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Abstract

Deep Deterministic Policy Gradient (DDPG) algorithm is one of the most well-

known reinforcement learning methods. However, this method is inefficient and

unstable in practical applications. On the other hand, the bias and variance of the

Q estimation in the target function are sometimes difficult to control. This paper

proposes a Regularly Updated Deterministic (RUD) policy gradient algorithm

for these problems. This paper theoretically proves that the learning procedure

with RUD can make better use of new data in replay buffer than the traditional

procedure. In addition, the low variance of the Q value in RUD is more suitable

for the current Clipped Double Q-learning strategy. This paper has designed a

comparison experiment against previous methods, an ablation experiment with

the original DDPG, and other analytical experiments in Mujoco environments.

The experimental results demonstrate the effectiveness and superiority of RUD.

Keywords: Reinforcement learning, deterministic policy gradient, experience

replay

1. Introduction

Reinforcement learning algorithms based on deterministic policy gradient are

widely used in various complex tasks [1][2][3][4] because their policy gradients
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are easy to estimate [5] and they can effectively solve problems with high-

dimensional action spaces [6]. However, although such methods have been

successfully applied in applications, algorithms based on deterministic policy

gradient are still notoriously inefficient [7], unstable [8][9], and the convergence is

sensitive to parameters. Therefore, how to improve deterministic policy gradient

methods remains a hotspot in this field.

The perspectives of improvement for deterministic policy gradient methods

includes:

• Exploration, such as variational information maximization[10], count-based

exploration[11] [12], intrinsic motivation [13] and curiosity [14];

• Data utilization, such as DDPG based on prioritized experience replay [15]

[16].

Although the above two methods have achieved excellent results in specific

fields [17] [8], the former usually involves a complex structure, while the latter

needs to regulate the parameters of the importance sampling part. Improvement

methods on the target value calculation and network update of deterministic

policy gradient methods, such as Twin Delayed Deep Deterministic (TD3) policy

gradient algorithm[18] and smoothie[19], fundamentally overcome the inherent

deficiencies of DDPG when calculating the target, but still do not solve the low

data utilization problem brought by the procedure of classical reinforcement

learning methods.

This paper proposes Regularly Updated Deterministic (RUD) policy gradient

algorithm. RUD mitigates the inherent shortcomings of data utilization in the

classical off-policy reinforcement learning methods by allowing the exploration

and the learning process to be performed alternately and concentratedly. First,

we theoretically analyze characteristics of the data utilization under the classical

off-policy reinforcement learning paradigm, and pointed out the difficulties for

the agent to sample new experience. Then, we present the RUD algorithm and

prove that RUD can better use new experiences than the classical algorithm.
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In addition, for the Clipped Double Q-learning method used in TD3, we the-

oretically prove the existence of downward deviation as well as its magnitude,

and empirically explain why the procedure of RUD can mitigate this deviation.

Finally, we confirm the superiority of RUD through a series of experiments by

comparing with previous methods, exploring parameter settings and analyzing

efficiency of data utilization in RUD.

The rest of this paper is organized as follow. Section 2 introduces some related

work. Section 3 presents the background; Section 4 analyzes the insufficient

use of new experiences in the procedure of classical algorithm, and proposes

RUD, and theoretically proves that RUD can better use of the new experiences.

Section 5 analyzes deviation of Clipped Double Q-learning, and explains that

RUD’s procedure can better alleviate this deviation; Section 6 conducts a series

of experiments to prove the superiority of RUD. Section 7 summarizes the work

of this paper and discusses the future work.

2. Related Works

The main contribution of this paper is the design and development of RUD

which allocates the exploration and exploitation process alternately and con-

centratedly. In RUD, the replay buffer introduces new experiences in blocks,

thereby improving the utilization of new experiences. Therefore, the work of this

paper can be regarded as an improvement in the data utilization ability of deter-

ministic policy gradient algorithms. There are many previous works with regard

to improving the data utilization of reinforcement learning. Experience replay

breaks the temporal correlations by uniformly sampling more and less recent

experience for the updates [20]. Subsequent researches also show that off-policy

reinforcement learning has higher sample efficiency [21] [6] [22]. Prioritizing the

data in the replay buffer can further improve the sample efficiency of off-policy

reinforcement learning, such as the priority scanning method according to the

next state to be updated [23] [24], using TD error to prioritize experience in

model-based methods [25] or model-free methods [15].
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In the RUD algorithm paradigm, the policy is sufficiently perturbed because

the exploration is carried out concentratedly. Therefore, RUD can also be seen

as an exploration improvement for classical reinforcement learning methods.

Previous methods for exploration in reinforcement learning include: variational

information maximization[10], count-based exploration[11][12], intrinsic motiva-

tion [13] and curiosity [14]. In addition, noisy methods have been used for the

exploration of parameter space [17] [26]. Evolutionary reinforcement methods

also use mutation strategies in populations to explore parameter space [8] [9]

[27].

Our method is based on the Deterministic Policy Gradient (DPG) algorithm

[5] and combines advanced optimization techniques used by DDPG [6] and TD3

[18]. In TD3, the Clipped Double Q-learning technology is used to alleviate the

overestimation problem, and we also analyzed the problem of underestimation

introduced in TD3. Other work related to DPG includes model-free algorithms

using model-based methods [28], multi-step returns and prioritized experience

replay [16], and distribution-based methods [29].

3. Background

This section introduces the deterministic policy gradient algorithm and the

optimization of it.

3.1. Deterministic Policy Gradient Algorithm

The interaction between an agent and a continuous environment can be

modeled as a Markov Decision Process (MDP). This process includes a continuous

state space S, a continuous action space A, an initial state probability density

p(s1), an unknown transition probability density p(st+1|st, at) and a reward

function r: S ×A→ R. The transition probability density satisfies the Markov

property p(st+1|s1, a1, ..., st, at) = p(st+1|st, at) for any trajectory s1, a1, ..., st, at.

A policy is used to select actions in MDP. A deterministic policy can be denoted

as: µθ : S → A, where θ ∈ Rn is a vector of n parameters. Rt =
∑∞
k=1 γ

krt+k
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denotes the total discounted reward from the time-step t, where γ ∈ (0, 1] is a

discount factor.

The goal of an agent is to adjust its policy to maximize the expected to-

tal discounted return E[R1|µθ]. The probability density of reaching s′ from s

conducting policy µθ after t time steps can be denoted as p(s→ s′, t, µθ). The dis-

counted state distribution can be denoted as: ρµθ (s′) =
∫
S

∑∞
t=1 γ

t−1p1(s)p(s→

s′, t, µθ)ds. Then the performance objective of an agent can be denoted as:

J(µθ) =

∫
S

ρµθ (s)r(s, µθ(s))ds = Es∼ρµθ [r(s, µθ(s))] (1)

Silver et al. proved that the deterministic policy gradient in Eq. (1) exists under

certain conditions [5] [6]. The deterministic policy gradient can be denoted as:

∇θJ(µθ) = Es∼ρµθ [∇θµθ(s)∇aQµθ (s, a)|a=µθ(s)] (2)

where Qµθ (s, a) = Es∼ρµθ ,a∼µθ [Rt|s, a]. The Q function is learned by minimizing

the critic loss: L = (y −Q(s, a))2, where the target value y = r + γQ(s′, a′).

3.2. Advanced Optimization for Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) algorithm is a widely used

deterministic policy gradient algorithm. DDPG creates target actor and critic

networks to calculate the target value: y = r + γQ′(s′, µ′(s′|θµ′)|θQ′). θQ′ and

θµ
′

is updated by soft updating: θQ
′

= (1− τ)θQ
′
+ τθQ, θµ

′
= (1− τ)θµ

′
+ τθµ,

where τ << 1. DDPG also applies the batch normalization technique [30] to

calculate gradients and an Ornstein-Uhlenbeck process [31] to execute exploration

[6].

Twin Delayed Deep Deterministic (TD3) policy gradient algorithm is the

state-of-art deep deterministic policy gradient method. TD3 has made several

optimizations for the original deep deterministic policy gradient algorithm. In

TD3, the target value is calculated by: y = r+γmini=1,2Q
′
i(s
′, π(s′|θµ′)+ ε|θQ′),

where ε ∼ clip(N(0, σ),−c, c). In order to solve the overestimation problem

in DDPG, TD3 updates the target value by taking the minimum value of two
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independent Q networks. Although this way introduces the underestimation

problem, it alleviates the overestimation of the target value. TD3 introduces a

regularization method by adding a small amount of noise to the target policy

to smooth the value estimation, which can optimize the learning of the value

function. In addition, TD3 uses Delayed Policy Updates to optimize the update

of policy networks and value networks. It is considered that this approach can

reduce the variance of the value function estimation [18]. Both DDPG and TD3

apply the process shown in Algorithm 1.

Algorithm 1 Classical DPG

Input: Batch size N , Learning parameters params
Initialize actor and critic networks
Initialize replay buffer R
for t = 1 to T do

Select action according to exploration strategy
Store the transition tuple (s, a, r, s′) into R
if t ≥ N then

Sample mini-batch of N transitions (s, a, r, s′) from R
Update critics according to the critic loss and params
Update actors according to the policy gradient and params

end if
end for

4. Regularly Updated Deterministic Policy Gradient Algorithm

This section theoretically points out the problem that it is difficult for the

agent to sample new experience under the classical process as Algorithm 1. Then

we give the RUD algorithm, and prove that RUD can use the new experience

more frequently than the classical algorithm.

4.1. Data Exploitation of Classical DPG

Although DDPG, TD3 and other deterministic policy gradient algorithms

are different in learning details, they are all designed according to the “learning

while exploring” paradigm, as shown in Algorithm 1. In this paradigm, the

experiences are sampled uniformly before calculating the gradient and updating
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the networks at each time step, and the size of the replay buffer increases at

every time step. This results in that the earlier the experience is stored, the

more times it is sampled, and the later the experience is stored, the fewer times

it is sampled. In this subsection, we will theoretically discuss the frequency

difference of being sampled among the experiences stored at different time steps

in Algorithm 1, and empirically point out the impact of this difference on the

data utilization of deterministic policy gradient algorithms.

For convenience, we assume that the size of the replay buffer is equal to

the total time budget T of the learning process. This assumption is only to

ensure that the size of the replay buffer is increasing during the entire learning

process. In fact, in experiments settings of many deterministic policy gradient

algorithms, the size of the replay buffer is indeed equal to the total time step

[18] [27]. Even if the total time budget T is larger than the size of the replay

buffer, the stage that the size of the replay buffer is increasing will always exist

in the early learning process.

Theorem 1. Suppose that Mt denotes the number of times that experience

stored at the t time step is played back in the subsequent learning process. Then

E[Mt1 ] > E[Mt2 ] if N ≤ t1 < t2 ≤ T , where N is the batch-size of samples. The

maximum value of E[Mt] is Nln(T + 1/N), the minimum value is N/T .

Proof: There exists a sequence that {a1, a2, ..., aT }, where at = E[Mt], t =

1, 2, ..., T . Suppose that M t′

t denotes the number of times that the experiences

stored at the t time step are played back at the t′ time step. Because of that

Mt = M t
t + M t+1

t + M t+2
t + ... + MT

t , when N ≤ t < T , at = E[Mt] =

E[M t
t ] +E[M t+1

t ] +E[M t+2
t ] + ...+E[MT

t ]. And at+1 = E[Mt+1] = E[M t+1
t+1 ] +

E[M t+2
t+1 ] + ... + E[MT

t+1] = E[M t+1
t ] + E[M t+2

t ] + ... + E[MT
t ]. Therefore

at− at+1 = E[M t
t ] > 0. Then {aN , aN+1, ..., aT } is a decreasing sequence. Then

E[Mt1 ] > E[Mt2 ] if N ≤ t1 < t2 ≤ T .

Due to uniform sampling and sampling once at each time step for Algo-

rithm 1, E[M t′

t ] = C1
1C

N−1
t′−1 /C

N
t′ , where 1 ≤ t ≤ t′ ≤ T . Then E[Mt] =

E[M t
t ] +E[M t+1

t ] +E[M t+2
t ] + ...+E[MT

t ] = C1
1C

N−1
t−1 /CNt +C1

1C
N−1
t /CNt+1 +

7



C1
1C

N−1
t+1 /CNt+2 + ...+C1

1C
N−1
T−1 /C

N
T = N/t+N/(t+ 1) +N/(t+ 2) + ...+N/T .

In Algorithm 1, the agent does not perform the sampling process when t < N .

Therefore, the experiences stored in the first N time steps will be played back

with the same number of times in the subsequent learning process: E[M1] =

E[M2] = ... = E[MN ]. And {E[MN ], E[MN+1], ..., E[MT ]} is a decreasing se-

quence. So sequence {E[Mi]}, i = 1, 2, ..., T , E[Mi] takes the maximum value

when i = 1, 2, ..., N . The maximum value is E[Mi] = E[MN ] = N/N +N/(N +

1)+N/(N+2)+ ...+N/T . Let S(n) = 1/1+1/2+ ...+1/n, S(n) = ln(n+1)+C,

then E[Mi] = N(1/N+1/(N+1)+1/(N+2)+...+1/T ) = N(S(T )−S(N−1)) =

Nln((T + 1)/N). E[Mi] takes the minimum value when i = T . The minimum

value is N/T . �

Theorem 1 shows that in the classical DPG algorithm paradigm, the expec-

tation of the number of times, that experiences entering the replay buffer at

different time steps is played back, is different, This difference of expectation

may be very large. Assuming that in a training process, the total time step

T is 1, 000, 000 and the batch-size N is 128, then according to Theorem 1, the

expected number of times of replaying the first experience batch stored in the

buffer is E[M128] = 1, 147.33, and the expected number of times of replaying

the last experience stored in the replay buffer is E[M1,000,000] = 0.000128. This

difference may lead to the excessive use of the first batch of experience in the

replay buffer. At the same time, the last batch of experience stored in the

replay buffer may not be learned because it is rarely or even not played back in

Algorithm 1.

Theorem 1 also can be elaborated as that the agent is more inclined to learn

old experiences rather than new experiences in the classical DPG procedure.

However, on the one hand, old experiences are usually already learned. On the

other hand, new experiences are more likely to include unexperienced states and

unlearned knowledge about the environment or reward function. In the next

subsection, we will introduce a new DPG algorithm paradigm, which allows

agents to learn more about new experiences while retaining uniform sampling.
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4.2. Better Procedure for DPG

The classical DPG algorithm learns old experiences more, but always replays

new experiences less. This is caused by its “exploring while learning” mode. In

this subsection, we will propose Regularly Updated Deterministic policy gradient

algorithm. The procedure of this algorithm is shown in Algorithm 2. Regularly

Algorithm 2 Regularly Updated DPG

Input: Batch size N , learning parameters params, fixed size F
Initialize actor and critic networks
Initialize replay buffer R
t = 0
while t ≤ T do

for f = 1 to F do
Select action according to exploration strategy
Store the transition tuple (s, a, r, s′) into R

end for
for f = F to 1 do
if N ≤ t ≤ T then

Sample mini-batch of N transitions (s, a, r, s′) from R
Update critics according to the critic loss and params
Update actors according to the policy gradient and params

end if
end for
t = t+ F

end while

Updated Deterministic policy gradient algorithm uses the separated exploration

and learning process. The agent first conducts F time steps to interact with the

environment and generate experiences. Then the agent performs F time steps to

sample experiences and update parameters. Such a process can make exploration

and learning alternately concentrated. Intuitively speaking, RUD introduces

new experiences in batches instead of individually before sampling, which makes

new experiences account for a larger proportion in the replay buffer. Thereby

it can increase the probability of replaying new experiences for the agent. In

the rest part of this subsection, we will theoretically prove that RUD can make

more use of new experiences than the classical DPG algorithm.

Theorem 2. Suppose that M (1)(t : F ) and M (2)(t : F ) represent the number
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of times that the latest stored F experiences are sampled by Algorithm 1 and

Algorithm 2 respectively in the F times sampling before t. Then, E[M (1)(t :

F )] < E[M (2)(t : F )].

Proof: According to proof process of Theorem 1, E[M (2)(t : F )] = (1 −

(CNt−F /C
N
t ))∗F = 1− (CNt−F /C

N
t ) + 1− (CNt−F /C

N
t ) + ...+ 1− (CNt−F /C

N
t ), and

E[M (1)(t : F )] = 1−(CNt−F+1/C
N
t )+1−(CNt−F+2/C

N
t )+ ...+1−(CNt−F+F /C

N
t ).

Since for any 1 ≤ i < F , there is 1 − (CNt−F+i/C
N
t ) < (1 − (CNt−F /C

N
t )),

therefore E[M (1)(t : F )] < E[M (2)(t : F )]. �

Theorem 2 shows that the algorithm 2 introduces new experiences in batches

to increase the sampling proportion of recent F experiences in the replay buffer,

thereby increasing the number of sampling times for new experiences.

The setting of F is worth considering carefully. Suppose that during a

training process, T = 1, 000, 000, and the size of the replay buffer is equal to

T . If the parameter F in RUD is equal to T , the agent will first generate

1, 000, 000 experiences during the interaction process with the environment and

then perform 1, 000, 000 times of sampling and updating. In this case, the

expectation of the sampling number of each experience in the replay buffer is

equal. So the utilization rate of new experience is higher. However, this kind

of setting will also lead to lack of exploration. Because in the 1,000,000 time

steps when the agent interacts with the environment, the policy network has

not changed, so its exploration policy is only based on a random disturbance of

the initial policy. So larger F leads to lower exploration efficiency and higher

data utilization. If F is set to 1, the agent’s policy for exploration will change

at each time step. Therefore its exploration efficiency may be relatively high.

However, according to Theorem 1, the agent’s use of new experience is insufficient

under this circumstance. So smaller F leads to higher exploration efficiency and

lower data utilization. Therefore, the setting of the parameter F is essentially a

compromise between the exploration and exploitation efficiency of the agent.
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5. More Accurate Target of RUD

In order to solve the overestimation problem in DDPG, the state-of-art

method TD3 use the Clipped Double Q-learning strategy, but this strategy

also introduces underestimation problem which yields a downward bias. In this

section, we first theoretically analyze the existence and size of this bias, and

then empirically show that RUD learning settings can mitigate this bias.

In the classical DDPG algorithm, using a single target critic network to

calculate the target value will cause the overestimation problem [6] [18]. In

TD3, after sampling (s, a, r, s′) from the replay buffer, the calculation of the

target value used to update the two critical networks Qθ1 , Qθ2 is: y = r +

γmini=1,2Q
′
i(s
′, π(s′|θµ′)|θQ′). Although this update method can alleviate the

overestimation problem, it still brings the accuracy problem of the target value.

We will prove that the way TD3 calculates the target value will introduce a

downward deviation, and we will give the magnitude of this deviation under

certain conditions.

Theorem 3. Suppose that Q1 and Q2 are on the whole unbiased in the sense

that
∫
A

(Q1(s, a) − V∗(s))da = 0 and
∫
A

(Q2(s, a) − V∗(s))da = 0 for some

V∗(s). Then, when Q1 6= Q2, Ea∼µ[mini=1,2Qi(s, a)] < V∗(s). If the values

of Q1 and Q2 follow the Gaussian distribution with the same variance σ, then

Ea∼µ[mini=1,2Qi(s, a)] = V∗(s)− σ/
√
π.

Proof: Considering that
∫
A

(Q1(s, a) − V∗(s))da = 0, It can be derived that

V∗(s) =
∫
A
Q1(s, a)da = Ea∼µ[Q1(s, a)]; Similarly, V∗(s) =

∫
A
Q2(s, a)da =

Ea∼µ[Q2(s, a)]. Then, Ea∼µ[mini=1,2Qi(s, a)] = 1
2Ea∼µ[Q1(s, a) + Q2(s, a) −

|Q1(s, a)−Q2(s, a)|] = V∗(s)− 1
2Ea∼µ[|Q1(s, a)−Q2(s, a)|]. Also considering that

Q1 6= Q2, Ea∼µ[|Q1(s, a)−Q2(s, a)|] > 0, so Ea∼µ[mini=1,2Qi(s, a)] < V∗(s).

When the values of Q1 and Q2 follow the Gaussian distribution of the same

variance σ, that is, Q1, Q2 ∼ N(V∗(s), σ). Let X1 = Q1(s,a)−V∗(s)
σ , X2 =

Q2(s,a)−V∗(s)
σ , Then X1, X2 ∼ N(0, 1), and Q1(s, a) = σX1 + V∗(s), Q2(s, a) =

σX2 + V∗(s). So there is Ea∼µ[mini=1,2Qi(s, a)] = E[σmin(X1, X2) + V∗(s)] =
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V∗(s)+σE[min(X1, X2)] = V∗(s)+ σ
2E[X1+X2−|X1−X2|] = V∗(s)+ σ

2E[|X1−

X2|)]. Let Y = X1 −X2, then Y ∼ N(0, 2), so fY (y) = 1
2
√
π
e−

y2

4 .

Ea∼µ[mini=1,2Qi(s, a)] = V∗(s) − σ
2E[|Y |] = V∗(s) − σ

2

∫ +∞
−∞ |y|fY (y)dy =

V∗(s)− σ
∫ +∞
0

y 1
2
√
π
e−

y2

4 dy = V∗(s)− 2σ√
π

∫ +∞
0

y
2e
−( y2 )

2

d(y2 ) = V∗(s)− σ√
π

. �

The idea of Theorem 3 is inspired by Deep Double Q-learning [32]. We first

assume that the Q function is unbiased, and then prove that the Q function will

always be biased after learning with the target function. Theorem 3 shows that

even if it is assumed that the Q function in TD3 is unbiased after learning, the

update process in TD3 always leads to a downward deviation of the y estimation,

and the size of this deviation is related to the variance of the Q value. Therefore,

we can believe that when using the Clipped Double Q-learning method to update

the target value, if the variance of the Q value of an algorithm is smaller, then

this algorithm can alleviate the downward deviation that Clipped Double Q-

learning strategy brings. We tested the standard deviations of the Q value of

RUD and TD3 during the learning process in Hopper and Walker2d. Each time

1000 states were sampled from the replay buffer to calculate the Q value and

standard deviation. We only showed the change in the standard deviation of

Q1. This is because Q1 and Q2 have obvious similarities in the learning process

[18]. As shown in Figure 1, especially in the late learning period, the standard

deviation of the Q value of RUD is lower than TD3.

We believe that, compared with the policy that is updated at every time step

in TD3, the policy of RUD for exploration remains unchanged during every F

time steps, which leads to the diversity of state-action pairs in the RUD replay

buffer being less than TD3. As a result, the standard deviation of the Q value

of RUD during the learning process can be significantly lower than that of TD3.

Insufficient variety of state-action pairs may lead to insufficient exploration, but

we can still adjust the F parameter of RUD to obtain the balance between

exploration and exploitation. Overall, RUD’s low standard deviation of Q value

makes it more suitable for using Clipped Double Q-learning strategy than TD3.
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(a) Hopper-v2 (b) Walker2d-v2

Figure 1: Standard deviation curves during learning process

6. Experiments

The experiments of this section will answer the following questions:

(1) Can RUD perform better than previous algorithms on the Mujoco envi-

ronments?

(2) Without introducing other optimization tricks, how much improvement

can the Regularly Updated reinforcement learning paradigm bring comparing to

the original DDPG method?

(3) How does the performance of RUD change with the change of the param-

eter F?

(4) Does the characteristic that RUD can replay new experiences with greater

probability improve its data utilization?

We use continuous control tasks provided by Mujoco [33] based on OpenAI

Gym [34] to evaluate performance of the algorithms. These tasks are widely

used in the evaluation of reinforcement learning in continuous environments [35]

[36] [22]. In order to further ensure the fairness of the test results, all test results

are averaged over 10 times under at least 5 different random seeds. The code

of RUD is implemented based on Pytorch [37]. In the comparative experiment,

some of the previous algorithms are implemented using Tensorflow [38].
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6.1. Comparison

We first compare the performance of RUD with the previous algorithms on

the Mujoco environments to confirm the superiority of RUD. We compared the

performance of RUD with DDPG [6], Proximal Policy Optimization (PPO) [35],

and Twin Delayed Deep Deterministic (TD3) policy gradient algorithm [18] in 6

environments. DDPG and PPO are implemented using the code provided by

OpenAI Baselines [34]. The parameters of these algorithms are set to the default

optimal parameters in Baselines. TD3 is implemented using the code provided

by its authors Scott Fujimoto et al. 1. and the parameter setting is consistent

with the original paper [18].

We use feedforward neural networks with two hidden layers to implement

the actor and critic networks in RUD. Linear rectifier units (ReLU) are used

between hidden layers. The last layer of the actor network is linked to tanh

units. The two hidden layers contain 400 and 300 neurons respectively. Both

actor and critic networks learn using Adam optimizer [39]. A mini-batch with

256 transition pairs is sampled from the replay buffer for the network training,

the learning rate is set to 0.3× 10−4.

RUD applies the Target Policy Smoothing and Delayed Policy Update tech-

niques of TD3. The output of the target policy is added with Gaussian noise

N ∼ (0, 0.2), and the noise is clipped to the range [−0.5, 0.5]. Actor networks

and the target critic network are updated every two iterations. The soft update

weight τ of all target networks is set to 0.005. The Gaussian noise for exploration

is N ∼ (0, 0.1). The fixed frame number F to maintain the learned policy

for exploration without changing is set to 2500 in Halfcheetah and Walker-2d,

1250 in the other tasks. The detailed performance of RUD using different F

parameters in different environments can be found in Section 6.3.

Each task performed 1 million time steps, algorithms were evaluated every

F steps. The noise used for exploration is removed during evaluation. And

each evaluation adopt the average reward over 10 test results. The evaluation

1The code is available on the website: https://github.com/sfujim/TD3

14



(a) Ant-v2 (b) Hopper-v2 (c) HalfCheetah-v2

(d) Walker2d-v2 (e) InvertedDoublePendulum-v2 (f) InvertedPendulum-v2

Figure 2: Learning curves on Mujoco-based continous control benchmarks.

of each algorithm uses at least 5 sets of random seeds to initialize networks

and Gym simulator. The results are shown in Figure 2. Compared with

the previous method, the stability of RUD in Ant, Hopper, Halfcheetah, and

Walker2d is significantly better than that of TD3, and the average performance

is significantly better than all other methods. This is because these environments

involve more complex state-action spaces. RUD’s higher data utilization makes its

performance significantly better than previous methods in these more challenging

environments. InvertedDoublePendulum and InvertedPendulum are relatively

uncomplicated, so both TD3 and RUD can achieve good performance in these

environments.

6.2. Ablation Experiment

TD3 uses a lot of optimization techniques for DDPG. While these techniques

bring a huge improvement to the original DDPG, they also mask the improvement

made by RUD to the original DDPG. To further confirm the effectiveness of the

regularly updated paradigm adopted by RUD, we evaluated the performance of

DDPG adopting the regularly updated paradigm without any other optimization

skills and compared it with the performance of original DDPG.

The parameter setting of the DDPG in this subsection is consistent with
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that in the original paper [6], except that the batch-size is set to 128, which

has been shown to improve performance in recent work [7]. The off-policy

exploration noise is the Ornstein-Uhlenbeck process. The fixed exploration frame

number F of DDPG with the regularly updated paradigm is set to 1250. The

results are shown in Figure 3. Except in the Walker2d environment where the

(a) Hopper-v2 (b) Ant-v2 (c) HalfCheetah-v2

(d) Walker2d-v2 (e) InvertedDoublePendulum-v2

Figure 3: Comparison of Regularly Updated DDPG and original DDPG.

effect is not obvious, the regularly updated DDPG performs significantly better

than the original DDPG in other environments. In the context of Ant and

InvertedDoublePendulum, the worst performance of regularly updated DDPG

are significantly better than the best performance of the original DDPG.

6.3. Setting of Parameter F

An important issue in the RUD is how to select the parameter F . Intuitively,

if F is larger, the agent will use the data in the replay buffer more fairly, but it

also means that the agent’s exploration efficiency is lower. An extreme example

is when F is set to 1 million that is equal to the total time step of the task

execution. Under this circumstance, when the agent is sampling from the replay

buffer, each sampling is to uniformly sample from the all 1 million experiences,

and the probability of each experience being sampled is equal. However, it also

means that the exploration policy of the entire interaction process with the
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environment is only a disturbance to the initial policy. Thence the exploration

efficiency may be very low. Another extreme example is when F is set to 1,

then RUD will be consistent with the classical reinforcement learning algorithm.

Each time step the agent will interact with the environment and learn according

to samples from the current replay buffer. According to Theorem 1, the agent

is underutilized for new experience, but at the same time, because the actor

network (i.e. policy) is updated at each time step, the exploration policy at

each time step is also different. Consequently, the exploration efficiency of the

agent is the high. Therefore, the setting of parameter F is essentially a balance

between exploitation and exploration.

In this subsection, we will test how the performance of RUD changes with the

different parameter F in four environments. We will take the fixed frame F from

{10000, 5000, 2500, 1250, 625} to test the performance of RUD, and compare

them with TD3 (i.e. F = 1). The experimental results are shown in Figure 4.

Results show that when F is too large or too small, the performance of RUD

is not very good. In HalfCheetah and Ant environments, RUD is better than

TD3 in most cases. RUD works best when F is set to 2500 in HalfCheetah and

Walker2d, and works best when F is set to 1250 in Hopper and Ant.

6.4. Learning Efficiency of RUD

The distinguishing feature of RUD from classical reinforcement learning

methods is that RUD can replay new experiences with greater probability. This

subsection will explore whether RUD’s ability to replay new experiences with

greater probability improves its data utilization. For the same action at and

state st, we will take the O = |Q(st, at)−Q′(st, at)| to judging the effect of an

update, where Q(st, at) is the Q value before this update and Q′(st, at) is the

Q value after this update. The larger O is, the more effective the update is,

otherwise the update is more invalid.

When evaluating the update effect of the algorithm, we uniformly sample 1000

state-action pairs (si, ai), i = 1, 2, ..., 1000 in the replay buffer, then we calculate

the sum of Oi and take the average: 1
1000

∑1000
i=1 Oi = 1

1000

∑1000
i=1 |Q′(si, ai) −
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(a) Ant-v2 (b) Halfcheetah-v2

(c) Walker2d-v2 (d) Hopper-v2

Figure 4: Performance of RUD under different parameter settings.

Q(si, ai)|. Both RUD and TD3 are evaluated and recorded every F frames. The

results are shown in Figure 5. In Walker2d and Hopper, the average Q change

(a) Walker2d-v2 (b) Hopper-v2

Figure 5: Change of Q value on Walker2d-v2 and Hopper-v2

of TD3 starts to decline at around 300,000 frames, because in the subsequent

update process after 300,000 frames, TD3 still samples more old experiences,

which have already been learned. Although the average Q change of RUD also

18



begins to decline at around 300,000 frames, the decline is significantly smaller

than TD3, which shows that RUD uses more new experience than TD3 and

these experiences has rarely been used before, so the data utilization of RUD is

higher than TD3.

7. Conclusion and Future Work

In order to solve the problem of poor data utilization of the classical DPG

algorithms, we proposed the Regularly Updated Deterministic policy gradient

method. The main contributions of this paper are as follows:

(1) We theoretically analyzed the data utilization problem of the classical

DPG methods and pointed out that under the classical DPG procedure, the

agent always overuses the old experiences and rarely uses the new experiences.

(2) We proposed the Regularly Updated Deterministic policy gradient method,

and theoretically proved that RUD can better use new experiences than classical

DPG.

(3) We theoretically pointed out that the Clipped Double Q-learning strategy

will bring deviation to the target, and empirically show that RUD can effectively

alleviate the deviation brought by the Clipped Double Q-learning strategy.

In the experimental part of this paper, the superiority of the Regularly

Updated paradigm in the DPG method is verified by the comparison experiment.

And we further confirmed the superiority of RUD through ablation experiment,

parameter exploration experiment and data utilization analysis experiment.

In future work, it can be investigated whether the Regularly Updated

paradigm still has superiority in Deep Q-learning [21], Soft Actor-critic [22], and

other off-policy methods.
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