document

i in dataset t; and j indexes the method of tokenization, j ∈ 1, ..., J . Without

loss of generality, these methods may denote either words or character N-grams190

for varying N. In the experimental section, we will demonstrate and compare

results for different tokenizations j and their combinations.

Each representation is padded with zeros and loaded into the separate input

layer of the neural network. This is followed by the embedding layer that cor-

responds to each input representation j. The embeddings are created by learn-195

ing weights of lookup tables. Each lookup table maps each token wjk, where

k ∈ 1, ...,mi,j,t, of the sequence W t
i j for particular j to the vector ejk ∈ Rdj ,

where dj denotes the dimensionality of the resulting embedding vectors. In

all the models described below, embeddings for each tokenization method j
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are shared among the T datasets. The size of each jth lookup table is thus200

(|⋃T
t=1

⋃nt

i=1

⋃mi,j,t

k=1 wjk| × dj).
The next layer is global average pooling connected to individual embed-

ding of tokenization j. The input for this layer is a sequence of embeddings

{(e1, ..., ei,j,tm )ti} corresponding to input sequence W t
i with length mi,j,t con-

structed from training item xti. The output of this layer is a vector of average of205

embeddings’ features f(avg)
i,t
j = ai,tj de , ai,tj de ∈ Rdje . The dimensionality of the

resulting vector is equal to de, that is, the dimensionality of input embedding.

The following layers differ depending on the chosen architecture.

We use multiple softmax outputs corresponding to specific datasets. Cross-

entropy loss function for each output, LCE(yi, ŷi) = −∑nk

k=1 y
k
i log(fk(xi,θ)),210

where nk is the number of classes, yki is the ground truth label, and fk(xi,θ)

is the probability that item i belongs to class k returned by the neural net-

work. The resulting loss function is the sum of loss functions for all output lay-

ers, LCEtotal
(·, ·) = −∑T

t=1

∑nk

k=1 y
k
i,tlog(fkt (xi,t,θ)). Below, we discuss three

variants of the general architecture described above and the adversarial loss215

function.

4.1.1. Architecture 1

In this variant of the general architecture, depicted in figure 1, embedding

layers specific to the inputs are connected to the corresponding average pooling

layers, and outputs of all global average pooling layers are concatenated Oc =220

⊕T
t a

i,t
j de and sent to the dense layer. The dense layer is followed by softmax

layers specific to each learning task t, the output of which is ft(·) = σt(W
TOc+

b).

4.1.2. Architecture 2

In this architecture (depicted in Figure 2) the outputs of the global average225

pooling layers corresponding to particular dataset t are individually concate-

nated OTc,t =
⊕nt,T

i,t ai,tj de in addition to the concatenation of all their outputs,

as in Architecture 1. The result of the concatenation of all average pooling

9
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Figure 1: Architecture 1; outputs of each of the embeddings (denoted as embedding(tj),
where t indexes the dataset, and j indexes the method of tokenization) are connected to
global average pooling layers (denoted as avg. pool(tj)). Their outputs are concatenated,
and connected to Dense layer and multiple softmax(t) outputs.

layers is connected to the dense layer as in Architecture 1, but softmax out-

puts receive output from the shared dense layer concatenated with OTc,t that is,230

ft(·) = σt(W
T [Oc,t ⊕Oc] + b).

Figure 2: Architecture 2; the outputs of all average pooling layers (denoted as avg. pool(tj)
for the method of split j and dataset t) are concatenated and connected to the dense layer. Its
output is concatenated with the concatenation of the outputs of average poolings for dataset
t.

4.1.3. Architecture 3

This architecture is depicted in Figure 3; it extends Architecture 2. In

addition to shared embeddings, it contains one additional shared average pooling

layer per corresponding type of tokenization j. These shared average poolings235

are concatenated and connected to the dense layer; the output of the dense layer
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is concatenated with private average pooling layers and sent to the softmax

outputs.

Figure 3: architecture 3; each embeddingtj is connected to two average pooling layers, one
of which (avg. pool(stj)) is shared for particular j across the datasets 1, ..., T . Subsequent
connections are similar to that of figure 2.

4.2. Adversarial loss

As follows from the architecture descriptions above, classification in archi-

tectures 2 and 3 is based on the inputs from the shared dense layer with task-

invariant features and private layers with features specific to corresponding

learning tasks. In this case dense layers may contain not only task-invariant

shared features, but also features private to the tasks 1, ..., T . It could be bene-

ficial to ensure that shared layers contain only features that are shared between

all tasks, and that private layers contain only task-specific features [5]. This can

be achieved by guaranteeing that it would not be possible to perform correct

classification of input data based solely on the shared layer. In order to achieve

this, we introduce adversarial loss into architectures 2 and 3. Adversarial loss

is represented as a softmax layer connected to a shared dense layer, followed by

negative cross-entropy loss. This loss function is optimized together with the

11
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main loss functions. Thus, total loss becomes:

LCEadv total
(·, ·) = −

T∑

t=1

nk∑

k=1

yki,tlog(fkσ,t(xi,t,θ)) +
T∑

t=1

nk∑

k=1

yki,tlog(fkadv,t(xi,t,θ)),

where fσ,t is the output of the sigmoid function used for classification of the240

dataset t, and fadv,t is the adversarial output corresponding to t. The loss is

jointly optimized using a stochastic gradient descent algorithm.

5. Results

In this section, we describe our datasets and report the experimental results.

5.1. Datasets245

We use two large and very specific data sets. They are, the TOEFL11 and the

ICLE. TOEFL11 was developed by the Educational Testing Service and is com-

prised of 12,100 English essays written by speakers of 11 non-English native lan-

guages as part of an international test of academic English proficiency (TOEFL).

ICLE is the result of collaboration with a wide range of partner universities in-250

ternationally, with argumentative essays written by intermediate to advanced

learners of English who have different mother tongues. TOEFL includes 11

different mother tongues, while ICLE includes 16. TOEFL11 includes Arabic,

Chinese, French, German, Hindi, Italian, Japanese, Korean, Spanish, Telugu,

and Turkish authors. ICLE includes Bulgarian, Chinese, Czech, Dutch (from255

Netherlands and from Belguim), Finnish, French, German, Italian, Japanese,

Norwegian, Polish, Russian, Spanish, Swedish, Turkish and Tswana. Most of

these languages have a relatively large speaker base, and it would not be diffi-

cult to obtain samples of texts from authors with these mother tongues. Table 1

provides a summary of the datasets’ characteristics. We can see that TOEFL11260

has almost twice as many essays as ICLE, but the ICLE essays are generally

longer. Table 1 also displays the number of character 3- and 4- grams in the

datasets; in our architectures, we use all available data and do not trim the

N-grams and words.
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Property ICLE TOEFL11

number of essays 6,085 12,100
number of distinct
labels

17 11

number of distinct
words

63,358 73,807

number of distinct
3-grams

22,102 20,511

number of distinct
4-grams

106,131 99,991

average number of
characters in essay

3547.9 1766.4

average number of
words in essay

618.0 314.9

Table 1: Summary of the descriptive characteristics of the TOEFL11 and ICLE datasets

5.2. Experimental design265

We implemented the architectures proposed above and developed two vari-

ants of each, one having only words and character 4-grams as inputs, and the

other having character 3-grams as additional input representation. Next, we

implemented the same models but excluded the final dense layer. To integrate

the adversarial loss function, we included in our experiment architectures 2 and270

3 with adversarial loss layers attached to their dense layers. These modifications

resulted in 16 different variants of the neural networks, listed in Table 2. We

used multiple baseline methods. The first one, referred to as “Shallow ANN ”

in Table 2 is a shallow neural network from the competition [1] as described in

[18] with and without the final dense layer. We also implemented shallow ANN275

with one-dimensional convolutions attached to input embeddings (model 21).

Further, we implemented a random forest classifier with 1000 estimators, with

5,000 input features, processed by TF-IDF vectorization and linear SVM with

200 features. The implemented models are listed in Table 2.

We implemented our architectures using Keras with TensorFlow backend.280

Two datasets, TOEFL11 and ICLE, were used as input data. Before tokeniza-

tion, we converted all texts to lowercase. Stopwords were not removed. We

used dt = 25 for all the embeddings and the dense layer with 64 neurons and

13
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a ReLU activation function as hyperparameters. Further, each softmax output

had a dropout layer with p = 0.5 before it. We trained the models for 40 epochs285

and used adam as the optimization algorithm. The code was executed on a

machine with four Tesla V100-SXM2-16GB GPUs and 32 CPU cores. We used

k-fold validation with k = 5, that is, a traditional 80/20 split. Different from

our setup, competition results listed in [1] were evaluated using about 9% of the

TOEFL11 data; the rest was used for training.290

5.3. Experimental results and discussion

# Name inputs

No adversarial loss
1 Architecture 1 with Dense words, 4-grams
2 Architecture 1 with Dense words, 3-grams, 4-grams
3 Architecture 2 with Dense words, 4-grams
4 Architecture 2 with Dense words, 3-grams, 4-grams
5 Architecture 3 with Dense words, 4-grams
6 Architecture 3 with Dense words, 3-grams, 4-grams
7 Architecture 1 w/o Dense words, 4-grams
8 Architecture 1 w/o Dense words, 3-grams, 4-grams
9 Architecture 2 w/o Dense words, 4-grams
10 Architecture 2 w/o Dense words, 3-grams, 4-grams
11 Architecture 3 w/o Dense words, 4-grams
12 Architecture 3 w/o Dense words, 3-grams, 4-grams

With adversarial loss
13 Architecture 2 with Dense words, 4-grams
14 Architecture 3 with Dense words, 4-grams
15 Architecture 2 with Dense words, 3-grams, 4-grams
16 Architecture 3 with Dense words, 3-grams, 4-grams

Baselines
17 Shallow ANN (w/o Dense) words, 4-grams
18 Shallow ANN (with Dense) words, 4-grams
19 Shallow ANN(w/o Dense) words, 3-grams, 4-grams
20 Shallow ANN (with Dense) words, 3-grams,4-grams
21 Shallow ANN (with Convolutional layer) words, 3-grams,4-grams

22 Random Forest 3-grams, 4-grams
23 Random Forest words
24 SVM 3-grams, 4-grams

Table 2: Description of the implemented neural network architectures, and baselines; and
input data types
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# Accuracy,TOEFL F1, TOEFL Accuracy, ICLE F1, ICLE

No adversarial loss
1 0.753± 0.00015 0.752± 0.00017 0.751± 0.00015 0.702± 0.00037
2 0.753± 0.00015 0.753± 0.00014 0.746± 0.00011 0.700± 0.00019
3 0.806± 0.00016 0.805± 0.00019 0.846± 0.00038 0.815± 0.00047
4 0.812± 0.00018 0.810± 0.00022 0.834± 0.00015 0.803± 0.00022
5 0.850± 0.00006 0.849± 0.00006 0.960± 0.00005 0.952± 0.00008
6 0.803± 0.00017 0.803± 0.00016 0.819± 0.00093 0.783± 0.00107
7 0.851± 0.00003 0.851± 0.00004 0.898± 0.00011 0.875± 0.00019
8 0.851± 0.00002 0.851± 0.00002 0.905± 0.00007 0.885± 0.00015
9 0.839± 0.00007 0.839± 0.00008 0.973± 0.00001 0.968± 0.00002
10 0.847± 0.00003 0.847± 0.00003 0.958± 0.00001 0.949± 0.00002
11 0.848± 0.00003 0.848± 0.00004 0.956± 0.00005 0.946± 0.00008
12 0.847± 0.00006 0.846± 0.00006 0.961± 0.00004 0.954± 0.00008

With adversarial loss
13 0.830± 0.00003 0.830± 0.00004 0.864± 0.00035 0.837± 0.00056
14 0.827± 0.00010 0.827± 0.00009 0.851± 0.00013 0.820± 0.00015
15 0.830± 0.00006 0.830± 0.00007 0.871± 0.00013 0.841± 0.00027
16 0.837± 0.00006 0.836± 0.00009 0.878± 0.00032 0.853± 0.00048

Baselines
17 0.790± 0.00004 0.790± 0.00006 0.950± 0.00001 0.938± 0.00002
18 0.602± 0.00166 0.605± 0.00165 0.933± 0.00163 0.915± 0.00340
19 0.789± 0.00001 0.789± 0.00002 0.962± 0.00003 0.953± 0.00003
20 0.631± 0.00052 0.634± 0.00043 0.954± 0.00003 0.943± 0.00005
21 0.657± 0.00008 0.656± 0.00010 0.701± 0.00086 0.654± 0.00071

22 0.500± 0.00020 0.493± 0.00021 0.668± 0.00006 0.599± 0.00001
23 0.570± 0.00038 0.566± 0.00034 0.716± 0.00014 0.659± 0.00024
24 0.339± 0.00011 0.336± 0.00010 0.300± 0.00025 0.147± 0.00006

Table 3: Experimental results: accuracy and F1 score ± standard deviation for the TOEFL11
and ICLE datasets (k-fold validation with k = 5) for proposed models and baselines, listed in
table 2. Maximal values of corresponding metrics are highlighted in bold.

The experimental results are presented in Table 3. The table lists the ac-

curacy for TOEFL11 averaged over 5 folds, the F1 score for TOEFL11, after

macro averaging over 5 folds, and corresponding values for the ICLE dataset

with standard deviations. We can make the following observations:295

1. The best results in terms of accuracy vis-à-vis the TOEFL11 dataset are

achieved by Architecture 1 without a dense layer with words, 3-grams,

and 4-grams as inputs (model number 8); its accuracy is 0.851. The best

performing model for ICLE is Architecture 2, also without the final dense
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layer, with words and 3-grams as inputs (model number 9). Its accuracy300

is 0.973. The accuracy of model 8 vis-à-vis TOEFL11 dataset is 7.7%

higher than the best-performing baseline (model number 17, 0.79 accu-

racy). The accuracy of model 9 for the ICLE dataset is higher than the

best-performing ICLE baseline (model number 19) by 1.11%. Both multi-

task architectures significantly outperform the baselines, with the p−value305

of the t−test for comparing TOEFL11 model 8 accuracy with baseline 17

being to 1.58 × 10−7 and the corresponding p−value of ICLE accuracy

for model 9 and that of baseline 19 being 0.0047. Our experiment shows

that neural network-based multitask architectures outperform single-task

architectures.310

2. For the TOEFL11 dataset all, but two of the proposed multitask architec-

tures outperform all baselines. Table 1 shows that model numbers 1 and 2

are outperformed by baselines 17 and 19. Models 1 and 2 implement archi-

tecture 1 with a dense layer at the end of the neural network. We can see

from Table 3, architectures 1–3 without a dense layer demonstrate higher315

accuracy than the baselines for TOEFL11; however, the baseline demon-

strates higher accuracy than the proposed models for the ICLE dataset

using 3- and 4- gram inputs. Otherwise proposed models perform better.

We can also see that the shallow neural network with convolutional lay-

ers (baseline 21) performs worse than the baselines without a dense layer320

(baselines 17 and 19).

3. Most of the models having a dense layer at the end perform worse than

the same models without this layer. However, adversarial loss greatly

increases the accuracy of these models, but unexpectedly, architectures

with no dense layer are generally better.325

4. For the TOEFL11 dataset, Architecture 1 without a final dense layer is

the best, followed by Architecture 3 without a final dense layer, followed

by Architecture 2, without a final dense layer. For the ICLE dataset,

the second best accuracy is shown by baseline 19, and the third best

performing model is architecture 3 without a final dense layer. However,330
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the difference between accuracy values for the latter two models is not

statistically significant, based on a t-test.

5. In general, the number of parameters of one multitask architecture equals

to combined number of parameters of both corresponding single-task TOEFL11

and ICLE baselines. This is also reflected in the time of training, which335

is longer for multitask models. We have observed that time of training of

multitask models is in average twice longer.

6. Improvement in F1 score goes at par with the accuracy.

To study the best-performing model further, we trained the model imple-

menting Architecture 1 without the dense layer, accepting words and character340

4-grams as input for 80 epochs on the 90.9% of training data, and tested it

on the remaining 9.1%. This roughly corresponds to the setup of the task of

L1 classification competition described in [1]. The maximum accuracy demon-

strated by the developed model for the TOEFL11 dataset is 88.75 %, while

the accuracy of the top-performing model from [1] was 88.18 %, the model is345

described in [19]. Figure 4 depicts the dependence of accuracy on the training

epoch for training and validation datasets. In summary, these results show that

multitask learning is beneficial for L1 identification tasks and that it is capable

of outperforming state-of-the-art methods.

In order to analyze the results, we constructed confusion matrices from the350

validation dataset containing 9.1% of the data. Figure 5 shows the confusion

matrix for the TOEFL11 dataset, Figure 6 shows confusion matrix for the ICLE

dataset. Matrices are visualized as heatmaps. We can see that for TOEFL11

the most often confusing for the model is Japanese versus Korean, and Japanese

vs Chinese. Italian speakers are sometimes confused with Spanish speakers.355

Although Korean and Japanese are not related [20], they belong to the Japonic

language family. Therefore, similar mistakes in English could be typical for

speakers of these languages; this may explain the observation that texts written

by speakers of these languages are confused by the model. Italian and Spanish

are both Romance languages with similarities in their vocabulary; this may360
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Figure 4: Accuracy of the model implementing Architecture 2 (without a dense layer) with
words and 4-grams as input, trained for 80 epochs. The top figure shows training accuracy,
and the figure on the bottom shows validation accuracy. The blue line represents accuracy
for the TOEFL11 dataset, and the orange one represents accuracy for the ICLE dataset. We
can see that training accuracy tends to be 100% at around the 50th training epoch.

explain the confusion of the model. As opposed to TOEFL11, there is no clear

indication of specific confusion of the model for the ICLE dataset (see Figure 6).

This may be explained by the fact that accuracy vis-à-vis ICLE is much higher

than vis-à-vis TOEFL11, and even simple baselines achieve high accuracy (see

Table 3) on this dataset. Interestingly, there is no confusion between related365

languages, such as Bulgarian, Russian, Polish, and Czech; also different from

TOEFL11, there is no confusion between Chinese and Japanese.

18

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
ARA DEU FRA HIN ITA JPN KOR SPA TEL TUR ZHO

AR
A

DE
U

FR
A

HI
N

IT
A

JP
N

KO
R

SP
A

TE
L

TU
R

ZH
O

102 1 3 5 1 1 4 4 0 1 0

0 76 0 2 0 0 0 1 0 1 0

0 3 87 0 2 0 0 3 0 2 2

3 1 0 83 0 0 0 0 3 1 0

0 2 4 0 93 0 0 2 0 0 0

1 1 1 0 0 100 12 2 0 0 0

2 0 0 0 0 6 82 1 0 0 0

2 1 3 1 7 1 0 80 0 2 0

1 0 0 0 0 1 1 0 88 0 0

0 2 0 1 1 1 1 6 0 87 3

0 1 0 0 0 6 3 0 2 1 98
0

20

40

60

80

100

Figure 5: Confusion matrix of the model on TOEFL part of validation dataset (9.1% of
TOEFL11).

6. Conclusions

This paper presents novel multitask learning methods for L1 language clas-

sification. We proposed three neural network architectures that are capable of370

sharing the knowledge between multiple heterogeneous input datasets. We eval-

uate our architectures using TOEFL11 and ICLE datasets; based on the results,

we conclude that our approach shows the benefit of multitask learning is more

accurate than state-of-the-art methods.

In future work, we would like to investigate further tuning of the models’375

hyper parameters to increase the classification accuracy. We would also like to

experiment with additional input features, such as N-grams with different values

of N.
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Figure 6: Confusion matrix of the model on ICLE part of validation dataset (9.1% of ICLE)
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