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Abstract

Select-then-compress is a popular hybrid framework for text summarization due

to its high efficiency. This framework first selects salient sentences and then in-

dependently condenses each of the selected sentences into a concise version.

However, compressing sentences separately ignores the context information of

the document, and is therefore prone to delete salient information. To ad-

dress this limitation, we propose a novel condense-then-select framework for

text summarization. Our framework first concurrently condenses each docu-

ment sentence. Original document sentences and their compressed versions then

become the candidates for extraction. Finally, an extractor utilizes the context

information of the document to select candidates and assembles them into a

summary. If salient information is deleted during condensing, the extractor can

select an original sentence to retain the information. Thus, our framework helps

to avoid the loss of salient information, while preserving the high efficiency of

sentence-level compression. Experiment results1 on the CNN/DailyMail, DUC-

2002, and Pubmed datasets demonstrate that our framework outperforms the

select-then-compress framework and other strong baselines.
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1. Introduction

Text summarization aims at distilling the core information of a document

into a short and concise summary. Existing summarization methods can be

divided into three categories: extractive, abstractive, and hybrid. Extractive

methods select salient sentences from the input document to form a summary

prediction. Abstractive methods, on the other hand, generate a summary word

by word from scratch, and can introduce novel words that do not appear in

the document. Though recent abstractive methods [1, 2, 3, 4] have achieved

promising results by adopting the encoder-decoder neural model [5], they suffer

from the problem of slow training and decoding.

Hybrid methods combine extractive and abstractive methods by adopting

a select-then-compress framework. These methods first select salient sentences

from the input document, and then condense each of the selected sentences

independently into a more concise version. Different hybrid methods apply

different models [7, 8, 9] to condense sentences. A recent sentence rewriting

method [6] adopts the encoder-decoder neural model as the condensing model,

which achieves promising results. Compared to abstractive methods, hybrid

methods are easier to train as a condensing model only needs to condense one

document sentence instead of the whole input document. Moreover, the decod-

ing of each summary sentence can be done in parallel. Hence, hybrid methods

have substantially higher training and testing efficiency.

However, since hybrid methods condense each sentence separately, they can-

not utilize the context information of the input document to determine which

information to discard during condensing. Thus, hybrid methods are prone

to delete salient information from a document sentence, leading to a loss of

salient information in the output summary. For example, Figure 1 (a) shows

a document sentence being selected by the sentence rewriting method [6]. The

sentence is then condensed into a concise version that appears in the output

summary. We observe that the salient information of “will appear in circulation

later this year” was deleted by the framework, while such information appears
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Extracted document sentence: production of the new coins began 
monday , and they will appear in circulation later this year , the 
royal mint said . 

Output: production of the new coins began monday .

Extraction candidates: 
…
Original: production of the new coins began monday , and they will 
appear in circulation later this year , the royal mint said .
Concise version 1: production of the new coins began monday , and 
they will appear in circulation later this year .
Concise version 2: production of the new coins began monday .
…

Condense

Select

(a)

(b)

Output: production of the new coins began monday , and they will 
appear in circulation later this year .

Ground-truth summary sentence: production of coins with the new 
image has begun , and they will be in circulation this year .

Figure 1: (a) A sample ground-truth summary sentence and a document sentence extracted

by the sentence rewriting method [6]. The extracted sentence is then condensed into an output

sentence. The omitted salient information is highlighted. (b) Sample extraction candidates

produced by our framework. Our compression-controllable abstractor condenses a document

sentence into two concise versions. An extractor then selects “concise version 1” to produce

an output sentence.

in the ground-truth summary sentence.

To address the problem of salient information deletion while preserving the

fast and parallel decoding of sentence-level compression, we propose a novel

condense-then-select summarization framework as follows. An abstractor first

concurrently condenses each input document sentence into several versions, e.g.,

with varying compression ratios. The original sentences and their compressed

versions then become the candidates for extraction. Next, an extractor makes

a sequence of decisions, each time selecting either one original sentence or its

best condensed version, conditioned on the selection history and the context of

the document.
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We show an example in Figure 1 (b), where our framework uses an abstrac-

tor to generate two compressed versions of the original sentence. The extractor

selects the concise version that covers the important information on circulation

and also avoids the inclusion of minor content (“the royal mint said”). As a re-

sult, the output summary contains more salient information than the summary

generated by a select-then-condense framework. In the extreme case where

salient information is absent in all condensed sentences, the extractor in our

framework can select original sentences to retain the salient information. Our

framework therefore benefits from (1) fast training and testing of sentence-level

abstraction, (2) conciseness of abstractive method, and (3) extraction candi-

dates with both original and condensed sentences to avoid the loss of salient

information.

In this work, we explore different types of abstractors to condense a doc-

ument sentence into different compressed versions. Among these, the most

effective one is found to be our proposed compression-controllable abstractor,

which generates two concise versions that retain the information of a sentence

to various extents. The output from this abstractor is illustrated in Figure 1,

where version 2 has a higher compression ratio.

We conduct extensive empirical studies to evaluate our condense-then-select

framework. Experiment results on the CNN/DailyMail dataset show that our

framework outperforms the select-then-compress framework and other strong

baselines. Moreover, we analyze how different types of abstractors affect the

overall performance of our framework. Furthermore, experimental results on

the DUC-2002 dataset demonstrate that our framework achieves better gener-

alization than the baselines. Finally, experiments on the Pubmed dataset show

that our framework outperforms strong long text summarization baselines.

Our contributions can be summarized as follows: (1) a new condense-then-

select framework for text summarization; (2) an extensive analysis of different

types of abstractors within our framework; and (3) our framework outperforms

strong baselines on both CNN/DailyMail and DUC-2002 datasets.
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2. Related Work

Extractive methods. Most of the previous extractive methods consist of

two major components: scoring of each document sentence and selection of sen-

tences. Sequence labelling models [10, 11, 12, 13] first learn a relevance score for

each document sentence, and then select the document sentences with a score

larger than 0.5. The joint scoring and selection approach [14, 6] is proposed to

extract sentences one by one. At each step, a decoder attends to the document

sentences and selects the sentence with the highest attention score. Some of

the methods above [12, 13, 15, 6] apply reinforcement learning (RL) to opti-

mize the non-differential ROUGE scores. Recently, Zhong et al. [16] propose a

method to perform extraction at summary level instead of sentence level. This

method first enumerates all possible combinations of document sentences as the

summary candidates from a pruned document. Then it selects the candidate

that has the highest semantic similarity with the document measured by a text

matching model. Compared to the above extractive methods, our framework

uses an abstractive model to condense the document sentences before the sen-

tence extraction. Hence, our framework can introduce novel words in the output

summary.

Abstractive methods. Abstractive methods rely on the encoder-decoder

neural model [5] to generate a summary. See et al. [2] propose the pointer-

generator network that allows the decoder to copy words from the input doc-

ument. Gehrmann et al. [17] introduce the bottom-up attention to improve

the contention selection ability of the pointer-generator network, whereas other

methods [18, 19, 20] apply multi-task learning frameworks to enhance the con-

tention selection capability. The ASGARD method [21] incorporates the infor-

mation from a knowledge graph into the decoder to improve the faithfulness of

the generated summary. Several methods [3, 22] apply RL to directly optimize

the ROUGE scores. Since the training objective of ROUGE scores harms the

language fluency of a decoder [6], we only use RL to train our extractor in or-

der to improve ROUGE scores without hurting the fluency. Recent abstractive
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methods [23, 24, 25, 26] fine-tune large pre-trained language models on text

summarization datasets and achieve state-of-the-art performance. Xu et al. [27]

uses the self-attention distribution in the Transformer encoder to estimate the

centrality of each source word. Then the centrality of each word is used to

guide the copying process in a large pre-trained language model. Another line

of research [28, 29] studies the problem of controlling the absolute length of the

output summary, whereas our compression-controllable abstractor only controls

the length difference between the input and output sentences. Compared to

these methods, our framework only performs sentence-level abstraction, which

has higher training efficiency.

Hybrid methods. Existing hybrid methods follow a select-then-compress

framework that first selects document sentences and then condenses each of

them. Traditional methods adopt integer linear programming [30], Hidden

Markov Models [8], and statistical models based on a parsing tree [7]. Some

recent methods use neural networks to compress a selected document sentence

by extracting important words [9] or selecting a compression option derived from

constituency parses [31], but they cannot generate novel words. The sentence

rewriting method [6] applies the encoder-decoder model to rewrite the selected

document sentences into shortened versions, which can generate novel words.

The SENECA model [32] explicitly incorporates the entity information into

the extractor module. However, sentence-level compression is prone to delete

salient information. We address this problem by adopting a condense-then-

select strategy, which shares a similar idea with the trimming approach [33] for

multi-document summarization. The trimming approach first compresses each

leading document sentence into multiple candidates by heuristic rules, and then

selects sentences from the candidates. We are the first to study this idea in

abstractive summarization, where our abstractor can generate novel words.

Although our work is closely related to the sentence-rewriting method [6],

there are four key differences. (1) The sentence-rewriting method follows a

select-then-compress framework; whereas our methods follow a condense-then-
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select framework. If salient information is deleted during content abstraction,

the extractor in our framework can select original sentences to retain the salient

information. (2) In the sentence-rewriting method, the extraction candidates

only contain the original document sentences. Hence, the candidate extractor

only considers the interactions among the document sentences. In our frame-

work, the extraction candidates have two types of interaction: the interaction

among different document sentences; and the interaction between a document

sentence and its condensed versions. Hence, we add a sentence candidate set rep-

resentation into the candidate extractor to model the interaction between a doc-

ument sentence and its condensed versions. (3) The sentence-rewriting method

uses the pointer-generator network [2] as the abstractor. Our work extends

the pointer-generator network to build a compression-controllable abstractor,

which condenses a document sentence into two concise versions with different

compression levels. (4) During training, the sentence rewriting method [6] uses

the sentence-level Rouge-L score as the reward of selecting a candidate, which

aims at a local optimum of one selection. Our work uses the marginal increase

in ROUGE-L score of the output summary as the reward, which aims at the

global optimum of the entire output summary.

3. Condense-then-Select Framework

We define the problem of text summarization as follows. Given a document

X with a sequence of n sentences, X = (x1,x2, . . . ,xn), the output is a summary

containing a sequence of m sentences, Y = (y1, . . . ,ym).

Our condense-then-select framework is comprised of an abstractor and an

extractor. First, the abstractor condenses each document sentence xi into k

different concise versions x1
i , . . . ,x

k
i . All document sentences xi and their concise

versions xji then become the candidates for extraction. After that, the extractor

applies a candidate encoder to learn a context-aware representation for each

candidate and uses a pointer network [34] to select sentence candidates and

produce a summary prediction Ŷ. The overall architecture is illustrated in
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Concise
versions:

Context-aware
representations:

Pointer Network

Abstractor

Candidate Encoder

Document
sentences:

artist jody clark said …

he said he researched …
jody clark said he …

Abstractor

i think it 's the most …

The most familiar and …
It ‘s the most familiar …

𝒓"# 𝒓"" 𝒓"$ 𝒓$# 𝒓$" 𝒓"$

ℎ" ℎ" ℎ" ℎ$ ℎ$ ℎ$

𝒓"#

ℎ"𝐺𝑂

…

…

…

…

…

Figure 2: Overall framework architecture. An abstractor first condenses each document sen-

tence into different concise versions. Next, a candidate encoder converts all extraction candi-

dates into context-aware representations. Finally, a pointer network extracts candidates based

on their representations. 〈GO〉 denotes a trainable initial input.

Figure 2.

3.1. Abstractor Modules

In this work, different types of abstractors are explored. All of our abstrac-

tors rely on the pointer-generator network [2] to learn a mapping between an

input sequence and an output sequence. Specifically, the input sequence is a

document sentence, and the output sequence is a concise version of it. We use

the maximum likelihood loss to train this model with training pairs of a docu-

ment sentence and its concise version. Different abstractors vary in how such

training pairs are constructed. They are detailed as follows.

One-to-one top-k abstractor. This abstractor uses the method proposed

by Chen and Bansal [6] to align each summary sentence yt with a document

sentence xjt . It then treats the pairs of (xjt ,yt) as the training pairs for the

pointer-generator model. The alignment rule is as follows: for each summary

sentence yt, we find a document sentence xjt that covers as much information

of yt as possible:

jt = argmaxi Rouge-Lrecall(xi,yt). (1)
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We refer to xjt as the source sentence of yt. To generate k different concise

versions given a document sentence xi during inference time, we use a beam

search algorithm with a beam size of N . The top-k output sequences in the list

then become the k concise versions of a document sentence, x1
i , . . . ,x

k
i .

One-to-one long-short abstractor. This abstractor shares the same model

and training procedure with the one-to-one top-k abstractor. The only difference

is that it takes the longest and shortest sequences from the N -best list of beam

search to be the two concise versions, x1
i and x2

i , for an input document sentence

xi.

Compression-controllable abstractor. Our compression-controllable ab-

stractor generates two concise versions of different compression levels2. Overall

speaking, this abstractor maintains two embedding vectors to indicate two com-

pression levels (high and low). Then at each decoding step, we feed the concate-

nation of the compression level embedding and the embedding of the previous

predicted token to the decoder, which allows the generation of a concise version

to be conditioned on the given compression level.

The followings are the details of our compression-controllable abstractor.

We first construct a compression level label ηt for each training pair of (xjt ,yt).

Given a compression level ηt, this abstractor first maps ηt to its corresponding

compression level embedding, βt ∈ Rdβ via a look-up table. Then it uses the

concatenation of βt and the embedding of the previous predicted token to be the

input of the decoder at every decoding step, i.e., st = LSTM1(st−1, [et−1;β]),

where LSTM1 denotes the decoder LSTM used in the abstractor, st denotes its

t-th hidden state, et−1 denotes the embedding of the previous predicted token.

We define two compression levels, high and low, using the following rule:

2We tried training an abstractor that generates concise versions of three different com-

pression levels. However, we found that in many of the output samples, two of the three

concise versions are the same as each other. Hence, we thought that it is difficult to condense

an original document sentence into three different concise versions and we used two concise

versions in our work.
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(xjt ,yt) has a high compression level if its compression ratio is larger than 0.5,

otherwise, it has a low compression level. The compression ratio between a

summary sentence yt and its source sentence xjt is defined as
|xjt |−|yt|
|xjt |

, where

|x| denote the number of tokens in x. During training of the abstractor, we feed

the embedding of the compression level associated with the reference summary

sentence and its source sentence.

After training, we use this abstractor to generate two concise versions for

each document sentence xi as follows. We first generate a concise version of low

compression level by feeding the embedding of low compression level. Then we

generate a concise version of high compression level by feeding the embedding of

the high compression level3. In this abstractor, we pick the top output sequence

from the beam search.

Two-to-one abstractor. We introduce a two-to-one abstractor that models

the two-to-one alignment between two document sentences and one summary

sentence. In addition to a source sentence xjt , we use another document sentence

xj′t to provide auxiliary information for the generation of yt. We refer to xj′t

as the secondary source sentence of yt. To construct the training tuples of

(xjt ,xj′t ,yt), we use the following rule to find the secondary source sentence:

j′t = argmaxi 6=jt Rouge-Lrecall([xjt ;xi],yt), (2)

where [·; ·] denotes concatenation. During training, we concatenate xjt and xj′t

to form an input sequence. During inference, we treat the input document

sentence xi as the source sentence. Since we do not know which document

sentence can provide auxiliary information during inference, we assume that

neighboring document sentences have a higher chance of talking about the same

topic. Thus, we treat each of its neighboring document sentences, xi−1 and

xi+1, as the secondary source sentence respectively. More specifically, we feed

[xi;xi−1] to the pointer-generator network to generate one concise version x1
i ,

3Note that each compression level indicates a range of compression ratios, the exact com-

pression ratio of a concise version is determined by the model.
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then feed [xi;xi+1] to the model to generate another concise version x2
i .

3.2. Extractor Module

The extractor module first encodes each extraction candidate into a context-

aware representation, and then uses a pointer network [34] to extract candidate

sentences sequentially.

Sentence candidate encoding. The sentence candidate encoder incor-

porates the document context in a hierarchical manner. For each document

sentence xi, we define an extraction candidate set, x̃i = {xi,x1
i , . . . ,x

k
i }, which

includes the document sentence itself and all of its concise versions. For simplic-

ity, we denote the original sentence xi as x0
i , so that x̃i = {x0

i , . . . ,x
k
i }. Then,

we hierarchically encode an extraction candidate in three levels: (1) candidate

level, (2) candidate set level, and (3) document level, as illustrated in Figure 3.

We first feed each sentence candidate xji to the Sentence-BERT model [35]

to learn word representations. The Sentence-BERT model incorporates the con-

text information of the sentence candidate into each word representation. It has

been shown that the Sentence-BERT model learns better sentence-level repre-

sentations than the BERT model [36] for several down-streaming tasks [35]. We

feed the last layer output of Sentence-BERT through a MLP layer to yield the

word embeddings. We then apply a temporal convolutional neural network [37]

on the word embeddings of each sentence candidate xji to learn a local candidate

representation rji ∈ Rdloc . To learn a representation for a sentence candidate set

x̃i, we use mean pooling to aggregate the local representations of its candidates

{r0i , . . . , rki } into a candidate set representation ri, i.e., ri = 1
k+1

∑k
j=0 r

j
i .

To incorporate the context information of other candidate sets in the doc-

ument, we apply a bi-directional LSTM to read all the n candidate set repre-

sentations (r1, . . . , rn) and produce a document-level candidate representation

hi ∈ Rddoc for each candidate set x̃i. The context-aware candidate represen-

tation cji of an extraction candidate xji is then the concatenation of its local

representation rji and the document-level representation of its associated candi-

date set hi, i.e., cji = [rji ;hi] ∈ Rdmem .
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Conv

Mean Pooling

i think it 's the most …

Conv

It ‘s the most familiar …

Conv

The most familiar and …

Bi-LSTM

… …

… …

𝒓!" 𝒓!# 𝒓!!

𝑟# 𝑟! 𝑟$

ℎ# ℎ! ℎ$

Extraction candidates set

(1)

(2)

(3)

Sentence-BERT Sentence-BERT Sentence-BERT

Figure 3: Architecture of the candidate encoder. (1) Sentence-BERT [35] and CNN are

applied to encode each candidate in the extraction candidate set. (2) Mean pooling is used to

aggregate local candidate representations into a candidate set representation. (3) All candidate

set representations are fed through a Bi-LSTM to learn a document-level representation.

Pointer network. The pointer network consists of an LSTM decoder,

LSTM2, and a two-hop attention mechanism. To prepare for the attention

mechanism, we use all the context-aware candidate representations cji to form

a memory bank matrix, B = [c01, . . . , c
k
1 , . . . , c

0
n, . . . , c

k
n], and use bl ∈ Rdmem

to denote the l-th column vector of B. Thus, the attention mechanism can

directly attend to all the context-aware candidate representations. For the

sake of the later extraction process, we also construct a proxy document, X̄ =

(x0
1, . . . ,x

k
1 , . . . ,x

0
n, . . . ,x

k
n), that aligns each extraction candidate to each col-

umn vector of the memory bank. We use x̄l to denote the l-th candidate sentence

in X̄.

At each decoding step t, LSTM2 first attends its hidden state zt ∈ Rddec to

12



each candidate representation bl to compute a glimpse vector et ∈ Rdmem :

atl = vTg tanh(Wg1bl + Wg2zt), (3)

αtl = softmax(atl), (4)

et =

n×(k+1)∑
l=1

αtlWg1bl, (5)

where Wg1 ∈ Rdatt×dmem , Wg2 ∈ Rdatt×ddec , and vg ∈ Rdatt are model param-

eters. The glimpse vector is then attended to the candidate representations to

produce the probability of extracting each sentence candidate x̄l:

utl = vTp tanh(Wp1bl + Wp2et), (6)

Pθext(l|l1, . . . , lt−1, X̄) = softmax(utl), (7)

where θext denotes all model parameters of the extractor, lt denotes the index of

the candidate extracted at step t, vp ∈ Rdatt , and Wp1,Wp2 ∈ Rdatt×dmem . We

simply extract the candidate with the highest extraction probability, and the

representation of the extracted candidate blt is adopted as the input to LSTM2

at the next step.

Maximum-likelihood pre-training. We use the maximum likelihood (ML)

loss to pre-train the extractor module. ML pre-training is a common prac-

tice in previous literature [38, 39, 6] to improve the stability of RL train-

ing. Since we do not have extraction labels for the proxy document, we

use the following method to construct those labels. For each summary sen-

tence yt, we find the most similar sentence candidate from the proxy document

in terms of Rouge-L F1 score: lt = argmaxiRouge-LF1
(x̄i,yt). With these ex-

traction labels, we can pre-train an extractor using maximum likelihood loss:

−
∑m
t=1 logPθext(lt|l1, . . . , lt−1, X̄).

3.3. Reinforced Extractor

We apply reinforcement learning (RL) to fine-tune our extractor module to

optimize the ROUGE scores. The process of extracting sentence candidates is

formulated as a RL problem as follows. At each time step t, the agent selects a
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sentence candidate l̂t (action) sampled from its policy πθext(l̂t |̂l1:t−1, X̄), where

l̂1:t−1 denotes the actions selected by the agent from step 1 to t − 1. The

environment then gives a reward rt(l̂t, l̂1:t−1, X̄,Y) to the agent and transits to

the next step t+ 1 with a new state ŝt+1 = (̂l1:t, X̄,Y). The policy of the agent

is the extractor module.

To allow the agent to determine the number of sentence candidates to ex-

tract, we include a stop action to the policy’s action space. A trainable pa-

rameter cEOE ∈ Rc is appended to the memory bank B so that the extractor

module can treat it as one of the sentence candidates. Once the agent selects

cEOE , we denote the current time step as T , the agent receives a reward rT ,

and the whole extraction process terminates. The final output summary will be

Ŷ = (x̄l1 , . . . , x̄lT ).

Marginal Reward. To allow the agent to be aware of the impact of

each selected sentence to the output summary’s overall quality, we use the

marginal increase in ROUGE-L F1 score of the output summary as the re-

ward for selecting a sentence candidate (not including cEOE). More formally,

rt = R-L((x̄l̂1 , . . . , x̄l̂t),Y) − R-L((x̄l̂1 , . . . , x̄l̂t−1
),Y), for t = 1, . . . ,m, where

R-L denotes ROUGE-L F1 score. In contrast, the sentence rewriting method [6]

uses the sentence-level Rouge-L F1 as the reward of selecting a candidate, which

aims at a local optimum of one selection instead of the global optimum of the

entire output summary. If the agent selects more sentences than the ground-

truth summary, we set the reward to be zero for the extraneous selection steps,

i.e., rt = 0 for t = m+1, . . . , T −1. This penalizes the agent from extracting too

many sentences. When the agent terminates the extraction process by selecting

cEOE , we use the ROUGE-1 F1 score of all the selected sentences as the reward:

rT = R-1(Ŷ,Y), which considers the bag-of-words information of the output

summary.

We define return to be the total discounted future reward, Rt =
∑T−t
τ=0 γ

τrt+τ ,

where γ ∈ (0, 1] is a discount factor. The goal of the agent is to maximize

the initial return, R1. Thus, we define the loss function of the policy as
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Lrl(θext) = −El̂1:T∼πθext
[R1] . To estimate the gradient of this loss function, we

apply the advantage actor-critic (A2C) algorithm [40] due its low variance of

gradient estimation.

Advantage Actor-Critic. We define the state value function V (ŝt) to be

the expectation of return starting from ŝt: V (ŝt) = E[Rt|ŝt]. Then we define

the state-action value function Q(ŝt, l̂t) to be the expectation of return of taking

action l̂t at state ŝt: Q(ŝt, l̂t) = E[Rt|ŝt, l̂t]. Then the gradient of L(θext) is then

formulated as:

∇θextL(θext) = E[∇θext log πθext(l̂t |̂l1:T )A(ŝt, l̂t)], (8)

where A(ŝt, l̂t) = Q(ŝt, l̂t) − V (ŝt) is an advantage function that measures the

advantage of taking an action l̂t over other actions at state ŝt. We use the return

Rt as an estimation ofQ(ŝt, l̂t) and use another neural network Vθcritic(ŝt), called

critic, to approximate the value function V (ŝt). We also train the critic network

to minimize the square loss L(θcritic) = (Vθcritic(ŝt)−Rt)2. The critic network

shares the same structure as the pointer network in Section 3.2 but the output

layer is changed to a regression layer to learn the value function.

4. Experiments

4.1. Datasets

We adopt the CNN/DailyMail [41, 1] corpus as our benchmark dataset.

Each sample contains a news article and several bullet points that highlight the

important information of the article. We use the news article as the document

(781 words on average) and the associated bullet points (56 words on average)

as the reference summary. We use the script provided in Chen et al. [6] to pre-

process the dataset and we do not anonymize the entities. After preprocessing,

we obtain the standard split of 287,113/13,368/11,490 for training, validation,

and testing.

Following previous work [42, 6], we also conduct experiments on the DUC-

2002 dataset in a test-only setup to evaluate the generalization ability of dif-

ferent methods. The DUC-2002 dataset contains 567 documents in total. All
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of the documents are used as test samples. Each sample contains a news article

(630 words on average) with two reference summaries (114 words on average).

We further conduct experiments on the Pubmed [43] dataset to evaluate the

performance of our framework on summarizing a long document. This dataset

uses a scientific article as the source document (3,224 words on average) and its

abstract as the reference summary (214 words on average). We use the standard

split of 119,924/6,633/6,658 for training, validation, and testing.

4.2. Baselines and Comparisons

We compare our framework with the following strong baselines for text sum-

marization:

• NeuSUM [14]: An extractive model that applies a pointer-network [34]

to jointly score and select the document sentences.

• JECS [31]: A hybrid method that follows the select-then-compress frame-

work. It compresses each selected sentence by removing words from the

sentence.

• Pointer-Gen. + Cov [2]: The pointer-generator network with the cov-

erage mechanism.

• Deep-Reinforce [3]: An abstractive method that augments the pointer-

generator network with an intra-attention mechanism and proposes a

mixed training objective (RL+ML) to train the model.

• Sentence Rewriting [6]: A hybrid method that follows the select-then-

compress framework. It uses the pointer-generator network to condense

each of the selected sentences.

• SENECA [32]: A hybrid method that follows the select-then-compress

framework. It explicitly incorporates the entity information into the ex-

tractor.
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• MATCHSUM [16]: An extractive model that performs extraction at

the summary level by enumerating all possible combinations of sentences

from a pruned document and fine-tune a BERT-based model to rank the

summary candidates.

• SAGCopy [27]: An abstractive model that utilizes the self-attention dis-

tribution to guide the copying process in a large pre-trained language

model.

• PEGASUS [26]: A large-scale pre-trained abstractive summarization

model. It introduces a gap-sentences generation objective during pre-

training.

We also compare our framework with the following baselines for long document

summarization:

• Discourse-aware [43]: An abstractive summarization model for a long

document. It uses a hierarchical encoder to capture the discourse structure

of the document and a discourse-aware decoder to generate a summary.

• Global-local Attentive [44]: An extractive summarization model for

a long document. It combines the global context representation of the

document and the local context representation of the current section/topic

using an attention mechanism.

• Global-local Concat [44]: An extractive summarization model for a long

document. It is similar to Global-local Attentive but it uses a concatena-

tion operation to combine the global and local context representations.

• Dancer [45]: An abstractive summarization model for a long document.

It divides a document into different parts and uses an abstractor to sum-

marize each part of the document separately.

• Sent-PTR [46]: An extractive summarization model for a long document.

It uses a hierarchical LSTM [47] to encode the document sentences and

uses a pointer network [34] to extract sentences.
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• Extr-Abst-TLM [46]: A hybrid summarization model for a long docu-

ment. It uses the Sent-PTR model to encode document sentences then

uses a Transformer language model to condense the sentences.

• BIGBIRD-PEGASUS [48]: A large-scale pre-trained abstractive sum-

marization model for a long document. It introduces a sparse attention

mechanism to reduce the dependency on the sequence length.

The results of our framework with different abstractors are reported. We

use one2one-long-short, compress-ctrl, and two-to-one to denote the re-

sults of our framework using the one-to-one long-short abstractor, compression-

controllable abstractor, and two-to-one abstractor respectively. We use one2one-

topk to denote the results of the one-to-one top-k abstractor, e.g., one2one-

top2 indicates that we take the top-2 output sequences from the beam search

algorithm as the generated concise versions.

We evaluate the performance of different summarization methods using the

full-length ROUGE-1, ROUGE-2, and ROUGE-L F1 scores with stem-

ming [49]. For brevity, we refer to ROUGE F1 scores as ROUGE scores. We

use the official Perl script to compute ROUGE scores in our experiments. For

the CNN/DM and DUC-2002 datasets, we specify the parameters4 according

to Chen and Bansal [6]. For the Pubmed dataset, we specify the parameters5

according to Xiao et al. [44].

4.3. Implementation Details

All our methods are trained and tested on a Nvidia Tesla T4 GPU. We

use the “bert-base-nli-mean-tokens” version of the Sentence-BERT [35]. The

hidden sizes of bi-directional LSTM and uni-directional LSTM are set to 512

and 256 respectively. The initial hidden state for an extractor is a trainable

parameter, while we use a linear layer to map the final encoder hidden state to

the initial decoder state for an abstractor. The dimension of the latent variable

4-c 95 -r 1000 -n 2 -m
5-a -n 2 -r 1000 -f A
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βt in our compression-controllable abstractor is 128. The convolution filters in

the temporal CNN encoder [37] have a hidden size of 100 with windows sizes

of 3, 4, and 5. For the advantage actor-critic algorithm, we follow the hyper-

parameter setting in [6]. The discounted factor γ is set to 0.95. During training,

we truncate every article sentence to 100 tokens and summary sentences to 30

tokens. The batch size is set to 32. We apply gradient clipping of 2.0 using L-2

norm. We use the Adam optimization algorithm [50] with an initial learning

rate of 5e-4 for ML training and an initial learning rate of 5e-5 for RL training.

We adopt the diverse beam search algorithm [51] as the decoding algorithm for

an abstractor. Our source code will be released in the future.

4.4. Main Results

We present our main results6 on the CNN/DM dataset in Table 1. We have

the following observations:

• Our condense-then-select framework outperforms strong baselines. With-

out using the Sentence-BERT embeddings, both of the one-to-one top-

1 abstractor and compression-controllable abstractor of our framework

achieve significantly higher ROUGE scores than the baselines except MATCH-

SUM, SAGCopy, and PEGASUS. These results demonstrate the effective-

ness of the condense-then-select paradigm in our framework. The PEGA-

SUS and SAGCopy models fine tune a large pre-trained language model

which has more than 120M parameters. On the other hand, our methods

have a substantially fewer number of parameters to train. Our largest

model (compress-ctrl) only needs to train ˜9M parameters since we freeze

the parameters of the sentence-BERT model. Hence, the PEGASUS and

SAGCopy models can fit the distribution of the CNN/DM dataset better

and achieve higher ROUGE scores than our methods. The MATCHSUM

model enumerates all possible combinations of sentences in a pruned doc-

6We re-evaluate the results of DCA [22] using full-length summary since they reported an

evaluation setting using truncated summary.
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Model Type R-1 R-2 R-L

NeuSUM Ext. 41.59 19.01 37.98

MATCHSUM Ext. 44.41 20.86 40.55

Pointer-Gen. + Cov. Abs. 39.53 17.28 36.38

Deep-Reinforce† Abs. 39.87 15.82 36.90

Bottom-Up Abs. 41.22 18.68 38.34

DCA Abs. 40.91 19.21 38.03

SAGCopy Abs. 42.53 19.92 39.44

PEGASUS Abs. 44.17 21.47 41.11

Sentence Rewriting Hyb. 41.07 17.96 38.59

JECS Hyb. 41.70 18.50 37.90

SENECA Hyb. 41.52 18.36 38.09

Our Models

One2one-top1 w/o S.BERT Hyb. 42.17∗ 19.36 38.97∗

Compression-ctrl w/o S.BERT Hyb. 42.23∗ 19.30 39.13∗

One2one-top1 Hyb. 42.51∗ 19.52∗ 39.13∗

Compression-ctrl Hyb. 42.71∗ 19.59∗ 39.34∗

Table 1: Comparison results on the CNN/DM dataset. We underline the highest scores in

each category and bold the overall highest scores. The suffix “w/o S.BERT” denotes that we

replace the Sentence-BERT word embeddings [35] with the word2vec word embeddings [52].

∗ indicates results that are significantly better than the baselines (p < 0.03, t-test) except

MATCHSUM, SAGCopy, and PEGASUS. † indicates significant test done on outputs by our

implementation, which achieves comparable ROUGE-1,2,L scores (40.25, 17.11, 37.57).

ument as summary candidates. Then it fine-tunes a BERT-based model

to rank the summary candidates. In total, this model needs to rank
(
n′

m

)
summaries, where n′ is the number of sentences in the pruned document

and m is the number of summary sentences. In contrast, the extractor in

our methods compose a summary in m extraction steps. Our extractor

ranks ñ candidate sentences in each extraction step and thus only needs to

rank ñ×m sentences in total. This suggests a trade-off between extractor

performance and time complexity.
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Model R-1 recall R-2 recall R-L recall Org. % Con. % Avg. len.

Sent. Rewrit. 45.56 19.92 42.79 0.0 100.0 68.9

One2one-top1 49.12 22.63 45.20 49.3 50.7 70.8

Compress-ctrl 49.39 22.69 45.47 45.5 54.5 69.2

Table 2: ROUGE recall scores on the CNN/DM dataset. Sent. Rewrit. denotes the sentence

rewriting method. Org. % denotes the percentage of selected sentences that are original

document sentences. Con. % denotes the percentage of selected sentences that are condensed

document sentences. Avg. len. denotes the average number of words per summary.

• Compression-controllable abstractor outperforms one-to-one top-1 abstrac-

tor. It is because our compression-controllable abstractor provides concise

versions with different compression levels, which allow the extractor to

achieve a better balance between information coverage and brevity of the

output summary.

• The Sentence-BERT embeddings further improve the performance of our

methods. After applying the Sentence-BERT embeddings, both of the

one-to-one top-1 abstractor and compression-controllable abstractor of

our framework obtain higher ROUGE scores. It is because the Sentence-

BERT model is pre-trained on huge text corpora and is fine-tuned on a

sentence-level natural language inference dataset. Hence, the Sentence-

BERT model can learn meaningful contextual embeddings for the words

in a sentence candidate. These embeddings help the extractor identify

salient information from the extraction candidates.

• The Sentence-BERT embeddings increase the training time of our extrac-

tor. Without using the Sentence-BERT embeddings, the extractor in our

framework takes around 6 hours for ML training and 12 hours for RL

training on a single Nvidia T4 GPU. After applying the Sentence-BERT

embeddings, our extractor takes 1.5 days for ML training and 2.5 days for

RL training in the same environment.
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4.5. Preservation of Salient Information

In this section, we verify whether our framework can preserve more salient

information than the sentence rewriting method. We use ROUGE recall as a

proxy metric to measure the amount of salient information in the predicted sum-

maries. Table 2 shows the ROUGE recall scores obtained by our framework

and the sentence rewriting method [6]. Both methods of our framework achieve

significantly higher ROUGE recall scores than the sentence rewriting method,

demonstrating that more salient information is retained in the generated sum-

maries.

To understand the reasons behind the ROUGE recall improvement, we also

report the percentage of selected sentences that are original document sentences

and the percentage of selected sentences that are condensed document sentences

in Table 2. To compute the condense %, we count the total number of extracted

sentence candidates that belong to original document sentences in all the out-

put summaries, and then divide it by the total number of extracted sentence

candidates in all the output summaries. The original % is computed in a sim-

ilar way. We observe that a significant proportion of the sentences selected

by our framework belongs to original document sentences, suggesting that our

framework selects original sentences when appropriate to retain more salient

information in the output summaries. Since our methods extract both original

document sentences and condensed sentences, our predicted summaries have a

longer average length compared to the sentence rewriting method, as shown in

Table 2.

4.6. Performance of Different Abstractors

We compare the performance of different abstractors that generate two con-

cise versions for a document sentence. The results are shown in the top segment

of Table 3. We observe that our compression-controllable abstractor outper-

forms all other abstractors. Different from other one-to-one abstractors, which

generate two concise versions by simply taking two sequences from the beam

search, our compression-controllable abstractor is explicitly trained to produce
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Model R-1 R-2 R-L

One2one-top2 42.33 19.41 39.01

One2one-long-short 42.29 19.21 38.98

Compress-ctrl 42.71 19.59 39.34

two-to-one 41.42 18.71 37.83

Compress-ctrl + top2 42.34 19.20 38.86

two-to-one + top2 41.68 18.84 38.07

Table 3: Results of our condense-then-select approach with different abstractors on CNN/DM.

The top segment shows the abstractors that generate two concise versions for each document

sentence. The bottom segment shows the combination of candidates from two abstractors.

two concise versions with different compression levels. Thus, the generated can-

didates have higher qualities. We also observe that the results of two-to-one

abstractor are significantly worse than the others. We investigate whether a

secondary source sentence in our two-to-one abstractor can provide useful in-

formation for generating a summary. First, we use Eq. (1) and Eq. (2) to align

each ground-truth summary sentence yt to a source sentence xjt and a sec-

ondary source sentence xj′t . Then we compute the improvement in ROUGE-L

recall score to each summary sentence brought by its secondary source sentence,

Rouge-Lr([xjt ;xj′t ],yt)−Rouge-Lr(xjt ,yt). Only 16.7% of the secondary source

sentences lead to an improvement of more than 25 on ROUGE-L recall, demon-

strating that most of the secondary source sentences can only provide little

information about the summary sentence. Thus, the abstractor has a heavier

burden of handling redundant and unrelated content in the input, leading to a

decrease in performance.

Moreover, we verify whether combining the condensed candidates from dif-

ferent abstractors will lead to better performance. We try two different com-

binations: combination of candidates from compress-ctrl and one2one-top2 ab-

stractors (compress-ctrl + top2); and combination of candidates from two-to-one

and one2one-top2 abstractors (two-to-one + top2). The results are reported in

the bottom segment of Table 3. We find that combining the candidates from
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Model R-1 R-2 R-L

One2one-top1 42.51 19.52 39.13

One2one-top2 42.33 19.41 39.01

One2one-top3 41.92 19.03 38.60

Table 4: Results of the condense-then-select framework with one-to-one abstractor using dif-

ferent numbers of extraction candidates.

different abstractors yield lower ROUGE scores. We suspect that the increase

in action space makes the extractor more difficult to learn to select appropriate

sentence candidates. Hence, we conduct an empirical study about the effect of

candidate size on the summarization performance in the next section.

4.7. Effects of Candidate Size

We investigate whether we can improve the performance of our framework

by simply increasing the number of extraction candidates. We compare the per-

formance of one2one-top1, one2one-top2, and one2one-top3 abstractors. These

methods provide different numbers of extraction candidates for our framework.

The results are shown in Table 4. As can be seen, the performance of our frame-

work drops when the number of condensed candidates increases. It is because

by enlarging the number of candidates per input sentence, the action space of

the agent increases7. If the newly added candidates are of low quality, the per-

formance of the extractor will decrease. Indeed, we do observe the quality of

candidates deteriorates in informativeness and fluency. This suggests a future

direction when diverse candidates of high quality should be produced.

4.8. Cross-domain Analysis

Similar to Chen and Bansal [6], we conduct experiments on the test-only

DUC-2002 dataset to evaluate our methods on out-of-domain data. All the

7Though RL suffers from the problem of exploration, it still significantly improves the per-

formance of our methods. Our framework with one2one-top2 abstractor without RL training

only obtains ROUGE of (39.45, 17.12, 36.96).
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Model Type R-1 R-2 R-L

MATCHSUM Ext. 43.01 23.86 39.58

Pointer-Gen + Cov. Abs. 37.22 15.78 33.90

RL + Intra.Attn Abs. 36.49 16.62 34.68

Bottom-up Abs. 34.70 17.33 32.50

PEGASUS‡ Abs. 38.35 19.95 35.62

Sentence Rewriting Hyb. 40.12 19.57 37.63

Our Models

One2one-top1 Hyb. 43.94 24.20 40.83

Compress-ctrl Hyb. 42.92 23.05 40.04

Table 5: Results on the test-only DUC-2002 dataset. ‡: the outputs are decoded from the

“PEGASUS-CNN DailyMail” checkpoint provided by the HuggingFace Transformers [53].

methods are trained on the CNN/DM dataset and then tested on the DUC-2002

dataset. The results are shown in Table 5. First, we observe that hybrid methods

have a strong generalization ability. Our methods achieve substantially higher

ROUGE scores than all the abstractive baselines; while the sentence rewrit-

ing method outperforms all the abstractive baselines except PEGASUS. The

reason is that hybrid methods explicitly divide the text summarization process

into sentence selection and sentence abstraction. Hence, they impose a strong

inductive bias on the neural network models, which help the models generalize

to out-of-domain data. In contrast, the abstractive baselines use an encoder-

decoder model to perform the entire text summarization process. Hence, these

abstractive methods have a weaker inductive bias. Second, we observe that our

methods outperform the sentence-rewriting method. It is because the select-

then-compress framework suffers from the problem of loss of salient information,

while our condense-then-select framework retains more salient information by

including original document sentences in the extraction candidates.

4.9. Results on Long Document Summarization

We further conduct experiments on a long document summarization dataset,

Pubmed, and the results are presented in Table 6. We have the following ob-
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Model Type R-1 R-2 R-L

MATCHSUM Ext. 41.21 14.91 36.75

Global-local Attentive Ext. 44.81 19.74 31.48

Global-local Concat Ext. 44.85 19.70 31.43

Sent-PTR Ext. 43.30 17.92 39.47

Discourse-aware Abs. 38.93 15.37 35.21

PEGASUS Abs. 45.97 20.15 41.34

BIGBIRD-PEGASUS Abs. 46.32 20.65 42.33

Extr-Abst-TLM Hyb. 42.13 16.27 39.21

Dancer Hyb. 44.09 17.69 40.27

Sentence Rewriting Hyb. 44.68 19.07 41.33

Our Models

One2one-top1 w/o S.BERT Hyb. 46.00 20.87 41.48

Compression-ctrl w/o S.BERT Hyb. 46.10 20.92 41.64

Table 6: Results on the Pubmed dataset. We underline the highest scores in each category

and bold the overall highest scores. The suffix “w/o S.BERT” denotes that we replace the

Sentence-BERT word embeddings with the word2vec word embeddings.

servations:

• Our condense-then-select framework outperforms strong long text sum-

marization baselines. We can see that our methods obtain substantially

higher ROUGE scores than all the long text summarization baselines ex-

cept the BIGBIRD-PEGASUS model. Moreover, the performance of our

methods is competitive to the BIGBIRD-PEGASUS model which contains

more than 300M parameters. These results demonstrate the effectiveness

of our condense-then-extract framework on summarizing a long text doc-

ument.

• The training speed of our methods on the Pubmed dataset becomes very

slow when using the Sentence-BERT embeddings. We observe that our

extractor takes around 4 days for ML training on a Nvidia T4 GPU. For

RL training, our extractor has not converged after training for 6 days
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Model Informativeness Conciseness Readability

Sentence Rewriting 2.99 3.08 3.97

One2one-top1 3.15 3.29 4.10

Compress-ctrl 3.35 3.44 4.21

Table 7: Human evaluation scores of informativeness, conciseness, and readability on 50

random test samples of the CNN/DM dataset.

in the same environment, which means it will take more than 10 days

to train our extractor on the Pubmed dataset. Hence, we do not use

the Sentence-BERT embeddings on the Pubmed dataset due to the long

training time. Without applying the Sentence-BERT embeddings, our

extractor only takes around 12 hours for ML training and 2 days for RL

training in the same environment.

4.10. Human Evaluation

We conduct human evaluation to assess the qualities of the summaries gen-

erated by our methods. We use the following three evaluation criteria: (1)

informativeness measures the amount of salient information in a summary;

(2) conciseness measures how well a summary avoids redundant information;

and (3) readability measures the grammaticality and fluency. We hire three

student helpers as annotators to evaluate 50 randomly selected test samples

from the CNN/DM dataset. For each test sample, we show the document, the

ground-truth summary, and the summaries generated by our framework with the

compression-controllable abstractor, one2one-top1 abstractor, and the sentence

rewriting method [6]. The generated summaries are anonymized and randomly

shuffled. Every generated summary is rated by all the annotators, and the rating

scale is from 1 to 5. The complete human evaluation guideline in the Appendix.

We report the averaged scores for each method in Table 7. Results show that

both of our methods obtain substantially higher informativeness, conciseness,

and readability scores than the sentence rewriting method.
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Ground-truth: sulforaphane known to block inflammation and damage
to the cartilage . people would have to eat several pounds daily to derive
significant benefit . drug company evgen pharma has developed synthetic
version of chemical .
Compress-ctrl: the broccoli chemical sulforaphane is known to block the
inflammation and damage to cartilage associated with the condition . pa-
tients would have to eat several pounds of the vegetable every day to derive
any significant benefit . evgen pharma developed a stable synthetic version
of the chemical .
One2one-top1: the broccoli chemical sulforaphane is known to block the
inflammation and damage to cartilage associated with the condition . pa-
tients would have to eat several pounds of vegetable every day to derive any
significant benefit . evgen pharma has developed a stable synthetic version
of the chemical that offers potential of a pill treatment .
Sentence rewriting: the broccoli chemical sulforaphane is known to block
inflammation and damage to cartilage associated with arthritis . broccoli
chemical sulforaphane is known to block the inflammation and damage to
cartilage . uk drug company evgen pharma has developed a stable synthetic
version . patients would have to eat several pounds of the vegetable every
day .

Figure 4: A case study compares the summaries generated by different methods on the

CNN/DM testing set. Different colors are used to highlight the information in each ground-

truth summary sentence.

4.11. Case Study

We compare the output summaries of the above three methods in Figure 4.

Different colors are used to highlight the information in each ground-truth sum-

mary sentence. We make the following observations:

• The fourth sentence predicted by the sentence rewriting method deletes

the salient information (“to derive significant benefit”) that appears in

the ground-truth, while both of our methods retain that information. It

is because the extractor in our methods can select an original document

sentence when salient information is removed during sentence compression.

Hence, our methods achieve a higher informativeness score in Table 7

and higher ROUGE scores in Table 1 compared to the sentence rewriting

method.
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• The third sentence predicted by our method with one2one-top1 abstractor

includes the redundant information of “that offers potential of a pill treat-

ment”, while our method with compression-controllable abstractor avoids

such redundant information. It is because the compression-controllable

abstractor generates condensed sentences with different compression lev-

els, which allow the extractor to select a more concise sentence candi-

date that covers the salient information. Therefore, our method with

compression-controllable abstractor obtains a higher conciseness score and

higher ROUGE scores than our method with one-to-one top-1 abstractor.

From the output summaries, we also observe that the sentence rewriting

method is likely to delete the words after a preposition and the words after a

conjunction. We illustrate more samples of output sentences in Figure 5. By

comparing the ground-truth summary sentences and the sentences generated by

the sentence rewriting method, we can see that the sentence rewriting method

omits the words after the preposition “to” and the words after the conjunction

“after”. These samples suggest that the sentence-level abstractor may exploit

some simple rules to condense a sentence. On the other hand, our Compress-

ctrl method retains those words omitted by the baseline. It is because the

extractor in our framework can utilize the context information of the document

to determine whether to select an original document sentence or a condensed

sentence.

5. Conclusion

We propose a novel condense-then-select framework that first condenses doc-

ument sentences and then performs sentence selection to assemble a summary.

By allowing the extractor to select among the original document sentences

and their concise versions, our framework outperforms the select-then-compress

framework and other strong baselines on the CNN/DM dataset. Cross-domain

analysis on the DUC-2002 dataset shows that our framework achieves better gen-

eralization than the baselines. The experiment results on the Pubmed dataset
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Example 1
Ground-truth: she says she will be using a voice phone to dictate her
tweets .
Sentence rewriting: the prisoner formerly known as bradley manning said
she will be using a voice phone .
Compress-ctrl: the prisoner formerly known as bradley manning said she
will be using a voice phone to dictate her tweets .
Example 2
Ground-truth: james oliver , 48 , was left with a serious leg injury after
being allegedly hit by a car driven by linda currier , 53 .
Sentence rewriting: james oliver , 48 , was left with a serious leg injury .
Compress-ctrl: james oliver , 48 , was left with a serious leg injury after
being allegedly hit by a car driven by linda currier , 53 .

Figure 5: Sample summary sentences generated by different methods on the CNN/DM testing

set. The words omitted by the sentence rewriting method are highlighted.

demonstrate the performance of our framework on summarizing a long text doc-

ument. We also investigate different types of abstractors within our framework.

The most effective one is our compression-controllable abstractor. This work

provides an interesting research direction, where one could propose and apply

different abstractors to generate diverse extraction candidates.
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Appendix A. Human Evaluation Guidelines

The annotators are asked to evaluate each summary on the following three

aspects:

1. Informativeness: measures how well a summary retains the salient in-

formation of the document. Each annotator gives a rating from 1 to 5. 5

indicates the summary retains all the key information of the document.

4 indicates the summary covers most of the key information of the doc-

ument. 3 indicates that several key points of the document are missing,

but it is still in general relevant. 2 indicates the summary only contains

a little information of the document. 1 indicates that the summary does

not contain any information of the document.

2. Conciseness: measures how well a summary avoids redundant informa-

tion. Each annotator gives a rating from 1 to 5. 5 indicates the summary

does not contain any redundant information. 4 indicates the summary

contains little redundant information. 3 indicates the summary contains

several pieces of redundant information. 2 indicates that the amount of

redundant information is larger than the salient information in the sum-

mary. 1 indicates the summary is extremely redundant.

3. Readability: measures the readability of a summary and how well a

summary avoids grammatical errors. Each annotator gives a rating from

1 to 5. 5 indicates the summary has no grammatical error. 4 indicates

the summary has rare and minor grammatical errors. 3 indicates that

the summary has several grammatical errors but it is in general readable.

2 indicates that the summary has unreadable fragments, but it still has

fluent segments that are readable. 1 indicates the summary is completely

unreadable.
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[22] A. Çelikyilmaz, A. Bosselut, X. He, Y. Choi, Deep communicating agents

for abstractive summarization, in: Proceedings of the 2018 Conference of

the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, NAACL-HLT 2018, New Orleans,

Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), 2018, pp. 1662–

1675.

URL https://aclanthology.info/papers/N18-1150/n18-1150

[23] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,

V. Stoyanov, L. Zettlemoyer, BART: denoising sequence-to-sequence pre-

training for natural language generation, translation, and comprehension,

in: Proceedings of the 58th Annual Meeting of the Association for Com-

putational Linguistics, ACL 2020, Online, July 5-10, 2020, 2020, pp. 7871–

7880.

URL https://www.aclweb.org/anthology/2020.acl-main.703/

[24] Y. Liu, M. Lapata, Text summarization with pretrained encoders, in: Pro-

ceedings of the 2019 Conference on Empirical Methods in Natural Lan-

guage Processing and the 9th International Joint Conference on Natural

Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, Novem-

ber 3-7, 2019, 2019, pp. 3728–3738. doi:10.18653/v1/D19-1387.

URL https://doi.org/10.18653/v1/D19-1387

[25] H. Bao, L. Dong, F. Wei, W. Wang, N. Yang, X. Liu, Y. Wang, S. Piao,

J. Gao, M. Zhou, H. Hon, Unilmv2: Pseudo-masked language models for

unified language model pre-training, CoRR abs/2002.12804 (2020). arXiv:

2002.12804.

URL https://arxiv.org/abs/2002.12804

[26] J. Zhang, Y. Zhao, M. Saleh, P. J. Liu, PEGASUS: pre-training with ex-

tracted gap-sentences for abstractive summarization, in: Proceedings of

36

https://www.aclweb.org/anthology/2020.acl-main.457/
https://aclanthology.info/papers/N18-1150/n18-1150
https://aclanthology.info/papers/N18-1150/n18-1150
https://aclanthology.info/papers/N18-1150/n18-1150
https://www.aclweb.org/anthology/2020.acl-main.703/
https://www.aclweb.org/anthology/2020.acl-main.703/
https://www.aclweb.org/anthology/2020.acl-main.703/
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://arxiv.org/abs/2002.12804
https://arxiv.org/abs/2002.12804
http://arxiv.org/abs/2002.12804
http://arxiv.org/abs/2002.12804
https://arxiv.org/abs/2002.12804
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html


the 37th International Conference on Machine Learning, ICML 2020, 13-18

July 2020, Virtual Event, 2020, pp. 11328–11339.

URL http://proceedings.mlr.press/v119/zhang20ae.html

[27] S. Xu, H. Li, P. Yuan, Y. Wu, X. He, B. Zhou, Self-attention guided copy

mechanism for abstractive summarization, in: Proceedings of the 58th An-

nual Meeting of the Association for Computational Linguistics, ACL 2020,

Online, July 5-10, 2020, 2020, pp. 1355–1362.

URL https://www.aclweb.org/anthology/2020.acl-main.125/

[28] A. Fan, D. Grangier, M. Auli, Controllable abstractive summarization, in:

Proceedings of the 2nd Workshop on Neural Machine Translation and Gen-

eration, NMT@ACL 2018, Melbourne, Australia, July 20, 2018, 2018, pp.

45–54.

URL https://aclanthology.info/papers/W18-2706/w18-2706

[29] Y. Liu, Z. Luo, K. Q. Zhu, Controlling length in abstractive summariza-

tion using a convolutional neural network, in: Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, Brus-

sels, Belgium, October 31 - November 4, 2018, 2018, pp. 4110–4119.

URL https://aclanthology.info/papers/D18-1444/d18-1444

[30] J. Clarke, M. Lapata, Discourse constraints for document compression,

Computational Linguistics 36 (3) (2010) 411–441. doi:10.1162/coli\_a\

_00004.

URL https://doi.org/10.1162/coli_a_00004

[31] J. Xu, G. Durrett, Neural extractive text summarization with syntactic

compression, in: Proceedings of the 2019 Conference on Empirical Meth-

ods in Natural Language Processing and the 9th International Joint Con-

ference on Natural Language Processing (EMNLP-IJCNLP), Association

for Computational Linguistics, Hong Kong, China, 2019, pp. 3283–3294.

doi:10.18653/v1/D19-1324.

URL https://www.aclweb.org/anthology/D19-1324

37

http://proceedings.mlr.press/v119/zhang20ae.html
https://www.aclweb.org/anthology/2020.acl-main.125/
https://www.aclweb.org/anthology/2020.acl-main.125/
https://www.aclweb.org/anthology/2020.acl-main.125/
https://aclanthology.info/papers/W18-2706/w18-2706
https://aclanthology.info/papers/W18-2706/w18-2706
https://aclanthology.info/papers/D18-1444/d18-1444
https://aclanthology.info/papers/D18-1444/d18-1444
https://aclanthology.info/papers/D18-1444/d18-1444
https://doi.org/10.1162/coli_a_00004
https://doi.org/10.1162/coli_a_00004
https://doi.org/10.1162/coli_a_00004
https://doi.org/10.1162/coli_a_00004
https://www.aclweb.org/anthology/D19-1324
https://www.aclweb.org/anthology/D19-1324
https://doi.org/10.18653/v1/D19-1324
https://www.aclweb.org/anthology/D19-1324


[32] E. Sharma, L. Huang, Z. Hu, L. Wang, An entity-driven framework for

abstractive summarization, in: K. Inui, J. Jiang, V. Ng, X. Wan (Eds.),

Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-

guage Processing and the 9th International Joint Conference on Natural

Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, Novem-

ber 3-7, 2019, Association for Computational Linguistics, 2019, pp. 3278–

3289. doi:10.18653/v1/D19-1323.

URL https://doi.org/10.18653/v1/D19-1323

[33] D. M. Zajic, B. Dorr, J. Lin, R. Schwartz, Sentence compression as a com-

ponent of a multi-document summarization system, in: Proceedings of the

2006 document understanding workshop, New York, 2006.

[34] O. Vinyals, M. Fortunato, N. Jaitly, Pointer networks, in: Advances in

Neural Information Processing Systems 28: Annual Conference on Neu-

ral Information Processing Systems 2015, December 7-12, 2015, Montreal,

Quebec, Canada, 2015, pp. 2692–2700.

URL http://papers.nips.cc/paper/5866-pointer-networks

[35] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using

siamese bert-networks, in: Proceedings of the 2019 Conference on Em-

pirical Methods in Natural Language Processing and the 9th Interna-

tional Joint Conference on Natural Language Processing, EMNLP-IJCNLP

2019, Hong Kong, China, November 3-7, 2019, 2019, pp. 3980–3990.

doi:10.18653/v1/D19-1410.

URL https://doi.org/10.18653/v1/D19-1410

[36] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep

bidirectional transformers for language understanding, in: Proceedings of

the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, NAACL-HLT

2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short

38

https://doi.org/10.18653/v1/D19-1323
https://doi.org/10.18653/v1/D19-1323
https://doi.org/10.18653/v1/D19-1323
https://doi.org/10.18653/v1/D19-1323
http://papers.nips.cc/paper/5866-pointer-networks
http://papers.nips.cc/paper/5866-pointer-networks
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423


Papers), 2019, pp. 4171–4186. doi:10.18653/v1/n19-1423.

URL https://doi.org/10.18653/v1/n19-1423

[37] Y. Kim, Convolutional neural networks for sentence classification, in: Pro-

ceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting

of SIGDAT, a Special Interest Group of the ACL, 2014, pp. 1746–1751.

URL http://aclweb.org/anthology/D/D14/D14-1181.pdf

[38] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, V. Goel, Self-critical se-

quence training for image captioning, in: 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,

July 21-26, 2017, 2017, pp. 1179–1195. doi:10.1109/CVPR.2017.131.

URL https://doi.org/10.1109/CVPR.2017.131

[39] H. P. Chan, W. Chen, L. Wang, I. King, Neural keyphrase generation via

reinforcement learning with adaptive rewards, in: Proceedings of the 57th

Conference of the Association for Computational Linguistics, ACL 2019,

Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, 2019, pp.

2163–2174. doi:10.18653/v1/p19-1208.

URL https://doi.org/10.18653/v1/p19-1208

[40] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,

D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement

learning, in: Proceedings of the 33nd International Conference on Machine

Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, 2016,

pp. 1928–1937.

URL http://jmlr.org/proceedings/papers/v48/mniha16.html
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