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Abstract

Sleep apnea is a common condition that is characterized by sleep-disordered
breathing. Worldwide the number of apnea cases has increased and there
has been a growing number of patients suffering from apnea complications.
Unfortunately, many cases remain undetected, because expensive and incon-
venient examination methods are formidable barriers with regard to the di-
agnostics. Furthermore, treatment monitoring depends on the same methods
which also underpin the initial diagnosis; hence issues related to the examina-
tion methods cause difficulties with managing sleep apnea as well. Computer-
Aided Diagnosis (CAD) systems could be a tool to increase the efficiency and
efficacy of diagnosis. To investigate this hypothesis, we designed a deep learn-
ing model that classifies beat-to-beat interval traces, medically known as RR
intervals, into apnea versus non-apnea. The RR intervals were extracted from
Electrocardiogram (ECG) signals contained in the Apnea-ECG benchmark
Database. Before feeding the RR intervals to the classification algorithm,
the signal was band-pass filtered with an Ornstein–Uhlenbeck third-order
Gaussian process. 10-fold cross-validation indicated that the Long Short-
Term Memory (LSTM) network has 99.80% accuracy, 99.85% sensitivity,
and 99.73% specificity. With hold-out validation, the same network achieved
81.30% accuracy, 59.90% sensitivity, and 91.75% specificity. During the de-
sign, we learned that the band-pass filter improved classification accuracy
by over 20%. The increased performance resulted from the fact that neural
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activation functions can process a DC free signal more efficiently. The result
is likely transferable to the design of other RR interval based CAD systems,
where the filter can help to improve classification performance.

Keywords: Sleep apnea, Deep learning, Heart rate variability, Detrending

1. Introduction1

Sleep is a fundamental human activity which is characterized by reduced2

or suspended consciousness. Hence, the ability to avoid or correct distur-3

bances, such as sleep disordered breathing, is reduced [1]. Sleep apnea is4

a common cause for sleep-disordered breathing. In the middle-aged work-5

force about 2% of women and 4% of men were apnea patients in 1993 [2].6

In 2003, about 4% of the US population had sleep apnea [3]. The world-7

wide prevalence was estimated to be 6% in 2008 [4]. It is predicted that8

this upward trend will continue. Without diagnosis and adequate treatment9

patients might be exposed to an increased risk of cardiovascular diseases [5],10

such as stroke and hypertension [6, 7]. Apnea might also disturb recreational11

activities and by doing so cause mental suffering and in some cases clinical12

depression [8]. Apnea is also linked to narcolepsy, insomnia, and obesity13

[9]. Studies show that patients with apnea have a higher chance of being14

involved in a road traffic accident [10]. The disease is also a risk factor for15

complications during operations under anesthesia [11]. Finally, patients with16

untreated apnea have a significantly higher mortality risk when compared to17

a control group with the same age, sex and Body Mass Index (BMI) [4].18

Current diagnostic methods depend on Polysomnography (PSG). The19

measurements include ECG, Electroencephalogram (EEG), Electrooculogram20

(EOG), Electromyogram (EMG), respiratory effort, airflow and oxygen sat-21

uration (SaO2) [12, 13, 14, 15]. To capture these signals, the patient must22

sleep with intrusive measurement equipment in a clinical environment. The23

process requires supervision by medical specialists. The PSG process makes24

apnea diagnosis expensive and inconvenient. To improve this situation new25

methods are required which are less intrusive and more cost effective, but26

equally accurate. Mobile technology and advanced physiological signal mea-27

surement methods might be able to address the intrusiveness and cost issues.28

One promising measurement technology is single lead ECG for signal acqui-29

sition and mobile soft processing for beat-to-beat (RR) interval extraction.30

As such, that measurement setup has a significantly lower complexity when31
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compared with PSG. Furthermore, it is notably cheaper to communicate32

and process the resulting RR interval signals, when compared with the mul-33

titude of physiological signals measured during PSG. However, major issues34

remain with the diagnosis support quality provided by these systems. One35

critical component to ensure diagnosis support quality are the algorithms36

which extract the relevant information or provide decision support.37

With this study we investigate the diagnosis support quality of deep learn-38

ing algorithms for sleep apnea. To achieve that, we created a test setup which39

takes in RR interval signals and returns a decision on whether or not specific40

signal segments show signs of sleep apnea. The processing structure contains41

a pre-processing and a classification step. In the pre-processing step, the sig-42

nal was band-pass filtered with an Ornstein–Uhlenbeck third-order Gaussian43

process. Subsequently, the filtered signal is partitioned with a sliding win-44

dow. The resulting signal blocks were passed on to an LSTM network which45

classifies them into either apnea or non-apnea. The setup was designed with46

a benchmark dataset from the MIT-BIH Polysomnographic Database. With47

10-fold cross-validation, we established an accuracy of 99.80%, a sensitivity48

of 99.85%, and a specificity of 99.73% for the proposed system. By itself,49

this result is significant, because it indicates that good diagnostic support is50

possible even with a less complex data acquisition setup. Apart from these51

results we also want to report a significant design achievement. We found52

that low- and high-pass filtering the RR interval signal improved the classifi-53

cation accuracy by over 20%. Filtering, as part of the pre-processing for RR54

interval signals, might help to improve the detection quality for a wide range55

of CAD systems, because it allows the deep learning algorithms to focus on56

the Heart Rate Variability (HRV).57

To support these claims, we outline our design of an apnea detection al-58

gorithm. The next section introduces the medical background of sleep apnea.59

Section 3 details the methods used to construct the test setup. Thereafter,60

we present the results achieved while testing the proposed diagnosis support61

system. In the Discussion section, we relate our work to other studies done62

on similar topics. Having this extended scope allows us to show how the RR63

interval filtering might help to improve the classification accuracy for other64

detection tasks. The conclusion summarizes the work and puts forward the65

highlights of the study.66
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2. Background67

During apnea the patient ceases to breath for 10 s or more. Obstructive68

Sleep Apnea (OSA) and Central Sleep Apnea (CSA) are the two main causes69

for the pauses in breathing. The pauses usually occur during during rapid70

eye movement sleep. An OSA event occurs when the airway is blocked com-71

pletely. The blockage might be due to fatty tissue, musculus geniohyoideus,72

or musculus genioglossus. In contrast, a CSA event is characterized by a73

lack of respiratory effort, i.e. there is a problem with respiration control [16].74

OSA is diagnosed more often than CSA [17]. There are several therapies for75

sleep apnea, such as Positive Airway Pressure (PAP) and Palato Pharyngo76

Plasty (PPP) [18, 12]. In general, these therapies are more effective when77

sleep apnea is detected early [13, 19].78

In current clinical practice, polysomnograms, which result from PSG sleep79

studies, are used to evaluate an index score. The score value determines the80

apnea severity [20, 21]. An important component of these index scores is81

the airflow signal and blood oxygen content [22, 23]. However, measuring82

these signals is intrusive and inconvenient for the patient. To reduce the in-83

convenience, apnea detection methods were developed using respiratory and84

single-lead ECG signals [24, 19]. In response, PhysioNet held a competi-85

tion called CinC Challenge 2000 [25, 26], which provided ECG data with86

minute-by-minute labeling [27, 28]. After the challenge, the training dataset,87

with 35 recordings, was made publicly available by PhysioNet. Over the88

years, the dataset was used to design apnea detection algorithms and it is89

now considered a benchmark that can be used to compare individual method90

performances.91

Digital biomarkers fail to capture all sleep apnea induced morphological92

changes [29, 30], because transient abnormalities appear randomly, and long-93

term abnormalities are difficult to quantify [31]. Deep neural networks can94

refine the information even further and provide medical decision support95

which can help to diagnose sleep apnea [32, 33, 34, 35, 36, 37]. The research96

provided precedents of employing Convolutional Neural Network (CNN) to97

detect disease using ECG signals. In apnea detection tasks, directly feeding98

original ECG signals to deep neural networks is adopted by some researchers99

[38, 39, 40], but the high ECG data rate limits the network depth. As such,100

the RR interval signal is derived from the ECG extracting the beat-to-beat101

record of RR-intervals and is, as a time series, irregularly sampled. Studies102

show that there is a physiologic link between the breathing rate and the103
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Figure 1: Block diagram for training and validating the deep learning model.

beat-to-beat variations of the human heart [41, 42, 43]. Hence, it is possible104

to detect sleep disordered breathing based on RR interval signals. The next105

section describes the methods we have used to detect apnea induced sleep106

disordered breathing based on RR interval signals.107

3. Methods108

This section describes the methods used to create the sleep apnea de-109

tection system. This is done by describing the data and the methods which110

process the data to refine and ultimately extract diagnostically relevant infor-111

mation. The block diagram, shown in Figure 1, provides an overview of the112

system that was used to train and validate the deep learning model. The pro-113

cessing steps are represented by blocks, and the arrows between the blocks114

represent the data flow. The following sections introduce both processing115

steps and data in more detail.116

3.1. RR interval data117

The deep learning model was trained and validated with data from the118

Apnea-ECG Database [25, 26]. The dataset consisted of 35 records (a01119

through a20, b01 through b05, and c01 through c10). The individual record-120

ings vary in length from slightly less than 7 hours to nearly 10 hours. Each121

record consists of an ECG signal of varying length, and corresponding R122

beat labels that were generated with automated QRS detection. The short-123

est signals are just below 7 hours in length and the longest one is almost 10124
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Figure 2: RAW RR interval data from record a01

hours. The subjects of these recordings are men and women between 27 and125

63 years of age, with weights between 53 and 135 kg (BMI between 20.3 and126

42.1). Crucially for this work, the records also contain apnea annotations127

established by human experts based on simultaneously recorded signals such128

as respiration, that were recorded as part of a PSG. Table 1 provides de-129

tails about the signals for both 10-fold cross- and hold out-validation. We130

have partitioned that dataset into Hold-out data and 10-fold data for the131

two validation methods outlined in Sections 3.3 and 3.4. The Hold-out data132

contains five records (a11, a15, a17, b01, c07). The 10-fold data contains133

the remaining records. Figure 2 shows the RR intervals that occur during134

the first 1000 seconds of record a01. Note, there is a significant DC bias in135

the signal. That bias is quantified in the frequency domain as a power level136

of 192.5 s2 Hz−1. Figure 3 shows the Power Spectral Density (PSD) of the137

RAW RR interval data shown in Figure 2.138

3.2. Pre-processing139

The pre-processing of the RR interval signals for both 10-fold data and140

Hold-out data was done with a two-step process. The first step is low and141

high pass filtering. For RR interval signals, high pass filtering is referred to as142

detrending. The second pre-processing step is windowing, which partitions143

the data for the classification algorithm.144

3.2.1. Detrending and low-pass filtering145

From a time series perspective, RR interval signals are nonuniformly sam-146

pled. Therefore, conventional signal conditioning using Infinite Impulse Re-147
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Figure 3: PSD of the RAW RR interval data

Table 1: Number of beats and signal name for 10-fold cross-validation and hold-out-
validation data from the Physionet Apnea-ECG Database.

10-fold cross-validation Hold-out-validation
No. beats=935462 No. beats=169959

Name Beats Name Beats Name Beats Name Beats

a01 29639 a12 33829 b05 26937 a11 32953
a02 34931 a13 39723 c01 27643 a15 33948
a03 33966 a14 28212 c02 32137 a17 36131
a04 30902 a16 34948 c03 23758 b01 35081
a05 28740 a18 29970 c04 28089 c07 31846
a06 27199 a19 38738 c05 27957
a07 37462 a20 34246 c06 28062
a08 41102 b02 34877 c08 30360
a09 31318 b03 28918 c09 31179
a10 32263 b04 24379 c10 23978
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Figure 4: Detrended and low pass filtered RR interval data

sponse (IIR) and Finite Impulse Response (FIR) filters cannot be applied148

directly. It is necessary to resample the signals such that the resulting sam-149

ples are at equidistant time intervals, typically at 0.25 s. However, such150

interpolative resampling introduces noise into the signal, which compromises151

information quality [44, 45]. Filter methods which act directly on irregularly152

sampled signals can help to prevent the negative effects of resampling.153

For our study we have used the detrending and low-pass filter proposed by154

Fisher et al. [46]. The filter combination is based on an Ornstein–Uhlenbeck155

third-order Gaussian process which acts on the RR interval signal directly.156

Figure 4 shows the filtered version of the unprocessed signal provided in157

Figure 2. The DC bias is significantly reduced. This visual observation is158

confirmed in the PSD plot shown in Figure 5. The effects of the detrend-159

ing filter can be observed as the absence of low frequency components up160

to 0.02 Hz of the normalized frequency. In terms of visual interpretation,161

removing the DC bias helps to focus on the variability of the RR intervals.162

In the spectrum plot of the RAW signal, the frequency content caused by163

that variability was overshadowed by the large DC components. Removing164

that component allowed us to re-scale the y-axis on the PSD plot which es-165

sentially means to zoom in on the spectrum component which hold relevant166

information for apnea classification.167

3.2.2. Windowing168

To partition the data for the classification algorithm, we have used a169

sliding window of 100 RR intervals on the data. The window slides with one170

RR interval at a time. In other words, the windowing method creates one171
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Figure 5: PSD of the detrended and low pass filtered RR interval data

data block of 100 RR intervals for each beat from the database. This creates172

a good temporal resolution, and it generates sufficient data to train and test173

the deep learning algorithm. A window was labeled apnea (positive) if at174

least 25 RR intervals were labeled apnea. All other windows were labeled175

non-apnea (negative). The labels for the individual RR intervals came from176

the Apnea-ECG Database.177

3.3. 10-fold cross-validation178

10-fold cross-validation aims to mitigate the effects of choosing test sam-179

ples from an available dataset. Kohavi et al. recommend 10-fold cross-180

validation for model selection [47]. Hence, this performance measure is rel-181

evant for comparing classification models; see Table 3 in Section 5. The182

basic idea is to partition the labelled data into 10 parts. Each of the cross-183

validation partitions contained mixed data from the cross-validation dataset184

(as shown in Table 1). This follows common practice within the machine185

learning and bioinformatics community for tuning models [48, 49, 50, 51].186

Once the data is split, the parts are used to generate 10 folds with training187

and test data. For fold 0, part 0 is used to test and the remaining 9 parts188

are used to train the network. Similarly, for fold 1, part 1 is used to test and189

the remaining 9 parts are used to train the network, etc. The left part in190

the flowchart, shown in Figure 6, depicts the data arrangement for 10-fold191

cross-validation.192

The model fitting process is structured into 40 epochs. Within each epoch193

the LSTM network is trained and tested. The training step will result in a194

model, i.e. a set of weights. The LSTM network testing step establishes the195
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Figure 6: Flow chart for 10-fold cross-validation, where modelk indicates the best LSTM
model for fold k, similarly acck is the best accuracy for fold k.

prediction quality of the model. Based on the prediction quality, the ’Select196

best model’ block decides which model is the best for a particular fold. Once197

all the epochs are processed, the data from the next fold is loaded. The198

algorithm returns once all the folds are processed and the K best models,199

together with their accuracy (acc), are established. The right part in the200

flow chart depicts the epoch-based fold processing.201

3.3.1. Long short-term memory network202

Figure 7 shows a functional diagram of the LSTM algorithm. The upper203

part of the diagram indicates the Recurrent Neural Network (RNN) loop204

unrolling, which results in individual LSTM cells. The hidden state vector205

~ht ∈ Rh and the cell state vector ~ct ∈ Rh are passed from one cell to the next.206

The cells consume the input vector ~xt at different time instances t. Each cell207

A has LSTM functionality, as indicated in the lower part of the figure.208

Each cell incorporates the three gates to establish the LSTM functionality209

[52]. The forget gate regulates the information content stored within the cell210

and thereby it plays a vital role in modeling the way humans remember and211

forget [53]. It is implemented as the first multiplier from the left, highlighted212

in orange. The input gate is implemented as the second multiplier from213

the left, highlighted in blue. The output gate is implemented as the third214

multiplier from the left, highlighted in green.215

The weights and biases are established during the training phase and they216
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Figure 7: Overview of the deep learning algorithm. Depicted as RNN loop unrolling and
LSTM cell. In the LSTM cell, σ(...) is the sigmoid activation function and Tanh(...) is the
hyperbolic tangent function.
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Table 2: Bidirectional LSTM architecture.
Layer Type Output

shape
Number of
parameters

1 Input 100, 1 0
2a LSTM (forward) 200, 400 161600
2b LSTM (backward) 200, 400 161600
3 Global 1D max pooling 400 0
4 Fully connected Rectified Linear

Unit (ReLU)
50 20050

5 Dropout 50 0
6 Fully connected (Sigmoid) 1 51

constitute the LSTM model. During the testing phase, the model is used to217

classify an input sequence ~xt. In our case, the model establishes if there are218

signs of sleep apnea in a block of 100 RR intervals. The methods used for219

testing the LSTM model are introduced in the next section.220

Table 2 shows the model architecture used in this paper. The model221

used here is a bidirectional LSTM model [54] - where the RR input se-222

quence is passed simultaneously forward through one LSTM model (i.e. sam-223

ples x0, ..., xn) and backward through another LSTM model (i.e. samples224

xn, ..., x0). This allows the bidirectional LSTM model to consider time de-225

pendencies in both the past and future of a timestep. The outputs of the226

two LSTMs are then concatenated together and global max pooling (in one227

dimension) is applied. In these experiments we used both recurrent dropout228

[55] (with a probability of 0.1) applied to the inputs and hidden states of the229

LSTM cells and standard dropout [56] (again with a probability of 0.1) ap-230

plied between the final fully connected layer and the output. These serve to231

improve the generalization of the model and reduce over-fitting. The model232

was trained using the Adam optimizer [57] with a learning rate of 1e-3, a233

batch size of 1024 (providing a good trade-off between available Graphics234

Processing Unit (GPU) memory and speed of training), and training perfor-235

mance was evaluated using the binary cross-entropy loss function. The same236

batch size was used in one of our previous models for LSTM based atrial237

fibrillation detection in RR interval signals [58]. Models were implemented238

using the Keras and Tensorflow frameworks [59, 60].239
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3.4. Hold-out testing240

The unseen / generalization performance is tested using the held-out241

dataset (as performed in [51]). During validation we test the best models242

from each fold with the Hold-out data. This is done by accumulating the243

weighted prediction results. The weight factor reflects the relative prediction244

accuracy of the specific model. It is established by dividing the model accu-245

racy (acck) by the sum of all model accuracies (accAcc). Equation 1 defines246

the accumulated accuracy over all folds.247

accAcc =
K−1∑
k=0

acck (1)

where K is the number of all folds. The inference value is established by248

using the best model parameters from the K folds. The prediction result is249

weight adjusted with the established model accuracy (acck) divided by the250

accumulated accuracies (accAcc).251

inference =
K−1∑
k=0

predict(Hold-out data,modelk)× acck
accAcc

(2)

where predict(data,model) used the LSTM algorithm to estimate for a spe-252

cific data based on the model parameter.253

For hold-out validation testing, the inference results are compared with254

the data block labels. The comparison results are discussed in the next255

section.256

4. Results257

This section provides the hold-out and 10-fold cross-validation results for258

the proposed sleep apnea detection method. We report a confusion matrix259

for each of these tests. These matrices detail the number of RR intervals260

correctly identified as normal (TN), the number of RR intervals falsely iden-261

tified as apnea (FP ), the number of RR intervals falsely identified as normal262

(FN), and the number of RR intervals correctly identified as apnea (TP ).263

As such, the LSTM network testing algorithm returns a vector with elements264

in the range of 0 to 1. In order to compare these results with the true labels,265
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we have used a threshold of 0.5, which was established through Receiver Op-266

erating Characteristic (ROC) analysis; see Section 4.1. The confusion matrix267

has the following form:268

C =

[
TN FP
FN TP

]
(3)

With these base results, we calculate the following performance measures:

Accuracy =
TP + TN

TP + TN + FP + FN
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
.

(4)

In a final step we evaluate sensitivity and specificity at different threshold269

levels to establish the true positive rate and false positive rate, respectively.270

The threshold determines the level below which a result is interpreted as271

negative, and all other results are interpreted as positive. These results are272

depicted in a ROC curve which plots the true positive rate over the false273

positive rate.274

4.1. 10-fold cross-validation275

Figure 8 shows the confusion matrix for the 10-fold cross-validation, de-276

scribed in Section 3.3. The predicted labels correspond very well with the277

true labels; this is indicated by the low number of false classifications. The278

selected operating point maximizes the perpendicular distance between the279

dashed red line (Luck) the ROC curve. That operating point translates into280

a threshold of 0.5 which is used to establish the confusion matrix entries. The281

Area Under Curve (AUC) of 1.00 indicates a perfect result. This outcome282

indicates that the 1856 misclassifications, reported in the confusion matrix,283

were not statistically relevant.284

Figure 10 shows the accuracy of the models for the test set against the285

number of epochs. Figure 11 shows the loss of the model against the number286

of epochs. These plots show the results obtained with the hold-out validation287

method outlined in Section 3.4. The performance of the LSTM algorithm is288

similar across the folds, hence the variance is small. Therefore, the shaded289

area in the graphs, which indicate the variance, is very small, which makes290

it barely visible.291
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Figure 8: Confusion matrix for 10-fold cross-validation

Figure 9: ROC for the 10-fold cross-validation test
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Figure 10: Validation accuracy over 40 training epochs. The solid red line represents the
mean valuation accuracy of the 10 folds and the shaded area indicates the variance.

Figure 11: Validation loss function over 40 epochs. The solid red line represents the mean
and the shaded area indicates the variance.
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Figure 12: Hold-out confusion matrix

4.2. Hold-out validation292

Once the 10 best LSTM models were established during 10-fold cross-293

validation, we were in a position to conduct the hold-out validation, as de-294

scribed in Section 3.1. The confusion matrix for the hold-out validation is295

shown in Figure 12. Based on these measures, the classification performance296

was established. The last row in Table 3 provides the hold-out performance297

values. Figure 13 shows the corresponding ROC curve.298

5. Discussion299

In this study we show that it is possible to detect sleep apnea through RR300

interval analysis. The following list details the advantages of the proposed301

method:302

• Low measurement complexity – this translates into low energy require-303

ments, which is beneficial for wireless sensor applications. Furthermore,304

the measurement can be done in the patient environment, potentially305

even by the patient.306

• Low data rate – It makes RR interval signals energy efficient to com-307

municate, store, and process. In many cases, this energy efficiency308

translates into cost efficiency.309

17



Figure 13: ROC for Hold-Out validation

• Low complexity of the algorithm chain – to classify the RR interval310

section we use only a two-step process. There is no feature engineer-311

ing which complicates and in some cases even dilutes the information312

extraction.313

• Real-time processing – RR intervals can be measured, communicated,314

and processed such that the results are available for efficient diagnostic315

support, and treatment monitoring can be guaranteed.316

This work is based on the assumption that variations in the beat-to-beat317

interval of the human heart holds information that can help to detect sleep318

apnea. As a corollary, we assume that all components of the RR signal which319

do not hold information about the beat variations are irrelevant. With these320

ground rules in place, we set about investigating appropriate pre-processing321

methods. Initially, we focused our efforts on detecting and correcting outliers322

in RR interval data and adjusting the method used for labeling data RR in-323

terval blocks. However, with these pre-processing methods, the classification324

accuracy remained below 80%. Furthermore, the graph which documents the325

training progress showed a split between training- and valuation-accuracy,326

which indicates that the network could not extract decision relevant infor-327

mation from the RR interval signal. Only after the band-pass filter, described328
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in Section 3.2.1, initial model fitting tests showed that the valuation accu-329

racy jumped to over 99% and there was no split between the training and330

valuation performance of the network. As such, detrending the RR interval331

signals removes a narrow frequency band around DC from the signal. This332

band does not carry information about the beat-to-beat variability. Hence,333

the irrelevance reduction does not impact on the beat-to-beat variability334

as it turns out the opposite effect was observed: detrending improved the335

classification accuracy significantly. We have selected LSTM as classifica-336

tion algorithm, because previous studies showed that LSTM performed well337

on time series data. Several researchers have compared the performance of338

Gated Recurrent Units (GRU) and LSTM model architectures on a range339

of natural language processing and sequence modelling tasks with no overall340

winner emerging [61, 62, 63]. Generally, GRU models seem to perform better341

when data sets are small, with LSTM models exhibiting greater expressive342

power in capturing long term dependencies in larger data sets.343

Our study was based on data from the well known PhysioNet Apnea-ECG344

Database. That enabled us to compare our results with the classification re-345

sults that are available from other research projects. Table 3 summarizes346

the outcome of these research projects. Some classical studies were focused347

on the design of digital biomarkers, which extract in specific properties from348

the available signals. For example, Varon et al. used orthogonal subspace349

projections to extracted 7 digital biomarkers from an ECG-Derived Respi-350

ration (EDR) signal [64]. Mendez et al. combined an autoregressive model351

with a K-Nearest Neighbor (K-NN) classifier to achieve a classification accu-352

racy of above 85% [65]. An extreme learning machine was used by Tripathy353

to classify digital biomarkers, extracted with intrinsic band functions, from354

both EDR and HRV signals [66]. Song et al. extracted 11 digital biomark-355

ers hidden in the ECG [48]. The resulting values were fed into a Markov356

model to refine the information further. Janbakhshi and Shamsollahi ex-357

tracted digital biomarkers from ECG to derive EDR [67]. Other studies used358

adaptive boosting (AdaBoost) [49] and even threshold methods [68] for ap-359

nea detection. Apart from focusing on detection algorithms, researchers also360

investigated the practicality of such systems by using data from wearable361

sensors [50] and by analyzing the real-time properties of the information ex-362

traction algorithms [69]. Both studies used Support Vector Machine (SVM)363

for classification.364

Wang et al. [51] used five records (a11, a15, a17, b01, c07) as Hold-out data.365

These are the same five records we used for hold-out validation. Thus, the366
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Table 3: Summary of studies on algorithmic sleep apnea detection based RR interval
signals from records in the Apnea-ECG Database.

Author Classifier Validation
method

No.
features

Acc.
in %

Sen.
in %

Spe.
in %

Mendez
et al. [65]

K-NN Leave-
One-Out

52 85.7 81.4 88.4

Surrel et
al. [50]

SVM 10-fold 88 88.4 73.3 87.6

Bsoul et
al. [69]

SVM Variable-
folds

111 88.49 96.77 83.62

Song et
al. [48]

SVM+LR 10-fold 32 86.2 80.0 89.9

Hassan
[49]

adaboost 10-fold 18 87.33 81.99 90.72

Janbakhshi
et al. [67]

assemble cross-
validation

85 90.90 89.60 91.80

Chazal et
al. [70]

LD/QD Many-fold 52 92.5 91.4 93.1

Dong et
al. [68]

threshold single-fold 6 90.10 88.29 90.50

Wang et residual 10-fold
0

94.39 93.04 94.95
al. [51] network Hold-out 80.60 - -
Proposed

LSTM
10-fold

0
99.80 99.85 99.73

method Hold-out 81.30 59.90 91.75
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results achieved are strictly comparable. Table 3 shows the hold-out perfor-367

mance measures for both studies. The hold-out performance of our study is368

0.7% better than the results from Wang et al. However, the main point is369

that both studies could not confirm the 10-fold cross-validation results with370

equally good hold-out results. This and other limitations will be discussed371

in the next section.372

5.1. Limitations373

The main limitation of this work comes about from the low hold vali-374

dation accuracy of 81.30%. We suspect that the number of training cases375

was insufficient to extract knowledge concerning sleep apnea changes in the376

RR interval signal. Therefore, more varied data is needed to improve the377

knowledge extracted during training and establish robust hold-out testing.378

Concerning the data used for this study, there is also a shortcoming in terms379

of instrumentation. The RR intervals were extracted from ECG signals via380

automated QRS detection. Changing the instrumentation setup might alter381

the QRS detection algorithm as well. These different QRS detection algo-382

rithms can show variations in the RR interval signal produced from the same383

ECG signal.384

Our study is also limited by the rectangular window we use to create data385

blocks with 100 RR intervals. The window function alters the PSD of the RR386

interval sequence. The blocks of 100 RR interval blocks might not contain387

sufficient data to capture all relevant information present in the nonlinear388

signal characteristics. Hence, the LSTM algorithm might not receive all of the389

available information. However, the 10-fold cross-validation and the training390

progress, indicated by the graphs shown in Figures 10 and 11, indicate the391

100 beats were sufficient to answer the apnea non-apnea question with a high392

degree of accuracy.393

5.2. Future work394

The 10-fold cross-validation results show that the proposed deep learning395

model is robust for the datasets it was trained on. However, the hold-out396

performance needs to be improved in the future. This should be done by397

training and testing the model with more varied data. Apart from improving398

the model, there is also scope to extend the role of the deep learning system399

from detection to prediction. Recent work by Hu et al. indicates that RR400

interval based sleep apnea detection might be possible [71].401
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Hypopnea is defined as abnormally slow or shallow breathing [72]. The402

airways are partially blocked, in contrast for apnea in which the airways are403

fully blocked. Hence, hypopnea can be considered a milder form of breathing404

disorder, which makes it harder to detect. However, hypopnea might lead405

to apnea, and therefore hypopnea detection can help to initiate treatment406

which prevents patients from developing sleep apnea [1]. Therefore, in the407

future we plan to train and test our deep learning model with hypopnea data408

in order to detect this breathing disorder as well in RR interval signals.409

6. Conclusion410

In this paper we proposed a processing architecture for sleep apnea de-411

tection in RR interval signals. In a pre-processing step we filtered the RR412

interval signal and partitioned it with a sliding window. The resulting RR in-413

terval blocks were fed into an LSTM network for classification. Filtering the414

signal helped the deep learning system to focus on the information contained415

in the HRV. As a consequence, the LSTM algorithm could extract relevant416

knowledge from the signal to achieve a 10-fold cross-validation accuracy of417

99.80%. The variance between the folds was low. The hold-out accuracy was418

81.30%.419

Having accurate and robust processing methods for RR interval based420

sleep apnea detection is prerequisite for cost-effective CAD systems. These421

systems could be used for the initial diagnosis and during treatment monitor-422

ing. In such a CAD setting, the deep learning results constitute an indepen-423

dent second opinion on the data. In the clinical workflow, a human expert424

should validate the machine decision through an independent review of the425

evidence, i.e. the measured signal, information from the patient record, and426

personal interaction with the patient. Having these two independent opin-427

ions during diagnosis and treatment monitoring can help to improve safety,428

reliability, and quality of the decisions. Safety comes from the human inter-429

pretation of the algorithm results. The human expert has to decide whether430

or not the machine results make sense and act accordingly. This allows ma-431

chine algorithms and human experts to work symbiotically on the sleep apnea432

detection problem. The machine algorithms provide real-time monitoring of433

patient data without risk of inter- and intra-observer variability. Further-434

more, computer-based systems do not suffer from fatigue, and the results435

are reproducible. The decision model can be updated, which will improve436

the decision support over time. The human expert then becomes involved437
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only if apnea is detected. That will improve reliability and efficiency of the438

clinical process, because both machine algorithms and human experts will439

work according to their strength. Diligent machine work is then supervised440

with human creativity and intuition. Hence, accurate detection of sleep ap-441

nea with an LSTM network based on RR interval signals has the potential to442

become a key component for delivering appropriate diagnostic support and443

convenient uninterrupted treatment monitoring.444

Acronyms

AUC Area Under Curve
BMI Body Mass Index
CAD Computer-Aided Diagnosis
CNN Convolutional Neural Network
CSA Central Sleep Apnea
ECG Electrocardiogram
EDR ECG-Derived Respiration
EEG Electroencephalogram
EMG Electromyogram
EOG Electrooculogram
FIR Finite Impulse Response
GPU Graphics Processing Unit
GRU Gated Recurrent Units
HRV Heart Rate Variability
IIR Infinite Impulse Response
K-NN K-Nearest Neighbor
LSTM Long Short-Term Memory
OSA Obstructive Sleep Apnea
PAP Positive Airway Pressure
PPP Palato Pharyngo Plasty
PSD Power Spectral Density
PSG Polysomnography
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
SVM Support Vector Machine
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[22] Sheikh Shanawaz Mostafa, Fábio Mendonça, Fernando Morgado-Dias,
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