
Self-Organizing Fuzzy Inference Ensemble System for
Big Streaming Data Classification

Xiaowei Gua,∗, Plamen Angelovb, Zhijin Zhaoc

aDepartment of Computer Science, Aberystwyth University, Aberystwyth, SY23 3DB, UK
bSchool of Computing and Communications, Lancaster University, Lancaster, LA1 4WA,

UK
cSchool of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018,

China

Abstract

An evolving intelligent system (EIS) is able to self-update its system structure

and meta-parameters from streaming data. However, since the majority of EISs

are implemented on a single-model architecture, their performances on large-

scale, complex data streams are often limited. To address this deficiency, a novel

self-organizing fuzzy inference ensemble framework is proposed in this paper. As

the base learner of the proposed ensemble system, the self-organizing fuzzy in-

ference system is capable of self-learning a highly transparent predictive model

from streaming data on a chunk-by-chunk basis through a human-interpretable

process. Very importantly, the base learner can continuously self-adjust its de-

cision boundaries based on the inter-class and intra-class distances between pro-

totypes identified from successive data chunks for higher classification precision.

Thanks to its parallel distributed computing architecture, the proposed ensem-

ble framework can achieve great classification precision while maintain high

computational efficiency on large-scale problems. Numerical examples based on

popular benchmark big data problems demonstrate the superior performance

of the proposed approach over the state-of-the-art alternatives in terms of both

classification accuracy and computational efficiency.

∗Corresponding author
Email addresses: xig4@aber.ac.uk (Xiaowei Gu), p.angelov@lancaster.ac.uk

(Plamen Angelov), zhaozj03@hdu.edu.cn (Zhijin Zhao)

Preprint submitted to Knowledge-Based Systems January 2, 2021

Keywords: ensemble system, evolving intelligent system, large-scale data

stream, prototypes.

1. Introduction

Evolving intelligent systems (EISs) are powerful learning machines for data

stream processing with the strong capability to effectively approximate dynam-

ically changing environments [1]. The majority of EISs are designed to learn

from streaming data through a “one pass” procedure. They self-organize and5

self-develop the system structure and meta-parameters from data through a

single scan, and can rapidly self-adjust to follow the drifts and/or shifts in

data patterns [2]. Thus, the computational efficiency of EISs is usually higher

than classical machine learning models, such as learning vector quantization [3],

support vector machine (SVM) [4] and random forest (RF) [5], as well as the10

state-of-the-art deep learning-based approaches [6]. Thanks to the attractive

features, EISs have been applied in many real-world applications successfully

for handling streaming data and is now one of the most intensively researched

areas in computational intelligence [7, 8].

Despite of the success they have achieved in time-critical applications [9],15

most of the existing EISs are built on a single-model architecture and they

typically learn from streaming data on a sample-by-sample basis, resulting in

some critical deficiencies when being applied to large-scale, high-dimensional,

complex problems [10, 11]. It is often observed that the system structure of

EISs can self-develop to an unfavorably large scale in such application scenar-20

ios, and their computational efficiency and model transparency are very low

because of system obesity. In addition, since EISs typically learn from data

on a sample-by-sample basis without revisiting historical data, they only have

a partial understanding of data patterns. This also causes EISs forgetting the

learned knowledge from previous data [1]. Thus, performances of single-model25

EISs on large-scale data streams are usually very limited.

To overcome these deficiencies, one possible solution is to construct an en-

2

semble system composed of EISs to learn from streaming data on a chunk-by-

chunk basis. It is well understood that ensemble learning is an efficient way

to improve predictive accuracy of single-model base learners by decomposing a30

large-scale, complex problem into a number of small-scale, simpler sub-problems

[12]. Moreover, learning from data chunks instead of individual data samples

allows base learners to interpret local patterns of data streams better and still

aligns to the concept of “one pass” learning without revisiting previous data

chunks and iterative computation.35

Therefore, in this paper, a novel ensemble learning approach named self-

organizing fuzzy ensemble inference system (SOFEnsemble) is presented by

putting the aforementioned idea into practice. The proposed SOFEnsemble

employs the simplified self-organizing fuzzy inference system (SOFIS+) as its

base learner. Unlike the original self-organizing fuzzy inference system (SOFIS)40

proposed in [13], the learning procedure of SOFIS+ is largely simplified, and

the learning system now processes streaming data on a chunk-by-chunk basis. It

identifies the more representative samples as prototypes from each data chunk

and fuses the newly identified prototypes from the current data chunk with

the previously identified ones from historical chunks based on the inter-class45

and intra-class distances in-between, resulting in more precise boundaries for

decision-making. Furthermore, in the proposed ensemble architecture, training

samples are randomly distributed to different base learners to improve the diver-

sity, leading to better overall predictive accuracy. Meanwhile, this also reduces

computational burden of each base learner, effectively improving the compu-50

tational efficiency of the overall ensemble system. Numerical experiments on a

variety of popular large-scale benchmark problems demonstrate the effectiveness

and validity of the proposed concept, showing the promise of this work.

To summarize, key features setting this work apart from previous ones

include: (1) a zero-order evolving fuzzy system self-learning from streaming data55

on a chunk-by-chunk basis; (2) a prototype-based approach to self-calibrate more

precise decision boundaries from streaming data for classification; (3) a parallel

ensemble architecture designed for large-scale data stream processing.

3

The remainder of this paper is organized as follows. A review of related works

is provided in Section 2. Technical details of SOFIS are briefly recalled in Section60

3 as the theoretical background. Section 4 presents the general architecture,

learning and validation processes of SOFIS+. The ensemble architecture of

SOFEnsemble is described in Section 5. Numerical examples are given in Section

6 as a proof of concept. This paper is concluded by Section 7.

2. Related Works65

The concept of EISs was firstly introduced around the beginning of this cen-

tury [9, 14, 15]. EISs are generally implemented in the forms of self-organizing,

self-developing rule-based models [1, 9, 16] or neuro-fuzzy models [13, 14, 15, 17].

By offering highly transparent system structure and attractive prediction per-

formance, EISs is currently a hotly studied area and are gaining increasing pop-70

ularity over time-critical applications. Till now, many successful EISs have been

developed, which include but are not limited to DENFIS [14], eTS [9], SAFIS

[18], eClass [19], FLEXFIS [20], SOFMLS [21], GPFNN [17], PANFIS[22],

GENEFIS[23], McIT2FIS[24], eT2Class [25], CNFS [26], ALMMo [16], LEOA

[27], RMCEFS [28], SEFS [29] and PALM [30]. One may refer to [7, 8] for a75

more comprehensive review of recent works on EISs.

As single-model EISs often fail to produce reliable results for large-scale,

complex problems, there have been some works in the literature that create

an ensemble of EISs for better predictive performance on streaming data. The

very first work combining ensemble learning with EISs was published in [31],80

where an ensemble system based on individual eClass0 [19] fuzzy classifiers

was constructed to pursue better classification accuracy on streaming data. In

[32], massively parallel deep fuzzy rule-based (DRB) ensemble classifiers were

proposed for image classification as an alternative to deep learning-based ap-

proaches, demonstrating very promising performance. An ensemble based on85

three different types of EISs was created for weather time series prediction in

[33]. However, as the individual base EISs involved in these works [31, 32] per-

4

form online learning from data streams on a sample-by-sample basis, their com-

putational efficiency is inevitably low on large-scale problems especially when

the dimensionality of data is very high. pENsemble proposed in [11] adopts a90

novel dynamic ensemble structure to tackle the concept drifts in data streams

by evolving in both ensemble level and base learner level. pENsemble automat-

ically initializes new base learners and prunes stale ones to follow the changing

data patterns. Nonetheless, the fully evolving ensemble structure of pENsem-

ble causes quick forgetting of previously mined knowledge from historical data,95

making the ensemble model less suitable for large-scale classification problems.

Till now, there are only a few fuzzy classifiers proposed for managing large-

scale data. The earliest one is the so-called Chi-FRBCS-BigData proposed in

[34, 35], which is a fuzzy rule-based classification system (FRBCS) that uses the

MapReduce programming model [36] to learn and fuse fuzzy rule bases from big100

data using Chi et al.’s approach [37]. Chi-FRBCS-BigData firstly divides the in-

put dataset into several chunks and distributes them to different computational

units to generate fuzzy rules individually. Then, all the fuzzy rule bases are

fused together for classifying unlabeled data. An improved version named Chi-

FRBCS-BigDataCS was further proposed in [38] to tackle imbalanced large-scale105

classification problems by involving cost-sensitive learning. Nonetheless, since

the weights of fuzzy rules learned from each data chunk is subject to the pro-

portion and distribution of the specific subset of input data, the performances

of both Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS are highly influenced

by the proportion and distribution of the classes in the individual data chunks.110

The more chunks the original input dataset is split to, the worse both algo-

rithms perform because the number of samples in each chunk becomes smaller.

To overcome this issue, a new version of Chi-FRBCS-BigData was proposed in

[39] by firstly learning a preliminary fuzzy rule base from different data chunks

and calculating rule weights using all the input data afterwards. Moreover, a115

distributed fuzzy decision tree (DFDT) learning method was also proposed in

[40] upon the MapReduce scheme.

5

3. Preliminaries

In this section, technical details of SOFIS introduced in [13] are briefly re-

called to make this paper self-contained.120

First of all, let {x} = {x1,x2, ...,xn, ...,xN} be a particular data set/stream

in a M dimensional data space, <M . The subscript n denotes the time instance

at which the nth sample, xn is observed. It is assumed that {x} is composed

of samples C different classes. Therefore, {x} can be divided into C subsets

according to the class labels, namely, {x}c = {xc1,xc2, ...,xcNc} ⊂ {x} (c =125

1, 2, ..., C), where N c is the cardinality of {x}c; and there is N =
∑C
c=1N

c.

It is also assumed that different data samples of the same classes may have

exactly the same values, namely, xci = xcj for i 6= j. Thus, the set of unique

data samples of the cth class is denoted as {u}c = {uc1,uc2, ...,ucQc} ⊆ {x}c with

the corresponding occurrence frequencies denoted as {f}c = {f c1 , f c2 , ..., f cQc},130

where Qc is the cardinality of {u}c; f ci is the occurrence frequency of uci ; and

there is N c =
∑Qc

i=1 f
c
i . Without loss of generality, Euclidean distance is used

by default.

3.1. Architecture

The architecture of SOFIS is illustrated in Fig. 1. It can be observed135

from Fig. 1 that the system is composed of C data processors for prototype

identification and a fuzzy rule base, which is composed of C massively parallel

fuzzy rules formed by prototypes (namely, the most representative samples) as

follows [13].

Rc : IF (x ∼ pc1) OR (x ∼ pc2) OR ... OR (x ∼ pcP c)

THEN (Class c)
(1)

where pci is the ith (i = 1, 2, ..., P c) prototype of Rc; P c is the total number140

of prototypes identified from data. These prototypes are connected by logical

“OR” connectives, and thus, Rc can be viewed as a parallel ensemble of multiple

6

simpler fuzzy rules in the following form [19].

Rc
i : IF (x ∼ pci) THEN (Class c) (2)

Data

Massively Parallel Fuzzy Rule2

Massively Parallel Fuzzy Rule1

Massively Parallel Fuzzy Rulec

Massively Parallel Fuzzy RuleC

…
…

Data Processor2

Data Processorc

Data ProcessorC

Data Processor1

…
…

SOFIS

Distributed Data Processors Fuzzy Rule Base

D
e
c
is

io
n

 M
a
k

e
r

Labels

Figure 1: Architecture of SOFIS.

During the learning stage, SOFIS is able to self-organize a set of massively

parallel fuzzy rules from static data samples based on their ensemble properties145

and mutual distances. After being primed offline, SOFIS can continue to self-

update its fuzzy rule base with newly arrived streaming data on sample-by-

sample basis and self-expand its knowledge base in a recursive manner. During

the validation stage, SOFIS predicts the class label of each unlabeled sample

based on the set of scores of confidence produced by its fuzzy rules.150

The offline learning, online updating and validation processes are summa-

rized in the next three subsections, respectively. The level of granularity used

by SOFIS is set as G (a positive integer).

3.2. Offline Learning Process

The offline learning process of SOFIS is described as follows [13].155

Stage 1. Identifying local maxima from data

Given a static dataset, SOFIS firstly divides the input data, {x} into C sub-

sets according to the class labels, denoted by {x}1, {x}2,...,{x}C . Then, each

subset is passed to the corresponding data processor for prototype identification.

7

After the cth (c = 1, 2, ..., C) data processor receives {x}c, it firstly calcu-160

lates the multimodal data density values at the observed unique samples using

equation (3) (i = 1, 2, ..., Qc) [13].

DMM (uci) =
f ci

1 +
||uc

i−µc
Nc ||2

Xc
Nc−||µc

Nc ||2
(3)

where µcNc and Xc
Nc are the respective arithmetic means of {x}c and {||x||2}c.

The data processor then ranks the unique samples using equation (4) ac-

cording to their multimodal density values and mutual distances. The ranked165

unique data sample set is re-denoted as {r}c = {rc1, rc2, ..., rcQc}.r
c
i = arg maxu∈{u}c(DMM (u)); i = 1

rci = arg minu∈{u}c;u6=rc1,rc2,...,rci−1
(||u− rci−1||2); else

(4)

Local maxima of multimodal density, denoted as {l}c, are then identified by

the data processor using Condition 1 [13].

Condition 1: If (DMM (rci) > DMM (rci−1))

And (DMM (rci) > DMM (rci+1))

Then ({l}c ← {l}c ∪ {rci })

(5)

Then, Voronoi tessellations are formed around these local maxima by using

them to attract nearby data samples of the same class creating micro-clusters170

(i = 1, 2, ..., N c):

Ccj∗ ← Ccj∗ ∪ {xci}; j∗ = arg min
j=1,2,...,Q̂c

(||xci − lcj ||2) (6)

where Ccj is the micro-cluster formed around lcj ; Q̂
c is the cardinality of {l}c.

After this, the cth data processor extracts the arithmetic means of the micro-

clusters as raw prototypes, denoted as {l̂}c, and enters the next processing stage.

Stage 2. Identifying prototypes from local maxima175

Once the cth (c = 1, 2, ..., C) data processor enters stage 2, it firstly estimates

the date-driven threshold γcG using equation (7) based on the mutual distances

8

between samples of {x}c and the level of granularity controlled externally by

users:

γcg =
1

N c
g

∑
x,y∈{x}c;x 6=y;
||x−y||2≤γc

g−1

||x− y||2 (7)

where g = 1, 2, ..., G; γc0 = 2(Xc
Nc − ||µcNc ||2), which is the average squared180

Euclidean distance between any two samples in {x}c; N c
g is the number of

sample pairs in {x}c between which the distance is smaller than γcg−1.

Note that γcG provides an empirical estimation of the radius of area of influ-

ence around each prototype at the specific level of granularity, condensing the

mutual distribution information mined from data. Importantly, γcG is derived185

directly from data without prior knowledge of the problem and is guaranteed to

be meaningful.

Then, the cth data processor identifies a set of neighboring raw prototypes,

{l̂}ci for each raw prototype, l̂ci using Condition 2 [13].

Condition 2: If (||l̂ci − l̂cj ||2 ≤ γcG)

Then ({l̂}ci ← {l̂}ci ∪ {l̂cj})
(8)

where i, j = 1, 2, ..., Q̂c and i 6= j.190

The more representative raw prototypes, denoted as {p̂}c, are identified from

{l̂}c using Condition 3 (i = 1, 2, ..., Q̂c) [13].

Condition 3: If (DMM (l̂ci) > max
l∈{l̂}ci

(DMM (l)))

Then ({p̂}c ← {p̂}c ∪ {l̂ci})
(9)

{p̂}c are used for forming Voronoi tessellations with {x}c (i = 1, 2, ..., N c):

Cc
j∗ ← Cc

j∗ ∪ {xci}; j∗ = arg min
j=1,2,...,P c

(||xci − p̂cj ||2) (10)

where Cc
j is the cluster formed around p̂cj ; P

c is the cardinality of {p̂}c.

Finally, the cth data processor extracts the arithmetic means of these clus-195

ters, denoted as {p}c and constructs Rc in the same form of equation (1).

After all the data processors have finished the prototype extraction process and

9

built the massively parallel fuzzy rules, the offline learning process is completed.

However, it is worth noting that each data processor is working independently

from others. In other words, there is no interaction between any two processors200

during prototype identification.

3.3. Online Updating Process

After being primed offline, SOFIS can continue to self-update its system

structure and meta-parameters from streaming data on a sample-by-sample ba-

sis. The algorithmic procedure is summarized as follows [13].205

Assuming that the newly observed sample belongs to the cth class, denoted

as xcNc+1, after the cth data processor receives this new sample, it firstly updates

the data-driven threshold using equation (11) [13]:

γcG ←
Xc
Nc+1 − ||µcNc+1||2

Xc
Nc − ||µcNc ||2

γcG (11)

where µcNc+1 and Xc
Nc+1 are calculated using equation (12)

µcNc+1 =
N cµcNc + xcNc+1

N c + 1
; Xc

Nc+1 =
N cXc

Nc + ||xcNc+1||2

N c + 1
(12)

Then, the cth data process determines whether xcNc+1 has the potential to210

become a new prototype using Condition 4 [13].

Condition 4: If (D(xcNc+1) > max
p∈{p}c

(D(p)))

Or (D(xcNc+1) < min
p∈{p}c

(D(p)))

Or (min
p∈{p}c

(||p− xcNc+1||2) > γcG)

Then (xcNc+1 becomes a new prototype)

(13)

where D(z) is the data density value at z calculated using equation (14); z =

xcNc+1,p
c
1,p

c
2, ...,p

c
Pc

.

D(z) =
1

1 +
||z−µc

Nc+1
||2

Xc
Nc+1

−||µc
Nc+1

||2

(14)

If Condition 4 is satisfied, xcNc+1 is recognized as a new prototype:

P c ← P c + 1; pcP c ← xcNc+1; Cc
P c ← {xcNc+1}; ScP c ← 1 (15)

10

Otherwise, xcNc+1 is used for updating the meta-parameters of the nearest pro-215

totype:

pcn∗ ←
Scn∗p

c
n∗ + xcNc+1

Scn∗ + 1
; Cc

n∗ ← Cc
n∗ ∪ {xcNc+1}; Scn∗ ← Scn∗ + 1 (16)

where n∗ = arg minp∈{p}c(||xcNc+1 − p||2).

After this, the cth data process updates Rc with the latest prototypes, {p}c

and enters the a new processing cycle for the next data sample (N c ← N c + 1).

3.4. Validation Process220

During validation, every massively parallel fuzzy rule, Rc (c = 1, 2, ..., C)

will produce a score of confidence on each unlabeled sample x calculated based

on the similarity between x and its prototypes, Pc (c = 1, 2, ..., C) [13]:

λc(x) = max
p∈{p}c

(e−||x−p||
2

) (17)

The class label of x is determined based on the C scores of confidence pro-

duced by the C fuzzy rules:225

label(x)← class i∗; i∗ ← arg max
c=1,2,...,C

(λc(x)) (18)

4. SOFIS+

As stated in Section 1, SOFIS+ is a simplified version of SOFIS [13] that

learns from streaming data on a chunk-by-chunk basis. For each arriving data

chunk, SOFIS+ firstly measures the ensemble properties of the observed samples

to gain a better understanding of data distribution. Then, it learns from the230

data chunk on a sample-by-sample basis to identify the most representative

samples as prototypes. These newly identified prototypes are further fused with

existing prototypes within the knowledge base to build more precise decision-

boundaries for classification. SOFIS+ will not revisit the processed samples

and will discard the data chunk once the current learning cycle is completed to235

guarantee its computation- and memory- efficiency. Thus, it aligns closely to

the “one pass” learning concept [11].

To summarize, SOFIS+ differs from SOFIS in the following key aspects:

11

1. it learns from data streams on a chunk-by-chunk basis, and its learning

process is much simplified;240

2. it considers both the inter-class and intra-class distances between the iden-

tified prototypes to construct more precise classification boundaries;

3. it uses prototypes to directly represent the underlying data patterns with-

out using clusters.

4.1. Architecture245

Chunk1

Chunkk

…

Streaming Data

…

ChunkK

…

Massively Parallel Fuzzy Rule2

Massively Parallel Fuzzy Rule1

Massively Parallel Fuzzy Rulec

Massively Parallel Fuzzy RuleC

…
…

Data Processor2

Data Processorc

Data ProcessorC

Data Processor1

F
u

s
io

n
 C

e
n

te
r

…
…

SOFIS+

Distributed Data Processors Fuzzy Rule Base

D
e
c
is

io
n

 M
a
k

e
r

Labels

Figure 2: Architecture of SOFIS+.

The diagram of the architecture of SOFIS+ is given in Fig. 2. It can

be observed from Fig. 2 that the system is composed of C data processors for

extracting prototypes from input data, a fusion center for fusing newly identified

prototypes to the existing knowledge base, and a fuzzy rule base, which consists

of C massively parallel fuzzy rules in the same form as equation (1).250

During the learning stage, given a new data chunk {x}k = {xk,1,xk,2, ...,xk,L}

(k = 1, 2, ...,K; L denotes the chunk size), SOFIS+ firstly divides it into C sub-

sets based on class labels, namely, {x}ck = {xck,1,xck,2, ...,xck,Lc} ⊂ {x}k, where

c = 1, 2, ..., C; Lc is the cardinality of {x}ck; and there is L =
∑C
c=1 L

c
k. Every

data processor within SOFIS+ then grasps its corresponding subset for proto-255

type identification. The newly identified prototypes are collected by the fusion

center. The fusion center will then compare these new prototypes between each

12

other as well as with prototypes identified from previously processed chunks to

select out the best candidates to help the system build more precise decision

boundaries for classification. After this, the fuzzy rule base is updated ac-260

cordingly with these selected prototypes. During the validation stage, SOFIS+

follows the same decision-making procedure of SOFIS but with a modified ex-

pression for calculating the scores of confidence.

In the following two subsections, the learning and validation processes of

SOFIS+ will be detailed.265

4.2. Learning Process

The main algorithmic procedure of the chunk-by-chunk online learning pro-

cess of SOFIS+ is as follows [13]. The level of granularity of SOFIS+ is set as

G as well.

Stage 1. Identifying prototypes270

When a new chunk, {x}k is available, SOFIS+ firstly divides it into C

subsets {x}1k, {x}2k, ..., {x}Ck according to class labels and passes them to the

corresponding data processors.

Once the cth (c = 1, 2, ..., C) data processor receives {x}ck, it firstly estimates

the date-driven threshold γck,G using equation (7) based on the mutual distances275

between samples within {x}ck and the level of granularity controlled externally

by users.

The first prototype (P ck ← 1) of the cth class identified at the current learning

cycle is initialized as the first sample of {x}ck, namely, pck,P c
k
← xck,1. The

corresponding support (number of associated data samples) of pck,P c
k

is set as280

Sck,P c
k
← 1. Then, the remaining prototypes are identified one-by-one using

Condition 5 (j = 2, 3, ..., Lck):

Condition 5: If (min
p∈{p}ck

(||xck,j − pck,n∗ ||2) > γck,G)

Then (xck,j is a new prototype)

(19)

13

If Condition 5 is satisfied, xck,j is recognized as a new prototype:

P ck ← P ck + 1; pck,P c
k
← xck,j ; Sck,P c

k
← 1 (20)

Otherwise, xck,j is used for updating the nearest prototype as follows [13]:

pck,n∗ ←
Sck,n∗p

c
k,n∗ + xck,j

Sck,n∗ + 1
; Sck,n∗ ← Sck,n∗ + 1 (21)

where n∗ = arg minp∈{p}ck(||xck,j − pck,n∗ ||2). The prototypes identified from285

{x}ck are denoted as {p}ck.

Once the C data processors have completed the prototype identification

processes, they will pass {p}ck (c = 1, 2, ..., C) to the fusion center. Then, the

learning algorithm enters the next stage.

Stage 2. Self-calibrating decision boundaries290

After fusion center receives the prototypes, {p}1k, {p}2k, ..., {p}Ck identified

from the current data chunk, {x}k from the C data processors, it will initialize

the knowledge base, denoted by Pc and the fuzzy rule, denoted by Rc (in

the form of equation (1)) of each class (c = 1, 2, ..., C) with the corresponding

prototypes, {p}ck if this is the first data chunk (k = 1).295

Otherwise, for each class (assuming the cth one; c = 1, 2, ..., C), the fusion

center firstly compares {p}ck with all existing prototypes of the same class iden-

tified from previous processing cycles, and selects out the candidate prototypes

from {p}ck to update the knowledge base Pc by Condition 6.

Condition 6: If (min
q∈Pc

(||q − pck,j ||2) > γ̄cG)

Then (Pc ← Pc ∪ {pck,j})
(22)

where γ̄cG = 1
k

∑k
i=1 γ

c
i,G, which is the average radius of area of influence of300

prototypes calculated based on all historical samples of the cth class. Condition

6 helps SOFIS+ to self-expand its knowledge base with only these new proto-

types that are distinctive from the existing ones. This effectively reduces the

system complexity because new prototypes that represent familiar data patterns

recognized from previous learning cycles are avoided being added to the system.305

14

Then, Condition 7 is used for identifying the new prototypes that are closer

to prototypes of other classes identified at the current learning cycle and adding

them to Pc:

Condition 7: If (min
q∈{p}lk

(||q − pck,j ||2) ≤ 2γ̄lG ∀ l 6= c)

Then (Pc ← Pc ∪ {pck,j})
(23)

Condition 7 enables SOFIS+ to effectively self-improve the fineness of the

learned decision boundaries from data for more precise classification. Then,310

the fuzzy rule, Rc is updated with the updated knowledge base Pc. In the end,

after all the knowledge bases and fuzzy rules of the C classes are updated, the

learning algorithm goes back to stage 1 for processing the next available data

chunk (k ← k + 1).

The main algorithmic procedure for SOFIS+ identification is summarized in315

Algorithm 1. It is worth to be noticed that during each learning cycle, stage

1 is performed by the individual data processors, and stage 2 is performed

by the fusion center. In addition, since the prototype identification processes

from data samples of the C classes are performed separately per class, these

data processors can be further implemented in parallel to speed up the learning320

process.

An illustrative example is given in Fig. 3, demonstrating how SOFIS+

learns finer decision boundaries from two successive chunks of streaming data,

where the dots in two different colors (“red” and “blue”) stand for prototypes

identified from samples of two different classes; the black dash lines represent325

the boundaries formed by Voronoi tessellations; the green lines are the decision

boundaries. One can observe from Fig. 3 that SOFIS+ is able to learn coarse

decision boundaries from the first data chunk, and then, SOFIS+ further adjusts

the decision boundaries based on the learning outcome from the second chunk.

4.3. Validation Process330

During the validation stage, for each unlabeled sample x, a score of confi-

dence is produced by every fuzzy rule, Rc in terms of the maximum similarity

15

(a) Learned decision boundaries from chunk1

 (b) Updated decision boundaries from chunk2

Figure 3: Illustration of learning more precise decision boundaries from streaming data.

16

Algorithm 1 SOFIS+ Identification.

while (a new chunk {x}ck is available) do

// Stage 1. Identifying prototypes //

for c = 1 to C do

derive γck,G from {x}ck by (7);

P ck ← 1;

pck,P c
k
← xck,1; Sck,P c

k
← 1;

for j = 2 to Lck do

if (Condition 5 is satisfied) then

add xck,j as a new prototype by (20);

else

update pck,n∗ with xck,j by (21);

end if

end for

end for

// Stage 2. Self-calibrating decision boundaries //

for c = 1 to C do

if (k = 1) then

Pc ← {p}ck;

initialize Rc with Pc;

else

expand Pc with {p}ck by Conditions 6 and 7;

update Rc with Pc;

end if

end for

end while

17

between x and its prototypes, Pc (c = 1, 2, ..., C):

λc(x) = max
p∈Pc

(e
− ||x−p||2

XN−||µN ||2) (24)

where µN and XN are the respective arithmetic means of {x} and {||x||2}, both

of them can be calculated recursively [13]. Note that XN − ||µN ||2 is the half335

of the average squared Euclidean distance between any two observed samples.

It serves as a normalization factor in equation (24), effectively increasing the

differences between scores of confidence produced by different fuzzy rules.

The class label of x is determined based on the C scores of confidence pro-

duced by the C fuzzy rules using equation (18) following the “winner takes all”340

principle.

5. Proposed SOFEnsemble

In this section, technical details of the proposed SOFEnsemble are presented.

Architecture of the proposed ensemble system is depicted in Fig. 4. As shown

by this figure, the proposed SOFEnsemble is composed of one data distributor,345

F data pools, F base classifiers implemented in parallel (F is predefined in

advance) and one decision fusion module. All base learners have the same

SOFIS+ architecture as given by Fig. 2.

5.1. Learning Policy

During the learning process, the data distributor receives the streaming data350

arrived either in samples or in chunks, and randomly distributes the observed

samples to F data pools. The F data pools have the uniform size of L, and they

collected streaming samples for the respective base learners as the input data

chunks. However, unlike other existing ensemble frameworks [11, 31, 32] where

each sample can only be passed to one of the base learners, the data distributor355

randomly assigns each sample to H data pools (H is an integer; 1 < H < F).

The proposed data distribution policy guarantees the diversity of the F base

learners, and helps each base learner to learn more precise decision boundaries

18

from data, resulting in better classification performance. Once a data pool is

full, all the samples in the pool are packed as a data chunk and passed to the360

corresponding base classifier. Then, the data pool becomes empty again and

continues to collect new samples to build the next data chunk.

After the base learner receives a new data chunk, it begins a new learning

cycle. The base learner firstly identifies new prototypes from the data chunk

and then uses them to update the knowledge base following the algorithmic365

procedure described in Section IV. After this, the base learner waits until the

next data chunk becomes available. After all the base learners are trained

with the assigned data chunks and there is no more training data available,

SOFEnsemble is ready for classifying unlabeled samples.

For better illustration, the learning procedure of SOFEnsemble is summa-370

rized in Algorithm 2.

Algorithm 2 SOFEnsemble Identification.

while (a new sample xn is available) do

randomly assign xn to H different data pools;

for f = 1 to F do

if (the f th data pool is full) then

pack all the samples in the pool into a data chunk;

assign the data chunk to the f th SOFIS+;

update the f th SOFIS+ using Algorithm 1;

empty the pool;

end if

end for

n← n+ 1;

end while

5.2. Validation Policy

During the validation process, for each unlabeled sample x, the data distrib-

utor will pass it to all F base classifiers . Each base classifier will produce C

19

scores of confidence corresponding to the C classes using equation (24), and the375

class label of x is determined as a joint decision of the F base classifiers. In the

proposed ensemble framework, the decision fusion module will firstly combine

the outputs of the F base classifiers into C overall scores of confidence (one

overall score per class):

Λc(x) =

F∏
i=1

λci (x) (25)

where c = 1, 2, ..., C; Λc(x) is the product of the F scores of confidence corre-380

sponding to the cth class produced by the base classifiers. The rationale behind

equation (25) is to enlarge the difference between the respective overall scores

of confidence of the C classes for more accurate decision-making.

The final decision is made by equation (26) following the “winner-takes-all”

principle:385

label(x)← class i∗; i∗ ← arg max
c=1,2,...,C

(Λc(x)) (26)

However, one may notice that this strategy could be changed to alternative

ones, which can be, for example, voting, averaging, without changing the general

concept and principles of SOFEnsemble.

Data Distributor

SOFIS+1 SOFIS+FSOFIS+2

…

Large-Scale Streaming Data

Decision Fusion Module

Labels

Data Pool1 Data PoolFData Pool2

…

…

…

SOFEnsemble

Figure 4: Architecture of SOFEnsemble

20

6. Experimental Investigation

In this section, numerical experiments based on a wide variety of bench-390

mark datasets are performed for validating the proposed concept and gen-

eral principles. The large-scale benchmark datasets involved in the experi-

mental studies include: 1) forest covertype (FC); 2) poker hand (POK); 3)

skin segmentation (SKIN); 4) SUSY; 5) ECO E; 6) ECO CO; 7) EM E and

8) EM M. The eight benchmark datasets are available at: https://archive.395

ics.uci.edu/ml/index.php. Following the common practice [39], the FC and

POK datasets are further converted to multiple “one-vs-all” binary classifi-

cation problems by selecting a particular class as the positive one and using

the rest as the negative class. To be more specific, for FC dataset, “class

1 vs all”, “class 2 vs all”, “class 3 vs all” and “class 7 vs all” are consid-400

ered, and the ratios between majority and minority classes of the four cases are

369, 173 : 211, 840, 297, 711 : 283, 301, 545, 258 : 35, 754 and 560, 502 : 20, 510,

respectively; for POK dataset, “class 0 vs all” and “class 1 vs all” are con-

sidered, and the ratios between majority and minority classes of the two cases

are 513, 701 : 511, 308 and 591, 912 : 433, 097, respectively. In addition, two405

high-dimensional image classification problems, namely, 9) MNIST (available at:

http://yann.lecun.com/exdb/mnist/) and 10) Fashion MNIST (FMNIST,

available at: https://github.com/zalandoresearch/fashion-mnist) are in-

volved for experiments to evaluate the ability of SOFEnsemble on handling

high-dimensional, complex problems. Key details of the ten datasets used for410

numerical examples are summarized in Table 1.

The numerical examples presented in this section are focused on the following

two aspects:

1. performance investigation with different externally controlled parameter

settings;415

2. performance comparison with the state-of-the-art classification approaches.

Unless specifically stated otherwise, the algorithms are developed using MAT-

LAB2018a, and numerical experiments are performed on a Windows10 desktop

21

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist

Table 1: DETAILS OF DATASETS FOR EXPERIMENT

Dataset #Samples #Attributes #Classes

FC 518,012 54 7

FC 1 (class 1 vs all) 518,012 54 2

FC 2 (class 2 vs all) 518,012 54 2

FC 3 (class 3 vs all) 518,012 54 2

FC 7 (class 7 vs all) 518,012 54 2

POK 1,025,010 10 10

POK 0 (class 0 vs all) 1,025,010 10 2

POK 1 (class 1 vs all) 1,025,010 10 2

SKIN 245,057 3 2

SUSY 5,000,000 18 2

ECO E 4,178,504 16 10

ECO CO 4,178,504 16 21

EM E 4,178,504 16 10

EM M 4,178,504 16 50

MNIST 70,000 28×28 10

FMNIST 70,000 28×28 10

22

with dual core Intel Xeon W CPU 4.0×2 GHz and 32 GB RAM. The reported

results are obtained after 10 Monte-Carlo experiments. The source codes of420

SOFIS+ and SOFEnsemble are available at: https://github.com/Gu-X.

6.1. Performance Investigation

As aforementioned, SOFEnesemble requires four externally controlled pa-

rameters to be determined by users, which include:

1. the level of granularity, G for SOFIS+;425

2. the chunk size, L;

3. the number of base learners, F , and;

4. the number of data pools that receive new sample per instance, H.

To investigate the behavior of SOFEnsemble with different parameter set-

tings, in this subsection, numerical experiments based on the following four430

binary classification problems, namely, FC 1, FC 2, FC 3 and FC 7, are con-

ducted. During the experiments, for each dataset, 80% of the samples are ran-

domly selected out for training and the remaining ones are used for validation.

It is worth noting that the majority and minority classes of FC 3 and FC 7 are

highly imbalanced, and classifiers may behave differently on highly imbalanced435

classification problems.

Firstly, the influence of different levels of granularity, G on the classification

performance of SOFEnsemble is investigated. In this experiment, the value

of G varies from 6 to 10. Other externally controlled parameters are set as:

L = 10, 000, F = 5 and H = 2. The performance of SOFEnsemble in terms of440

classification accuracy (Acc), geometric mean (GM) and the average training

time consumption for the base learners (texe, in seconds) are reported in Table

2. The expression of GM is given in equation (27) [12].

GM =

√
TP

TP + FN
· TN

TN + FP
(27)

where TP , TN , FP and FN represent true positive, true negative, false positive

and false negative, respectively.445

23

https://github.com/Gu-X

Table 2: CLASSIFICATION PERFORMANCE WITH DIFFERENT LEVELS OF GRAN-

ULARITY

G Measure FC 1 FC 2 FC 3 FC 7

Acc 0.8900 0.8810 0.9751 0.9858

6 GM 0.8840 0.8811 0.9698 0.9783

texe 40 41 42 43

Acc 0.9160 0.9113 0.9811 0.9907

7 GM 0.9119 0.9116 0.9733 0.9804

texe 55 63 53 53

Acc 0.9351 0.9317 0.9859 0.9927

8 GM 0.9318 0.9319 0.9730 0.9809

texe 87 98 100 107

Acc 0.9470 0.9431 0.9886 0.9934

9 GM 0.9437 0.9433 0.9724 0.9795

texe 154 172 165 170

Acc 0.9521 0.9471 0.9895 0.9941

10 GM 0.9483 0.9472 0.9715 0.9795

texe 217 234 225 232

It can be observed from Table 2 that the classification accuracy of SOFEnsem-

ble is improved given a higher level of granularity because more prototypes

are identified during the online learning process. However, this also increases

the system complexity, resulting in lower computational efficiency. Trading-off

between the classification accuracy and system complexity, the recommended450

values of G are 8 and 9.

In the next example, the influence of chunk size, L on the classification

performance of the proposed ensemble system is studied, where the value of

L varies from 2, 000 to 20, 000. Other externally controlled parameters are set

as: G = 9, F = 5 and H = 2. The numerical results are reported in Table 3.455

24

Table 3: CLASSIFICATION PERFORMANCE WITH DIFFERENT CHUNK SIZES

L Measure FC 1 FC 2 FC 3 FC 7

Acc 0.9524 0.9471 0.9903 0.9950

2,000 GM 0.9479 0.9472 0.9664 0.9751

texe 194 214 72 62

Acc 0.9500 0.9454 0.9896 0.9941

5,000 GM 0.9461 0.9455 0.9695 0.9773

texe 150 171 96 97

Acc 0.9470 0.9431 0.9886 0.9934

10,000 GM 0.9437 0.9433 0.9724 0.9795

texe 154 172 165 170

Acc 0.9448 0.9410 0.9876 0.9928

15,000 GM 0.9418 0.9412 0.9736 0.9801

texe 178 199 211 218

Acc 0.9431 0.9397 0.9868 0.9923

20,000 GM 0.9403 0.9399 0.9743 0.9809

texe 199 220 248 259

One can see from this table that the value of L has a small impact on both the

classification accuracy and computational efficiency. The proposed SOFEnsem-

ble can perform classification with a higher accuracy rate if a smaller chunk

size is used. This is because that a small chunk size improves the sensitivity

of the learning system to capture the shifts and/or drifts in the data patterns460

of the data stream. Meanwhile, this also increases the overall computational

complexity because the fusion center of the ensemble model has to update the

knowledge bases more frequently. Based on Table 3, the recommended value

range of L is between 5,000 and 15,000.

Then, the classification performance of SOFEnsemble with different num-465

bers of base classifiers, F is investigated. In this example, the value of F varies

25

from 3 to 8, and other parameters are fixed as: G = 9, L = 10, 000 and H = 2.

The results are tabulated in Table 4, where it can be observed that the overall

training time consumption reduces by increasing the number of base learners

because each base learner now receives less training samples from the data dis-470

tributor. Meanwhile, each base learner tends to make more mistakes during the

classification stage due to the insufficient amount of training samples, resulting

in lower overall classification accuracy rate by SOFEnsemble. In addition, the

proposed ensemble model requires more computational resources with the in-

crease of ensemble scale. Considering the computational efficiency, overall clas-475

sification accuracy and computational resource consumption of the proposed

SOFEnsemble model, F = 5 is used for the remaining numerical examples of

this section.

In the last example of this subsection, the influence of the number of data

pools receiving new sample per instance, H on the classification performance of480

SOFEnsemble is studied. In this study, the value of H varies from 1 to 5. Other

externally controlled parameters are set as G = 9, L = 10, 000 and F = 5.

Note that when H = 1, the data distributor of SOFEnsemble assigns every

training sample to only one base learner, which is the same as the majority of

the existing ensemble frameworks [31, 32, 11]. If H = 5, all the base classifiers485

will receive the same training samples and lose the diversity. In such case, the

decisions made by SOFEnsemble during the classification process will be exactly

the same as any one of its base learners. Thus, the performance of SOFEnsemble

is equivalent to its single-model base classifier, SOFIS+. The results obtained

in the experiments are presented in Table 5. As one can see from this table, the490

commonly-used data distribution policy (namely, H = 1) performs the worst

in terms of classification accuracy (even worse than using a single SOFIS+),

though it significantly improves the computational efficiency of the ensemble

model. SOFEnsemble achieves the highest classification precision if H = 4,

and its computational efficiency is still higher than the single-model SOFIS+495

(namely, H = 5) . Therefore, one may conclude from Table 5 that the proposed

data distribution policy not only helps SOFEnsemble to perform more accurate

26

Table 4: CLASSIFICATION PERFORMANCE WITH DIFFERENT NUMBERS OF BASE

CLASSIFIERS

F Measure FC 1 FC 2 FC 3 FC 7

Acc 0.9490 0.9462 0.9895 0.9942

3 GM 0.9467 0.9463 0.972 0.9817

texe 345 394 294 296

Acc 0.9480 0.9448 0.9889 0.9937

4 GM 0.9452 0.9449 0.9718 0.9804

texe 218 251 212 218

Acc 0.9470 0.9431 0.9886 0.9934

5 GM 0.9437 0.9433 0.9724 0.9795

texe 154 172 165 170

Acc 0.9453 0.9408 0.9879 0.9932

6 GM 0.9416 0.9410 0.9707 0.9783

texe 118 133 135 140

Acc 0.9445 0.9397 0.9876 0.9929

7 GM 0.9404 0.9399 0.9701 0.9756

texe 95 106 114 119

Acc 0.9432 0.9381 0.9870 0.9927

8 GM 0.9385 0.9383 0.9689 0.9750

texe 78 87 98 104

27

Table 5: CLASSIFICATION PERFORMANCE WITH DIFFERENT NUMBERS OF DATA

POOLS RECEIVING NEW SAMPLE PER INSTANCE

H Measure FC 1 FC 2 FC 3 FC 7

Acc 0.9377 0.9320 0.9860 0.9919

1 GM 0.9326 0.9322 0.9666 0.9708

texe 60 64 80 80

Acc 0.9470 0.9431 0.9886 0.9934

2 GM 0.9437 0.9433 0.9724 0.9795

texe 154 172 165 170

Acc 0.9503 0.9468 0.9895 0.9942

3 GM 0.9478 0.9469 0.9742 0.9821

texe 296 347 264 275

Acc 0.9506 0.9476 0.9898 0.9946

4 GM 0.9485 0.9477 0.9739 0.9829

texe 464 550 362 365

Acc 0.9455 0.9430 0.9892 0.9937

5 GM 0.9435 0.9430 0.9690 0.9785

texe 660 803 463 461

classification, but also effectively reduces the training time consumption. Based

on this numerical example, the best values of H are 2 and 3.

6.2. Performance Comparison500

In this subsection, the performance of the proposed ensemble model is com-

pared with alternative approaches including popular single-model classification

methods and the state-of-the-art ensemble models designed for big data classifi-

cation. The following externally controlled parameter setting of SOFEnsemble,

namely, G = 9, L = 10, 000, F = 5 and H = 2 are used in numerical examples505

for consistency. It has to be stressed that the main focus of this paper is for

28

demonstrating the proposed concept, and only a general setting is used for ex-

perimental investigation. However, the best parameter setting may differ from

case to case depending on the nature of the problems and the availability of

computational resources.510

Firstly, the performance of SOFEnsemble is compared with nine popular

zero-order and first-order EISs on the four binary classification problems used in

the previous numerical examples, namely, FC 1, FC 2, FC 3 and FC 7 datasets

under the same experimental setting. The nine EISs used for benchmark com-

parison are as follows: 1) SOFIS [13]; 2) eTS [9]; 3) SAFIS [18]; 4) eClass0515

[19]; 5) eClass1 [19]; 6) ESAFIS [46]; 7) ALMMo0 [47]; 8) ALMMo [16] and

9) PALM [30]. During numerical experiments, SOFIS uses Euclidean distance,

and the level of granularity, G is set to be 9; eTS, SAFIS, eClass0, eClass1,

ESAFIS, ALMMo0, ALMMo and PALM follow the recommended parameter

settings given by [9, 18, 19, 46, 47, 16, 30]. Note that SOFIS, eClass0 and520

ALMMo0 are zero-order EISs that are mostly used for classifications. eTS,

SAFIS, eClass1, ESAFIS, ALMMo and PALM are first-order EISs. Among

them, eClass1 is designed for classification only, while eTS, SAFIS, ESAFIS,

ALMMo and PALM are primarily designed for regression, but can be used for

binary classification as well. ESAFIS and ALMMo are also suitable for multi-525

class classification. Classification performance of SOFEnsemble and nine EIS

counterparts are reported in Table 6. The performance of SOFIS+ is also given

by the same table as the baseline. One can see from Table 6 that SOFEnsem-

ble outperforms its counterparts in terms of the three performance measures,

namely, classification accuracy, geometric mean and training time consumption530

in the vast majority of cases. This demonstrates the superiority of the proposed

ensemble framework over alternative single-model EIS approaches. From Ta-

ble 6, one may also notice that, typically, zero-order EISs perform better than

first-order ones on classification tasks.

Secondly, the performance of SOFEnsemble is compared with a wide variety535

of classification methods on FC, MNIST and FMNIST datasets, which include:

1) SOFIS [13]; 2) ESAFIS [46]; 3) eClass0 [19]; 4) eClass1 [19]; 5) ALMMo0

29

T
a
b

le
6
:

C
L

A
S

S
IF

IC
A

T
IO

N
P

E
R

F
O

R
M

A
N

C
E

C
O

M
P

A
R

IS
O

N
W

IT
H

P
O

P
U

L
A

R
E

IS
A

P
P

R
O

A
C

H
E

S

D
at

as
et

F
C

1
F

C
2

F
C

3
F

C
7

A
lg

or
it

h
m

A
cc

G
M

t e
x
e

A
cc

G
M

t e
x
e

A
cc

G
M

t e
x
e

A
cc

G
M

t e
x
e

S
O

F
E

n
se

m
b

le
0
.9
4
7
0

0
.9
4
3
7

1
5
4

0
.9
4
3
1

0
.9
4
3
3

1
7
2

0
.9

8
8
6

0
.9
7
2
4

1
6
5

0
.9

9
3
4

0
.9

7
9
5

1
7
0

S
O

F
IS

+
0.

94
55

0.
94

35
66

0
0
.9

4
3
0

0
.9

4
3
0

8
0
3

0
.9
8
9
2

0
.9

69
0

4
6
3

0
.9

9
3
7

0
.9

7
8
5

4
6
1

S
O

F
IS

0.
90

86
0.

90
75

21
66

0
.9

0
6
0

0
.9

0
6
2

4
0
0
2

0
.9

7
8
7

0
.9

72
1

3
0
2
7

0
.9

8
9
1

0
.9
8
3
8

2
9
3
0

eT
S

0.
63

54
0.

00
00

45
16

0
.5

1
2
4

0
.0

0
0
0

4
7
2
9

0
.9

3
8
5

0
.0

00
0

3
8
9
1

0
.9

6
4
7

0
.0

0
0
0

3
4
1
0

S
A

F
IS

0.
62

72
0.

32
06

13
75

0
.5

4
4
6

0
.2

8
0
4

1
1
9
1

0
.9

3
8
6

0
.0

28
8

2
6
3

0
.9

6
4
9

0
.0

5
2
7

1
9
9

eC
la

ss
0

0.
61

56
0.

60
62

15
38

0
.5

9
3
9

0
.5

9
3
9

1
4
4
6

0
.9

1
8
5

0
.8

21
2

2
3
8
0

0
.8

0
6
4

0
.7

7
1
5

2
3
8
1

eC
la

ss
1

0.
63

54
0.

00
00

63
2

0
.5

1
2
4

0
.0

0
0
0

6
2
8

0
.9

3
8
5

0
.0

00
0

5
9
0

0
.9

6
4
7

0
.0

0
0
0

6
1
7

E
S

A
F

IS
0.

81
49

0.
78

91
42

25
3

0
.8

0
0
2

0
.8

0
0
4

3
7
1
1
5

0
.9

6
9
6

0
.8

67
7

1
4
4
1
5

0
.9

8
1
9

0
.7

9
8
1

2
2
8
2
0

A
L

M
M

o0
0.

93
48

0.
92

90
42

78
0
.9

2
6
5

0
.9

2
6
5

4
2
7
4

0
.9

8
7
0

0
.9

40
1

8
0
6
0

0
.9
9
4
4

0
.9

5
4
8

8
3
4
6

A
L

M
M

o
0.

76
62

0.
73

25
32

9
0
.7

5
4
4

0
.7

5
4
4

3
2
2

0
.9

5
9
4

0
.8

68
1

3
2
7

0
.9

7
0
0

0
.4

2
4
5

3
8
4

P
A

L
M

0.
76

72
0.

73
51

28
4

0
.7

5
5
2

0
.7

5
5
5

2
8
5

0
.9

5
9
6

0
.8

65
2

2
8
8

0
.9

6
7
9

0
.3

5
0
2

2
9
6

30

[47]; 6) ALMMo [16]; 7) k-nearest neighbors classifier (KNN) [42]; 8) SVM

[4]; 9) decision tree (DT) [43]; 10) RF [5]; 11) sequential classifier (SC) [44];

12) multi-layer perceptron (MLP); 13) extreme learning machine (ELM) [45];540

and 14) hierarchical prototype-based classifier (HP) [48]. During numerical

experiments, k is set to be 10 for KNN; SVM uses Gaussian kernel; the ensemble

model of RF is composed of 200 classification trees; MLP has three hidden

layers, each layer has 20 neurons; the maximum number of neurons for ELM

is set to be 500; and the layer number of HP is set as 6. For FC dataset,545

half of the data samples are randomly selected out to form the training set,

and the remaining samples are used for validation. For MNIST and FMNIST,

the Gist feature descriptor [41] is employed to extract a 512 × 1 dimensional

feature vector from each image for training and testing. The original split for

training and testing sets is kept, but the order of training samples is randomly550

scrambled. Classification performances of the 15 approaches in the form of Acc

and texe on the three datasets are presented in Table 7, where the training time

of KNN is not reported because the algorithm requires no training. It can be

observed from Table 7 that SOFEnsemble is able to achieve good performance

on the three problems with high computational efficiency, outperforming the555

majority of the comparative algorithms in terms of both classification accuracy

and training time consumption.

For better illustration, pairwise Wilcoxon tests between SOFEnsemble and

the selected comparative approaches with better classification performance in-

cluding, SOFIS, KNN, RF, SC, ELM, ALMMo0 and HP are conducted to560

demonstrate statistical significance of the classification performance of SOFEnsem-

ble over the alternative prediction models. The returned p-values from the hy-

pothesis test during a particular experiment are tabulated in Table 8, where

one can see from the p-values that the null hypothesis is rejected in the ma-

jority of cases, suggesting that SOFEnsemble outperforms the best performing565

comparative approaches, statistically.

Next, the performance of SOFEnsemble is compared with two state-of-the-

art image classification methods, namely, 1) deep conventional neural network

31

Table 7: CLASSIFICATION PERFORMANCE COMPARISON WITH POPULAR CLAS-

SIFICATION APPROACHES

Dataset FC MNIST FMNIST

Algorithm Acc texe Acc texe Acc texe

SOFEnsemble 0.9173 192 0.9869 53 0.9017 54

SOFIS 0.8778 1757 0.9866 956 0.8868 1085

ESAFIS 0.7359 5480 0.9830 34612 0.8962 29388

eClass0 0.3456 74 0.8386 100 0.7351 95

eClass1 0.3647 374 0.9764 10769 0.8878 10786

ALMMo0 0.8932 1717 0.9864 462 0.8882 470

ALMMo 0.7012 160 0.9748 5627 0.8735 4881

KNN 0.9107 - 0.9852 - 0.8966 -

SVM 0.7247 4641 0.9857 153 0.8936 178

DT 0.9180 38 0.9010 196 0.8088 153

RF 0.9591 715 0.9631 4191 0.8872 4501

SC 0.8472 17137 0.9762 1111 0.8817 1139

MLP 0.7667 214 0.6011 80 0.8289 102

ELM 0.6481 14 0.9424 3 0.8465 3

HP 0.9069 545 0.9864 76 0.8845 99

32

Table 8: p-VALUES IN PAIRWISE WILCOXON TESTS

Algorithm FC MNIST FMNIST

SOFEnsemble vs

SOFIS 0.0000 0.2898 0.0043

ALMMo0 0.0000 0.2840 0.0877

KNN 0.0000 0.0171 0.0000

RF 0.0000 0.0003 0.1055

SC 0.0000 0.1955 0.9464

ELM 0.0000 0.0000 0.0000

HP 0.0000 0.7711 0.0290

3×3×28 Convolutions

2×2 Max-Pooling

3×3×28 Convolutions

2×2 Max-Pooling

128 Fully-Connected

128 Fully-Connected

Soft-Max

Images (28×28)

Labels

DCNN

Figure 5: Architecture of DCNN for image classification.

33

Table 9: CLASSIFICATION PERFORMANCE COMPARISON WITH DCNN AND DRB

ON IMAGE CLASSIFICATION PROBLEMS

Algorithm MNIST FMNIST

SOFEnsemble 0.9918 0.9095

DRB 0.9914 0.9004

DCNN 0.9913 0.9078

(DCNN) [49] and 2) DRB system [32] on MNIST and FMNIST datasets. In this

example, a seven-layer DCNN with the architecture given by Fig. 5 is trained570

to classify images of the two images sets [49]. The DCNN is implemented using

the Keras module from Tensorflow and the network training is conducted on

a Windows10 laptop with a NVIDIA GeForce RTX 2070 GPU. Following the

experimental setting of [49], the DCNN uses the categorical cross-entropy loss

function and the adaptive moment estimation algorithm [50] as the optimizer.575

For network training, 90% of images from the training set are randomly se-

lected out for training and the remaining images in the training set are used for

validation. The DCNN is used for classifying testing images after 40 training

epochs and the average accuracy rates are reported in Table 9. The trained

DCNN is then employed by DRB as its feature descriptor. 128× 1 dimensional580

activations from the last fully-connected layer are used as the feature vectors of

the images. For fair comparison, SOFEnsemble uses the same feature vectors

extracted by the feature descriptor of DRB for training and testing. The classi-

fication accuracy rates of SOFEnsemble and DRB on testing images of MNIST

and FMNIST are also reported in the same table. From Table 9 one can see585

that SOFEnsemble surpasses both DCNN and DRB in terms of classification

accuracy on both image sets.

In the following numerical examples, the classification performance of SOFEnsem-

ble is further compared with the state-of-the-art fuzzy approaches designed for

handling big data problems, which include:590

34

1. Chi-FRBCS-BigDataCS [38];

2. Chi-FRBCS-BigDataGlobal [39];

3. Chi-FRBCS-BigData [35];

4. Fuzzy binary decision tree (FBDT) [40], and;

5. Fuzzy multi-way decision tree (FMDT) [40].595

Parameter settings of these approaches and computational devices used for nu-

merical examples are given in Table 10.

The performance of SOFEnsemble is firstly compared with Chi-FRBCS-

BigDataCS [38] and Chi-FRBCS-BigDataGlobal [39] on the following large-

scale binary classification problems: FC 1, FC 2, FC 3, FC 7, POK 0, POK 1,600

SKIN and SUSY. During the experiments, for each dataset, 80% of the samples

are randomly selected out for training and the remaining ones are used for

validation. Classification performances demonstrated by the three approaches

are reported in Table 11 in terms of geometric mean (GM) and texe. The best

results are in bold.605

For better evaluating the ability of handling large-scale datasets, SOFEnsem-

ble is then compared with Chi-FRBCS-BigData [35], FBDT [40] and FMDT [40]

on the following large-scale problems: ECO E, ECO CO, EM M, EM M, POK

and SUSY. The same experimental protocol as used in Table 11 is adopted.

Statistical performances of the four approaches obtained on the six benchmark610

datasets in terms of Acc and texe (mean ± standard deviation) are tabulated

in Table 12, where the best results are in bold.

It can be observed from Tables 11 and 12 that SOFEnsmble is able to achieve

very high classification accuracy rates on these large-scale problems surpassing

or, at least, on par with the state-of-the-art fuzzy classifiers for big data. In615

addition, the training time consumption of the proposed ensemble model is also

very low despite that numerical experiments are performed on a Windows10

desktop. This indicates that the computational efficiency of SOFEnsemble can

be further improved if a cluster is used, like the works in [39, 40].

35

T
a
b

le
1
0
:

P
A

R
A

M
E

T
E

R
S
E

T
T

IN
G

S
A

N
D

C
O

M
P

U
T

A
T

IO
N

A
L

D
E

V
IC

E
S

F
O

R
N

U
M

E
R

IC
A

L
E

X
P

E
R

IM
E

N
T

S

A
lg

or
it

h
m

P
ar

a
m

et
er

S
et

ti
n
g

C
o
m

p
u

ta
ti

o
n

a
l

R
es

o
u

rc
es

S
O

F
E

n
se

m
b

le
G

=
9
,
L

=
1
0,

0
0
0
,

F
=

5
,

a
n

d
H

=
2

A
W

in
d

ow
s1

0
d

es
k
to

p
(I

n
te

l
X

eo
n

W
C

P
U

w
it

h
d

u
a
l

co
re

a
t

4
.0

G
H

z,
3
2
G

B
R

A
M

)

C
h

i-
F

R
B

C
S

-B
ig

D
at

aC
S

[3
8]

In
fe

re
n

ce
=

W
in

n
in

g
R

u
le

,

ru
le

W
ei

g
h
t=

P
C

F
,

N
u

m
F

u
zz

y
L

a
b

el
s=

3
[3

9
]

A
C

en
tO

S
cl

u
st

er
w

it
h

o
n

e
m

a
st

er
n

o
d

e
(I

n
te

l
X

eo
n

E
5

C
P

U
w

it
h

q
u

a
d

co
re

a
t

2
.4

G
H

z,
8

G
B

R
A

M
),

fo
u

r
sl

av
e

n
o
d

es
w

it
h

tw
o

In
te

l

X
eo

n
E

5
C

P
U

s
a
t

2
.4

G
H

z
w

it
h

si
x

co
re

s
in

ea
ch

,
3
2

G
B

R
A

M
,

a
n

d

a
n

o
th

er
th

re
e

sl
av

e
n

o
d

es
w

it
h

tw
o

In
te

l
X

eo
n

E
5

C
P

U
s

a
t

2
.1

G
H

z

w
it

h
si

x
co

re
s

in
ea

ch
,

3
2

G
B

R
A

M
[3

9
].

C
h

i-
F

R
B

C
S

-B
ig

D
at

aG
lo

b
al

[3
9]

In
fe

re
n

ce
=

W
in

n
in

g
R

u
le

,

ru
le

W
ei

g
h
t=

P
C

F
,

N
u

m
F

u
zz

y
L

a
b

el
s=

3
,

N
u

m
R

u
le

S
u

b
se

ts
=

4
,

M
in

O
cc

F
re

q
S

u
b

se
ts

=
1
0
,

M
ax

R
u

le
p

er
R

ed
u

ce
r=

4
0
0
0
0
0

[3
9
]

C
h

i-
F

R
B

C
S

-B
ig

D
at

a
[3

5]

In
fe

re
n

ce
=

W
in

n
in

g
R

u
le

,

ru
le

W
ei

g
h
t=

P
C

F
,

N
u

m
F

u
zz

y
L

a
b

el
s=

3
[4

0
]

A
L

in
u

x
cl

u
st

er
w

it
h

o
n

e
m

a
st

er
n

o
d

e
(q

u
a
d

co
re

In
te

l
i5

C
P

U

2
.6

7
G

H
z,

8
G

B
R

A
M

)
a
n

d
th

re
e

sl
av

e
n

o
d

es
(e

a
ch

is
eq

u
ip

p
ed

w
it

h
q
u

a
d

co
re

In
te

l
i7

C
P

U
3
.4

0
G

H
z,

a
n
d

1
6
G

B
R

A
M

)[
4
0
]

F
B

D
T

[4
0]

γ
=

0.
1%

,φ
=

1,
λ

=
1

[4
0
]

F
M

D
T

[4
0]

γ
=

0.
1
%
,φ

=
0.

0
2
N

,

λ
=

1
0−

4
[4

0
]

36

T
a
b

le
1
1
:

P
E

R
F

O
R

M
A

N
C

E
C

O
M

P
A

R
IS

O
N

B
E

T
W

E
E

N
S

O
F

E
N

S
E

M
B

L
E

,
C

H
I-

F
R

B
C

S
-B

IG
D

A
T

A
G

L
O

B
A

L
A

N
D

C
H

I-
F

R
B

C
S

-B
IG

D
A

T
A

C
S

O
N

L
A

R
G

E
-S

C
A

L
E

B
IN

A
R

Y
C

L
A

S
S

IF
IC

A
T

IO
N

P
R

O
B

L
E

M
S

[3
9
]

A
lg

or
it

h
m

M
ea

su
re

F
C

1
F

C
2

F
C

3
F

C
7

P
O

K
0

P
O

K
1

S
K

IN
S

U
S

Y

S
O

F
E

n
se

m
b

le
G
M

0
.9
5
9
5

0
.9
4
3
3

0
.9
7
2
4

0
.9
7
9
5

0
.7
0
1
8

0
.6
1
7
2

0
.9
9
9
6

0
.7
1
1
9

T
e
x
e

2
2

1
7
2

1
6
5

1
7
0

26
4

2
7
1

1
3

9
9
4

C
h

i-
F

R
B

C
S

-B
ig

D
at

aG
lo

b
al

[3
9]

G
M

0
.7

5
3
1

0
.7

2
9
1

0
.9

5
6
5

0
.9

2
8
1

0
.6

3
3
6

0
.5

8
4
8

0
.9

5
9
7

0
.5

5
2
4

T
e
x
e

7
6

7
5

7
4

7
5

10
7

1
1
0

5
3

1
0
3

C
h

i-
F

R
B

C
S

-B
ig

D
at

aC
S

[3
8]

G
M

0
.7

5
2
8

0
.7

2
9
6

0
.9

5
5
1

0
.9

0
8
9

0
.6

1
8
3

0
.5

6
1
6

0
.9

5
9
5

0
.5

4
7
7

T
e
x
e

6
8

7
0

6
9

7
0

5
8

5
9

2
2

1
3
5
9

37

T
a
b

le
1
2
:

P
E

R
F

O
R

M
A

N
C

E
C

O
M

P
A

R
IS

O
N

B
E

T
W

E
E

N
S

O
F

E
N

S
E

M
B

L
E

,
F

M
D

T
,

F
B

D
T

A
N

D
C

H
I-

F
R

B
C

S
-B

IG
D

A
T

A
O

N
L

A
R

G
E

-S
C

A
L

E

C
L

A
S

S
IF

IC
A

T
IO

N
P

R
O

B
L

E
M

S
[4

0
]

A
lg

or
it

h
m

M
ea

su
re

E
C

O
E

E
C

O
C

O
E

M
E

S
O

F
E

n
se

m
b

le
A
cc

0
.9
8
8
8
±
0
.0
0
0
2

0
.9
7
6
5
±
0
.0
0
0
3

0
.9
7
4
7
±
0
.0
0
0
3

T
e
x
e

1
2
5
7

7
8
3

8
2
3

C
h

i-
F

R
B

C
S

-B
ig

D
at

a
[3

5]
A
cc

0
.5

4
4
9±

0
.0

7
8
1

0
.7

3
6
0±

0
.0

6
4
1

0
.6

7
2
8±

0
.0

8
9
5

T
e
x
e

1
2
6
3

1
4
9
1

1
2
7
6

F
B

D
T

[4
0]

A
cc

0
.7

8
2
4±

0
.0

0
0
4

0
.9

7
8
0±

0
.0

0
0
2

0
.9

6
9
3±

0
.0

0
0
3

T
e
x
e

7
2
0

1
0
7
0

6
0
3

F
M

D
T

[4
0]

A
cc

0
.9

7
5
9±

0
.0

0
0
4

0
.9

7
5
3±

0
.0

0
0
2

0
.9

6
9
1±

0
.0

0
0
2

T
e
x
e

3
9
2

7
7
9

3
7
2

A
lg

or
it

h
m

M
ea

su
re

E
M

M
P

O
K

S
U

S
Y

S
O

F
E

n
se

m
b

le
A
cc

0
.9
7
3
5
±
0
.0
0
0
2

0
.6

2
5
8±

0
.0

0
0
6

0
.7

5
2
5±

0
.0

0
0
4

T
e
x
e

2
2
5
9

3
1
4

9
9
4

C
h

i-
F

R
B

C
S

-B
ig

D
at

a
[3

5]
A
cc

0
.9

2
7
1±

0
.0

7
6
0

0
.0

5
1
8±

0
.0

0
0
5

0
.5

5
7
5±

0
.0

0
1
6

T
e
x
e

6
2
1
7
5

1
8
9
1
8

1
4
4
4

F
B

D
T

[4
0]

A
cc

0
.9

6
7
5±

0
.0

0
0
2

0
.6

2
4
8±

0
.0

0
5
0

0
.7
9
7
2
±
0
.0
0
0
4

T
e
x
e

3
9
1
6

1
1

2
5
5

F
M

D
T

[4
0]

A
cc

0
.9

6
0
0±

0
.0

0
0
3

0
.7
7
1
8
±
0
.0
0
0
7

0
.7

9
6
4±

0
.0

0
0
2

T
e
x
e

4
0
0
5

3
2
5
5

38

6.3. Remarks620

Numerical examples given in this section justify the efficacy of the proposed

approach as a powerful tool for handling large-scale data streams. There are a

few remarks worth noting.

Firstly, one has to admit that a universally best classification algorithm does

not exist. The performance of a particular classification algorithm depends on625

many factors such as, its inherent learning mechanism, the nature of data, the

available computational resources. In addition, with the widely deployment

of artificial intelligence technologies, the explainability and interpretablity of

machine learning algorithms is becoming increasingly important, especially for

safety-critical application scenarios. Generally speaking, DT, ELM, KNN, MLP,630

RF and SVM are the state-of-the-art approaches for static data classification.

These approaches have demonstrated very attractive results on many challeng-

ing problems, but most of them are applicable to offline application scenarios

only and their explainability is very limited. DCNN is the dominant approach

for image classification, but is also a well-known “black box” type model. In ad-635

dition, GPUs are needed to facilitate DCNN training. In contrast, EISs are the

most popular approaches for handling streaming data, offering higher model-

transparency and interpretablity than the vast majority of the state-of-the-art

approaches. First-order EISs are designed primarily for regression and only few

of them can be used for multi-class classification directly without modification.640

First-order EISs are very efficient on low dimensional problems, but their com-

putational efficiency decreases significantly on high dimensional problems due

to the recursive updating of covariance matrices. Zero-order EISs are designed

for classification, and they usually perform better than first-order EISs on clas-

sification tasks. Nevertheless, zero-order EISs often struggle when dealing with645

non-linear problems and they also suffer from system obesity when handling

large-scale, complex problems.

As an ensemble model designed for large-scale streaming data classification,

SOFEnsemble is able to achieve greater classification precision with much higher

computational efficiency. Thanks to the prototype-based nature of its base650

39

learners, namely, SOFIS+, the model structure of SOFEnsemble is highly trans-

parent and its decision-making process is fully explainable. Very importantly,

SOFEnsmble is less likely to experience system obesity as other single-model

EISs thanks to its parallel ensemble architecture. Although SOFEnsemble is

capable of constructing more precise classification boundaries based on iden-655

tified prototypes by considering both the inter-class and intra-class distances

between them, its classification precision may significantly decrease if the data

structure is over complex and samples of different classes are not linearly sep-

arable, same as other zero-order EISs. In addition, to fully appreciate the

strength of SOFEnsemble, specialized computational equipments are needed.660

The implementation cost of SOFEnsemble is much higher than single-model

EISs. Therefore, a trade-off between implementation cost and performance has

to be considered in real-world applications.

7. Conclusion

In this paper, a novel fuzzy ensemble classifier named SOFEnsemble is in-665

troduced for large-scale problems. The proposed ensemble system is built upon

a number of SOFIS+ that learn from streaming data on a chunk-by-chunk ba-

sis and continuously self-update the decision boundaries by identifying the more

representative samples. Numerical examples based on large-scale, complex prob-

lems show that SOFEnsemble is able to outperform, or at least, on par with the670

state-of-the-art classification approaches in terms of both classification accuracy

and computational efficiency, justifying the validity of the proposed ensemble

framework. There are several considerations for future work. Firstly, the op-

timality of the prototypes identified from data needs to be investigated. Due

to the “one pass” learning procedure of SOFIS+, one may consider further op-675

timizing the learned prototypes by SOFIS+. It is expected that SOFIS+ can

build more precise decision boundaries and achieve better classification perfor-

mance through prototype optimization. Secondly, the computational efficiency

of SOFEnsemble needs to be further improved. In the current version, SOFIS+

40

learns from each data chunk sample-by-sample, the computational efficiency680

may decrease significantly if the chunk size is too large. It may be worth modi-

fying the learning procedure of SOFIS+ so that the system can learn from data

in a more efficient manner. On the other hand, one may notice that SOFEnsem-

ble is developed on Matlab platform and implemented on a single desktop at this

moment. A boost in computational efficiency can be expected if SOFEnsemble685

is implemented on a cluster using Python or C++. Thirdly, one may also con-

sider to involve some feature selection techniques to reduce the computational

complexity and increase the diversity between different base learners.

References

[1] X. Gu, Q. Shen, and P. Angelov, “Particle swarm optimized690

autonomous learning fuzzy system,” IEEE Trans. Cybern., DOI:

10.1109/TCYB.2020.2967462, 2020.

[2] E. Lughofer and P. Angelov, “Handling drifts and shifts in on-line data

streams with evolving fuzzy systems,” Appl. Soft Comput., vol. 11, no. 2,

pp. 2057–2068, 2011.695

[3] T. Kohonen, “Learning vector quantization,” in Self-Organizing Maps,

Berlin, Heidelberg: Springer, 1995, pp. 175–189.

[4] N. Cristianini and J. Shawe-Taylor, An introduction to support vector ma-

chines and other kernel-based learning methods. Cambridge: Cambridge Uni-

versity Press, 2000.700

[5] L. Breiman, “Random forests,” Mach. Learn. Proc., vol. 45, no. 1, pp. 5–32,

2001.

[6] Y. Li, H. Zhang, X. Xue, Y. Jiang, and Q. Shen, “Deep learning for remote

sensing image classification: a survey,” Wiley Interdiscip. Rev. Data Min.

Knowl. Discov., vol. e1264, 2018.705

41

[7] I. S̆krjanc, J. Iglesias, A. Sanchis, D. Leite, E. Lughofer, and F. Gomide,

“Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, iden-

tification, and classification: a survey,” Inf. Sci. (Ny)., vol. 490, pp. 344–368,

2019.

[8] D. Leite, I. S̆krjanc, and F. Gomide, “An overview on evolving systems and710

learning from stream data,” Evol. Syst., DOI: 10.1007/s12530-020-09334-5,

2020.

[9] P. P. Angelov and D. P. Filev, “An approach to online identification of

Takagi-Sugeno fuzzy models,” IEEE Trans. Syst. Man, Cybern. - Part B

Cybern., vol. 34, no. 1, pp. 484–498, 2004.715

[10] H. Hagras, “Toward human-understandable, explainable AI,” Computer

(Long. Beach. Calif)., vol. 51, no. 9, pp. 28–36, 2018.

[11] M. Pratama, W. Pedrycz, and E. Lughofer, “Evolving ensemble fuzzy clas-

sifier,” IEEE Trans. Fuzzy Syst., vol. 26, no. 5, pp. 2552–2567, 2018.

[12] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak,720

“Ensemble learning for data stream analysis: a survey,” Inf. Fusion, vol. 37,

pp. 132–156, 2017.

[13] X. Gu and P. P. Angelov, “Self-organising fuzzy logic classifier,” Inf. Sci.

(Ny)., vol. 447, pp. 36–51, 2018.

[14] N. K. Kasabov and Q. Song, “DENFIS: dynamic evolving neural-fuzzy725

inference system and its application for time-series prediction,” IEEE Trans.

Fuzzy Syst., vol. 10, no. 2, pp. 144–154, 2002.

[15] G. Leng, G. Prasad, and T. M. McGinnity, “An on-line algorithm for cre-

ating self-organizing fuzzy neural networks,” Neural Networks, vol. 17, no.

10, pp. 1477–1493, 2004.730

[16] P. P. Angelov, X. Gu, and J. C. Principe, “Autonomous learning multi-

model systems from data streams,” IEEE Trans. Fuzzy Syst., vol. 26, no. 4,

pp. 2213–2224, 2018.

42

[17] H. Han and J. Qiao, “A self-organizing fuzzy neural network based on a

growing-and-pruning algorithm,” IEEE Trans. Fuzzy Syst., vol. 18, no. 6,735

pp. 1129–1143, 2010.

[18] H. J. Rong, N. Sundararajan, G. Bin Huang, and P. Saratchandran, “Se-

quential adaptive fuzzy inference system (SAFIS) for nonlinear system iden-

tification and prediction,” Fuzzy Sets and Systems, vol. 157, no. 9, pp.

1260–1275, 2006.740

[19] P. Angelov and X. Zhou, “Evolving fuzzy-rule based classifiers from data

streams,” IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1462–1474, 2008.

[20] E. D. Lughofer, “FLEXFIS: a robust incremental learning approach for

evolving Takagi-Sugeno fuzzy models,” IEEE Trans. Fuzzy Syst., vol. 16,

no. 6, pp. 1393–1410, 2008.745

[21] J. De Jesús Rubio, “SOFMLS: online self-organizing fuzzy modified least-

squares network,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 6, pp.

1296–1309, 2009.

[22] M. Pratama, S. G. Anavatti, P. P. Angelov, and E. Lughofer, “PANFIS: a

novel incremental learning machine,” IEEE Trans. Neural Networks Learn.750

Syst., vol. 25, no. 1, pp. 55–68, 2014.

[23] M. Pratama, S. G. Anavatti, and E. Lughofer,“Genefis: toward an effective

localist network,” IEEE Trans. Fuzzy Syst., vol. 22, no. 3, pp. 547–562, 2014.

[24] K. Subramanian, A. K. Das, S. Sundaram, and S. Ramasamy, “A meta-

cognitive interval type-2 fuzzy inference system and its projection based755

learning algorithm,” Evolving Systems, vol. 5, no. 4, pp. 219–230, 2014.

[25] M. Pratama, J. Lu, and G. Zhang, “Evolving type-2 fuzzy classifier,” IEEE

Trans. Fuzzy Syst., vol. 24, no. 3, pp. 574–589, 2016.

[26] R. Bao, H. Rong, P. P. Angelov, B. Chen, and P. K. Wong, “Correntropy-

based evolving fuzzy neural system,” IEEE Trans. Fuzzy Syst., vol. 26, no.760

3, pp. 1324–1338, 2018.

43

[27] D. Ge and X. J. Zeng,“Learning evolving T-S fuzzy systems with both

local and global accuracy - a local online optimization approach,” Applied

Soft Computing, vol. 86, pp. 795–810, 2018.

[28] H. Rong, Z. Yang, and P. K. Wong, “Robust and noise-insensitive recur-765

sive maximum correntropy-based evolving fuzzy system,” IEEE Trans. Fuzzy

Syst., DOI: 10.1109/TFUZZ.2019.2931871, 2019.

[29] D. Ge and X. J. Zeng,“A self-evolving fuzzy system which learns dynamic

threshold parameter by itself,” IEEE Trans. Fuzzy Syst., vol. 27, no. 8, pp.

1625-1637, 2019.770

[30] M. Ferdaus, M. Pratama, S. Anavatti, and M. Garratt, “PALM: an in-

cremental construction of hyperplanes for data stream regression,” IEEE

Trans. Fuzzy Syst., vol. 27, no. 11, pp. 2115–2129, 2019.

[31] J. A. Iglesias, A. Ledezma, and A. Sanchis, “Ensemble method based on in-

dividual evolving classifiers,” in IEEE Conference on Evolving and Adaptive775

Intelligent Systems, 2013, pp. 56–61.

[32] X. Gu, P. P. Angelov, C. Zhang, and P. M. Atkinson, “A massively par-

allel deep rule-based ensemble classifier for remote sensing scenes,” IEEE

Geoscience and Remote Sensing Letters, vol. 15, no. 3, pp. 345–349, 2018.

[33] E. Soares, P. Costa, B. Costa, and D. Leite, “Ensemble of evolving data780

clouds and fuzzy models for weather time series prediction,” Appl. Soft Com-

put., vol. 64, pp. 445–453, 2018.

[34] V. López, S. del Ŕıo, J. M. Beńıtez, and F. Herrera, “On the use of MapRe-

duce to build linguistic fuzzy rule based classification systems for big data,”

in IEEE International Conference on Fuzzy Systems, 2014, pp. 1905–1912.785

[35] S. del Ŕıo, V. López, J. M. Beńıtez, and F. Herrera, “A MapReduce ap-

proach to address big data classification problems based on the fusion of lin-

guistic fuzzy rules,” Int. J. Comput. Intell. Syst., vol. 8, no. 3, pp. 422–437,

2015.

44

[36] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on790

large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[37] Z. Chi, H. Yan, and T. Pham, “Fuzzy algorithms: with applications to

image processing and pattern recognition”. Singapore: World Scientific.,

1996.

[38] V. López, S. Del Ŕıo, J. M. Beńıtez, and F. Herrera, “Cost-sensitive linguis-795

tic fuzzy rule based classification systems under the MapReduce framework

for imbalanced big data,” Fuzzy Sets Syst., vol. 258, pp. 5–38, 2015.

[39] M. Elkano, M. Galar, J. Sanz, and H. Bustince, “CHI-BD: a fuzzy rule-

based classification system for big data classification problems,” Fuzzy Sets

Syst., vol. 348, pp. 75–101, 2018.800

[40] A. Segatori, F. Marcelloni, and W. Pedrycz, “On distributed fuzzy decision

trees for big data,” IEEE Trans. Fuzzy Syst., vol. 26, no. 1, pp. 174–192,

2018.

[41] A. Oliva and A. Torralba, “Modeling the shape of the scene: a holistic

representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42, no. 3,805

pp. 145–175, 2001.

[42] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers,” Mult.

Classif. Syst., vol. 34, pp. 1–17, 2007.

[43] L. Lu, L. Di, and Y. Ye, “A decision-tree classifier for extracting transparent

plastic-mulched Landcover from landsat-5 TM images,” IEEE J. Sel. Top.810

Appl. Earth Obs. Remote Sens., vol. 7, no. 11, pp. 4548–4558, 2014.

[44] R. N. Patro, S. Subudhi, P. K. Biswal, and F. Dell’Acqua, “Dictionary-

based classifiers for exploiting feature sequence information and their appli-

cation to hyperspectral remotely sensed data,” Int. J. Remote Sens., vol. 40,

no. 13, pp. 4996–5024, 2019.815

45

[45] G. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine

for regression and multiclass classification,” IEEE Trans. Syst. Man, Cybern.

Part B Cybern., vol. 42, no. 2, pp. 513–529, 2012.

[46] H. J. Rong, N. Sundararajan, G. Bin Huang, and G. S. Zhao, “Extended

sequential adaptive fuzzy inference system for classification problems,” Evol.820

Syst., vol. 2, no. 2, pp. 71–82, 2011.

[47] P. Angelov and X. Gu, “Autonomous learning multi-model classifier of

0-order (ALMMo-0),” in IEEE International Conference on Evolving and

Autonomous Intelligent Systems, 2017, pp. 1–7.

[48] X. Gu and W. Ding, “A hierarchical prototype-based ap proach for classi-825

fication,” Inf. Sci. (Ny)., vol. 505, pp. 325–351, 2019.

[49] S. Bhatnagar, D. Ghosal, and M. H. Kolekar, “Classification of fashion arti-

cle images using convolutional neural networks,” in International Conference

on Image Information Processing, 2017, pp. 357–362.

[50] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimization,”830

in International Conference on Learning Representations, 2015, pp. 1–15.

46

	Introduction
	Related Works
	Preliminaries
	Architecture
	Offline Learning Process
	Online Updating Process
	Validation Process

	SOFIS+
	Architecture
	Learning Process
	Validation Process

	Proposed SOFEnsemble
	Learning Policy
	Validation Policy

	Experimental Investigation
	Performance Investigation
	Performance Comparison
	Remarks

	Conclusion

