2008.07838v2 [cs.LG] 17 Jun 2021

arxXiv

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

Improving Adversarial Robustness of Deep Neural
Networks by Using Semantic Information

Lina Wang, Xingshu Chen, Rui Tang, Yawei Yue, Yi Zhu, Xuemei Zeng, Wei Wang

Abstract—The vulnerability of deep neural networks (DNNs)
to adversarial attack, which is an attack that can mislead state-
of-the-art classifiers into making an incorrect classification with
high confidence by deliberately perturbing the original inputs,
raises concerns about the robustness of DNNs to such attacks.
Adversarial training, which is the main heuristic method for
improving adversarial robustness and the first line of defense
against adversarial attacks, requires many sample-by-sample
calculations to increase training size and is usually insufficiently
strong for an entire network. This paper provides a new per-
spective on the issue of adversarial robustness, one that shifts
the focus from the network as a whole to the critical part
of the region close to the decision boundary corresponding to
a given class. From this perspective, we propose a method to
generate a single but image-agnostic adversarial perturbation
that carries the semantic information implying the directions to
the fragile parts on the decision boundary and causes inputs to be
misclassified as a specified target. We call the adversarial training
based on such perturbations ‘“region adversarial training” (RAT),
which resembles classical adversarial training but is distinguished
in that it reinforces the semantic information missing in the
relevant regions. Experimental results on the MNIST and CIFAR-
10 datasets show that this approach greatly improves adversarial
robustness even when a very small dataset from the training
data is used; moreover, it can defend against fast gradient sign
method, universal perturbation, projected gradient descent, and
Carlini and Wagner adversarial attacks, which have a completely
different pattern from those encountered by the model during
retraining.

Index Terms—adversarial robustness, semantic information,
region adversarial training, targeted universal perturbations

I. INTRODUCTION

S an accepted technique in machine learning, deep

learning (DL) has proved itself capable of performing
singularly well on a number of categories of machine learning
tasks [1]. In particular, deep neural networks (DNNs) can
learn very effective models for input classification. State-of-
the-art DNNs have achieved impressive performance in tasks
of computer vision [2f], [3], speech recognition [4], [5], and
natural language understanding [6]], [7]] and provide solutions
based on these tasks for many other problems, such as in
medical science [8]]. The universal approximator theorem [9]]
guarantees the representational power of DNNs but does not
indicate whether a training algorithm will be able to discover
a function having all the desired properties.

L. Wang, X. Chen, R. Tang and Y. Yue are with the School
of Cyber Science and Engineering at Sichuan University, Chengdu
610065, China (E-mail:wlnlnw1992@163.com, chenxsh@scu.edu.cn,
2017326240002 @stu.scu.edu.cn., yuel23161 @stu.scu.edu.cn)

Y. ZhuX. Zeng and W. Wang is with the Cyber Science Research Institute
at Sichuan University, Chengdu 610065, China (E-mail:zhuyi20 @scu.edu.cn,
zengxm@scu.edu.cn, wwzqbx @hotmail.com).

For all the success of deep learning algorithms, Szegedy
et al. [10], [11] revealed an inherent weakness of DNNs by
pointing out the existence of a new type of attack called
an adversarial attack. The adversary in this type of attack
misleads models into producing an incorrect output with an
adversarial example, a plausible member of input datasets that
is only slightly different from benign examples, created by
adding a carefully constructed adversarial perturbation. For
example, the images on the diagonal in Fig. (1| are unperturbed
clean examples, and the other images are adversarial examples
misclassified as specified target classes that are almost imper-
ceptible to human vision. Recent studies have made it clear
that DNNs are universally vulnerable to adversarial examples;
this seems to contradict the assumptions that underlie many
deep learning methods and suggests that our deep classifiers
based on modern machine learning techniques have only built
a Potemkin village instead of learning the true underlying
concepts that determine a correct output label. Ideally, the
label estimated by a classifier should not be altered by a
sufficiently small perturbation of an input data point, let alone
an adversarial perturbation. This excellent property, called
robustness, is extremely significant for DNNs when applied
in realistic contexts, and above all in security-critical environ-
ments [12]]. Because of the importance and imminence of the
issue, the robustness of classifiers to adversarial examples has
been attracting much attention in recent years.

Previous studies on the robustness of DNNs have ap-
proached the question from two directions, attempting either to
prove a lower bound of robustness through formal guarantees
or to find an upper bound of robustness through adversarial
attacks. The formal approach is sound but difficult to carry out
in practice [[13|], whereas heuristic defenses against adversarial
attacks are not sufficiently strong [14]. There is a puzzling
problem concerning the latter approach. It is generally believed
that neural networks are not learning the true concepts [/11], yet
the adversarial perturbations generated by almost all known
methods appear to be chaotic! This seems counter-intuitive,
because if the network is missing important information re-
lated to the true underlying concepts, this information should
be reflected in the adversarial examples, representing the blind
spots of the network.

In addition, despite a number of meaningful studies on
the issue, achieving ideal robustness remains a difficult goal.
Improving the adversarial robustness of a network as a whole
is rather ambitious and difficult; sometimes enhancing the
robustness of particular regions in the manifold represented by
the network can provide a greater benefit in reality. This is even
more remarkable for certain application scenarios, especially

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

Source Class

Target Class

Fig. 1: Illustration of targeted universal perturbations (TUPs)
attacks on a typical DNN using images sampled from CIFAR-
10, showing source—target pairs. To facilitate the presentation,
we use the numbers 0-9 to represent the ten classes of CIFAR-
10. The number preceding each row represents the source
class, and the number preceding each column represents the
target class. For example, an image with a row number of 1
and a column number of 2 is a TUP adversarial example whose
true label is class 1 but is incorrectly classified as class 2. All
of the original images displayed were selected at random.

security-sensitive applications. For example, for a classifier
that distinguishes different kinds of animals, it is no more
dangerous to classify dogs as cats than dogs as birds, but in the
case of a multi-category classifier for malware classification
or for traffic sign recognition as used in autonomous vehicles,
things are quite different [15]]. Incorrectly classifying a yield
sign as a stop sign is likely to be safer than misclassifying it as
a sign that allows vehicles to pass. Similarly, misclassifying
malware as belonging to the wrong malware family is less
harmful than incorrectly classifying it as benign.

Furthermore, almost all heuristic methods for improving
adversarial robustness require a large number of calculations
on a very large dataset of a size comparable to that of the
training set. This considerably reduces their suitability for
practical scenarios, especially application environments having
high timeliness requirements.

In this paper, we focus on the region corresponding to
a certain class in the manifold represented by the attacked
network, and we propose a method to extract semantic infor-
mation that is universal for most examples from a small set of
the data points that lie very close to the classifier’s decision
boundary separating one class from all others. The key idea
is to emphasize to the classifier the semantic information
it has not yet learned and to prompt the classifier to learn
a clearer (usually more complicated) decision boundary and
the underlying concepts. We retain this universality property
across the inputs as did, but unlike researchers in previous
studies, we generate perturbations containing semantic infor-

mation instead of meaningless noise with the aim of improving
robustness. The main contributions of this paper are as follows:

o We find that there exists a single perturbation applicable
to most of the inputs that could constitute a targeted
adversarial attack on a classifier, and, importantly, that
such perturbations are not meaningless but contain ex-
plicit semantic information. Furthermore, we propose
an algorithm for generating such targeted universal per-
turbations (TUPs). The algorithm computes a series of
perturbation vectors one at a time, sending a data point
to the classification boundary of the region corresponding
to the specified target class for a set of points in the
training dataset, and then aggregates the perturbation
vectors to find a universal vector indicating the direction
to the region in an iterative way. We show that the
proposed algorithm can calculate such a perturbation on
a very small set of training data points, which causes new
samples to be misclassified as a specific target class with
high probability.

o We present a new approach to improve adversarial ro-
bustness, called region adversarial training (RAT), and
formalize it conceptually. RAT pays special attention to
the region near the decision boundary corresponding to a
selected target class and then uses the extracted semantic
information related to this region to guide the retraining
process. The information used by RAT comprises the
common patterns for most samples that follow the same
distribution as the training data, and these patterns contain
semantic information related to the true underlying con-
cepts; consequently, RAT can not only perform well on
a very small data set, but also defend against adversarial
attacks that have never been seen by the network before.

o We validate the algorithm by reporting the results of
extensive experiments using MNIST and CIFAR-10
and show that the perturbations achieve a similar high
attack success rate for each target class. We also sys-
tematically evaluate the choice of algorithm parameters.
We find that our TUP perturbations not only retain the
universality property of being able to fool unseen data
points but also transfer well across different architectures
and can work well even when calculated from a very
small dataset. We experimentally demonstrate that when
the proposed algorithm is employed to provide examples
for region adversarial training (even on a very small
set from training data), the test set accuracy on both
TUP adversarial examples and the best-known Carlini
and Wagner (C&W) [14]], universal perturbation (Uni.)
[16]l, projected gradient descent (PGD) [18]], fast gradient
sign method (FGSM) [I1]] adversarial examples can be
increased on MNIST and CIFAR-10.

The rest of this paper is organized as follows. In Section[II]
we summarize recent work on generating adversarial examples
and improving adversarial robustness. Section [[V] provides the
preliminaries and defines the notation. Then, we introduce
the proposed approaches for finding TUPs and formalize
the region adversarial training method in Section [V-C] The
experiments we conducted to test the proposed method are

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

described and their results analyzed in Section [V} Finally, we
conclude with Section [VI}

II. RELATED WORK

As our goal is to extract missed semantic information
through a method of generating adversarial examples and
then to improve the robustness of DNNs, this section first
introduces the work related to the generation of adversarial
examples and then describes the studies on improving adver-
sarial robustness.

Adversarial examples. Szegedy et al. [[10] discovered the
existence of the possibility of adversarial attacks on deep
neural networks by generating adversarial examples using box-
constrained L-BFGS. The fact that deep neural networks are
surprisingly susceptible to such adversarial attacks triggered
the wide interest of researchers in the security and machine
learning communities, and since then, a sizable body of related
literature has introduced several new methods for crafting
adversarial examples to construct an upper bound on the
robustness of neural networks. Goodfellow et al. [[11]] proposed
a method called “Fast Gradient Sign Method” (FGSM), which
perturbs an image to increase the loss of the classifier on the
resulting image based on the “linearity hypothesis” of deep
network models in higher-dimensionality space. Instead of
using the Lo-norm as in FGSM, Kurakin et al. [19] presented
an alternative approach named “Fast Gradient L.~ and also
extended FGSM to a “target class” variation wherein the label
of the class least likely to be predicted by the attacked network
is used as the target class. Unlike the one-step methods, which
take a single step in the direction that increases the loss, the
Basic Iterative Method (BIM) [20] computes the perturbation
iteratively by adjusting the direction step by step. Papernot et
al. [21] modified pixels of the original image one at a time
by computing a saliency map and then monitored the effect of
the changes. A more refined algorithm, named DeepFool [22],
moves a given image toward the boundary of a polyhedron
through a small vector based on an iterative linearization of the
classifier to compute a minimal-norm adversarial perturbation.
C&W |[14] introduced a set of three adversarial attacks in the
wake of defensive distillation against the adversarial attacks
and inspired the ‘“Zeroth Order Optimization (ZOO)” attack
which was the first optimization-based attack in black-box
settings. The method proposed by Su et al. [23]] was deduced
for the extreme case in which only one pixel in the image is
allowed to change for the attacker, and they reported a fairly
good success rate, 70.97%. Hybrid Attacks [24] combined
the two strategies, optimization-based attacks and transfer
attacks in the black-box setting, to reduce cost and improve
success rates. All of the above methods compute adversarial
perturbations to fool an attacked network using a single image;
the method in [16] is fundamentally different. The authors
computed perturbations that do not involve a data-dependent
optimization but fooled the classifier on all images through
one and the same perturbation. However, the perturbations they
performed caused the clean samples to be misclassified as any
(unpredictable) class and contained very little semantic infor-
mation. By contrast, our approach computes a perturbation that

moves the sample in a specific direction chosen to cause the
perturbed sample to be misclassified as a target class ¢ while
preserving the universality property across samples, without
the need to use any complex generative models such as in
[25]]. More importantly, our approach extracts explicit semantic
information with very few samples and generates adversarial
perturbations that show this semantic information clearly and
that exhibit a pattern completely different from the others.

Adversarial robustness. The appearance of adversarial ex-
amples reveals the intrinsic vulnerability of the existing neural
network methodology; therefore, studies on improving its ro-
bustness to adversarial examples are of great importance. Work
has generally been developing in two different directions. One
way of making neural networks robust to adversarial attacks
focuses on formally ensuring their robustness. Robustness
verification is a general method for obtaining safety guarantees
[26], [27], [28], [29], [30], [31], [32]; it is typically based on
sophisticated theory and is usually computationally expensive.
As the investigation in this paper does not involve formal
verification techniques, we do not go into detail here. The
other way is to explore heuristic defenses against adversarial
examples (including their detection), by means of modifying
networks directly [33]], [34], [35], [36[, [37], [38]], [39], [40],
(410, [42)], [18]], [43], using extra network add-ons [44],
[45]], [46], [47], or changing the training procedure or using
modified inputs in the inference phase [48], [49], [50], [51],
[52], [53], [54], [55]. The method presented in this paper is
of this type and, more specifically, falls into the category of
adversarial training [11], [56]], which modifies the training
procedure with adversarial inputs. What most distinguishes
our work from other adversarial training methods is that
whereas to our knowledge all existing methods improve the
adversarial robustness of networks as a whole, ours focuses on
certain regions in the manifold represented by the network.
In addition, all existing studies on adversarial training have
used an image-specific method to increase the size of the
training dataset, which requires at least one calculation for
each example on a very large dataset (usually a multiple of
the training set). To the best of our knowledge, the method in
[16] is the only exception; it calculates a single image-agnostic
perturbation for a set of training points, but it leads to only a
slight improvement in robustness. Our method is designed to
enhance the robustness of DNNs on a very small set by using
perturbations that contain semantic information and retain the
universality property but that are completely different from the
patterns in [[16].

ITI. PRELIMINARIES
A. Neural networks: Definitions and notation

A neural network used as a multi-class classifier, which is
the case exclusively studied in this paper, is given an input and
provides a corresponding class probability vector as output.
Formally, a classifier f: R™ — {1... K} accepts an input z €
R™ and provides an estimated label f(z) as output for it. We
assume that = ~ ¢, where 1) denotes a distribution of inputs
in R™. The output vector f(x) represents the probability that
the input = belongs to each of the K classes. The classifier

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

@Inference of acommon network A m Clean Input

-) Cat

=%

~) Doy

Training data

Computing TUPs

Adversarial

E 5

i@Region Adversarial Training

B

TUP Clean Input %/

—xommm) Dog @

Hq Adversarial Input
.1

Kl
3000

©)Inference of a robust network B

(a)

(b)

Fig. 2: Overview of region adversarial training (RAT) based on TUP adversarial examples. (a) shows the entire RAT process.
(b) is an illustration of Algorithm |I| for computing a TUP perturbation.

~

assigns the label y(z) = argmaz f(x); to the input z; the
ground-truth label is denoted by y. The model f depends on
some parameters ¢, but as the network is fixed for our method
of crafting an adversarial perturbation, we will omit 6 from f
when there is no ambiguity. We define J(0,x,y) as the loss
function used to train the model.

B. Adversarial examples

Given a naturally occurring example (clean example) x
and a classifier f(-), an adversarial example [10] is an input
that causes the classifier to make a mistake. An adversary
launches adversarial attacks by crafting adversarial examples.
Let 2’ = z+7r be an adversarial example that is very similar to
x, where 7 is a small vector called an adversarial perturbation.
More precisely, an untargeted adversarial example is one that
causes the classifier to predict any incorrect label (i.e., it makes
f@) # f(x)), and a targeted adversarial example is one
that causes the classifier to change the prediction to some
specific target class ¢ (i.e., f(z') = t). It is apparent that
untargeted adversarial attacks are strictly less powerful than
targeted adversarial attacks, meaning that if an adversarial
example can cause a targeted adversarial attack, it can certainly
cause an untargeted adversarial attack [|57]], [58]]. The similarity
between x and 2’ is usually measured by some distance metric
d(-). In the literature for generating adversarial examples,
the three distance metrics Lg-norm, Lo-norm, and L.,-norm
(collectively, L,,-norms) are widely used. The L,-norm of a
vector v is defined as

1

n P

lol, = (Z vil”) :
i=1

In this paper, we focus on the L., distance. It is true that
no distance metric is a perfect measure of human perception,
especially considering different scenarios. Constructing and
evaluating a good distance metric may be intuitive, but we
do not judge which distance metric is optimal as it is not the

focus of this paper. Instead, we use Lo, distance, as L, is
sufficient for the computer vision classification task that is the
focus of this paper, and L, norm is considered as the optimal
choice [14] and has been widely used in many studies [59]]
[60].

C. Threat model

The threat model of a system, which often involves ad-
versarial goals and capabilities, can be used to measure the
security of the system. If a system using a DNN is viewed
as a generalized data processing pipeline, at inference phase
the system collects inputs from sensors or data repositories
and then processes the inputs in the digital domain and feeds
them to the model to produce an output for external systems
or users to receive and act upon. According to the attack
surface defined with this procedure, in this paper we consider
adversaries that are capable of manipulating the collection and
processing of data to tamper with the output. The adversaries
have no knowledge of the model architecture or values of any
parameters or trainable weights, but they have direct access to
at least some of the training data, and of course they can query
the model, i.e., feed it inputs and receive outputs. Finally, by
modeling the adversarial goals using a classical approach that
includes confidentiality, integrity, and availability, called CIA
[[61], it can be seen that the main threat from such adversaries
is to compromise the integrity of the DNN-based system. As
they are capable of destroying the input—output mapping of
the model, they can also achieve the goal of undermining
availability, despite the difference between availability and
integrity in definition.

IV. PRELIMINARIES
A. Neural networks: Definitions and notation

A neural network used as a multi-class classifier, which is
the case exclusively studied in this paper, is given an input and
provides a corresponding class probability vector as output.

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

Formally, a classifier f: R" — {1... K'} accepts an input = €
R™ and provides an estimated label f(x) as output for it. We
assume that = ~ 1), where @ denotes a distribution of inputs
in R™. The output vector f(z) represents the probability that
the input z belongs to each of the K classes. The classifier
assigns the label y(z) = argmax f(x); to the input z; the
ground-truth label is denoted by y. The model f depends on
some parameters 6, but as the network is fixed for our methocl
of crafting an adversarial perturbation, we will omit ¢ from f
when there is no ambiguity. We define J(0,x,y) as the loss
function used to train the model.

B. Adversarial examples

Given a naturally occurring example (clean example) x
and a classifier f(-), an adversarial example [10] is an input
that causes the classifier to make a mistake. An adversary
launches adversarial attacks by crafting adversarial examples.
Let 2’ = x+r be an adversarial example that is very similar to
x, where r is a small vector called an adversarial perturbation.
More precisely, an untargeted adversarial example is one that
causes the classifier to predict any incorrect label (i.e., it makes
f@) # f(x)), and a targeted adversarial example is one
that causes the classifier to change the prediction to some
specific target class ¢ (i.e., f(z') = t). It is apparent that
untargeted adversarial attacks are strictly less powerful than
targeted adversarial attacks, meaning that if an adversarial
example can cause a targeted adversarial attack, it can certainly
cause an untargeted adversarial attack [|57]], [58]]. The similarity
between x and 2’ is usually measured by some distance metric
d(-). In the literature for generating adversarial examples,
the three distance metrics Lg-norm, Lo-norm, and Ls,-norm
(collectively, L,,-norms) are widely used. The L,-norm of a
vector v is defined as

fol, = (Z|)

In this paper, we focus on the L., distance. It is true that
no distance metric is a perfect measure of human perception,
especially considering different scenarios. Constructing and
evaluating a good distance metric may be intuitive, but we
do not judge which distance metric is optimal as it is not the
focus of this paper. Instead, we use Lo, distance, as L, is
sufficient for the computer vision classification task that is the
focus of this paper, and L., norm is considered as the optimal
choice [14] and has been widely used in many studies [S9]]
(60

=

C. Threat model

The threat model of a system, which often involves ad-
versarial goals and capabilities, can be used to measure the
security of the system. If a system using a DNN is viewed
as a generalized data processing pipeline, at inference phase
the system collects inputs from sensors or data repositories
and then processes the inputs in the digital domain and feeds
them to the model to produce an output for external systems
or users to receive and act upon. According to the attack

surface defined with this procedure, in this paper we consider
adversaries that are capable of manipulating the collection and
processing of data to tamper with the output. The adversaries
have no knowledge of the model architecture or values of any
parameters or trainable weights, but they have direct access to
at least some of the training data, and of course they can query
the model, i.e., feed it inputs and receive outputs. Finally, by
modeling the adversarial goals using a classical approach that
includes confidentiality, integrity, and availability, called CIA
[61]], it can be seen that the main threat from such adversaries
is to compromise the integrity of the DNN-based system. As
they are capable of destroying the input—output mapping of
the model, they can also achieve the goal of undermining
availability, despite the difference between availability and
integrity in definition.

An overview of the method for generating TUP adversarial
examples and performing region adversarial training is given
in Fig. 2Ja). A conceptual illustration of the method for
computing TUPs is presented in Fig. 2] (b). As shown in Fig. 2]
(a), a common neural network A can correctly classify a clean
input but cannot correctly classify an adversarial example in
the inference phase. Retraining using our RAT method based
on TUPs results in a more robust network B that can correctly
classify even the unseen adversarial examples. In Fig. [2] (b),
we use black solid lines represent a simple decision boundary
(which is linear in this case) for the original network. A set of
data points can be easily separated with the simple decision
boundary, but the L, balls around the data points cannot be
separated well. Let %, = {x : ful) — fi(z) = 0} (in the
case shown in Fig. 2[b), k = 1,2, 3) describe the region of the
space where the classifier outputs label ¢. For each point whose
ground-truth label is not ¢ but is not classified correctly by
the simple decision boundary, the method calculates a vector
that touches a polyhedron that approximates the region 7.
Then, by continuously aggregating these vectors and updating
the perturbation vector, we finally obtain a TUP perturbation
that captures the semantic information that the network has not
learned but is about the decision boundary of the region where
the classifier outputs label ¢. Using this information to retrain
the network, a more complicated decision boundary, needed to
separate adversarial examples in the L, balls, can be obtained
(represented by the red curve in Fig. 2[b)). This makes the
resulting network more robust against adversarial attacks with
bounded L, perturbations. Note that, the Algorithm [I] and
the Algorithm [2] presented below make two assumptions. First
of all, our algorithm is applicable to classifiers that satisfy the
assumption that the training data and test data are independent
and identically distributed (i.i.d). Secondly, we use Ly norm
to measure the similarity of the examples before and after
attack, as mentioned in Section Using different distance
metrics will affect the effectiveness of the algorithm.

D. Targeted universal perturbations

The problem of generating an adversarial example for an
input x is equivalent to that of finding a minimum adversarial

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

perturbation 7 that satisfies the adversarial condition. Formally,
this problem can be defined as follows:

min d(z,z +7r)
" ey
st flx+r)=t.
In Eq. (EI) x and x + r must be drawn from the same
distribution ¢ and the same feature space. As our aim is to
cause a targeted adversarial attack for most inputs through a
single perturbation and to extract semantic information from
them, the problem differs a bit. Our generation method focuses
on the following question: Can we find a perturbation vector
r € R™ that causes the classifier to misclassify almost all data
points sampled from 1) as a certain class ¢ that differs from
the correct prediction for the original input? In other words,
we look for a vector r for most x ~ 1 such that

~

flx+r)=t+# f(x). (2)
According to the concepts of adversarial examples and adver-

sarial perturbations as described before, each of the following
two constraints on the perturbation vector r must be satisfied:

(3a)
(3b)

In Eq. (3d), we use d(r) as a measure of the quantified
similarity. In Eq. (3b), we use 1 — § to denote the success
rate threshold, where the parameter J € (0, 1] is a scalar. The
parameter 7 restricts the magnitude of the perturbation. The
smaller the value of 7, the harder it is for a human to perceive
the perturbation in the image, and on the other hand, a larger
1—¢ value (i.e., a smaller ¢ value) implies a stronger attack that
is more powerful for generating a desired perturbation. We call
such a perturbation r a targeted-(9, n)-universal perturbation
(TUP), as this single input-agnostic perturbation, restricted by
the parameters § and 7, causes the predicted label of most data
points sampled from the data distribution v to be converted
to the target class t.

Algorithm 1. In this paper, we propose an algorithm
that seeks a common perturbation r for most data points
in X = {z1,...,zs}, which is a set of images sampled
from the same distribution @, such that the attacked neural
network is caused to misclassify the perturbed input as a pre-
selected target class ¢ and such that r satisfies ||, < 7.
The algorithm progressively establishes the target universal
perturbation via an iterative procedure over the data points
in X. At each iteration, it computes a minimal perturbation
Ar; that sends the current perturbed point x; + r; toward the
decision boundary of target class ¢ of the classifier, and then
aggregates Ar; to the current instance of the target universal
perturbation 7, as illustrated in Fig. J(b). More specifically,
as long as data point x; perturbed by the current r; is not
classified as the target class ¢ by the attacked model, we solve
the following optimization problem to find a supplemental Ar;

that will lead to misclassification on x;:

Ar; < argmin |0«
g

~ “)
st. flx;+ri+0) =t

We treat the problem in Eq. @) as a suitable optimization
instance and solve it by existing optimization algorithms such
as that given in [14]]. To reduce the computational cost while
ensuring that the constraint |7, < 7 is satisfied, the updated
perturbation r is further clipped and projected onto the £,
ball, with radius 1 and centered at 0, every k iterations; the
projection operator Py, , is defined as follows:

Po,y = argmin |r —r'|2
v &)
/
st |r]loo < 7.
Then, we use the operator in Eq. (3) to update the perturbation
vector r in the ith iteration as follows:

{ Pooy(r + Ar;), for ilk = 0,i 0
T «<—

r + Ar;, otherwise
When the attack success rate for target class ¢ exceeds the
desired threshold 1 — § on the perturbed dataset X, :=
{x1 + 7,...,zs + r}, the algorithm is stopped. The success
rate Syc.(X;) is defined as the likelihood of success that the
perturbation will change the label to the target class . In other
words, the terminal condition of the algorithm is

(6)

1 S
Suce(Xr) = < Zl Vgt = 16, (7)
where 1 Flas+7)=t is the indicator function. The details of the

algorithm are provided as Algorithm [1}

E. Region adversarial training

Algorithm 2. In order to use the TUP approach to enhance
the adversarial robustness of deep networks, we introduce a
training method, which we call region adversarial training
(RAT). The purpose of the training is not to enhance the entire
network in undifferentiated ways; instead, it focuses on the
weaker regions of the network or the regions of most interest
to the user. In region adversarial training, the network is not
trained on all inputs from the training set perturbed but on a
mixture of original training data and training data perturbed
by the TUP method. The targeted universal perturbation that
is computed can be considered as containing more complex
information of a certain class region’s decision boundaries that
the network has not yet learned from the original training
set. The intuition behind region adversarial training is that
incorporating this information into the training will improve
the classification accuracy on adversarial examples of the
classifier for this class. Formally, let ©* be the weights of
a neural network; then standard training learns ©* as

©* = argminE,¢, J (0, x, y). (8)
0

The adversarial training proposed by Szegedy et al. [[10] was
originally for solving the following min—max formulation:

©* = argminE,c, [max J(0,x + d,y)], 9)
0 oeA(x)

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

Algorithm 1: Computation of targeted universal per-
turbation.

Input: Dataset X, classifier f , target class t, desired
Ly-norm of the perturbation 7, desired
projection operator step size k, desired
accuracy on perturbed data points §

Output: targeted-(6,n)-universal perturbation (TUP)

vector r
1 Initialize r < 0.
2 while S,..(X,)<1 -4 do
3 Shuffle the dataset X
for every x; € X do

~

if f(z; +r) # ¢t then

a &

Ar; < argmin |o||s
g

~

st.f(zi+mri+o)=t

if i|k =0 and i # 0 then
7 Update the perturbation using the
projection operator:

T — Poy(r + Ar;)

8 else
9 Update the perturbation:

r—r+Ar;

10 end
11 end

12 end

13 end

where § represents adversarial perturbations computed by
some method; in [10], a linear approximation method named
Fast Gradient Sign Method (FGSM) was used to generate
0. The original adversarial training process trained on the
perturbed samples roughly, without direction or distinction.
The region adversarial training method proposed here pays
special attention to the region of the space where the classifier
outputs a certain class label ¢ in the manifold represented by
the network. Using this method, ©* is computed as

0* = argemin Ezey [61611Aa(>;) [Jo(0,z,y)

(10)
+ Jaav (0, + 8,y)]],
J0(0a$7y) = Z J(67wi7y)7 (11)
ziex, f(zi)=t
Jaav(@,@ +8,y) = > J(O,mi+8,y). (12)

zi€X, f () #t

The saddle point problem in Eq. (I0) is similar to that in
Eq. (9) in its composition of an inner maximization problem
and an outer minimization problem. The loss function Jy in
Eq. (T) is independent of the perturbation §, and so the inner

Algorithm 2: Region adversarial training.

Inp

ut: labeled training data Dyyqin = { (24, yi)}fil,

target ¢ corresponding to the region where
robustness is desired to be enhagced, the
original pooly robust classifier f.

Output: a more robust model with parameter vector

6*

1 Initialize ©%.
2 while not converged do do

3

4
5

10

11

12
13
14

15

16

17 end

for every (x;,v;) € Dirain do
if f(x;) # t then

(xi(o), yi(o)) — (i, 95)

else
(xi(t)7 yl(t)) A (‘ria yz)
end
randomly split Dggzlm = {(xi(o), yi(o))}ﬁl
into Dﬁf}m = {(z:®,y:)}k ={1,2}
evenly

for every (z;(V,y;,(V)
Dl = (200} do

train

1 =TUP (xi(l),t)

// Use Algorithm to get
TUP perturbations
end

end

N—M
J0(0*7way) = Z J(e*awz(t)ayi(t))
=1
M—n
+ Z J(0*7mz(2)7yt(2)>
=1
J = Jo(0%, 2, y) + Jaav (0%, @ + 14, y)

Apply J to update model

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

maximization problem in Eq. (I0) can be rewritten as

Jo(0,z,y) + max [Jaav(0,x + §,y)]. (13)
deA(x)

Let r¢ be the perturbation vector found by Algorithm |l then

r¢ can be interpreted as a scheme for maximizing the loss

Jadv in Eq. (I3). Thus, the weights ©* are computed by the

region adversarial training as

6* = argmin]E:vex[JO(aa :Evy) + Jadv(gaw + 7, y)] (14)
(4

Eq. (T4) can be used for any suitable loss function J (0, x,y);
in this paper, we use the common cross-entropy loss function
for neural networks. The details of the algorithm are provided
as Algorithm

The main overhead of RAT arises from computing TUPs.
Lines 2-10 in Algorithm [T compute a TUP vector until the
attack success rate exceeds the threshold. The number of
executions of lines 3-10 in Algorithm [T| depends on the choice
of parameters §, and the attack success rate of the current
perturbation, which is mainly affected by k£ and 7 . Choosing
these parameters empirically allows these lines to be executed
only once and accordingly, only one shuffle of the dataset
X is required. Lines 4-10 in Algorithm [I] update the TUP
perturbation vector for shuffling the dataset X once, and the
time complexity is O(n), where n is the size of set X that
the TUP is computed on.

V. EVALUATION

In this section, the cases for the experimental investigation
are introduced. Before turning to our approach for generating
adversarial examples and improving adversarial robustness,
we describe the architectures of the models on which we
evaluated the proposed approach and the datasets we used.
Then, we describe how the TUPs were generated for MNIST
and CIFAR-10, show the performance of our TUP attack,
discuss the influence of parameter selection, and study the
property of transferability across different models and the per-
formance on small datasets. Finally, based on the experimental
results, we discuss whether the proposed region adversarial
training with TUPs can improve adversarial robustness not
only against TUP itself but also against FGSM adversarial
examples. Furthermore, we also remark on the size of the set
X needed to achieve the desired results.

A. Experimental setup

Dataset description. To ascertain the feasibility and ef-
fectiveness of the algorithm proposed in this paper, a series
of experiments were performed on two widely used machine
learning datasets, MNIST and CIFAR-10, which are com-
monly used to test the performance of numerous prevalent
methods, such as those in [18], [14], [21]], etc. We chose
these datasets not only for the convenience of comparing the
performance of our method with that of other methods, but also
because the TUP method extracts the semantic information
that is common to most training data, and experimenting on
small-scale datasets can reduce the search space and improve
the efficiency of the algorithms. The MNIST dataset is a

collection of black and white images of handwritten digits;
it contains 60,000 28 x 28 training samples and 10, 000 test
samples, each pixel of which is encoded as a real number
between 0 and 1. The CIFAR-10 dataset consists of 60,000
32 x 32 color images, which are divided into a training set
of 50, 000 images and a test set of 10,000 images, each pixel
of which takes the value of a real number between 0 and 255
for three color channels. For both the MNIST and CIFAR-10
datasets, we created a validation set containing 5000 examples
from the training set. Each image in the MNIST and CIFAR-10
dataset is associated with a label from ten classes. In MNIST,
the classes are the values ranging from 0 to 9, representing the
digit written, and in CIFAR-10, the ten classes are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

TABLE I: Baseline accuracy (acc.) of five MNIST classifiers
and five CIFAR-10 classifiers.

Architecture (MNIST) Acc. (%)
Classifier-M-Primary (Classifier,s,,) 99.34
Classifier-M-Alternate-0

. 99.31
(Classifierzg)
Classifier-M-Alternate-1
(Classifierpsq) 99.38
Classifier-M-Alternate-2
(Classifieryo) 9930
Classifier-M-Alternate-3
(Classifiery;3) 99.35
Architecture (CIFAR-10) Acc. (%)
Classifier-C-Primary (Classifierc)) 77.74
Classifier-C-Alternate-0 (Classifiercg) 78.03
Classifier-C-Alternate-1 (Classifierc1) 73.55
Classifier-C-Alternate-2 (Classifiercs) 73.09
Classifier-C-Alternate-3 (Classifiercs) 75.46

Architecture characteristics. To begin our empirical ex-
plorations, we trained five networks each for the standard
MNIST and CIFAR-10 classification tasks. The five networks
differed only in their initial weights or their architectures.
The baseline accuracies on clean data (unperturbed data) are
listed in Table [l The details of the model architectures and
the hyper-parameters we used are given in the Appendix. The
performance of the networks on MNIST was comparable to
state-of-the-art performance [62], but note that the accuracy
on CIFAR-10 was much lower for all five networks. The
state-of-the-art accuracy on CIFAR-10 is higher [63], but to
achieve this performance, data augmentation or additional
dropout must be used. In the context of adversarial robustness,
researchers are typically concerned with the original data,
and we achieved a test accuracy of 77.74%, which is very
close to the state-of-the-art validation accuracy without any
data augmentation [64]. We did not attempt to increase this
number through tuning hyper-parameters or any of the many
other techniques available, as we wanted to use a typical
convolution structure (based on the well-studied LeNet [65])
that is commonly used in other studies and training approaches
that are identical to those presented in [38]] and [[14]] to make
it easy for others to compare with or replicate our work.

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

B. Crafting of adversarial examples using TUPs

Success rate. To evaluate the attack performance of the
proposed algorithm, we report the success rate, which is
defined as the proportion of samples that are misclassified as
target class ¢ when perturbed by our perturbation, on CIFAR-
10 and MNIST (Fig. [3). For all of the model architectures,
results are reported on set X, which was randomly selected
from the training sets of CIFAR-10 and MNIST to compute
the perturbation, and on a validation set that had never been
used during the process of computing the perturbation. The set
X contained 10,000 images, and the validation set contained
5000 images for both CIFAR-10 and MNIST. As can be
seen, the perturbations achieved quite high success rates for
all sets of conditions, although there are some differences in
the success rates because of differences in architecture, target
classes, datasets, and parameter selection, which we discuss
below. Notably, these results demonstrate the universality
property, namely, that any image in the validation set can be
used to fool the classifier into misclassifying it as a target
class ¢ (different from its source class) by the mere addition of
the TUP perturbation computed on another disjoint set. Fig. [1]
illustrates images before and after perturbation by TUPs; note
that in most cases, the perturbations are nearly imperceptible.
We display these perturbations in Fig. [5] where the patterns
of the perturbations are clearly shown and are seen to contain
distinct semantic information. Let N be the number of images
in set X, representing the size of X. In all of the above
experiments, we used £k = N, n = 0.1 for CIFAR-10 and
k = N, n = 0.8 for MNIST, chosen empirically. Although
these values for parameters k& and 1 worked well enough,
we explored further to learn whether there might be different
options for other situations. The effect of the parameter values
was evaluated on the baseline network Classifierc,,, and some
of these results are shown in Fig.[d] Please note that in order to
reduce the amount of calculation required, we chose a smaller
set X, which included 3000 CIFAR-10 images, to compute the
adversarial perturbations and selected the target frog (class 6,
chosen randomly from the ten classes) to use as an example.

Using a larger value for the projection step size k results in
fewer projection operations. Thus, it is natural to hypothesize
that the success rate will decrease as k increases. The results
displayed in Fig. Bf{a) do not violate our intuition: With k& =
100, 97.61% of the examples in the validation set disjoint with
X were classified incorrectly as the target class frog, whereas
when k increased to 3000 (equal to the size of X)) the attack
success rate decreased to 92.66%. In contrast with this modest
decrease in the attack success rate, it is surprising to see that
the calculation time decreased dramatically as k increased.
When k = 3000, it required only slightly more than half the
time needed for £ = 100. Therefore, if an extremely high
performance in terms of the success rate is not pursued, a
larger value of k£ is acceptable.

The effect of parameter 7, the radius of the [, ball on
which the perturbation is projected during the computation, is
rather interesting. We varied 7 from 0.08 to 0.5 and found
that the success rate increased linearly from n = 0.08 to
1 = 0.15 and then plateaued from 1 = 0.15 to n = 0.5; clearly,

a f
. (@ o (f)
5 0. s) 4 0.8-
1] =] - /1
7 0.6- 7 0.6-
504- 504-
%02- “02-
00— I 00— f
0123456789 01234586789
target target
b
o (b) ro- (9)
208~ 208~
g - g -
5 0.6- 7 0.6-
$04- $0.4-
2 g
%02- 702-
0.0 ———FA—4—+——— 0.0 —A—A A A
0123 45¢6 789 01234586789
target target
C h
o (©) Lo (h)
2 08- o r
© B ®
5 0.6- 7] 506"
§04- $0.4-
2 g 0:4°
%02- %02
00— ———— 00—
0123456789 01234586789
target target
d i
1.0- (d) 10- U
2 08- 508"
2 g
5 0.6-] 7 0.6-
$04- $04-
2 g
%02- 702-
00— ——— 00—
0123456789 01234586789
target target
e .
o (e) o, (0
4 0.8- . 4 0.8-
g g -
g 06: 5961
";50.4» 504-
70.2- 70.2-
0.0 e S 00 o f
0123456789 01 2 3 456 7 8 9
target target
X 72 Vval.

Fig. 3: Success rates of TUP adversarial examples on X and
the disjoint validation set for targeted attacks of each target
class (from O to 9). Left column: Success rate of attacks
against the five networks on CIFAR-10; (a)—(e) correspond to
models Classifierc,, Classifiercg, Classifiercy, Classifiercs,
and Classifiercs, respectively. Right column: Success rate
of attacks against the five networks on MNIST; (f)-(j) cor-
respond to models Classifiery;,, Classifierysg, Classifierysq,
Classifierpso, and Classifier,;s, respectively.

therefore, increasing 7 increased the attack success rate of a
TUP perturbation, as displayed in Fig. @b). It should be noted
that the method proposed in Algorithm [I] is not theoretically
guaranteed to converge to the optimal solution, as it operates
in a greedy way. When 1 was chosen to be very small, the
success rate oscillated back and forth far below the desired
performance, and we observed that the smaller the value, the
more violent the oscillation, and thus the more difficult the
convergence.

To qualitatively and quantitatively study whether the per-
turbations generated by our TUP method contain the correct

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

BV RENIVEENER
VEY/BNZBN/BN7IN N
S IR

Success rate

\
\
\
\

Z

100 200 300 00 600 1000 1500
value of k
(b)
1.00
3
2 0.95
a
[
o
v
2 0.90 — X
- Val.
0.0 0.1 0.2 0.3 0.4 0.5
value of n

Fig. 4: Effect of values of parameters k and) on attack success
rate.

semantic information of the target classes, we visualize the
perturbations corresponding to each of the ten classes of
CIFAR-10 and compare them with images randomly selected
from the training set. In Fig.[3] the patterns of the perturbations
are clearly shown; moreover, they contain distinct semantic
information. In addition, we randomly selected 1000 images
from the training set and test set for each class and used the
Canny [66] detector to detect the edges in these images; then
we calculated the cosine similarity between the edge vectors
and the perturbation vectors. The average values of the cosine
similarities corresponding to the 1000 training images and
test images for TUP, C&W, Uni., PGD and FGSM are also
reported in Fig. [5] Note that for all the ten target classes,
the average value of cosine similarity corresponding to our
TUP method is the closest to 1; this means the perturbations
computed by our TUP method are more similar to the edge
vectors (which often carry important semantic information
[67]) of the original images belonging to the target class. There
are numerous algorithms for semantic segmentation, and the
effect of extracting semantic information using TUPs can be
further studied by considering these algorithms. This is an
important research avenue that we reserve for future work.

We compared the proposed TUP method with the most well-
known version of FGSM on the baseline model Classifierc,.
We used Cleverhans [[68] to re-implement the “target class”
variation [19] of FGSM, as the TUP method can be used to
launch a targeted attack. We generated 100 TUP adversar-
ial examples and 100 FGSM adversarial examples for each
source—target pair on CIFAR-10. In Fig. [6] the left column
represents the number of successful untargeted attacks out
of the 100 attacks for each source—target pair, and the right
column represents the number of targeted attacks. The first
row corresponds to the TUP attack, and the second row to
the FGSM attack. As shown by the heat maps, the TUP
method had high success rates in both targeted and untargeted
attacks, whereas FGSM only achieved a comparable success
rate in the untargeted attacks, performing poorly in the targeted

attacks. The number of successful TUP attacks was almost
evenly distributed across each source—target class pair, and
the heat maps for TUP are almost symmetric. This means that
for two classes A and B, perturbing images from A to B is
approximately as difficult as perturbing from B to A for a TUP
attack. For an FGSM attack, however, there exist some specific
source—target class pairs that are much more vulnerable than
others in both targeted and untargeted attacks. This indicates
that the TUP method has found a universal way to perturb the
inputs in a certain direction as specified by the target class,
whereas FGSM is inclined to perturb the original images in
the direction of some vulnerable target class shared by many
data points.

Cross-model transferability. Previous work demonstrated
the transferability property of adversarial examples, that is,
that adversarial examples crafted to mislead one model can
affect other models provided they are trained to perform the
same task, even if their architectures are different or their
training sets are disjoint [[10], [69], [70]. To measure the
cross-model transferability of perturbations crafted by the TUP
method, i.e., the extent to which the perturbations computed
for a specific architecture are effective for another, we com-
puted perturbations for each architecture on both MNIST
and CIFAR-10 for each target class and fed the addition of
each universal perturbation to the other network. We report
the average attack success rate for the ten target classes
on all other architectures for the same dataset in Table [[II
The perturbations had an average cross-model success rate
of greater than 63% on MNIST and 41% on CIFAR-10. In
the best cases, perturbations computed for the Classifieryyg
network had a success rate of 81.03% with Classifiery,s
(on MNIST), and perturbations computed for Classifiercy,
had a 62.97% success rate with Classifiercg (on CIFAR-10).
We observed that the perturbations computed for different
architectures had discrepant transfer capabilities across other
architectures. For example, the perturbations computed for
Classifierp;; (all above 56%, and best case 77.92%) and
Classifierc, (all above 40% except for Classifiercq, and best
case 62.97%) generalized better than other architectures on
the same dataset. The bold numbers in Table |lIf represent the
highest cross-model success rate of the TUPs calculated on
each model. These results show that the TUPs we created do
transfer to some extent across models, thereby demonstrating
that our TUP perturbations are not an artifact of a specific
network nor of a particular selection of training set but have
a degree of universality with respect to both data points and
architectures.

Size of set X. As described previously, each of the TUPs
above was computed for a set X, a random selection of
10,000 examples from the training set (excluding images that
were originally classified as class ¢). Is such a large set X
necessary to achieve similar attack success rates? The answer
to this question may allow the TUP method to be made more
practical. Using a smaller set X does allow a more realistic
assumption regarding the attacker’s access to data; that is,
that the attacker has access to only a subset of the training
data rather than full access to any examples that were used in
training the target model. Meanwhile, using a smaller set X

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141 11

(a) airplane (b) automobile (c) bird (d) cat (e) deer
—my s H 3 < E'
E) n -
. & . &
coso &L ,d, Coso £ § : Coso Coso
~0.03-0.02 ~0.01 0.00 ~0.015-0.016-0.0050.000
(h) horse (i) ship
&8 1 e 2 ”
£ S
. | b 0 B | I
E . o d
& | - |— |
= 1 | 1 d
L — — Jcoso Cos§ & . . - A Coso & L 1 lcose & . . . | Coso
~0.04 002 0.00 ~002 ~0.01 000 0.01 ~0.010-0.0050.000 0.005 ~0.06 ~0.04 ~0.02 0.00

[train EEE test

Fig. 5: Visualization of semantic information contained in perturbations computed by TUP method for CIFAR-10. The ten
classes (a)-(j) shown are the target classes chosen for the respective attacks. In each subgraph of (a)-(j), left: The pixel values
of the perturbations are scaled for visibility. To show the semantic information carried by the perturbation more clearly, two
randomly selected images from the training set are displayed for each target class. Same-colored boxes on the perturbation
images and the sample images indicate the same semantic concept. In each subgraph of (a)-(j), right: The cosine similarity
between the perturbations computed by the five adversarial example generation methods and the contour vector extracted from
the randomly selected samples of the CIFAR-10 training set and test set.

) TABLE III: Success rates (%) corresponding to different sizes

01234567859 N for set X on MNIST and CIFAR-10.
- DENHDEEEE

N
8o 80 Dataset 100 200 300 400 500 600 700 800 900
e o MNIST 8179 8357 89.16 9202 9332 9506 9536 9608 96.08
CIFAR-T0 69.37 8888 9245 0403 0500 9669 9754 9700 O8.63
N
40 40 Datasets —15655—3000 3000 4000 5000 6000 7000 8000 9000
20 20 MNIST 9634 9661 96.63 9720 9747 9822 9861 98.62 99.26

CIFAR-10 98.67 99.61 99.79 99.83 99.85 9990 9990 99.93 99.94

0 makes the algorithm faster.

. Table [shows the success rates on the validation sets
created with TUPs computed on variously sized subsets of the
training set. We repeated the experiment ten times for each set

o X, each time randomly selecting the attack target ¢ from the

-anaanERne - |, 0 ten classes of CIFAR-10 and MNIST; we report the average

Fig. 6: Heat maps of the number of times an attack was results for the ten trials for each X. To eliminate the effect of

successful with the corresponding sourcetarget class pair, for different projection steps and focus on the influence of the size

both targeted and untargeted attacks by TUP and FGSM. (a) Of. set X, the projection operator was qmitted here; although
TUP untargeted attacks, (b) TUP targeted attacks, () FGSM this does cause the success rate to be higher than was shown

untargeted attacks, and (d) FGSM targeted attacks. before (at the expense of the quality of .perturbed images), it
does not affect the trend of the change in success rate as the

size of X is varied.

- DODEEE BEE
» @@

TABLE II: Cross-model success rates (%) on CIFAR-10 and)]]
MNIST. Rows indicate the architecture for which the TUPs We might expect that perturbations computed on higher

were computed, and columns indicate the architecture for numbers of data samples to result in higher attack success
which the success rate is reported. The maximum value in rates, and this holds true when set X contains fewer than 1000

each row is shown in bold font. samples. With a set X containing just 100 CIFAR-10 images,
the attack was successful for 69.37% of the images on the
validation set, and when perturbations were computed on 100

Classifierc, Classifierco Classifierc: Classifierco Classifiercs
62.97 32.50 40.60 52.64

Classifierc,

Classifierco 475 - 27.64 36.88 4523 MNIST images, the attack succeeded in more than 80% of

Classifier 49.77 52.28 - 37.95 43.92 .

Classifiercs 3830 3190 3564 . 81T cases. When set X was expanded to contain 1000 samples, the

Classifieros = 47'.;2 — 52ﬁ7 ! = 26_'56 = 39-550 — perturbation computed on X fooled 98.67% of the validation
assiier ;. assiiierso assier s assiierro assiiier,ss .

Classifiers., - 7878 5129 3575 79.10 images on CIFAR-10 and 96.34% on MNIST; the success rates

Classifieraso 69.01 - 57.19 37.59 81.03 : : s

Classifior R ey : S el did not change much after .that. This surprising result suggests

Classifier 1/ 63.52 68.30 61.98 - 6748 that the proposed method is able to extract a large amount of

Classifiers3 68.91 77.66 51.92 36.20 -

useful information from a very small dataset.

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

(c) (d)

airplane

horse

ship

truck

Fig. 7: Some TUP perturbations generated on sets X of differ-
ent sizes, using four randomly selected classes as examples.
Columns (a)—(e) correspond to N = 1000, 3000, 5000, 7000,
and 9000, respectively.

To illustrate this observation, we display the perturbations
of four randomly selected target classes on CIFAR-10 corre-
sponding to different sizes of set X in Fig. [7] As the images
show, explicit and rich semantic information was captured by
perturbations computed on a very small X; the perturbations
differed only slightly when computed on X sets of different
sizes. This hints that the structure of the dataset is quite
meaningful in the construction of TUPs, whereas the quantity
of data has no sizable effect.

C. Effect of region adversarial training on adversarial robust-
ness

We now examine the effect of region adversarial training
with perturbed examples on the baseline models Classifierc,
and Classifieras,. We used the TUP perturbations computed
for the networks Classifierc, and Classifierys, (described in
Section [V-B] and presented in Fig. [3) and performed region
adversarial training according to the method described in
Section In the RAT process, the TUP computed for
one target class was used at a time, and we performed
experiments on the ten target classes separately. Specifically,
we included the adversarial counterparts of the original data
during training through the simple addition of a targeted TUP
perturbation to all of the clean examples classified as classes
other than the target class ¢ by the attacked network. Then,
we retrained the two baseline models for 50 epochs. We
report the classification accuracy for the perturbed adversarial
examples on the test set in Fig. [§] We observe that although the
accuracy was not as high as that attained on the clean dataset,
the use of region adversarial training did greatly improve
the classification accuracy on adversarial examples compared
with the accuracy before retraining. As Fig. [§] shows, the
accuracy on the perturbed test set rose to more than 72%
for each class in CIFAR-10; the previous accuracy was less
than 31% for all classes (average 10.34%, minimum 3.18%).
For MNIST, the accuracy increased to over 98% for each
class, compared with less than 14% (average 3.09%, minimum

12

0.07%) before. Note that in all of experiments reported in
this paper, better results were obtained on MNIST than on
CIFAR-10. One key reason is that the models we trained in
this study perform better on the clean MNIST dataset than
on the clean CIFAR-10 (as explained in Section [V-A); thus,
we could say that the model Classifierys, is more powerful
than Classifierc, when they are performing their respective
tasks. On the other hand, the MNIST dataset contains only
black and white images, which have a pure background. In
addition, in order to provide heuristic comparisons, we were
more conservative in the parameter selections for CIFAR-10.

Another finding is that region adversarial training using
the TUPs not only strengthens the adversarial robustness to
TUP perturbations themselves but is also effective against
other adversarial attacks, such as the most well-known attack
methods, FGSM [11]], Uni. [16]], PGD and C&W [[14]. We
generated 1000 targeted adversarial examples corresponding to
each of FGSM, C&W, and PGD for all classes in the CIFAR-
10 test sets. For the untargeted method Uni., we generated
a total of 10,000 adversarial examples and calculated the
accuracy based on the actual misclassifications of the attack
examples. Note that we launched the PGD and C&W attacks
excessively harshly, similar to [18]] and [[14]; that is, we altered
each adversarial example until the attack was successful. This
is a more extreme case that represents a stronger attack
capability; consequently, the classification accuracy on the
clean test dataset is zero for PGD and C&W in Fig. [§] The
results show that the networks trained using region adversarial
training exhibited greater robustness properties that were not
limited to the perturbations seen by the models during retrain-
ing; their ability to correctly classify unseen patterns, such as
those corresponding to FGSM, Uni., PGD and C&W, was also
greatly improved, even under extreme attacks.

One question that remains is the following: Given that a
TUP attack on a very small set can be quite powerful (as we
have demonstrated), can region adversarial training with such
attacks still improve robustness further? To investigate this
issue, we measured the accuracies on the test set of CIFAR-
10 against TUP and FGSM attacks after region adversarial
training with TUPs computed on X sets of different sizes
for Classifierc,; these are reported in Fig. 9} For comparison,
the results after adversarial training with FGSM are also
shown in Fig.[9] The original accuracies (before retraining) are
shown in Table[[V] Note that only the number of images (from
the training set) needed to generate adversarial examples for
adversarial training has been changed; the final accuracy was
calculated on the test set. As FGSM computes perturbations
on a single image at a time, whereas TUP computes an image-
agnostic perturbation and then simply adds the perturbation to
the clean input, the accuracies for FGSM shown in Table
do not change with N.

From the results shown, we find that region adversarial
training based on the TUP algorithm offers comparative advan-
tages in improving adversarial robustness through heuristics-
based techniques. Firstly, both region adversarial training
(RAT) based on TUP and adversarial training (AT) based on
FGSM improve the test accuracy of the adversarial patterns
they used during the retraining. In all cases of the ten target

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

o
©

0.8
0.6) 0.6 . 0.6 . 0.6
z 2 g 2
g] g g
§ 0.4 § 0.4 § 0.4 § 0.4
< < < <
0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0
Sge 8 Sgeéd SEEEs $gess
(a)airplane (b)automobile (c)bird (d)cat
0.8
0.6 0.6 0.6 0.6
oy by oy by
E £oa 04 E
2 2 2 2
0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0
S g s g8 S ge s S g
(f)dog (g)frog (h)horse (i)ship
=X before BB after

13
0.6
2
S04
3
<
0.2
0.0
$EvEs
(e)deer
0.6
oy
% 0.4
2
0.2
0.0
(j)truck

Fig. 8: Comparison of accuracy before and after region adversarial training based on TUP against TUP, FGSM, Uni., PGD,
C&W attacks.

TABLE IV: Accuracy(%) on

for the ten target classes.

test set against TUP and FGSM adversarial examples corresponding to

different sizes of set X

0 1 2 3 4 5 6 7 8 9
N TUP FGSM TUP FGSM TUP FGSM TUP FGSM TUP FGSM TUP FGSM TUP FGSM TUP FGSM TUP FGSM TUP FGSM
1000 2443 1720 2439 20.00 2749 1574 27.67 1416 1521 12.69 20.69 1750 1562 1478 2496 12.03 2627 1686 18.53 18.33
2000 2339 1720 2231 20.00 2547 1574 2466 1416 1399 12.69 1860 1750 14.04 1478 2121 12.03 2550 1686 17.88 18.33
3000 23.13 17.20 22.18 20.00 23.19 1574 2373 1416 1026 12.69 17.68 17.50 10.81 1478 1146 1203 2247 16.86 15.09 18.33
4000 22.31 1720 1993 20.00 22.12 1574 1930 14.16 8.70 1269 16.19 17.50 7.02 1478 1074 1203 2169 16.86 12.68 18.33
5000 2218 17.20 19.64 20.00 22.18 15.74 16.11 14.16 7.23 12.69 1574 17.50 6.70 14.78 9.61 12.03 2049 1686 12.01 18.33
6000 1993 1720 17.81 20.00 1991 1574 15.19 14.16 6.56 1269 1534 17.50 5.70 14.78 8.36 1203 1937 1686 11.59 18.33
7000 19.64 1720 1698 20.00 1556 1574 14.57 14.16 6.36 12.69 14.57 17.50 4.94 14.78 8.22 12.03 1890 16.86 8.96 18.33
8000 17.81 1720 1443 20.00 1549 15774 1426 14.16 6.01 12.69 13.59 17.50 4.63 14.78 6.74 12.03 1772 16.86 8.02 18.33
9000 16.98 1720 1413 20.00 1394 1574 12.87 14.16 5.92 12.69 13.13 17.50 4.16 14.78 6.53 12.03 16.34 16.86 6.98 18.33
(a) airplane (b) automobile (c) bird (d) cat (e) deer
07 P e T e 0.75 {9-0--4--0-9-4-4¢"¢ 075 J#- 0444449 07540 o o oeostt?t
0.70 7 :
, 0704 . . 0.70 4 . 0.70 . 0.70
5 5 0.5] g eeal E g
5 0.65 g £ 0.65 _.,,&—-0“.”.’ £ 0.65 7 £ 0.65 4
g 8 0.60 S o604 2 0.60] E
< 0.60 < < <0 < 0.60 4
0.55 0.55 4 0.55 1
0.55 0.55
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
N N N N N
(f) dog (g) frog (h) horse (i) ship . () truck
0.75 .75
0.75 _'__’_,‘._‘--Q—‘—-Q——Q'“ —1 T . —g 7‘"‘__‘__‘_._‘-*—0—0 0.75 = _‘7*,0—4 = _‘_*-0>0
>4 070 1 bt et
£ 0.70 4 . . 0707 . 0.70 4
g £ 065 7 % 0.65 1 g
5 0.65 1 H g 5 0.65 1
2 20607 £ 060 2
0.60 7 0.55 A 0.55 3 0.60
0.55 - T
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
N N N N N
—e— FGSM_after AT —o— TUP_after AT --e-- FGSM_after_RAT -<4-- TUP_after RAT

Fig. 9: Accuracy against TUP and FGSM attacks on test set before and after region adversarial training based on TUP (red)
or classical adversarial training based on FGSM perturbations (blue).

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

classes, however, RAT improves the accuracy of TUPs more
than AT improves the accuracy of FGSM. Secondly, RAT
also improves the robustness of the network against FGSM;
in fact, there is not much of a gap between RAT and AT
in their improvement of FGSM accuracy. By contrast, AT
improves the accuracy of TUP much less than does RAT.
Thirdly, the accuracy—N curves for RAT are flatter than those
for AT on both TUP and FGSM; this indicates that only a
small number of samples are needed for the RAT method to
achieve good results in enhancing adversarial robustness. This
might be because of the difference in the principles of the
two methods, AT hoping that the network can extract omitted
information from a large number of adversarial examples
on its own during retraining, and RAT using the missing
semantic information near the classification boundary to guide
the network’s training.

VI. CONCLUSION

. In summary, the method proposed in this paper improves
the adversarial robustness of deep neural networks by empha-
sizing to deep models the missed semantic information of the
region around the decision boundary. Our research builds on
recent research on the generation of image-agnostic universal
adversarial perturbations to fool deep neural networks, but it
does so with attention to two entirely different goals: to have
the perturbations extract the unlearned semantic information
of a specific region in the manifold represented by a network
and to use them to enhance the robustness of the network.
We have proposed an algorithm named TUP to extract this
information that the model has not yet learned but that is
essential for correctly classifying the adversarial examples.
The algorithm uses an iterative process on a subset of the
training set to obtain a universal property across inputs, as
many previous algorithms have done, but we interfered with
the iterative process to push it toward the region corresponding
to a specified target class. Furthermore, to enhance adversarial
robustness, we designed region adversarial training based on
the TUP perturbations. Experimental results on two datasets
and ten classifiers show that region adversarial training based
on the TUP algorithm not only improves robustness against
TUPs but also markedly improves robustness against FGSM,
Uni., PGD, and C&W perturbations.

The TUP algorithm uses just a few training samples to
effectively extract the semantic information obscured by the
blind spots of the deep models, and at the same time it
provides a powerful adversarial attack method that exhibits
transferability across different architectures. The proposed
region adversarial training method based on the TUP algorithm
offers an efficient way to enhance the robustness of classifiers,
especially the robustness of the region corresponding to a
specific class, as the perturbation is universal for each class.
By simply calculating a TUP perturbation on a very small
set and then adding the perturbation to clean images, the
method obtains the adversarial examples required for region
adversarial training. The proposed approach provides new
ideas for enhancing the adversarial robustness of DNNs and
can be used as a fast and efficient tool. In our future work, we

plan to explore the possibility of using multiple target classes
concurrently during RAT and the method of selecting these
target classes. Research on the methodology of selecting a few
classes from among all the classes will provide insights on the
geometric correlations between different parts of the decision
boundary. Moreover, such research may also help improve the
efficiency of the RAT algorithm while further enhancing the
robustness of models, enabling the proposed technique to be
scaled to large datasets such as ImageNet [71]. In our future
works, we will perform more detailed investigations in this
regard. Finally, as DNNs are increasingly leveraged to improve
the accuracy of many security-sensitive applications, such as
biometric systems, it provides our algorithm with promising
application scenarios ranging from cellphone authentication
to airport security systems. An interesting potential research
involves how to apply the algorithm proposed in this paper
to these systems, which requires one step forward and more
effort. For example, how to make our algorithm more effective
to extract useful semantic information from biometric features
which are more detailed (such as facial features, palmprints,
ears and irises), and how to make the algorithm work effi-
ciently in complex systems are worthy of further investigation.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (Grant Nos. U19A2081, 61802270) and
the Fundamental Research Funds for the Central Universities
(Grant No. 2019SCU12069, SCU2018D018).

REFERENCES

[11 Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[2] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[3] F. Pérez-Hernandez, S. Tabik, A. Lamas, R. Olmos, and F. Herrera,
“Object detection binary classifiers methodology based on deep learn-
ing to identify small objects handled similarly: Application in video
surveillance,” Knowledge-Based Systems, p. 105590, 2020.

[4] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, B. Kingsbury et al., “Deep neural networks
for acoustic modeling in speech recognition,” IEEE Signal processing
magazine, vol. 29, 2012.

[51 G. Gosztolya, “Posterior-thresholding feature extraction for paralinguis-
tic speech classification,” Knowledge-Based Systems, p. 104943, 2019.

[6] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence learning
with neural networks,” Advances in NIPS, 2014.

[7]1 B. Alshemali and J. Kalita, “Improving the reliability of deep neural
networks in nlp: A review,” Knowledge-Based Systems, vol. 191, 2020.

[8] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, p. 115, 2017.

[9]1 K. Hornik, M. B. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359-366, 1989.

[10] C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[11] I.J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[12] W. Liu, Z. Luo, and S. Li, “Improving deep ensemble vehicle classifica-
tion by using selected adversarial samples,” Knowledge-Based Systems,
vol. 160, no. NOV.15, pp. 167-175, 2018.

[13] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against
adversarial examples,” arXiv preprint arXiv:1801.09344, 2018.

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39-57.

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural networks, vol. 32, pp. 323-332, 2012.

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 1765-1773.

Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” arXiv preprint arXiv:1611.01236, 2016.

——, “Adversarial examples in the physical world,” arXiv preprint
arXiv:1607.02533, 2016.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 2016, pp. 372-387.

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574-2582.

J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation,
vol. 23, no. 5, pp. 828-841, 2019.

F. Suya, J. Chi, D. Evans, and Y. Tian, “Hybrid batch attacks:
Finding black-box adversarial examples with limited queries,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1327-1344. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity20/presentation/suya

S. Sarkar, A. Bansal, U. Mahbub, and R. Chellappa, “Upset and
angri: Breaking high performance image classifiers,” arXiv preprint
arXiv:1707.01159, 2017.

V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of
neural networks with mixed integer programming,” in 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security
analysis of neural networks using symbolic intervals,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 1599-1614.

T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vecheyv, “Ai2: Safety and robustness certification of neural networks
with abstract interpretation,” in 2018 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2018, pp. 3-18.

E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in International Conference
on Machine Learning, 2018, pp. 5286-5295.

G. Singh, T. Gehr, M. Mirman, M. Piischel, and M. Vechev, “Fast and
effective robustness certification,” in Advances in Neural Information
Processing Systems, 2018, pp. 10802-10813.

L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning,
and I. Dhillon, “Towards fast computation of certified robustness for relu
networks,” in International Conference on Machine Learning, 2018, pp.
5276-5285.

H. Zhang, T.-W. Weng, P-Y. Chen, C.-J. Hsieh, and L. Daniel, “Ef-
ficient neural network robustness certification with general activation
functions,” in Advances in neural information processing systems, 2018,
pp. 4939-4948.

S. Gu and L. Rigazio, “Towards deep neural network architectures robust
to adversarial examples,” arXiv preprint arXiv:1412.5068, 2014.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in In
International Conference on Machine Learning. Citeseer, 2011.

A. S. Ross and F. Doshi-Velez, “Improving the adversarial robustness
and interpretability of deep neural networks by regularizing their input
gradients,” in Thirty-second AAAI conference on artificial intelligence,
2018.

C. Lyu, K. Huang, and H.-N. Liang, “A unified gradient regularization
family for adversarial examples,” in 2015 IEEE International Conference
on Data Mining. 1EEE, 2015, pp. 301-309.

L. Nguyen, S. Wang, and A. Sinha, “A learning and masking approach
to secure learning,” in International Conference on Decision and Game
Theory for Security. Springer, 2018, pp. 453-464.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE Symposium on Security and Privacy (SP). 1EEE, 2016,
pp. 582-597.

A. Nayebi and S. Ganguli, “Biologically inspired protection of deep
networks from adversarial attacks,” arXiv preprint arXiv:1703.09202,
2017.

D. Krotov and J. Hopfield, “Dense associative memory is robust to
adversarial inputs,” Neural computation, vol. 30, no. 12, pp. 3151-3167,
2018.

M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling deep
structured prediction models,” arXiv preprint arXiv:1707.05373, 2017.
J. Gao, B. Wang, Z. Lin, W. Xu, and Y. Qi, “Deepcloak: Masking deep
neural network models for robustness against adversarial samples,” arXiv
preprint arXiv:1702.06763, 2017.

T. Na, J. H. Ko, and S. Mukhopadhyay, “Cascade adversarial ma-
chine learning regularized with a unified embedding,” arXiv preprint
arXiv:1708.02582, 20117.

N. Akhtar, J. Liu, and A. Mian, “Defense against universal adversarial
perturbations,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 3389-3398.

W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” arXiv preprint arXiv:1704.01155,
2017.

S. Shen, G. Jin, K. Gao, and Y. Zhang, “Ape-gan: Adversarial pertur-
bation elimination with gan,” arXiv preprint arXiv:1707.05474, 2017.
H. Lee, S. Han, and J. Lee, “Generative adversarial trainer: Defense to
adversarial perturbations with gan,” arXiv preprint arXiv:1705.03387,
2017.

S. Sankaranarayanan, A. Jain, R. Chellappa, and S. N. Lim, “Regular-
izing deep networks using efficient layerwise adversarial training,” in
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

T. Miyato, A. M. Dai, and I. Goodfellow, “Adversarial train-
ing methods for semi-supervised text classification,” arXiv preprint
arXiv:1605.07725, 2016.

S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the
robustness of deep neural networks via stability training,” in Proceedings
of the ieee conference on computer vision and pattern recognition, 2016,
pp. 4480-4488.

G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the
effect of jpg compression on adversarial images,” arXiv preprint
arXiv:1608.00853, 2016.

C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten, “Counter-
ing adversarial images using input transformations,” arXiv preprint
arXiv:1711.00117, 2017.

N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, L. Chen, M. E.
Kounavis, and D. H. Chau, “Keeping the bad guys out: Protecting
and vaccinating deep learning with jpeg compression,” arXiv preprint
arXiv:1705.02900, 2017.

Y. Luo, X. Boix, G. Roig, T. Poggio, and Q. Zhao, “Foveation-
based mechanisms alleviate adversarial examples,” arXiv preprint
arXiv:1511.06292, 2015.

K. R. Mopuri, U. Garg, and R. V. Babu, “Fast feature fool: A data
independent approach to universal adversarial perturbations,” arXiv
preprint arXiv:1707.05572, 2017.

U. Shaham, Y. Yamada, and S. Negahban, “Understanding adversarial
training: Increasing local stability of supervised models through robust
optimization,” Neurocomputing, vol. 307, pp. 195-204, 2018.

A. Kurakin, I. Goodfellow, S. Bengio, Y. Dong, F. Liao, M. Liang,
T. Pang, J. Zhu, X. Hu, C. Xie et al., “Adversarial attacks and defences
competition,” Computer Vision and Pattern Recognition, pp. 195-231,
2018.

N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” Computer Vision and Pattern Recogni-
tion, 2018.

N. Papernot and P. McDaniel, “On the effectiveness of defensive
distillation,” arXiv preprint arXiv:1607.05113, 2016.

D. Warde-Farley and 1. Goodfellow, “adversarial perturbations of deep
neural networks,” Perturbations, Optimization, and Statistics, vol. 311,
2016.

B. Guttman and E. Roback, “An introduction to computer security
: The nist handbook,” Nat’l Inst of Standards & Technology Special
Publication Sp, vol. 27, no. 1, pp. 3-18, 1995.

D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Computer Vision and Pattern
Recognition, 2012.

B. Graham, “Fractional max-pooling,” ArXiv, vol. abs/1412.6071, 2014.

https://www.usenix.org/conference/usenixsecurity20/presentation/suya
https://www.usenix.org/conference/usenixsecurity20/presentation/suya

KNOWLEDGE-BASED SYSTEMS 226 (2021) 107141

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, “Convolutional
kernel networks,” Advances in Neural Information Processing Systems,
pp. 2627-2635, 2014.

Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” in Shape, Contour and Grouping in Computer
Vision, 1999.

J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on pattern analysis and machine intelligence, no. 6, pp. 679698,
1986.

R. Szeliski, Computer vision: algorithms and applications. — Springer
Science & Business Media, 2010.

N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Ku-
rakin, C. Xie, Y. Sharma, T. Brown, A. Roy, A. Matyasko, V. Behzadan,
K. Hambardzumyan, Z. Zhang, Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg,
J. Uesato, W. Gierke, Y. Dong, D. Berthelot, P. Hendricks, J. Rauber,
and R. Long, “Technical report on the cleverhans v2.1.0 adversarial
examples library,” arXiv preprint arXiv:1610.00768, 2018.

N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” arXiv preprint arXiv:1605.07277, 2016.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506-519.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.

	I Introduction
	II Related Work
	III Preliminaries
	III-A Neural networks: Definitions and notation
	III-B Adversarial examples
	III-C Threat model

	IV Preliminaries
	IV-A Neural networks: Definitions and notation
	IV-B Adversarial examples
	IV-C Threat model
	IV-D Targeted universal perturbations
	IV-E Region adversarial training

	V Evaluation
	V-A Experimental setup
	V-B Crafting of adversarial examples using TUPs
	V-C Effect of region adversarial training on adversarial robustness

	VI Conclusion
	References

