
Graph Classification Based on Skeleton and Component Features

Xue Liua, Wei Weib,c,d,e,∗, Xiangnan Fengb,c,e, Xiaobo Caob, Dan Suna

aBeijing System Design Institute of Electro-Mechanic Engineering, Beijing, 100854, China
bSchool of Mathematical Sciences, Beihang University, Beijing, 100191, China

cKey Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education, 100191, China
dBeijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, 100191,

China
ePeng Cheng Laboratory, Shenzhen, Guangdong, 518066, China

Abstract

Keywords: Graph representation, Graph classification, Feature learning

1. Introduction

Graph classification to distinguish the class labels of graphs in a dataset is an important task

with practical applications in a large spectrum of fields (e.g., bioinformatics [1], social network

analysis [2] and chemoinformatics [3]). In these areas, data can be usually represented as graphs

with labels. For example, in bioinformatics, a protein molecule can be represented as a graph

whose nodes corresponds to atoms, and edges signify there exits chemical bonds or not between

atoms. The graphs are allocated with different labels based on having specific function or not. To

make classification in this task, we usually make a common assumption that protein molecules with

similar structure have similar functional properties.

More recently, there has been a surge of approaches that seek to learn representations or embed-

dings that encode features about the graphs and then make classification. The idea behind these

learning approaches focuses on graph structure representation and learning a mapping that embeds

nodes or entire (sub)graphs, into a low-dimensional vector. Most of these methods can be classified

into two categories: (1) neural networks manners [4] that learn the large-scale structures of target

graph, (2) kernel methods [5] that learn small-size structures of target graph. Different structures

of graph imply dissimilar features.

∗Corresponding author
Email address: weiw@buaa.edu.cn (Wei Wei)

Preprint submitted to Elsevier February 3, 2021

ar
X

iv
:2

10
2.

01
42

8v
1

 [
cs

.L
G

]
 2

 F
eb

 2
02

1

Graph neural networks (GNNs) [6] use a recurrent network framework to transmit information

from a calculated node to another new node until reaching a stop situation. Analogous to image-

based convolutional neural networks (CNNs) [7], PATCHY-SAN (PSCN) [4] is motivated to operate

on locally connected regions of the input to learn graph embeddings. Graph convolutional networks

(GCNs) [8] operate directly on graph data using spectral filters to exploit local areas and then

extract local meaningful features shared with the entire graph to get a large-size graph structure

representation. The success of neural networks relies on enormous amount of data, and usually uses

iterative calculations to spread information, so that the local information of the graph get coupled

and is integrated into the overall embedding.

Subgraph isomorphism has been proven to be NP-complete, however graph isomorphism problem

is in NP and has been neither proven NP-complete nor could be solved by a polynomial-time

algorithm [9]. Graph kernels [5] differentiate two graphs by recursively decomposing them into

substructures and defining a function on graph to make classification based on graphs similarity

measures in an unsupervised way. They bridge the gap between graph data and a wide range

of machine learning methods such as Support Vector Machines (SVM), regression, clustering and

Principal Components Analysis (PCA), etc. Several different graph kernels approaches are usually

divided into two classes: walk-based patterns and limited-size subgraph methods. In random walk

pattern, graph kernels count matched random walks pairs between two graphs [10]. The shortest

path kernels count pairs of shortest paths having the same beginning node and sink labels and

the same length in two graphs [11]. Graphlet kernels discuss graph isomorphism by counting the

occurrences of all types of fixed size subgraphs [12]. Graphs are regarded similar if they share lots

of common subgraphs. [3] sets the source nodes of two graphs at a fixed distance from each other,

and then finds subgraphs containing nodes up to a certain distance from the root and calculate the

number of identical pairs of subgraphs. Weisfeiler-Lehman graph kernels are highly efficient kernels

to express graph isomorphism based on comparing subtree-like patterns [5].

There are two critical limitations of graph kernels: (1) Many of them do not provide explicit

embeddings, so that kernels are unusable for many proposed machine learning algorithms which

operate on vector directly. (2) The substructures (i.e., random walks, subgraphs, etc.) need to be

manually set priority, for instances, the length of random walk or the shape of subgraphs. This

makes some substructures not in specified shape be ignored easily.

Anonymous Walk Embeddings (AWE) proposes a novel graph embedding method that relies

2

Figure 1: Overview of topological graphs (as shown in (a)), molecular chemical structures (as shown in (b)),

their corresponding functional groups and subgraphs (as shown in (c)) of phenol (C6H5OH) and methylbenzene

(C6H5CH3). In (a), we do random walks with walk length l = 4 from each node on every topological graph of

phenol and methylbenzene. The frequency p of each edge covered in random walks is p = me
M

, where me is the

frequence of edge e being covered and M is the total number of edges being covered. Edges with different frequencies

are represented in different colors. Phenol and methylbenzene in (c) can be decomposed into three functional

groups (hydroxy, benzene and methyl), which are regarded as 2-order subgraph (2-hop path), hexagon loop (6-order

subgraph) and cross separately.

3

on distribution of special random walks named anonymous random walks to get graph representa-

tions [13]. In analogy to graph kernels and to avoid sparse distribution, AWE method uses random

walks in anonymous manner to catch “skeletons” of the whole graph. [14] has shown that anony-

mous walks are Markov processes from starting node. After adequate sampling, anonymous walks

are capable to reconstruct original graph. Two graphs with similar distributions of anonymous

walks are regarded topological similar [13].

However, AWE may ignore important subgraphs which actually determine graph properties be-

cause of low distribution. As illustrated in Figure 1, we take phenol (C6H5OH) and methylbenzene

(C6H5CH3) as simple examples. Each of them can be decomposed into two main parts, the main

structure (benzene ring) as a skeleton, and functional groups (i.e., hydroxy “−OH” and methyl

“−CH3”), and both of them determine the molecular properties and functions. Taking these two

molecules as topological graphs and doing random walks on them, experiment shows that the fre-

quency of benzene ring edges being covered is twice more than that of hydroxy or methyl edges

being covered. In AWE, these two graphs are structure similar since random walks catch same main

structures as skeletons. However, phenol and methylbenzene have quite different chemical proper-

ties determined by different functional groups, which are in low distributions. In addition, AWE

lacks a hierarchical representation of the entire graph structure. Structures AWE gets have identical

size (walk length), so that substructures whose size not equal to anonymous walks structures can

not be represented efficiently.

Our approach. We design a novel data-driven framework named GraphCSC that represents entire

graph in low-dimension vectors containing both main structure features and component information

in a global view. Our methodology uses anonymous walks to represent skeleton information of a

graph inspired by the success of AWE; to learn graph component representation, finding all different

order subgraphs and checking subgraph isomorphism needs great computational complexity [15].

Thus, our strategy is to embed graph using a distribution of special subgraphs, ie., frequent sub-

graphs. Frequent subgraphs are determined by a fixed threshold hyperparameter, which indicates

what kinds of subgraphs can be regarded frequent. In frequent-based subgraphs, it not only con-

tains the underlying semantics within an individual graph but also the relationships among graphs.

To learn graph embedding, motivated by a novel supervised document method PV-DBOW (para-

graph vector-distributed bag of words) [16], anonymous walks and frequent subgraphs in our model

are treated as words and each graph is regarded as a document. Two graphs are similar in embed-

4

ding space if their skeletons and components information are similar.

Our contribution. To the best of our knowledge, GraphCSC is a new framework that learns

embeddings consisting both skeleton features and component information compared to other exist-

ing embedding approaches. GraphCSC actually studies the representation of graph structures from

horizontal and vertical perspectives: in horizontal perspective, we attempt to characterize relatively

high-order structures using anonymous random walks with same walk length, which determines the

skeletons of graphs; in vertical perspective, our model focuses on what kinds of subgraphs with dif-

ferent sizes or shapes they have. We use a NLP (Natural Language Processing) training framework

with skeletons and components together as inputs to learn graph representation with combined in-

formation. Through empirical evaluation on multiple real-world datasets, experiments show that

our model is competitive than various established baselines.

2. PROBLEM STATEMENT

Definition 1 (Graph Classification). Given a set of graphs with labels, G = {G1, . . . ,GN}, the

goal is to learn a function ϕ : G→ L, where G is the input space of graphs and L is the set of graph

labels. Each weighted graph G i with label li, i = 1, . . . , N , is a tuple Gi = (Vi, Ei,Ωi), where Vi is

the set of ni vertices from Gi, Ei ⊆ Vi × Vi is the set of edges from Gi, and Ωi is the set of edge

weights from Gi.

Definition 2 (Graph Embedding). Given a set of graphs G = {G1, . . . , GN}, the goal is to learn

a graph embedding matrix XN×d, where each i-th row is a d-dimensions vector of graph Gi which

is learned by mapping ψ : G→ R1×d. Graph embeddings capture the graph similarity between Gi

and Gj in the sense that vector ψ(Gi) and ψ(Gj) are close in embedding space.

3. BACKGROUND

We will leverage two techniques Skipgram and PV-DBOW which have achieved success in

NLP to learn graph representation. Before we propose our approach, we review these powerful

models and state them as background of our model.

3.1. word2vec and Skipgram

How to get continuous-valued word vector representations is a core task in NLP applications.

word2vec [17] uses Skipgram to learn low-dimension embeddings of words that capture rich

5

semantic relationships between words. Skipgram maps words contained in similar sentences to

“near” positions in embedding space, i.e., their representation vectors are similar.

Given the target word wt from vocabulary set V and a sequence of words w1, . . . , wt, . . . , wT , a

context wt−c, . . . , wt, . . . , wt+c is defined as a fixed number of words surrounding wt within a window

c. Skipgram maximizes the co-occurrence probability among words that appear in context:

T∑
t=1

log Pr(wt−c, . . . , wt+c|wt). (1)

The conditional probability Pr(wt−c, . . . , wt+c|wt) is approximated under the following indepen-

dence assumption:

Pr(wt−c, . . . , wt+c|wt) =

t+c∏
j=t−c,j 6=t

Pr(wj |wt). (2)

3.2. Softmax and negative sampling

To learn such a posterior distribution Pr(wt+j |wt), conventional classifier such as logistic re-

gression requires vast computational resources since the number of labels equals to vocabulary size

|V |. To avoid heavy calculation, conditional probability distribution Pr(wj |wt) is defined by a

Hierarchical Softmax [18]:

Pr(wj |wt) =
exp(wt ·wj)
|V |∑
i=1

exp(wt ·wi)

, (3)

where wt and wt+j are embedding vectors of word wt and wt+j . Thus the co-occurrence probability

(1) is written as:
T∑
t=1

log

t+c∏
j=t−c,j 6=t

exp(wt ·wj)
|V |∑
i=1

exp(wt ·wi)

. (4)

To speed up the training process of Skipgram, negative sampling [19] method random samples

a small set of words as negative samples which are not involved in context. Then only target word

and negative samples are updated instead of the whole words from vocabulary set V in the process

of iteration training. This strategy would be efficient especially for situations when tasks face huge

computational pressure.

3.3. doc2vec and PV-DBOW

In analogy to word2vec, doc2vec [16] uses PV-DBOW to learn representations of arbitrary

size document in a document set. More specifically, given a document set D = {D1, . . . , DN} with

6

a set of words V = {w1, . . . , w|V |} and the target document Dt ∈ D contains a sequence of words

{w1, . . . , wl}, the goal is to learn a low-dimension vector Dt of document Dt by maximize the

following log probability of words w1, . . . , wl contained in Dt:

l∑
i=1

log Pr(wj |Dt). (5)

The conditional probability Pr(wj |Dt) above is defined as:

Pr(wj |Dt) =
exp(Dt ·wj)
|V |∑
i=1

exp(Dt ·wi)

, (6)

where Dt and wj are corresponding representation of Dt and wj , |V | is the number of all words

across all documents in D. The log probability (5) could be approximated efficiently using negative

sampling.

4. PROPOSED MODEL

Our proposed model GraphCSC has two main modules, skeleton module and component module

as summarized in Figure 5. Skeleton module (in Algorithm 1) and component module (in Al-

gorithm 2) mine corresponding substructures separately but synchronously. Finally, GraphCSC

integrates these two modules and optimizes overall loss function by gradient descent.

4.1. Skeleton Module

4.1.1. Anonymous Random Walks

Definition 3 (Random Walk). In graph G, a random walk w is defined as a finite sequence

(v0, v1, . . . , vl) with length l, where v0 is the root node and node vi+1 is sampled independently

among the neighbors of node vi.

Random walks are regarded as Markov processes, recently anonymous random walks have been

proven to be capable to learn graphs structural properties and reconstruct graphs with full de-

scriptions of every node’s state appeared in the random walk process in its own label space instead

of global label space [14]. This makes random walks in anonymous experiment more flexible and

compact.

7

Definition 4 (Position Function). Let w = (v0, v1, . . . , vl) be a random walk with length l on

graph. The position function f is defined as f(vi) = |(v0, . . . , vi′)|, where i′ is the smallest integer

such that vi′ = vi.

Definition 5 (Anonymous Random Walk). Let w = (v0, v1, . . . , vl) be a random walk with

length l on graph G i. The corresponding anonymous random walk is defined as a sequence of

integers a = g(w) = (f(v0), f(v1), . . . , f(vl)), where f is the position function.

Figure 2: We sample four random walks with length 3 (marked in different colors) in G1, G2 and illustrate their

relation with corresponding anonymous random walks.

Example. Random walks (A,B,C,D), (B,C,D,A), (A,A,B,C) and (A,A,D,C) sampled from

G1 and G2 in Figure 2 are completely different. However, in anonymous random walks view, the

new label for each node is redefined as the position of the first occurrence of node with same label

in the random walk sequence. This makes the initial four different random walks be changed into

two anonymous random walks, (1, 2, 3, 4) and (1, 1, 2, 3).

As shown in Figure 3, all different random walks with length 3 in G1 and G2 from Figure 2 will

be converted into only 8 anonymous random walks. Random walks record the labels information

8

of nodes traveled, under sufficient samples, they can accurately capture structure traits and recon-

structure the original graph. But over precise information will not be efficient to capture graph

structure features because of sparse distribution over all random walks. Anonymous random walks

translate random walks into a sequence of integers recording first appearing positions.

Figure 3: All kinds of different random walks with length 3 in G1 and G2 from Figure 2 and their corresponding

anonymous random walks.

4.1.2. Skeleton

We draw independently a set of ξ random walks WGi = {w1, . . . , wξ} with length l on Gi

in graphs set G = {G1, . . . , Gi, . . . , GN}, and calculate its µ anonymous random walks AGi
=

{a1, . . . aµ}.

For a large graph Gi, to count all possible anonymous random walks needs vast computational

resources. However, sampling ζ random walks with length l to approximate actual distribution of

anonymous random walks, the overall computing running time will be O(ζl) [16]. The relation of

estimation of samples number ζ and the number of anonymous random walks λ is determined by

hyperparameters ε and δ [20]:

ζ = [
2

ε2
(log(2λ − 2)− log(δ))], ε > 0, 0 ≤ δ ≤ 1. (7)

Next we tend to leverage vectors to represent whether some specific anonymous random walks

contained in a graph or not.

Definition 6 (Skeleton). Given graphs set G = {G1, . . . , Gi, . . . , GN}, we sample random walks

with length l on each graph in G and integrate them as set W = {w1, . . . , wm, . . . , wξ}. The

9

correspond anonymous random walks set A = {a1, . . . , as, . . . , aµ} has µ unequal elements. The

skeleton of graph Gi is defined as an 1× µ shape vector sGi
= [ξs]1×µ, where

ξs =

1, if as ∈ Gi

0, else
, s = 1, . . . , µ. (8)

4.2. Component Module

Component module uses a more flexible approach to capture similarity between two graphs by

frequent patterns, for example, itemsets, subsequences, or subgraphs, which appear in a data set

with frequency no less than a user-specified minimum support (min sup) threshold. Component

module basically includes three steps: (1) mining frequent subgraphs, (2) selecting features, (3)

learning component features.

4.2.1. Frequent Subgraph

Definition 7 (Subgraph). A graph sg is called a subgraph of a graph G if nodes satisfy V(sg)

⊆ V(G) and edges satisfy E(sg) ⊆ E(G).

Figure 4: Different kinds of subgraphs mined from G1 and G2 in Figure 2.

Two graphs are similar if their subgraphs are similar since subgraphs have been recognized as

fundamental units and are building blocks for complex networks [21]. But usually only a fraction

of the large amount number of subgraphs are actually relevant to data mining problems. Our

10

Algorithm 1 Skeleton Module

Input: G = {G1, . . . , GN}: graphs set; l: random walk length; T : random walk times.

Output: A: anonymous random walks set; sGi
, i = 1, . . . , N : skeleton for each graph Gi in G.

1: % Mining Anonymous Walks

2: A = ∅

3: for each Gi in G do

4: AGi
= ∅

5: for each node vj in V (Gi) do

6: for k = 1; k < T ; k + + do

7: w = RandomWalk(Gi, vj , l)

8: a = g(w)

9: if a not in AGi then

10: AGi = AGi ∪ {a}

11: end if

12: end for

13: end for

14: end for

15: A =
N⋃
i=1

AGi

16: % Getting skeletons

17: for each Gi in G do

18: initialize sGi = [sk]1×|A|, sk = 0

19: for each anonymous random walk ak in A do

20: if ak in Ai then

21: sk = 1

22: end if

23: end for

24: end for

25: return A; sGi , i = 1, . . . , N

11

methodology focus on mining subgraphs of different proportion in graph set, and then embed these

distribution features into graph component representation.

Definition 8 (Frequent Subgraph). Let sg be a subgraph in subgraphs set SG mined from

G = {G1, . . . , Gi, . . . , GN}, and will be called frequent subgraph fsg if |{Gi∈G|sg∈Gi}|
|G| ≥ θ, where θ

is the min sup threshold, 0 ≤ θ ≤ 1, and |{Gi∈G|sg∈Gi}|
|G| is called the support of Gi.

Example. We still take G1, G2 in Figure 2 and subgraphs sg1, sg2, sg3 in Figure 4 as examples.

If we set min sup threshold θ = 1, only subgraphs sg1 can be regarded as frequent subgraph.

However, if we set min sup threshold θ = 0.5, all of sg1, sg2 and sg3 will be regarded frequent.

Frequent pattern, as a form of non-linear feature combinations over the set of different subgraphs,

has higher discriminative power than that of single kind of subgraph because they capture more

underlying semantics of the data. The key point is to specify the hyperparameter min sup threshold

θ used in model in frequent pattern, and we will study the influence of θ for machine learning tasks

in Section 5. If an infrequent feature is used, the model cannot generalize well to the test data since

it is built based on statistically minor observations, hence the discriminative power of low-support

features will be limited [22].

4.2.2. Component

To mine all frequent subgraphs will face two challenges: (1) The time complexity O(2|V |) which

is dominated by the overall nodes number of each graph, makes it computational infeasible to find

all subgraphs. (2) In analogue of graph isomorphism checking in which two graphs have different

sizes, subgraph isomorphism checking has been proven to be NP-complete [23]. A slightly less

restrictive measure of similarity can be defined based on the size of the largest common subgraph in

two graphs, but unfortunately the problem of finding the largest common subgraph of two graphs

is NP-complete as well [23].

To tackle with such two challenges above, gSpan [24] algorithm builds a new lexicographic

order among graphs, and maps each graph to a unique minimum DFS-code as its canonical label.

Based on this lexicographic order among DFS-code, gSpan adopts the depth-first search strategy

to discover frequent subgraphs efficiently. Repeating this procedure until either when the support

of a graph is less than min sup threshold θ, or its code is not a minimum code, which means this

graph and all its descendants have been generated and discovered before. Now we give the definition

of component to indicate what frequent subgraphs mined by gSpan graph Gi has.

12

Figure 5: Overview of GraphCSC which can be decomposed into two main parts, the skeleton module and component

module. Skeleton module outputs anonymous random walks matrix MA in µ×d size and skeletons for graphs from

G. Meanwhile, component module gets frequent subgraphs matrix MFSG in ν× d size and componnets for graphs

from G. Finally, GraphCSC integrates these two modules and yields global optimization object (14).

Definition 9 (Component). Given a set of graphs G = {G1, . . . , Gi, . . . , GN} and min sup

threshold θ, all different frequent subgraphs obtained by gSpan are contained in set FSG =

{fsg1, . . . , fsgt, . . . , fsgν}. The component of Gi is defined as an 1×ν shape vector cGi
= [ηt]1×ν ,

where

ηt =

1, if fsgt ∈ Gi

0, else
, t = 1, . . . , ν. (9)

4.3. TRAINING

For graph data set G = {G1, . . . , Gi, . . . , GN}, supposed that all anonymous random walks with

length l mined are in A = {a1, . . . , aµ} and all frequent subgraphs mined under min sup threshold

θ are in FSG = {fsg1, . . . , fsgν} , we leverage PV-DBOW to learn graphs embedding matrix

X whose each row is an embedding for each graph, anonymous random walks matrix MA whose

each row is an embedding for each anonymous random walk and frequent subgraphs matrix MFSG

13

Algorithm 2 Component Module

Input: G = {G1, . . . , GN}: graphs set; θ: min sup threshold.

Output: FSG: frequent subgraphs set; cGi
, i = 1, . . . , N : component for each graph Gi in G

1: % Mining Frequent Subgraphs

2: FSG = gSpan(G, θ)

3: for each Gi in G do

4: FSGGi
= ∅

5: for each frequent subgraph fsgj in FSG do

6: if fsgj in Gi then

7: FSGGi
= FSGGi

∪ {fsgj}

8: end if

9: end for

10: end for

11: % Getting components

12: for each Gi in G do

13: initialize cGi = [ck]1×|FSG|, ck = 0

14: for each frequent subgraph fsgk in FSG do

15: if fsgk in FSGi then

16: sk = 1

17: end if

18: end for

19: end for

20: return FSG; cGi
, i = 1, . . . , N

14

whose each row is an embedding for each frequent subgraph. Vectors sGi and cGi are corresponding

skeleton and component for graph Gi, i = 1, . . . , N .

Graphs embedding matrix X has N ×d size, matrix MA is in µ×d size and matrix MFSG is in

ν × d size, where d is embedding dimension. PV-DBOW treats graph data set G as a documents

set, each graph Gi in G as a document and each substructure mined in Gi as a word contained in

a document.

To begin with, we focus on anonymous random walks and seek to optimize the following objective

function, which maximizes the log-probability of predicting anonymous random walks that appear

in graph Gi:

max

µ∑
s=1

sGi · e
′

s log Pr(as|Gi), (10)

where e
′

s is an 1× µ binary vector whose s-th column element is 1 and j-th column element equals

to 0 if j 6= s.

The probability Pr(as|Gi) is defined as a softmax unit parametrized by a dot product of as and

Gi which are embedding vectors of as and Gi:

Pr(as|Gi) =
exp(as ·Gi)
µ∑
p=1

exp(ap ·Gi)

. (11)

Next, we use same method to maximize the log-probability of predicting the frequent subgraphs

that appear in graph Gi:

max

ν∑
t=1

cGi · e
′′

t log Pr(fsgt|Gi), (12)

where e
′′

t is an 1× ν binary vector whose t-th column element is 1 and j-th column element equals

to 0 if j 6= t.

The probability Pr(fsgt|Gi) is defined as a softmax function parametrized by a dot product of

fsgt and Gi which are embedding vectors of subgraph fsgt and Gi:

Pr(fsgt|Gi) =
exp(fsgt ·Gi)
ν∑
q=1

exp(fsgq ·Gi)
. (13)

To get graph representation satisfies (10) and (12), the global optimization object is:

max

µ∑
s=1

sGi
· e

′

s log Pr(as|Gi) + max

ν∑
t=1

cGi
· e

′′

t log Pr(fsgt|Gi). (14)

15

We yield its loss function as following:

L =

µ∑
s=1

sGi
· e

′

s log σ(as ·Gi) +

ν∑
t=1

cGi
· e

′′

t log σ(fsgt ·Gi)

µ∑
p=1

log(σ(−ap ·Gi)) +

ν∑
q=1

log(σ(−fsgq ·Gi)),

(15)

where σ(x) = 1
1+exp(−x) is sigmoid function.

The last two items in equation (15) which sum over all anonymous random walks and sub-

graphs directly, are too expensive since µ and ν usually tend to be very large. Hence we proceed

with an approximation by negative sampling to make the optimization problem tractable. The

normalization terms from the softmax are replaced by K1 anonymous random walks negative sam-

ples {a′1, . . . , a′K1
} from A but not contained in Gi and K2 frequent subgraphs negative samples

{fsg′1, . . . , fsg′K2
} from F but not contained in Gi. Thus equation (15) can be rewritten as:

L =

µ∑
s=1

sGi
· e

′

s log σ(as ·Gi) +

ν∑
t=1

cGi
· e

′′

t log σ(fsgt ·Gi)

K1∑
p=0

log(σ(−a′
p ·Gi)) +

K2∑
q=0

log(σ(−fsg′
q ·Gi)),

(16)

where a′
p and fsg′

q are the embedding vectors of samples a′p and fsg′q respectively, and a′p belongs

to Gi when p = 0, fsg′q is in Gi when q = 0.

Finally, we optimize loss function (16) with stochastic gradient descent and update Gi. After

the learning process finishes, two graphs are near in embedding space if they have similar skeleton

and component, and we summarize this training process in Algorithm 3.

5. EXPERIMENTS

In this section, to quantitatively evaluate classification capability of our model, we conduct

extensive experiments on a variety of widely-used datasets to compare with several state-of-the-art

baselines.

5.1. DATASETS

We evaluate our proposed method on binary classification task using seven real-world graph

datasets whose statictics are summarized in Table 1. MUTAG [25] is a dataset of aromatic and

16

Algorithm 3 Training

Input: G = {G1, . . . , GN}: graphs set; A: anonymous random walks set; sGi , i = 1, . . . , N :

skeleton for each graph Gi in G; FSG: frequent subgraphs set; cGi
, i = 1, . . . , N : component

for each graph Gi in G; e
′

1, . . . , e
′

|A|: |A| binary vectors for skeletons; e
′′

1 , . . . , e
′′

|FSG|: |FSG|

binary vectors for components; d: embedding dimension; α: learning rate.

Output: XN×d: graphs representation matrix

1: initialize X = [xij]N×d, xij ∼ N(0, 0.001)

2: for each anonymous walk as in A do

3: for each frequent subgraph fsgt in FSG do

4: L(X) = −sGi · e
′

s log Pr(as|Gi)− cGi · e
′′

t log Pr(fsgt|Gi)

5: X = X− α∂L(X)
X

6: end for

7: end for

8: return X

heteroaromatic nitro compounds labeled according to whether or not they have a mutagenic effect

on bacteria. PROTEINS [26] is a set of proteins graphs where nodes represent secondary structure

elements and edges indicate neighborhood in the amino-acid sequence or in 3-dimension space. EN-

ZYMES [26] consists of protein tertiary structures obtained from the BRENDA enzyme database.

DD [27] is a dataset of protein structures where nodes represent amino acids and edges indicate

spatial closeness, which are classified into enzymes or non-enzymes. PTC-MR [28] consists of graph

representations of chemical molecules labeled according to carcinogenicity on rodents. NCI-1, NCI-

109 [1] are datasets of chemical compounds divided by the anti-cancer property (active or negative).

These datasets have been made publicly available by the National Cancer Institute (NCI).

5.2. BASELINES

In order to demonstrate the effectiveness of our proposed approach, we compare it with several

baseline methods, all of which utilize the entire graph for feature extraction. These competitors

can be categorized into four main groups:

• Graph kernels based methods: The shortest path (SP) [11] kernel measures the simi-

larity of a pair of graphs by comparing the distance of the shortest paths between nodes in

17

Table 1: Statistics of the benchmark graph datasets. The columns are: Name of dataset, Number of graphs, Number

of classes (maximum number of graphs in a class), Average number of nodes/edges.

Datasets Graph] Class] Average Node] Average Edge]

MUTAG 188 2 17.93 19.79

DD 1178 2 284.32 715.66

PTC-MR 344 2 14.29 14.69

NCI-1 4110 2 29.87 32.30

NCI-109 4127 2 29.68 32.13

PROTEINS 1113 2 39.06 72.82

ENZYMES 600 6 32.63 64.14

the graphs. Graphlet kernel (GK) [20] measures graph similarity by counting the number

of different graphlets and Deep GK [29] is deep graphlet kernel. Weisfeiler-Lehman ker-

nel (WL) [5] uses subtree pattern to mine structure information and Deep WL [29] is deep

Weisfeiler-Lehman kernel.

• Unsupervised graph embedding methods: node2vec [4] is an unsupervised task agnostic

method that learns entire graph embedding. It proposes every graph into a fixed size vector

containing distributed representation of graph structures.

• Supervised graph embedding methods: PSCN [8] is a convolutional neural network

algorithm which has achieved strong classification accuracy in many datasets.

• Unsupervised graph embedding methods: AWE [13] uses an anonymous random walks

approach to embed entire graphs in an unsupervised manner.

5.3. Evaluation Metrics

To evaluate the performance of GraphCSC, we randomly split the data into 10 roughly equal-

size parts and perform a 10-fold cross validation on each dataset, in which 9 folds for training and 1

fold as validation for testing. This process is repeated 10 times and an average accuracy is reported

as prediction. Since we focus on graph embedding not on a classifier, we feed the embedding vectors

to Support Vector Machine (SVM) with RBF kernel function with parameter σ varing from the

range [10−4, 10−3, 10−2, 10−1, 1, 10].

18

Table 2: Classification accuracy (standard deviation) of our method GraphCSC and state-of-the-art baselines on

benchmark datasets. The last two rows denote the θ values and the dim values used by our method for each dataset;

these values are determined in Fig.5 and Fig.6. “-” means the classification accuracy (standard deviation) is not

available in the original papers.

Algorithm MUTAG DD PTC-MR NCI-1 NCI-109 PROTEINS ENZYMES

WL 80.63 (3.07) 77.95 (0.70) 56.97 (2.01) 80.13 (0.50) 80.22 (0.34) 72.92 (0.56) 53.15 (1.14)

Deep WL 82.95 (1.96) - 59.17 (1.56) 80.31 (0.46) 80.32 (0.33) 73.30 (0.82) 53.43 (0.91)

GK 81.66 (2.11) 78.45 (0.26) 57.26 (1.41) 62.28 (0.29) 62.60 (0.19) 71.67 (0.55) 26.61 (0.99)

Deep GK 82.66 (1.45) - 57.32 (1.13) 62.48 (0.25) 62.69 (0.23) 71.68 (0.50) 27.08 (0.79)

graph2vec 83.15 (9.25) 58.64 (0.01) 60.17 (6.86) 73.22 (1.81) 74.26 (1.47) 73.30 (2.05) 44.33 (0.09)

PSCN 92.63 (4.21) 77.12 (2.41) 60.00 (4.82) 78.59 (1.89) - 75.89 (2.76) -

AWE 87.87 (9.76) 71.51 (4.02) 59.14 (1.83) 62.72 (1.67) 63.21 (1.42) 70.01 (2.52) 35.77 (5.93)

GraphCSC 88.42 (6.47) 89.38 (2.73) 64.04 (3.61) 85.70 (4.29) 85.46 (3.66) 76.71 (3.06) 57.21 (5.70)

θ 0.15 0.25 0.75 0.20 0.20 0.60 0.55

dim 128 8 128 16 16 32 128

5.4. Parameter sensitivity

Since we tend to prove that the performance of our model GraphCSC may have a gain on

experiments results than method only considers skeletons, thus to explore how the hyperparameters

in skeleton module affect tasks performace will not be our priority. For the need of brevity, the length

l is set as 10 to generate a corpus of co-occurred anonymous random walks for all given datasets.

To approximate actual distribution of anonymous random walks, we follow [13] to set the sampling

hyperparameters ε = 1 and δ = 0.05. In order to evaluate how the parameters sensitivity of min sup

threshold θ and embedding dimensions dim affect the classification performance of GraphCSC on

datasets, all parameters are assumed to be default except θ and dim.

We first conduct experiments with dim = 128, then assess the classification accuracy as a

function of min sup threshold θ for different datasets. Best performance is indicated with red

mark in Figure 6. Then in Figure 7, experiments examine the influence of varying the dim from

[8, 16, 32, 64, 128, 256, 512, 1024] with the best θs obtained from Fig.5. The best accuracy is also

signed in red as shown in each figure.

19

Figure 6: Here we show parameter sensitivity of min sup threshold θ in graph classification on MUTAG, DD, PTC-

MR, NCI-1, PROTEINS and ENZYMES with fixed embedding dimension dim = 128. The best expressions marked

by red points are used in our experiments and the (±)standard deviation of each result is indicated with gray error

bar.

5.5. Results and Discussion

The average classification accuracy (standard deviation) over 10-fold cross-validation of GraphCSC

(with θ and dim that lead to optimal result from Figure 6 and Figure 7, and baselines on seven real-

world datasets are summarized in Table 2. From the results, it is evidently shown that GraphCSC is

always the best in terms of performance on 6 datasets with exception on MUTAG, where GraphCSC

gets second best result. More specifically, the proposed model achieves 3.41%−30.60% improvement

over graph kernals based methods (WL, Deep WL, GK and Deep GK), and is competitive against

graph embedding method (graph2vec) with 3.41%− 30.74% gain in accuracy. However, supervised

graph embedding method PSCN is more superior with 4.21% higher in accuracy in MUTAG dataset

classification. It is also obvious that GraphCSC outperforms AWE approach in every single dataset.

This significantly demonstrates the effectiveness of the proposed model on classification tasks due

to having access to skeleton and component features, which enable GraphCSC to get more complex

structures information, while AWE processes only fixed size skeletons instead.

20

Figure 7: Parameter sensitivity of embedding dimension dim in graph classification on MUTAG, DD, PTC-MR,

NCI-1, PROTEINS and ENZYMES with best min sup threshold θ selected in Fig.5. The best expressions marked

by red points are used in our experiments. The (±)standard deviation of each result is indicated with gray error bar.

Figure 6 presents the classification accuracy of increasing min sup threshold θ. In MUTAG and

NCI-1, experiments get best performance when θ = 0.15 and 0.2 separately. Then results decrease

slowly and maintain stable, after θ reaching 0.7 (for MUTAG) and 0.6 (for NCI-1), lines drop

rapidly until getting to another flat states. A common phenomenon is that for DD, PROTEINS

and ENZYMES, accuracy lines increase from the beginnings and decrease slowly after meeting

the tops. Another observation is that in PTC-MR, performance has 2 closed top best results

when θ = 0.25 and 0.75, while the result at θ = 0.75 has only 1% gain over that at θ = 0.25.

It is very interesting that min sup threshold θ centers around a low value for most datasets. A

possible explanation is that low θ will lead to more sufficient frequent subgraphs which will provide

adequate complementary structure information for pattern just uses skeletons. As a consequence,

this enforces model’s discriminate power.

Figure 7 examines the effects of embedding dimension hyperparameter dim. As we can see

from the figure, in MUTAG and PROTEINS, there is a relatively gentle first-increasing and then-

decreasing accuracy line when dim increases. We note that for DD, the performance line goes down

21

slowly and maintains stable at around 83% and then again falls quickly. Accuracy in ENZYMES

changes roughly, indicating that classification result significantly suffers from embedding dimension

dim. While it seems that dim has no clearly effects on classification results for PTC-MR and NCI-1.

The beat dims for MUTAG and ENZYMES center at 128, but the dim values tend to be small

(usually no more than 32) in DD, PTC-MR, NCI-1 and PROTEINS, we can infer that small dims

would reflect more obvious features for these 4 datasets.

6. Conclusion

In this paper, we focus to study the problem of graph classification and propose GraphCSC,

a new methodology that learns graph representation from horizontal and vertical perspectives to

mine graph structures, i.e., skeletons and components. And our model is demonstrated to be

superior to approach which utilizes only skeletons. Our method treats a graph as a document

and different substructures or subgraphs in it as words by NLP framework PV-DBOW, thus the

graph embedding GraphCSC learns integrate various size structures information. Several real-world

graph classification tasks show that our model can achieve promising performances than a list of

state-of-art baselines.

For future work, an interesting problem needs to be study further. We tend to fucus on more

complex graph structures, for example, clusters. Since a cluster usually contains dozens or even

hundreds of nodes and edges, there may show more valuable features which may reflect more implicit

graph properties. We would also like to investigate graph embedding with mixed structures from

low-order subgraphs to big clusters, and to verify whether this would be helpful for better results

than GraphCSC.

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities, the Na-

tional Natural Science Foundation of China (No.11201019), the International Cooperation Project

No.2010DFR00700, Fundamental Research of Civil Aircraft No. MJ-F-2012-04, the Beijing Nat-

ural Science Foundation (1192012, Z180005) and National Natural Science Foundation of China

(No.62050132).

22

References

[1] J. B. Lee, R. Rossi, X. Kong, Graph classification using structural attention, in: Proceedings

of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2018, pp. 1666–1674.

[2] L. Backstrom, J. Leskovec, Supervised random walks: predicting and recommending links in

social networks, in: the Fourth International Conference on Web Search and Web Data Mining,

2011, p. 635–644.

[3] F. Costa, K. D. Grave, Fast neighborhood subgraph pairwise distance kernel, in: International

Conference on International Conference on Machine Learning, 2010.

[4] M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural networks for graphs, in:

International conference on machine learning, 2016, pp. 2014–2023.

[5] N. Shervashidze, P. Schweitzer, E. Jan, V. Leeuwen, K. M. Borgwardt, Weisfeiler-lehman graph

kernels, Journal of Machine Learning Research 1 (3) (2010) 1–48.

[6] Z. Wu, S. Pan, F. Chen, G. Long, P. S. Yu, A comprehensive survey on graph neural networks,

IEEE Transactions on Neural Networks and Learning Systems PP (99) (2020) 1–21.

[7] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional

neural networks, in: Advances in neural information processing systems, 2012, pp. 1097–1105.

[8] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv

preprint arXiv:1609.02907.

[9] J. Hartmanis, Computers and intractability: a guide to the theory of np-completeness (michael

r. garey and david s. johnson), Siam Review 24 (1) (1982) 90.

[10] H. Kashima, K. Tsuda, A. Inokuchi, Marginalized kernels between labeled graphs, in: Proceed-

ings of the 20th international conference on machine learning (ICML-03), 2003, pp. 321–328.

[11] K. M. Borgwardt, H.-P. Kriegel, Shortest-path kernels on graphs, in: Fifth IEEE international

conference on data mining (ICDM’05), IEEE, 2005, pp. 8–pp.

23

[12] R. Kondor, N. Shervashidze, K. M. Borgwardt, The graphlet spectrum, in: Proceedings of the

26th Annual International Conference on Machine Learning, 2009, pp. 529–536.

[13] S. Ivanov, E. Burnaev, Anonymous walk embeddings, arXiv preprint arXiv:1805.11921.

[14] S. Micali, Z. A. Zhu, Reconstructing markov processes from independent and anonymous

experiments, Discrete Applied Mathematics 200 (2016) 108–122.

[15] D. Nguyen, W. Luo, T. D. Nguyen, S. Venkatesh, D. Phung, Learning graph representation

via frequent subgraphs, in: Proceedings of the 2018 SIAM International Conference on Data

Mining, SIAM, 2018, pp. 306–314.

[16] Q. Le, T. Mikolov, Distributed representations of sentences and documents, in: International

conference on machine learning, 2014, pp. 1188–1196.

[17] T. Mikolov, Distributed representations of words and phrases and their compositionality, Ad-

vances in Neural Information Processing Systems 26 (2013) 3111–3119.

[18] A. Mnih, G. E. Hinton, A scalable hierarchical distributed language model, in: Advances in

neural information processing systems, 2009, pp. 1081–1088.

[19] F. Rousseau, E. Kiagias, M. Vazirgiannis, Text categorization as a graph classification problem,

in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), 2015, pp. 1702–1712.

[20] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, K. Borgwardt, Efficient graphlet

kernels for large graph comparison, in: Artificial Intelligence and Statistics, 2009, pp. 488–495.

[21] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: simple

building blocks of complex networks, Science 298 (5594) (2002) 824–827.

[22] C. Hong, Towards accurate and efficient classification: A discriminative and frequent pattern-

based approach, Ph.D. thesis, University of Illinois at Urbana-Champaign. (2008).

[23] M. J. Zaki, W. Meira, Data mining and analysis: fundamental concepts and algorithms, Cam-

bridge University Press, 2014.

24

[24] X. Yan, J. Han, gspan: Graph-based substructure pattern mining, in: 2002 IEEE International

Conference on Data Mining, 2002. Proceedings., IEEE, 2002, pp. 721–724.

[25] A. K. Debnath, R. L. L. D. Compadre, G. Debnath, A. J. Shusterman, C. Hansch, Structure-

activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation

with molecular orbital energies and hydrophobicity., Journal of Medicinal Chemistry 34 (2)

(1991) 786–797.

[26] K. M. Borgwardt, O. C. Soon, S. Stefan, S. V. N. Vishwanathan, A. J. Smola, K. Hans-Peter,

Protein function prediction via graph kernels, Bioinformatics 21 (suppl 1) (2005) i47–i56.

[27] P. D. Dobson, A. J. Doig, Distinguishing enzyme structures from non-enzymes without align-

ments, Journal of Molecular Biology 330 (4) (2003) 771–783.

[28] C. Helma, R. D. King, S. Kramer, A. Srinivasan, The predictive toxicology challenge 2000-2001,

Bioinformatics 17 (1) (2001) 107–108.

[29] P. Yanardag, S. Vishwanathan, Deep graph kernels, in: Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2015, pp. 1365–1374.

25

	1 Introduction
	2 PROBLEM STATEMENT
	3 BACKGROUND
	3.1 word2vec and Skipgram
	3.2 Softmax and negative sampling
	3.3 doc2vec and PV-DBOW

	4 PROPOSED MODEL
	4.1 Skeleton Module
	4.1.1 Anonymous Random Walks
	4.1.2 Skeleton

	4.2 Component Module
	4.2.1 Frequent Subgraph
	4.2.2 Component

	4.3 TRAINING

	5 EXPERIMENTS
	5.1 DATASETS
	5.2 BASELINES
	5.3 Evaluation Metrics
	5.4 Parameter sensitivity
	5.5 Results and Discussion

	6 Conclusion

