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Abstract

Identifying super-spreaders in epidemics is important to suppress the spreading of disease especially when the medical

resource is limited. In the modern society, the information on epidemics transmits swiftly through various commu-

nication channels which contributes much to the suppression of epidemics. Here we study on the identification of

super-spreaders in the information-disease coupled spreading dynamics. Firstly, we find that the centralities in phys-

ical contact layer are no longer effective to identify super-spreaders in epidemics, which is due to the suppression

effects from the information spreading. Then by considering the structural and dynamical couplings between the

communication layer and physical contact layer, we propose a centrality measure called coupling-sensitive centrality

to identify super-spreaders in disease spreading. Simulation results on synthesized and real-world multiplex networks

show that the proposed measure is not only much more accurate than centralities on the single network, but also

outperforms two typical multilayer centralities in identifying super-spreaders. These findings imply that considering

the structural and dynamical couplings between layers is very necessary in identifying the key roles in the coupled

multilayer systems.

Keywords: multiplex network, information-disease coupled spreading dynamics, super-spreader, coupling-sensitive

centrality
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1. Introduction

Identification of the most important nodes in complex networks is an active field in network science [1, 2]. The

important nodes in different contexts have their specific implications, such as the opinion leaders that can influence

the public views in the social media [3], the critical neurons and regions in brain networks associated with brain

functions [4], the most influential spreaders that can maximize information diffusion or epidemic spreading [5–7],

and the articulation nodes that maintain the integrity and connectivity of networks [8–10]. The most commonly used

method to identify important nodes in networks is the use of centrality measures which evaluate nodes’ importance

from the local or global structure of the networks, such as degree [11], eigenvector centrality [12], closeness central-

ity [13], betweenness centrality [14], PageRank [15], k-shell index obtained from k-core decomposition [16] and the

nonbacktracking centrality [17]. The centrality-based methods are very successful and find their wide applications in

identifying kinds of important nodes [18, 19].

In spreading dynamics, the most important nodes called influential spreaders or super-spreaders are nodes which

can induce the largest outbreak sizes when the spreading originates from them. As control of epidemics is a major

challenge the human beings are facing with [20, 21], identification of influential spreaders is a key step in optimizing

the available resources and ensuring more efficient control strategy [6]. A great many of methods are proposed to
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identify influential spreaders [22–26]. However these progresses are mostly in single layer networks, while some real

complex systems are better represented as multilayer networks [27]. For example an individual may have relationships

with others in different ways, either being friends, colleagues, schoolmates, or doing business, which is a multilayer

network [28]. Integrating these different types of interactions into a single network may lose some critical information

of the system. The multilayer network approach is adopted in understanding the robustness of infrastructures [29, 30],

coevolving spreading dynamics of information and epidemics [31], evolutionary games [32], functions of brain [33]

and stability of economical and financial systems [34].

When an epidemic outbreaks in the contact population, information on the epidemic is easily transmitted through

kinds of channels, such as the online social platform and mobile communication network. The information on epi-

demic disease promotes people to adopt self-protection measures to reduce their risks of being infected, thus helping

to suppress the diffusion of epidemic. Meanwhile, the wide spread of epidemic further enhances the spreading of

information [35]. These can be considered as two processes on a two-layer multiplex network where the informa-

tion diffuses on the communication layer and the disease spreads on the physical contact layer, and nodes are the

individuals [31]. It is found that the asymmetrical interplay between layers has significant impact on the spreading

dynamics on top of the multiplex networks, such as changing the epidemic threshold and suppressing the infected

population in the stationary state [36–39]. As for searching for the influential spreaders, it is natural to consider that

the spreading influence of a node in the physical contact layer will be reduced due to the information spreading on the

communication layer, but the extent of reduction depends on the structure and dynamics on the communication layer.

To address the issue of identifying the most important nodes in multiplex networks, a lot of centralities and

methods are proposed, such as the multiplex PageRank [40, 41], multiplex eigenvector centrality [42, 43], multiplex

betweenness [44], tensor-decomposition based methods [45], and methods based on the local or global structure of the

networks [46–48]. These methods provide more accurate rankings than approaches based on the aggregated networks

or single-layer networks. However, these methods mainly focus on the multilayer structure, while neglecting the

dynamical couplings between layers. Researches have pointed out that the influence of a node in the spreading process

is a result of the interplay between dynamics and network structure [49, 50], and dynamic-sensitive measures are more

efficient in identifying super-spreaders than structural measures in single networks and interconnected networks [51,

52].

In this paper, we work on identifying the most influential spreaders in the coupled information-epidemic dynam-

ics. By considering three dynamical and structural couplings between two layers, which are the two-layer relative

spreading rate, the inter-layer coupling strength and the inter-layer degree correlation, we propose a measure called

coupling-sensitive centrality (CS) to identify super-spreaders in the coevolving dynamics on multiplex networks. Sim-

ulation results show that the CS centrality is not only much more accurate than the centralities of degree, eigenvector

centrality, k-shell index and PageRank in the contact layer, but is also more accurate than two typical multiplex cen-

tralities, which are the multiplex PageRank and multiplex eigenvector centrality. While being applied to a variety

of real-world multiplex networks, the proposed measure also works well, implying that considering the couplings

between layers is crucial in finding key nodes in multilayer systems.

The rest of the paper is organized as follows. In section 2, we give the preliminaries. In section 3, we propose

the coupling-sensitive centrality. In section 4, we represent the effectiveness of the proposed centrality in synthesized

networks and real-world networks. Finally we give a conclusion in section 5.

2. Preliminaries

In this part, we first describe the information-epidemic coupled spreading model on a two-layer multiplex network.

Then we give a brief description of the benchmark centralities of degree, eigenvector centrality, k-shell index and

PageRank on single layer network, and the multiplex PageRank and multiplex eigenvector centrality on multiplex

network, which are used as competitors to our measure to identify super-spreaders. Finally we give the definition of

the imprecision function and Kendall’s tau correlation coefficient, which are two methods to evaluate the performance

of different measures in identifying super-spreaders.

2.1. The coupled information-epidemic model on multiplex network

To describe the information-epidemic coevolving dynamics, we use the SIR-SIRV spreading model in ref. [38]. In

this model, a multiplex network is composed of two layers where the nodes represent individuals and links represent

2



Figure 1: The schematic representation of the information-epidemic coupled dynamics on a multiplex network. Layer A is the communication

network where information spreads, and layer B is the physical contact network where disease spreads. (a) At t = 0, a node is informed and infected

and all other nodes are in susceptible states in both layers. The informed and infected node transmits information and disease to its neighbors in

layer A and B respectively with rate λA and λB. (b) The informed node in layer A makes its counterpart in layer B be vaccinated with rate λAB, and

the infected node in layer B makes its counterpart in layer A be informed with rate λBA.

their interactions. The information spreads on the upper communication layer A and the disease spreads on the bottom

physical contact layer B. In the communication layer, the classical susceptible-infected-recovered (SIR) model is used

to describe the information spreading process. In the SIR model, a node can be in one of the three states: susceptible

(S), infected or informed in information spreading (I) and recovered (R). At each time step, an I-state node infects

or informs all its susceptible neighbors with rate βA and then recovers with rate µA. The spreading stops until there

is no I-state node in the network. In the physical contact layer where disease spreads, the same SIR dynamics are

adopted with an additional state vaccinated (V), where nodes of V-state will neither be infected nor transmit disease.

The disease transmission rate is βB and the recovering rate of infected nodes is µB. The effective transmission rates

for layer A and B are respectively λA = βA/µA and λB = βB/µB.

The dynamical coupling of the two layers is as follows. For an informed node iA in layer A, if its counterpart iB

in layer B is in S-state, then iB transfers to state V with immunization rate λAB. This immunization rate represents the

willingness or capability of the informed individuals to get vaccinated. The larger λAB is, the more counterparts of

the informed nodes will get vaccinated and the suppression effect from information layer is more significant. For an

infected node jB in layer B, if its counterpart jA in layer A is in S-state, then jA transfers to state I with rate λBA. The

λBA represents the probability that an infected individual is aware of the epidemic or is willing to transmit information

on it. The larger λBA is, the more nodes in layer A become aware of the epidemic and the information spreads more

widely. A schematic representation of the SIR-SIRV model is shown in Fig. 1.

In simulations, each layer of the multiplex network is a scale-free network with power law degree distribution

p(k) ∼ k−γ. We generate layer A from the uncorrelated configuration model (UCM) with the number of nodes

N = 10000, the power exponent γ = 2.6 and the average degree < k >= 6. The minimal degree is set as kmin = 3

and the maximal degree is set as kmax =
√

N. Then we generate layer B by keeping the same node sets of layer A.

The degree sequence of layer B is generated by copying the degree sequence of layer A first and then exchanging the

degrees of randomly selected pairs of nodes until the specified inter-layer degree correlation is reached. The multiplex

network is thus a set of nodes with two different types of connections represented by two layers. The inter-layer

degree correlation of the two layers is quantified by the Spearman rank correlation coefficient [53].
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Definition 2.1. Inter-layer degree correlation. The inter-layer degree correlation is defined as

ms = 1 − 6

∑N
i=1 ∆

2
i

N(N2 − 1)
, (1)

where N is the number of nodes, ∆i is the rank difference of node i in two ordered sequences ranked by degree in layer

A and layer B respectively. ms ranges in [-1,1]. If the degrees of nodes in two layers are positively correlated, ms → 1.

If the degrees of nodes in two layers are negatively correlated, ms → −1. If the degrees of nodes in two layers are

uncorrelated, ms → 0. The degree correlation of a node in two layers has a potential impact on the spreading influence

of the node in the contact layer. From the centrality’s perspective, a node with larger degree has a greater spreading

influence in the network. For nodes with the same degree in the contact layer B, their degrees in the communication

layer A imply different suppression effects of information on epidemic spreading, making the centrality in the contact

layer be unable to predict the spreading influence of nodes in disease spreading.

In the coevolving dynamics, initially a seed node is infected on layer B and its counterpart in layer A is informed.

The information and disease spread in layer A and layer B respectively until a final state is reached. As we focus

on disease spreading, we take the proportion Ri of recovered nodes in the contact layer in the steady state as the

spreading influence of the seed node i. The disease transmission rate λB is set to be 0.13 for the synthesized network

which is three times of the epidemic threshold of layer B. As indicated in ref. [54], the transmission rate will not

impact the relative ranking of node influence if it is above the epidemic threshold and within a few times of epidemic

threshold. The recovery rates are set as µA = µB = 1 for simplicity. The relative spreading rate of layer A and layer

B is γλ
AB
= λA/λB, which reflects the dynamical coupling of the two layers. If γλ

AB
= λA/λB is large enough, we

can consider that the information spreads first and the disease spreads on the residual network after vaccination. All

results in simulations are obtained by averaging over 100 runs.

2.2. Competitor centralities

2.2.1. Centralities on single-layer network

Consider a network G(V, E), where V is the set of nodes, E is the set of edges, and N = |V | is the number of nodes.

The adjacent matrix of G is AN∗N = ai j, where ai j = 1 if there is an edge between node i and j, otherwise ai j = 0. The

degree k quantifies how many direct neighbors a node has, which is ki =
∑

j∈V\i ai j. Degree is the simplest centrality

measure in quantifying node importance.

Definition 2.2. Eigenvector centrality. The eigenvector centrality of node i is defined as

ei = λ
−1

N∑

n=1

ai je j, (2)

which gives λe = Ae in matrix notation. Here e is the right leading eigenvector corresponding to the largest eigenvalue

λ of the adjacent matrix A. The eigenvector centrality takes into account both the quantity and quality of neighbors in

determining the importance of a node.

Definition 2.3. K-shell index. The k-shell index ks is obtained in the k-shell decomposition process. Initially, nodes

with degree k = 1 are removed from the network together with their links. After removing all nodes with k = 1, some

nodes initially with degree more than one may have only one link left. Continue to remove them until no node with

degree one is left. The removed nodes are assigned a k-shell value ks = 1. Then nodes with degree k ≤ 2 are removed

in the same way and given a value ks = 2. The pruning process continues until all nodes are removed and given a ks

value. Nodes with large ks are considered to be in the core of the network and are super-spreaders.

Definition 2.4. PageRank Centrality. The PageRank centrality is famous for its success in the web ranking technology

used by Google corporation. It is defined as

PRi(t) = (1 − c)

N∑

j=1

ai j

PR j(t − 1)

kout
j

+
c

N
, (3)

where kout
j

is the out-degree of a neighbor node j, and c is a free parameter to represent the random jump of users not

visiting along the links. The algorithm iterates until a steady-state and the PRi for each node is obtained.
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2.2.2. Centralities on multiplex network

First we introduce the Functional Multiplex PageRank (FMPR) defined in ref. [41], which is a generation of

PageRank centrality to the multiplex networks. This centrality considers the weights of different types of connections

between two nodes. Suppose a multiplex network
−→
G = (G1,G2, ...,GM) is composed of a set V of N nodes and M

layers. Each layer is Gα = (V, Eα), where Eα is the set of edges in layer α and α = 1, 2, ...,M. The adjacent matrix

element aα
i j
= 1 if node i and j has a link in layer α, otherwise aα

i j
= 0. To characterize the multiplex network

with overlap, a vector called multilink −→mi j is defined, where −→mi j = (m1,m2, ...,mM) has elements mα = 0, 1. The

number of possible types of multilink is 2M. A pair of nodes i and j are connected by a multilink −→mi j if and only if
−→
mi j = (a

[1]
i j
, a

[2]
i j
, ..., a

[M]
i j

). Then the multiadjacency matrices A
−→
m defines the connection of nodes with multilink −→mi j,

with elements A
−→m
i j
= 1 if the node pair i and j is connected by a multilink −→mi j, otherwise A

−→m
i j
= 0. Therefore A

−→m
i j

can

be expressed as

A
−→
m
i j =

M∏

α=1

[mαa
[α]

i j
+ (1 − mα)(1 − a

[α]

i j
)]. (4)

For the two-layer multiplex network the multi-adjacent matrices are

A
(1,0)

i j
= a

[1]

i j
(1 − a

[2]

i j
)

A
(0,1)

i j
= (1 − a

[1]

i j
)a

[2]

i j

A
(1,1)

i j
= (a

[1]
i j

a
[2]
i j

).

(5)

Definition 2.5. The Functional Multiplex PageRank centrality Xi(z) of node i is defined as

Xi(z) = α̃

N∑

j=1

A
−→
mi j

i j z
−→
mi j 1

k j

X j + βvi, (6)

where α̃ is the possibility that in the steady state a random walker jumps from node j to a neighbor i, otherwise it

jumps to a randomly connected node in the multiplex network. z is a tensor with elements z
−→
m ≥ 0 associated to every

type of multilink −→m representing its influence, and z
−→
0 = 0. A random walker jumps to a neighbor along the multilink

−→m with probability proportional to z. In Eq. (6),

k j =

N∑

i=1

A
−→mi j

i j z
−→mi j

+ δ
0,
∑N

i=1 A
−→
mi j

i j
z
−→
mi j ,

β =
1

N

N∑

i=1

[(1 − α̃)(1 − δ
0,
∑N

i=1 A
−→mi j

i j
z
−→mi j ) + δ

0,
∑N

i=1 A
−→mi j

i j
z
−→mi j ]X j,

vi = θ(

N∑

i=1

A
−→
mi j

i j z
−→
mi j

+

N∑

i=1

A
−→
m ji

ji z
−→
m i j

).

(7)

Here δx,y is the Kronecker delta and θ(x) is the Heaviside step function. The Functional Multiplex PageRank centrality

Xi(z) of node i depends on the values of z. In our calculations for the two layer network, we use a z1,0 = z0,1 = z1,1 = 1

to represent an equal importance of each type of the multilinks.

The second multiplex centrality used in this manuscript is the Global Heterogenous Eigenvector-like centrality (GHEC)

proposed in ref. [42]. This centrality takes into account the contribution of neighbors from all layers and the mutual

influence between layers. Consider an M ∗M influence matrix W where the non-negative elements wαβ represents the

influence of the layer β on layer α, which is

W =



w11 · · · w1M

...
. . .

...

wM1 · · · wM,M


, (8)
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and a N ∗ NM matrix A = (A1|A2|...|AM). Then A⊗ is the Khatri-Rao product of the matrices W and A, which is

A⊗ =



w11A1 w12A2 · · · w1MAM

w21A1 w22A2 · · · w2MAM

...
...

. . .
...

wM1A1 wM2A2 · · · wMM AM



. (9)

The Global Heterogenous Eigenvector-like centrality of the multiplex network
−→
G is the positive and normalized eigen-

vector c⊗ ∈ RNM of the matrix A⊗. If one introduces the notation

c⊗ =



c⊗
1

c⊗
2

...

c⊗
M



(10)

with vectors c⊗
1
, ..., c⊗m ∈ RN , then the Global Heterogenous Eigenvector-like centrality matrix of

−→
G is given by C⊗ =

(c⊗
1
|c⊗

2
|...|c⊗

M
) ∈ RN∗M . The information contained in the vectorial-type centrality should be aggregated to associate

a number to each node, which is C =
∑M

j=1 c⊗
j
, where C ∈ RN∗1 and the ith-row Ci is the Global Heterogeneous

Eigenvector-like centrality of node i in the multiplex network.

2.3. Evaluation methods

To evaluate the performance of measures in identifying super-spreaders, we use the imprecision function [6] and

the Kendall’s tau correlation coefficient [55]. The imprecision function quantifies how close to the optimal spreading

is the average spreading of pN nodes with the highest centrality.

Definition 2.6. Imprecision function. The imprecision function is defined as

ε(p) = 1 − M(p)

Me f f (p)
, (11)

where p is the fraction of nodes considered (p ∈ [0, 1]). M(p) is the average spreading influence of pN nodes with the

highest centrality, and Me f f (p) is the average spreading influence of pN nodes with the highest spreading influence.

A smaller ε value indicates a more accurate centrality to identify super-spreaders.

Definition 2.7. Kendall’s tau correlation coefficient. The Kendall’s tau correlation coefficient is used to measure

correlation between two rankings which is defined as

τ(r1, r2) =
K(r1, r2) − K

′
(r1, r2)

n(n − 1)/2
, (12)

where K(r1, r2) is the number of node pairs that appear in the concordant ordering in the ranking lists r1 and r2, and

K
′
(r1, r2) is the number of node pairs that appear in the reverse ordering in r1 and r2. n is the number of nodes in each

ranking list. In our applications, nodes are ranked by centrality measure in ranking list r1 and nodes in ranking list r2

are ranked by spreading influence, which are obtained by computer simulations. A large τ indicates that the centrality

measure and the node spreading influence are highly correlated.

3. The proposed coupling-sensitive centrality

In this part, we first show the two-area phenomena of the centralities to predict the spreading influence of nodes

in the contact layer. Then we propose the coupling-sensitive centrality (CS) in multiplex network to predict the

disease-spreading influence of nodes in the coevolving dynamics.

6



Figure 2: The scatter plots of nodes with their disease-spreading influence R and degree centrality kB (a)-(c) or eigenvector centrality eB (d)-(f) in

the contact layer B. The color of plots represents centralities of nodes in layer A. It can be seen that the spreading influence of nodes with higher

centrality in layer A is obviously suppressed. The parameters are set as: (a) and (d) degree correlation ms = 0.3, relative spreading rate γλ
AB
= 2.0,

informing rate λBA = 0.1, and immunization rate λAB = 1.0; (b) and (e) ms = 0.5, γλ
AB
= 2.0, λBA = 1.0, λAB = 1.0; (c) and (f) ms = 0.5, γλ

AB
= 3.0,

λBA = 0.1, λAB = 0.5. We take these parameter values for example to reflect different dynamical and structural coupling strengths and discuss their

impacts later in detail.

3.1. The two-area phenomena of centrality in predicting disease-spreading influence

The centrality measures are heuristic ways to predict the spreading influence of nodes in the network. The idea is

that the more central a nodes is, the more influential it is in spreading, where the centrality is positively related with

the node spreading influence [19]. Figure 2 displays the scatter plots of nodes with their disease-spreading influence

R and degree centrality kB or eigenvector centrality eB on the contact layer B under different parameters. We use three

groups of parameter values for the relative spreading rate γλ
AB

, the inter-layer dynamic coupling strengths λAB and λBA

and the inter-layer degree correlation ms, where the dynamical coupling strength and structural coupling strength vary.

It can be seen that with the increase of kB and eB, the spreading influence R increases in general. But there are

some nodes where their spreading influences are lower than that of others with the same centrality of kB or eB, and a

two-area phenomena appears. The suppressed spreading influence of these nodes is due to the coevolving dynamics

between layers. Let’s consider two nodes iB and jB with the same centrality in layer B and their counterparts in

layer A are iA and jA respectively. If iA has a larger centrality than jA, then the spreading of information originating

from iA is supposed to be wider than that originating from jA, making more nodes in layer B be vaccinated. The

disease-spreading influence of node iB in layer B is thus smaller than that of jB. It can be seen from Fig. 2 that for

nodes with relatively high centrality in layer A (nodes with color approaching red), their disease-spreading influences

are obviously lower than that of nodes with lower centrality in layer A under different parameters. This phenomena

implies that the centralities on the contact layer are not adequate to identify the super-spreaders in the coevolving

dynamics on the multiplex networks.

3.2. The coupling-sensitive centrality on multiplex network

We take into account the dynamical and structural couplings between layers and propose a coupling-sensitive (CS)

centrality to identify super-spreaders on multiplex networks.

Definition 3.1. Coupling-sensitive centrality. The coupling-sensitive centrality of node i is defined as

CS θi = θ
B
i − θAi ∗ λA ∗ λAB + θ

B
i ∗ λB ∗ λBA, (13)

where θB
i

is the benchmark centrality of node i in layer B and θA
i

is the centrality of its counterpart node in layer A. θ

can be any centrality measure such as degree, eigenvector centrality and k-shell index. λA and λB are the transmission

rates in layer A and B respectively. λAB is the immunization rate and λBA is the informing rate.

7



In the definition of CS centrality, the first term on the right side of Eq. (13) is the node centrality in the contact

layer, which is taken as the baseline. The second term represents the impact of information spreading on disease

spreading, where the suppression effect of node i depends on the transmission rate λA in layer A and the inter-layer

coupling strength λAB from layer A to layer B. θA
i

and θB
i

are the centralities of node i in layer A and B respectively,

representing the spreading abilities of node i in layer A and B respectively. Existing researches have indicated that the

degree centrality is positively correlated with many other centralities, such as the eigenvector centrality and k-shell

centrality, so θA
i

and θB
i

in Eq. (13) reflect the inter-layer degree correlation. As the information-spreading suppresses

the disease-spreading, the spreading influence of node i in layer A has a negative impact on the baseline centrality θB
i

in predicting the disease-spreading, thus the second term has a minus sign. On the other hand, the disease spreading

in layer B has an impact on layer A through inter-layer coupling, which depends on the transmission rate λB and

the inter-layer coupling strength λBA. The more nodes informed by infected nodes in layer B, the less impact of the

spreading origin in layer A on information spreading. Thus we add the third term representing the reduced impact of

node centrality in layer A. The algorithm to calculate the coupling-sensitive centrality is shown in Algorithm 1.

Algorithm 1 Algorithm to obtain coupling-sensitive centrality

Input: A multiplex network
−→
G = (G1,G2), where G1 = (V, E1) and G2 = (V, E2) //The multiplex network consists

of a set of nodes V and two types of edges E1 and E2 which are layer A and layer B respectively.

Output: The coupling-sensitive centrality of each node CS θ
i
;

1: Set the values of parameters λA, λB, λAB and λBA.

2: for i = 1 to |V | do

3: Calculate the centrality θB
i

of node i in layer B;

4: end for

5: for i = 1 to |V | do

6: Calculate the centrality θA
i

of node i in layer A;

7: end for

8: for i = 1 to |V | do

9: Calculate the centrality CS θ
i

of node i in the multiplex network using Eq. (13)

10: CS θ
i
= θB

i
− θA

i
∗ λA ∗ λAB + θ

B
i
∗ λB ∗ λBA

11: end for

4. Experimental results

We evaluate the performance of the CS centrality and compare it with that of the benchmark centralities in syn-

thesized networks and real-world networks by large simulations. Results show that the proposed CS centrality outper-

forms the corresponding benchmark single-layer centrality and two typical centralities defined on multiplex networks

in identifying super-spreaders in information-disease coevolving process.

4.1. Performance comparison of coupling-sensitive centrality and single-layer centrality

We first compare the performance of CS centrality with that of the single-layer centrality. We use degree centrality

kB, eigenvector centrality eB, k-shell index ksB and PageRank centrality PRB in layer B as the benchmark centralities

respectively and calculate the corresponding CS centralities, which are CS k, CS e, CS ks and CS PR. The imprecisions

of these centralities are shown in Fig. 3. It can be seen from Figs. 3 (a)-(d) that the CS centralities are more accurate

to identify super-spreaders in disease spreading than their corresponding benchmark centralities in layer B. Similar

results are obtained under a different set of parameters as shown in Figs. 3 (e)-(f). We use the relatively large λAB and

small λBA to emphasize on the cases when the spreading influences of nodes in epidemic are strongly impacted by the

information spreading.

8



0 0.05 0.1 0.15 0.2

p

0.08

0.1

0.12

0.14

0.16

0.18
ǫ
(p

)
(a) k

B

CSk

0 0.05 0.1 0.15 0.2
0.04

0.08

0.12

0.16 (b) e
B

CSe

0 0.05 0.1 0.15 0.2
0.04

0.08

0.12

0.16

0.2

0.24 (c) ks
B

CSks

0 0.05 0.1 0.15 0.2
0.08

0.1

0.12

0.14

0.16

0.18 (d) PR
B

CSPR

0 0.05 0.1 0.15 0.2
0.15

0.2

0.25

0.3

0.35

0.4 (e) k
B

CSk

0 0.05 0.1 0.15 0.2
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4 (f) e
B

CSe

0 0.05 0.1 0.15 0.2
0.1

0.2

0.3

0.4

0.5 (g) ks
B

CSks

0 0.05 0.1 0.15 0.2
0.15

0.2

0.25

0.3

0.35

0.4 (h) PR
B

CSPR

Figure 3: Comparison of the imprecisions of benchmark centralities and coupling-sensitive centralities as a function of p. p is the proportion of

nodes considered. (a)-(d) The parameters are set as ms = 0.5, γλ
AB
= 2.0, λBA = 0.3, λAB = 0.7. (e)-(h) The parameters are set as ms = 0.5,

γλ
AB
= 2.0, λBA = 0.1, λAB = 1.0. The smaller imprecision, the more accurate the measure is in predicting the spreading influence.

4.2. Performance comparison of coupling-sensitive centrality and multiplex centrality

Next we explore and compare the performance of CS centrality with two centralities defined on multiplex net-

works. We use the eigenvector centrality as the benchmark centrality to calculate the coupling-sensitive centrality

CS e, and compare with the Functional Multiplex PageRank [41] and the Global Heterogeneous Eigenvector-like cen-

trality [42]. To validate the robustness of the proposed CS centrality, we vary the structural and dynamical coupling

strengths, which are represented by the immunization rate λAB, the informing rate λBA, the relative spreading rate

γλ
AB

and the inter-layer degree correlation ms. Results indicate that the CS centrality is in general robust under all

considered parameters, as shown in Fig. 4-Fig.7.

Figure 4 displays the imprecisions of centralities when the immunization rate λAB varies. When λAB ≤ 0.5, the

imprecision of CS e is a little higher than or close to that of the multiplex centrality FMPR. When λAB increases,

the CS e outperforms the other two centralities. This is because when the immunization rate λAB is relatively small,

according to the definition of CS centrality, the second term is relatively small, and the CS centrality is more close to

the centrality of node in layer B. When λAB becomes large, the CS centrality is more impacted by the centrality θA
i

of node i in layer A. In this case the CS centrality can reflect the contributions of both layers, thus is more effective.

While the informing rate λBA, the relative spreading rate γλ
AB

and degree correlation ms vary respectively, as shown in

Fig. 5-Fig.7, the imprecision of CS e is the smallest, which indicates that the coupling-sensitive centrality is the best

measure to identifying the super-spreaders in the coevolving dynamics.

Furthermore, we calculate the Kendall’s tau correlation coefficient of the proposed CS centrality with the spreading

influence of nodes, and compare with that of the multiplex centralities. It be can be seen from Fig. 8 that the CS

centrality has the largest correlation with the spreading influences of the influential spreaders.

4.3. Application in real-world networks

Many real-world networks can be represented as multilayer networks, such as the biological networks, the social

networks and the cooperation networks. In this part, we apply the coupling-sensitive centrality in eight real-world

multilayer networks and compare its performance with other two multiplex centralities. For the multilayer networks

with more than two layers, we choose two layers and use the mutually connected giant component in which the nodes

are connected to the largest connected component in both layers for study. The real-world networks studied are: (1)

SacchPomb (gene and protein interaction network. Layer A is a synthetic genetic interaction network and layer B

is a physical association network); (2) Drosophila (protein-protein network with different nature of interactions as

layers. Layer A is suppressive genetic interaction and layer B is additive genetic interaction); (3) IPv4 IPv6 (Internet

topologies of Autonomous System (AS). Layer A is IPv4 AS network and layer B is IPv6 AS network); (4) Human
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Figure 4: Imprecisions as a function of p for the multiplex eigenvector centrality GHEC, multiplex PageRank FMPR and coupling-sensitive

centrality CS e based on eigenvector centrality in identifying super-spreaders when the immunization rate λAB varies.
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Figure 8: Kendall’s tau correlation of the centrality measure and the spreading influence of nodes under different parameters. The centralities used

are the multiplex eigenvector centrality GHEC, multiplex PageRank FMPR and coupling-sensitive centrality CS e. p is the proportion of nodes

considered. (a)ms = 0.5, λAB = 1.0, λBA = 0.1, γλ
AB
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brain (structural and functional networks where nodes are brain regions. Layer A is the structural network and layer B

is the functional network ); (5) Physicians (different types of relationships among physicians in four US towns. Layer

A is a discussion network and layer B is a friendship network); (6) arXiv (co-authorship of scientists in different

research categories. Layer A is a co-authorship network in data analysis, statistics and probability and layer B is

a co-authorship network in physics and society); (7) Air train (airports network and train stations network in India.

Layer A is the train network and layer B is the airport network); (8) Pardus (friendship relationship and message

communication relationship between individuals in an online game virtual society. Layer A is the friendship network

and layer B is the message communication network). Data for the first seven networks are collected from ref. [56] and

there are more detailed descriptions of the data and their origins, and data for the last network are collected from the

massive multiplayer online game ′Pardus′(http://www.pardus.at) [28]. The characteristics of the studied networks are

listed in Table 1.

Table 1: Characteristics of the real-world multiplex networks studied in this work. These characteristics include the number of nodes N, the number

of edges EA in layer A and EB in layer B, the inter-layer degree correlation of two layers ms, the infection rate λB used in the SIR spreading in

layer B, and the type of networks.

Network N EA EB ms λB Type

SacchPomb 426 2236 1678 0.27 0.28 Biological

Drosophila 449 2656 2172 0.65 0.21 Biological

IPv4 IPv6 4710 48026 25366 0.55 0.018 Technological

Human brain 74 426 396 0.24 0.517 Biological

Physicians 106 460 362 0.47 0.818 Social

arXiv 2252 15926 14570 0.94 0.24 Collaboration

Air train 66 634 354 0.44 0.185 Technological

Pardus 2501 16119 20860 0.65 0.052 Social

It can be seen from Fig. 9 that in all studied networks, the coupling-sensitive centrality outperforms the other

two multiplex centralities. This implies that considering the structural and dynamical couplings between layers is

significantly meaningful to identify the most important nodes in the multilayer networks.
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Figure 9: Imprecisions of the centralities on real-world multiplex networks as a function of p. The centralities used are the multiplex eigenvector

centrality GHEC, multiplex PageRank FMPR and coupling-sensitive centrality CS e. The parameters are set as λAB = 0.7, λBA = 0.3, γλ
AB
= 2.0.

λB for each network is three times of the epidemic threshold of layer B.

5. Conclusion and discussion

Identifying the most influential spreaders is an important step to make use of available resource and control the

spreading process. In this paper, we work on identifying super-spreaders in the information-epidemic coupled spread-

ing dynamics on multiplex networks. We find that the centralities on the contact layer are no longer effective to

identify the most influential disease-spreaders, which is due to the suppression effects from the information layer. By

considering the centralities of nodes in both layers and the structural and dynamical couplings between layers, we

propose a new measure called coupling-sensitive centrality on multiplex networks. Simulation results on synthesized

networks and real-world networks indicate that the CS centrality is not only much more effective than the centralities

on the single contact layer, but also more effective than two typical multiplex centralities without considering the

dynamics.

The real-world multiplex networks studied in our simulations are not necessarily the networks where information

and disease spread. But we can consider that the dynamic couplings in our measure have their specific meanings

in different contexts of the various real-world networks. For example, the immunization rate λAB may represent the

proportion of autonomous systems (ASs) routing IPv4 packets that can also route IPv6 packets in the IPv4 IPv6

multiplex network, and the informing rate λBA may represent the proportion of ASs routing IPv6 packets that can

also route IPv4 packets. While in the air train network, the immunization rate λAB may represent the possibility that

the travellers planning to travel by airplane switch to travel by train, and the informing rate λBA may represent the

possibility of travellers changing the transportation mode from train to airplane. The effectiveness of the coupling-

sensitive centrality implies that when identifying the most important nodes in the multilayer systems, considering their

structural and dynamical couplings are very necessary. Our work gives a possible way to synthesize the inter-layer

couplings into one measure which may find its applications in various multilayer systems.

The computation of CS centrality contains the spreading rates of two layers, which are the immunization rate

and the informing rate. Their values vary depending on the specific real-world scenarios of information spreading

and epidemic spreading. For example the basic reproduction number R0, which is the average number of secondary

infections caused by a primary case, is used to estimate the spreading parameters, where R0 = λ/µ [20]. Our work

demonstrates that in a reasonable parameter range, for example the information spreading rate is larger than the

epidemic spreading rate corresponding to γλ
AB
> 1, the CS centrality is effective and robust under different values

of the parameters λAB and λBA. In addition, in the definition of the coupling-sensitive centrality, there are two items

θA
i
∗ λA ∗ λAB and θB

i
∗ λB ∗ λBA that represent the mutual influence of two layers. If we add two weighting factors α

and β before each item, adjusting them may come to an optimal expression of the coupling-sensitive centrality.
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We work on the two-layer multiplex network where the information spreading and epidemic spreading coevolves

on each layer. For networks with more than two layers the identification of critical nodes will be more complex due to

the coupling and mutual influences between layers. The study of more general index in multilayer networks requires

further explore in the future.
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