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Abstract

Representation learning on graphs has emerged as a powerful mechanism to automate feature vector generation for

downstream machine learning tasks. The advances in representation on graphs have centered on both homogeneous
o and heterogeneous graphs, where the latter presenting the challenges associated with multi-typed nodes and/or edges.
8 In this paper, we consider the additional challenge of evolving graphs. We ask the question whether the advances in
C\J representation learning for static graphs can be leveraged for dynamic graphs and how? It is important to be able to

incorporate those advances to maximize the utility and generalization of methods. To that end, we propose the Framework

for Incremental Learning of Dynamic Networks Embedding (FILDNE), which can utilize any existing static representation

learning method for learning node embeddings, while keeping the computational costs low. FILDNE integrates the feature

vectors computed using the standard methods over different timesteps into a single representation by developing a convex
O) combination function and alignment mechanism. Experimental results on several downstream tasks, over seven real world
-~ data sets, show that FILDNE is able to reduce memory and computational time costs while providing competitive quality
——easure gains with respect to the contemporary methods for representation learning on dynamic graphs.
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Learning embeddings from networks or graphs is per-
vasive with a sundry of applications across various fields,
including social networks [33] [16, (18, B9], biological net-
works [26], [41], molecular networks [40, 42], spatial networks
[38], [37], citation networks [33] [IT], [12], transportation net-
works [13] and many others. These embeddings are gen-
erally learned in an unsupervised fashion, providing an
= automated way of discovering dynamic features and en-
abling several downstream inductive learning tasks (and in
some cases transductive learning tasks as well).

The vast majority of graph embedding methods are Figure 1: The FILDNE method applied on graph stream. At the
. devoted to so-called static networks, whose structure does beginning, FILDNE composes of two embeddings computed by the
.= not evolve over time. However, in most real-world scenarios, Base embedding method. Next, with each new snapshot, FILDNE
>< one has to deal with changes in the data, e.g., updates of composes the aligned version of the current embedding Fy* ; , with
B node attributes and structural adjustments, like addition
or removal of edges (links) and nodes. On the one hand,

dynamics can infrequently occur, which can be easily ad- Let us consider two conceptually different aspects of
dressed with static approaches. On the other hand, there Dynamic Graph Embedding. The first is a naive one, where
are streams of temporal events that constitute constantly ¢, ch new data batch triggers the computation of a new
evolving networks. The latter case requires dedicated, com- representation for historical data, completely disregarding
putationally, and memory-wise efficient solutions. Thus,  previous feature vectors. The second one is an incremental
a key challenge remains: how to effectively learn network learning paradigm, where both the time and storage costs
embeddings on dynamic networks? While recent works are reduced by updating embeddings based on new tempo-
have addressed incremental learning of embeddings on dy- 4] events. Incremental learning algorithms might specify
namic graphs, in this paper, we consider a framework that 5 pew objective function and could also be constrained
encompasses existing methods for learning embeddings and {5 the types of problems that they could be applied to
enables them for a dynamic environment. [6]. However, there is also a need for a framework that
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is able to incorporate the existing works for embeddings
and implement them in an incremental manner, allowing
for time and space costs to be reduced while retaining the
quality of the base method.

This work. In this paper, we propose FILDNE, for incre-
mental learning of embeddings of dynamic network. Our
contribution can be summarized as follows:

1. We provide a method that utilizes historical embed-
dings and incrementally enhances them based on
batched event stream (non-overlapping snapshots for
keeping the embeddings current; see Figure . We
consider two variants: (a) the first one, FILDNE;,
recursively combines a pair of embeddings at each
step using a hyper-parameter to steer the impor-
tance weighting (see Figure |1} (b) the second one, k-
FILDNE, combines a vector of k& embeddings at once
using an automatic estimation method for importance

weighting parameters.

2. The proposed method can work with any graph em-
bedding method, including static and temporal graph
embedding methods. Using a novel reference nodes
selection scheme, our method performs an embedding
alignment step that allows us to apply convex combi-
nation despite rotations and translations of embed-
ding spaces. Moreover, our framework is designed
to work in an unsupervised manner that does not
require obtaining any additional class labels.

3. Through comprehensive empirical analyses that in-
clude link prediction, edge classification, and graph re-
construction tasks, we demonstrate that FILDNE al-
lows reducing memory and computational time costs
while being competitive when compared to other
streaming methods in terms of embedding quality.
Our hyper-parameter sensitivity study (see Figure
shows how the balance of importance of past and re-
cent events (data batches) influences the performance
of the representation.

The paper is organized as follows: in Section [2] we
present an overview of the related work in the domain,
whereas in Section [3] we introduce several formal defini-
tions and notation. Next, in Section El, we propose our
Framework for Incremental Learning of Dynamic Networks
Embeddings and provide its detailed description. Further,
in Section [5] we report our extensive experiments results.
Section [6] concludes our work and outlines the directions
for future work.

2. Related work

Network embedding problem has attracted a lot of at-
tention from the research community worldwide in recent
years. Plenty of methods have been developed, each fo-
cused on a different aspect of network embedding, such as
proximity, structure, attributes, learning paradigm, scal-
ability, to name only a few [5, 8 [6]. In this section, we

discuss several methods that are relevant to the scope of
our paper. We summarize these in Table[I} where we adapt
the taxonomy introduced in [5].

2.1. Static network embedding

The topic is covered in various embedding method fam-
ilies, among which we first discuss matrix factorization
based methods. Locally Linear Embedding (LLE) [31]
and Laplacian Eigenmaps (LE) [I] both aim to map a
high-dimensional data point space to low-dimensional one
based on the neighbourhood of points (first-order proxim-
ity). LLE reconstructs a linear weight matrix, and in LE
eigenvectors over graph Laplacian are computed. Large-
scale Information Network Embedding (LINE) [33]
extended these approaches by additionally preserving second-
order proximities in the graph. Nodes with similar neigh-
borhoods end up lying closer in the embedding space. High
Order Proximity preserved Embedding (HOPE) [2§|
aims to sustain asymmetric proximities of nodes in the
graph, in contrast to LINE, where proximities were sym-
metric.

The next group is methods which are based on random-walks.

In DeepWalk [29] random-walks sampled over the graph
are fed to the skip-gram model adapted from Word2Vec
[24]. Node2Vec [16] was an improvement over DeepWalk,
where authors introduced parameters p and ¢ control both
depth-first search and breadth-first search like behavior.
Another approach utilizes Graph Convolutional Networks

architecture — Deep Graph Infomax (DGI) [36] is an
unsupervised method, which relies on maximizing mutual
information between patch representations (obtained by
Graph Convolutional Network-based encoder layer), and
corresponding high-level summaries of graphs (obtained by
readout function). All of the approaches mentioned above
are capable of processing static networks only and are not
open.

2.2. Temporal and Dynamic Network Embedding

In Temporal Network Embedding methods, we aim to
preserve the temporal properties of the network. On the
other hand, Dynamic Network Embedding focuses on pro-
viding up-to-date embedding for evolving graphs. We can
distinguish online approaches that update embedding with
every new edge arrival and incremental approaches that pro-
cess events in batches. The majority of the methods satisfy
both of these objectives — temporal and dynamic. Here we
give a brief overview of the most prominent ones. A popular
trend found in the literature is to build upon the framework
of random walks with the skip-gram model. Continuous-
Time Dynamic Network Embedding (CTDNE) [27]
introduced temporal walks that traverse edges according
to their timestamps instead of performing random-walks
statically. The original version of the method focused on
the temporal aspect of embedding, while in the follow-
up work, the authors introduce an online version of the
algorithm [20] that produces a new portion of temporal ran-
dom walk for upcoming events and then updates the model.
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(a) Using a static or temporal embedding method (E) requires to
fully retrain the method on every new batch using cumulative snap-
shots.
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(b) Using an incremental embedding method (INC) it is possible
to reuse the already computed embeddings of non-overlapping snap-
shots and combine those into an embedding which describes the full
event stream history.

Figure 2: Comparison of applications of traditional static network embedding methods and incremental methods in dynamic network embedding

task.

This direction is further extended in Dynnode2vec [22]
architecture, where for each timestamp, a random-walk is
sampled, only for nodes marked as evolving in terms of new
edges. Global Topology Preserving Dynamic Net-
work Embedding (GloDyNE) [17] also follows a simi-
lar schema with incrementally updating skip-gram model,
but they differ in the method of selecting nodes to perform
new random-walks. They partition the graph into k sub-
networks for each timestamp, and for each sub-network,
they randomly select one node based on calculated proba-
bility distribution within the sub-network. After obtaining
the representative nodes list, they perform new random-
walks over a new snapshot for representative nodes and
update the skip-gram model. An interesting approach was
introduced in Online-Node2Vec models [2]: StreamWalk
and SecondOrder. StreamWalk follows a temporal random
walk procedure like CTDNE but differs in the edge sam-
pling scheme. In their second model SecondOrder, they use
MinHash fingerprinting to approximate Jaccard node simi-
larity instead of performing temporal random-walks that
reduce the method’s complexity. In Weg2vec [34], instead
of embedding nodes, representations of events are learned
by introducing a weighted neighborhood edge sampling
strategy. Finally in tNodeEmbed [32] for each times-
tamp a new embedding is calculated using the Node2vec
method. Embeddings are aligned between timestamps be-
fore they are fed as an input to the Long Short Term
Memory (LSTM) model, which performs an end-to-end
task.

uses fully connected layers followed by LSTM layers.

The authors of [35] propose a framework (further re-
ferred to as LCF) that is based on the linear combination
of embeddings from consecutive snapshots. Building upon
a similar paradigm, we provide an insightful framework
with differences discussed in Section [£.5

2.8. Network embedding alignment

Network embedding alignment problem arises when
combining embeddings from subsequent runs or comparing
representations from different graphs. [I5] [7] identify cross-
graph node similarities by jointly solving two optimization
problems: they use the Sinkhorn algorithm to match node
correspondence and find a linear transformation of one of
the embeddings by solving Orthogonal Procrustes. [32]
uses Orthogonal Procrustes to see a transformation matrix
between embeddings of two consecutive timestamps (as
we do). They use all common nodes between timestamps
to form the matrix (which differs from our method). [21]
uses alignment as an integral part of the model, improving
the individual learning of embeddings. Embeddings are
aligned at anchor nodes (that indicate the same users across
two networks) and introduce soft-constraint for non-anchor
nodes. Other approaches utilize generative adversarial
networks [10, 43| to align embeddings. [43] solution is based
on Wasserstein GAN to produce cross-lingual embedding
mapping. [I0] utilized GAN architecture in which they aim
to obtain both sides’ transformation using cycle consistency
loss.

In contrary to random-walk-based methods Dyngraph2Vec

[14] extends Autoencoder (AE) architecture to capture to
the evolving structure of temporal networks providing a
purely neural-network-based approach. They present three
variants of the model: dyngraphAE, dyngraphRNN, and
dyngraphAERNN, which differ in how they represent input
neighbor vector — dyngraphAE uses fully connected layers,
dyngraphRNN uses LSTM layers, and DyngraphAERNN



Table 1: Graph node embedding methods comparison. Methods marked in bold are the ones evaluated in our experiments.

METHOD StaTic | TEMPORAL | DyNaMIC | NETWORK TAXONOMY
ALLIGMENT
LLE’00 [3I] V4 X X X MATRIX FACTORIZATION
LE’03 [I] 4 X X X MATRIX FACTORIZATION
LINE’15 [33] 4 X X X EDGE RECONSTRUCTION
HOPE’16 |28] Vv X X X MATRIX FACTORIZATION
DGI’19 [32] Vv X X X GRrAPH CONVOLUTIONAL NETWORKS
DEEPWALK’14 [29] v X X X RAaNDOM WALK, SKIP-GRAM
Nope2VEC’16 [16] v X X X RANDOM WALK, SKIP-GRAM
CTDNE’18, 19 [27] 20] | x V4 V4 X TEMPORAL RANDOM WALK, SKIP-GRAM
TNOoDEEMBED’19 [32] X V4 Vv vV NEURAL NETWORKS, RANDOM WALK, SKIP-GRAM
STREAMWALK’19 [20] X Vv Vv X TEMPORAL RANDOM WALK
SECONDORDER’19 [20] X Vv Vv X TEMPORAL RANDOM WALK
DYNGRAPH2VEC’20 [T4] | X v v X NEURAL NETWORKS
DYNNODE2VEC’18 [22] X 4 4 X RANDOM WALK, SKIP-GRAM
WEG2VEC’20 [34] X 4 X X TEMPORAL RANDOM WALK, SKIP-GRAM
GLODYNE’20 [I7] X 4 4 X RANDOM WALK, SKIP-GRAM
LCF’20 [35] X 4 4 4 DEPENDENT ON BASE METHOD
FILDNE’20 (OuR) | x | v | v v | DEPENDENT ON BASE METHOD
G Coz . Gor . we have to iterate over £/. The solution would be to store it
ENCES -0, ®: .
Cumulative ® ®®® ; @©®® OF as a snapshot Go ¢ = (Vo i, Eo.t,ts), where Eq, is a set of
snapshots ® \® : A® : OO @: edges with timestamps up to time ¢, while V{; is the set of
: | p——— : vertices associated with them. Further we arrange them in
r i — : : R .
. : N : a sequence [Go.1,Go 2, . .., Go,r] of cumulative graphs, each
®®0:0® ©: ®®®: associated with a time-index in the range [1;7], where T
Event stream ©0 0O ®: °**: ®O: denotes the maximal time-index. One might be interested
T T ER : in non-overlapping batches [Go 1,G1.2, ..., Gr—1,7], where
Non-overlapping - o ! [® ® ) Gt 141 consists only of edges from E} 1, created between
snapshots @@@ ©®® g@ L t and t + 1.
; ; ; - : > For simplicity, we will mark snapshots with the end of

Figure 3: Event streams can be saved as a series of cumulative or
non-overlapping graph snapshots. The first hold the full history
from the very beginning, but at the cost of a relatively high memory
footprint. Contrary, the latter ones are restricted to a given time
interval, hence requiring less memory.

3. Notation and problem definition

The notation introduced in these and all the following
is summarized in Table 2l

Definition 1 (Static Network). A Network (Graph) is a pair
G = (V,E), where V is a set of vertices and E = {(u,v) :
(u,v) € V xV}, is a set of edges connecting vertices. Both,
the nodes and edges can posses assigned attributes. A
special kind of vertices’ attributes are timestamps, which
lead to the next definition.

Definition 2 (Dynamic Network). A Dynamic Network
(Graph) is a triple G = (V, E, ts) where V and E are sets
of vertices and edges respectively and ts : E — R is a
function assigning timestamp to each edge.

Working with such a network is inconvenient — whenever
we want to check the state of the graph at a given time ¢

interval whenever they cover a single time window, that is
thl,t = Gt.

Dynamic Networks can be attributed in the same way
as Static Networks are.

Definition 3 (Graph Stream). A Dynamic Network is de-
fined for a limited time interval [0;T] specified by the
youngest snapshot’s time-index. A Graph Stream ex-
pands this definition for a potentially infinite stream of
events (each connecting two nodes and represented as an
edge) forming an infinite sequence of cumulative graphs
[Go,1,Go,z2, - -
(see Figure|3]). The real-world applications of Graph Streams
have to take resources limitation into account. Therefore
the oldest history has to be forgotten or compressed.

A graph stream can be observed in an online (one edge
at a time) or batched manner. In this paper, we would
like to focus on the batched setting, remembering that the
online setting can be interpreted as single-event batches.

Definition 4 (Static Network Embedding). The aim is to
find a mapping fg : V — R? d < |V| such that the
topological (proximity or structural) similarity of vertices
in a static G is preserved. The resulting embedding is
marked as F' = fg(V) and can be arranged as a V]| x d

. or equivalently non-overlapping ones [Go 1, G1 .2, - - -



matrix, where each row denotes vector representation of a
single node.

Definition 5 (Temporal Network Embedding). The aim
is to find a mapping fg,, : Vor — R d < |V| such
that the temporal topological [23] (proximity or structural)
similarity of vertices in a dynamic Gg r is preserved. The
resulting embedding is marked as Fo 1 = fg, (Vo) and
can be arranged as a |V 7| x d matrix, where each row
denotes vector representation of a single node.

Definition 6 (Dynamic Network Embedding). As the net-
work evolves one may be interested in evolving network
embedding. We can distinguish two approaches — naive and
incremental one (see Figure . In the latter setting, we
reuse previously computed embeddings (F;_1, f:=1, ..., Fy,
/1) to obtain a representation Fp, updated with the most
recent snapshot Gy, i.e. Fo; = f{(Gy, Gi_1, Fi_q, fi71,
..., Fy, f1). The motivation for incremental paradigm is to
reduce computational cost of naive approach by updating
nodes’ embeddings. The training objective is preservation
of the topological properties in G .

Definition 7 (Matrix alignment). This can be seen as an
instance of the orthogonal Procrustes problem [7]. Given
matrices A € R"*¢ and B € R™*? with matching rows,
we are interested in finding transformation matrix ) that
satisfies

argmin || BQ — Al13. 1)
Q:QTQ=I

The solution is easily found as Q* = UWT, where USWT
is the Singular Value Decomposition (SVD) of BTA.

Remark. For the completeness of the discussion on evolv-
ing networks, one should also consider such aspects as time
attributes in the form of intervals, non-time attributes
changing in time, and nodes appearing without an edge.
However, these considerations go beyond the proposed
method’s scope, and we leave them as challenges for subse-
quent research.

4. Proposed Framework for Incremental Learning
of Dynamic Networks Embeddings

The goal of Framework for Incremental Learning of
Dynamic Networks Embeddings (FILDNE) is to find the
embedding Fp ¢ of the full graph G ¢, without calculating it
from all source data from period [0, ], but based on already
computed embeddings on historical data, i.e. (Fy_1, ..., F1)
and the most recent snapshots G;_1 and G;. Let us note
that our method does not require the mapping functions
(=1, ..., f1). FILDNE consists of 3 consecutive steps that
are repeated with each new data portion arrival G;_1 ;. The
methods come in two versions — FILDNE and k-FILDNE —
therefore, step 3. has two variants. The difference between
FILDNE and k-FILDNE method is that the former works
in a pairwise manner Fy; = FILDNE(G,, G;_1, Fi_1),
while the latter operates on a vector of past embeddings
FU,t = k-FILDNE(Gt, thla thla ceey thk), where k is a
parameter of the method.

Table 2: Symbols and notations

Symbol  Object

G network / graph

Gy snapshot of dynamic graph with nodes and
edges occurring between t — 1 and ¢
snapshot of dynamic graph with nodes and
edges occurring between t; and t,

v set of nodes

Vi,t,  set of nodes in dynamic graph Gy, 4,
Vi1t  set of common nodes between G;_; and G;
Vier set of reference nodes

E set of edges

Ey, ¢+,  set of edges in dynamic graph Gy, 4,
T maximal time-index in Dynamic Network
F embedding matrix
F(V')  embedding matrix of a subset of nodes V. C V'

F embedding matrix for graph G;_; +
embedding matrix for graph Gy, ,

tt,  aligned embedding for graph Gy, 4,

F,’;‘t vector of k aligned embeddings up to time ¢
Fo, embedding matrix generated by FILDNE

@ convex combination weight in FILDNE
a vector of k£ convex combinations weights in
k-FILDNE
a() activity function
aﬁ”) v’s activity in Gy
s(+,+)  scoring function
S scores of common nodes V;_1n¢

Step 1. Batch embedding. For each new snapshot G;_;; =
Gy, we apply some network embedding technique — called
Base Method — and obtain Fy_1; = F; (see Figure [fal).
The choice of the Base Method is entirely up to the user.
It can be an instance of Static Network Embedding (e.g.
node2vec, LINE, DGI) and Temporal Network Embed-
ding (e.g. CTDNE), both handling additional node/edge
attributes if such are observed.

We focus on transductive Base methods, for which
inferring representation for unseen examples is not possible
in no other way than a full re-training of the model. One
could also use inductive graph embedding methods (such
as GraphSAGE or GCN-based approaches), but these do
not suit well to our problem setting (our framework if fact
provides a way to inductive learning itself).

Step 2. Alignment. The random initialization and stochas-
tic optimization adopted in embedding methods result in
non-comparable realizations of representation vectors even
for the same input data. The same applies when matching
embeddings between two time steps, forcing us to run net-
work embedding alignment before we go to the next step.
The problem appears to be straightforward — arranging
embeddings in the form of matrices with matching rows
lets us apply matrix alignment techniques. However, the
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(a) Batch embedding. Using Base method E, the
first step is to compute the embedding F;_; ; for
the most recent non-overlapping snapshot.
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(b) Reference node selection. Based on node ac-
tivities a(-) from subsequent snapshots, a scor-
ing function s(-,-) is applied. A given node se-
lection scheme uses those node scores, to obtain
the reference nodes set Vi.cy.

FILDNE()
Fvo,t = a'ﬁg,t,1 + (1 —Oé) F*

t—1t

FILDNE: F; 1
k-FILDNE: F}' 5, | Fy_1,

y
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%
Ft—lvt Ft—l,t
(c) Embedding alignment. Solving the Or-
thogonal Procrustes problem for embeddings
of reference nodes allows to obtain a trans-
formation matrix @, which is multiplied by
F;_1,:. FILDNE uses matrix Fy ;—1(Vyes) and
k-FILDNE Fy ¢—1(Vyey)

(d) Single composition step of FILDNE. The previously com-
posed embedding matrix Fy ¢—1 is combined with the aligned

embedding matrix Fy; , using parameter a.

k-FILDNE(cx, k)

il T *
Foy =a - Fy,

(e) Single composition step of k-FILDNE. The algorithm ob-
tains the embedding Fy ¢ by computing the dot product be-

tween the parameter vector a and the vector of k aligned
embeddings up to time t Fy,.

Figure 4: Overview of the proposed FILDNE algorithm in both variants.



nature of the problem to be solved should not be forgotten.
Network evolution is not only about the appearance of new
nodes but also about change in neighborhoods of existing
ones. We are not interested in vertices, whose structural
neighborhood topology was completely altered. Therefore,
not all vectors should be considered when aligning em-
bedding matrices. We introduce the concept of reference
nodes (later discussed in Section or anchor nodes [21]
marked as Viet. They are supposed to be (relatively) static
over two neighboring batches. Having such a reference we
can calculate the transformation matrix @(as described
in Definition |7]) only on vectors representing those nodes
and then apply in on the entire embedding matrix F; what
results in F}* (see Algorithm [1] and Figure .

In case of the k-FILDNE method F; is aligned to the
previous embedding F}* ; which has been aligned in the
former iteration. We store a vector of k aligned embeddings
F;’;lt‘

Algorithm 1: Embedding Alignment

Input: F,_q, F}, {(a,(i)l,agv)) (v € Vimint ),
select(-, -)
S = {s(a;”).a{") v € Viaru}
scores

2 Viet = select(S, Vi_1n:) > Obtain reference nodes
3 UXWT = SVD(Ft—l(‘/ref)TFt(V;ef))

4 Q=U0WT > Compute transformation matrix
5 return F;(Q)

> Calculate node

=

Step 8. Embedding composition. In the FILDNE method
(see Algorithm [2| and Figure , at each iteration, we
combine the previously composed embedding Fj¢—1 with
its aligned embedding of the current snapshot Fy" ; ; using
following convex combination:

For=aFy; 1+ (1— a)F (2)

At the beginning (¢t = 2) we use ﬁb,tq = Fy1. The a
parameter can be selected using search methods or experts
knowledge. Whenever « > 0.5, it means that the past em-
bedding is more important than the recent data increment
in the Graph Stream.

)

Algorithm 2: FILDNE

Inp]-It: FO,t—l» Fta {(ai(gqi)pagv)) v E ‘/t—lﬂt}a
select(-, "), « )
1 Ff = Embedding Alignment(Fy 1, F}, a;—1, a, select)
2 Foﬂg = OZF07,5_1 + (1 - Oé)Ft*
3 return Fj

The k-FILDNE version (see Algorithm |3|and Figure [4e])
builds upon two parameters, that is k& € N, the number of

last embeddings combined by the algorithm, and o € RF,
a k-dimensional real-valued vector:

a=[ag,..,a]T (3)

which is constrained to {a : 0 < a; < 1, Zle a; = 1} namely
the k — 1-dimensional simplex. We propose a method to
estimate a what is described in Section 2l Such construc-
tion enables us to combine more than two embeddings at
once, in opposite to FILDNE scenario where we always
combine 2 embeddings.

Let FZ\t denote the vector of k embeddings up to time
t:

Fth = [FO,t—k-i-lv Ft*—k+2’ s FYT. (4)

The embedding rule is defined as follows:
For=a' - Fy, (5)

which is the dot product of a and the sequence of aligned
embeddings F'y ;.

Algorithm 3: k-FILDNE

Input: Fj_y, ., Fr, {(a{”y,a{"”) :v € Vi,
select(+, ), Gt, prior
1 F} = Embedding Alignment(F;* ;, F}, as—1, a, select)

2 F;:\t = [FZ—l\t—l; Fy]
3 a = Alpha Estimation(FZ”, G}, prior)
4 FO,t:O‘T'FZIt

5 return Fj,

4.1. Reference nodes selection
To select appropriate reference nodes (see Figure
we first introduce an activity function

a:V R (6)

that for each node in the graph G assigns a scalar describing
its behaviour. In our experiments we use multi-degree as
the activity function. Activity is measured for common
vertices V;_1n; between two neighbouring snapshots.

The next step is to obtain a ranking of nodes best suited
as a reference. To do so we apply a scoring function — in
our case:

v v v v U v v
s(af?y,af”) = o{”—a{”| (5 — arctan(max{a(”}, af"}))

(7)
where aﬁ)l and aiv) are v’s activities from neighboring
snapshots. The resulting scores are sorted in ascending
order. Finally, we are able to select a number of reference
nodes based on the ranking. We propose the following
schemes:

e Percent — based on the lowest score the top p percent
of nodes is selected:

select(S,V) = Viep Csortg(V), s.t. |Vees| = p|V]|



e Multiplier — based on the lowest score the number
of nodes is determined as Md (multiplier times the
embedding size), but no more than p,,,, (maximum
percent) of common vertices:

select(S, V) =V,ep C sorts(V), s.t.
|Vref| = min(Md,pmax\VD

e Threshold — all nodes with score lower than a given
threshold th are selected as reference:

select(S, V) = Viep €V, s.t. Yyev,,, S < th

The methodology of determining reference nodes pre-
sented in this section is a generic solution. Other possible
approaches include the usage of nodes’ attributes or experts’
knowledge.

4.2. Alpha estimation

A significant problem arises while using the k-FILDNE
model with & parameters. Assuming that each parameter
has the same number of considered values |A[, the model has
a search space of size O(|A|¥), i.e., it grows exponentially
with each new dimension. Hence, we need to find a way to
estimate the model parameters using an algorithm that is
cheaper than a full search over the entire parameter space.
We propose an algorithm that uses Bayesian inference
with assumption of Dirichlet-Multinomial distribution (see
Algorithm [4] and Figure . We want to estimate the
parameters & = {&1,...,d,}. For the prior we use the
Dirichlet distribution:

k
Dir(al8) = o= [[af s (@), ®)
B3

where B(+) is the beta function used for normalization pur-
poses. 3 reflects the prior knowledge about the distribution
and Sy_1 denotes the k — 1-dimensional simplex. We define
two settings — uniform: 8y = B2 = ... = By = 1, where rep-

We fit a set of Logistic Regression classifiers with input
vectors for each edge, built as Hadamard product of node
embeddings, and the outputs denoting edge existence. If
a link was correctly predicted with several embeddings,
we randomly choose only a single representation. If none
of them can provide the correct classification of the link,
such an edge is removed from the sample. The class counts
(correct predictions) [Ny, Na, ..., Ni| are measured on the
test set.

Using the above assumptions we estimate the parame-
ters & as the maximum a posteriori probability (MAP) of
the Dirichlet-Multinomial model [25]:

G — Nj+ﬁj—1
LN+ Bk

(10)

Algorithm 4: Alpha Estimation
Input: F},, Gy, prior

=

Generate link prediction dataset over graph G

2 Fit Logistic Regression classifiers on train set

3 Evaluate link prediction on test set and report
correct predictions [Ny, Na, ..., Ni]

4 Set 3 according to prior distribution

& N+ —1 Np+Br—1

N+ Bk NS Bk
6 return &

4.8. Missing embeddings: new and inactive nodes

In the FILDNE algorithm, the way we establish the em-
bedding for new or disappearing nodes is trivial. In such a
case at time t, we only have one out of two embeddings, and
Eq. [2Jcannot be applied. For new (previously unseen) nodes
v, we use the its embedding from the most recent snap-
shot as the estimated embedding, i.e. Fy(v) = Fy oy 4 (v).
Contrary, if a node does not appear in most recent graph
snapshot, we use its previously estimated embedding, i.e.
Foo(v) = Fip_y (v).

resentations are equally important, and increasing: 51 < B2 < ... <Fg,the k-FILDNE method, the problem is more com-

where more recent embeddings are assumed to be more
significant.
The likelihood function has the form:

k

p(Dla) = [[al (9)

i=1

where D = [Ny, Na, ..., Ni] is the vector of class occurrences
from the link prediction experiment described below. Note
that N = Zle N; is the total size of the sample.

Each of the embeddings F07t_k+1, F g oo FY (see
Equation ) is a separate class in the Multinomial distribu-
tion. We take edges from the most recent snapshot G; and
split them into the train and test sets. Negative edges are
sampled in both groups in numbers enabling class balance.

plex. The number of input embeddings k’ varies between
1 and k. If there are all embeddings available, we simply
apply Eq. b, and if ¥’ = 1, then we proceed with the same
idea as for the FILDNE approach. Otherwise, we take the
estimated & coefficients (see Section corresponding
to all k¥’ available embeddings for a given node. Next, we
normalize those values, so that they sum up to 1. Then,
we apply Eq. [5| assuming that we only have k&’ components.

4.4. Complexity analysis

To estimate the time and space complexity of our al-
gorithm, we consider the scenario of a single incremental
step, i.e. the moment when we have k — 1 past embeddings
[Fo,t—k+1, F}_jyos s F71]T and a new graph snapshot Gy
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Figure 5: Alpha estimation. The newly arrived snapshot Gi¢_1¢ is
prepared as train and test sets for link prediction. For each embedding

in the vector FZ\t a logistic regression (LR) classifier is fitted on the

train set and further evaluated on the test set. A poorly performing
embedding should yield &; value that barely influence the final repre-
sentation. This is achieved by Maximum A Posteriori estimation for
the Dirichlet-Multinomial model fed with the classification results as
described in Section @

appears. We use a random walk based embedding algo-
rithm (Node2vec) and the k-FILDNE version. We denote
Or(-) and Og(-) as the time and space complexities, re-
spectively. Considering each algorithm step separately, we
get:

(1) First, we run Node2vec:

Or(Node2vec) = O(d|Vi—14])

= O(YWw|Ei-1.4]),

where v, w are the number and length of random
walks respectively.

(2) We obtain reference nodes by sorting all vertices
Vi_1nt by their activity score; it takes:

Ogs(Node2vec)

Or(sort) = O(|Vi—1nellog|Vi—ine])

Og(sort) = O(|Vi—1ne|)

Next, we solve the Orthogonal Procrustes (OP) prob-
lem during embedding alignment:

O7(OP) = O(d?)

0s(OP) = O(d?)

(3a) Link prediction requires sampling of non-existing
edges (in the same number as existing edges; Negative
Sampling) takes:

OT(NS) = OS(NS) = O(‘Et—l,tD

We train Logistic Regression using all k£ embeddings:
Or(LR) = O(kd®|Ey_1 4))
Os(LR) =

Finally we apply LR and aggregate the Class Counts,
which takes:

O(kd|E—14])

O7p(CC) = O(k * |Et—14])

Os(CC) = O(k)

(3b) The estimation of a using Dirichlet-Multinomial
model is done by simple division of & numbers, so it
takes:

Or(dirichlet) = Og(dirichlet) = O(k)
(4) for the composition of all embeddings, we perform a
Weighted Matrix Addition, which takes:

Or(WMA) = Og(WMA) =
— O(dVou| + ...+ d|Vi14]) = O(d|V])
where |V is the number of vertices in the whole

graph.

Therefore, the time and memory complexities of FILDNE
equals the sum of all above steps’ complexities. The size of
the last snapshot V;_1 ¢+, Ey_1 is smaller than of the whole
graph Vo, Eoe: [Vic1e| < [Vou| = [V, |Ei—1] < |Eoyl =
|E|. Let us note that the d and k hyper-parameters do not
scale with the size of the network. Hence, we can approxi-
mate the total FILDNE complexity to: Op(FILDNE) =~
O(|V]log |V| + |E|) and Os(FILDNE) ~ O(|V| + | E]).

4.5. FILDNE wversus other Dynamic Graph Embedding
methods

Let us now consider the differences between differ-
ent approaches of dynamic embedding presented in the
literature. First off, we aim at highlighting the differ-
ences in data requirements of each approach while comput-
ing embedding for new snapshot. The most unfavorable
group of methods requires to store whole graph informa-
tion from the very beginning to time ¢, i.e. Gg;. These
are CTDNE, Online-Node2Vec, tNodeEmbed, dyn-
graph2vec, Dynnode2vec. Additionally, tNodeEmbed
method requires all intermediate embeddings Fo 1, ..., Fp¢—1.
Another group of methods necessitate only the most recent
graph snapshots, i.e. Gi_1,G; (GloDyne). Our approach,
in opposite to all previous, requires only one embedding
Fyt—1 (FILDNE) or k embeddings Fo i1, .-, Fy o, Fy 1y,



(k-FILDNE) and the activity of nodes from G;_q, i.e.
agqi)ﬁ’v S Gt—1~

Second off, we want to emphasize the difference in
the easiness of methods’ hyperparameters tuning. Such
dynamic network embedding methods as dyngraph2vec,
tNodeEmbed strongly rely on deep network architecture
and all related optimization problems. Online-Node2Vec
requires to specify time-dependent hyperparameters that
are not very intuitive: time-decay and half-life, which must
be set by an expert or through extensive searching. Our
approach limits the number of hyperparameters to only
two simple and intuitive: the number of reference nodes,
combination weight o (FILDNE), or prior (k-FILDNE).

Most importantly, third off, our approach allows utiliz-
ing embeddings of choice (methods or already calculated
vectors) in contrast to all other methods, which rely on
specific embedding objectives. It enables our method to
use additional network-related data, e.g., nodes’ attributes
(using, e.g., DGI).

The LCF method proposed in [35] does not fit to any
of the above-mentioned criteria. The authors propose a
similar framework to our FILDNE method. However, there
are some non-negligible differences. In contrast to them,
we employ a convex combination, a special case of the
linear combination. Such an approach allows us to keep
a nearly constant order of magnitude of embeddings vec-
tors, whereas for linear combination with all coefficients
equal to one (as proposed in [35]), the magnitude depends
on the number of combined embeddings. Further, they
introduce an exponential decay based approach where the
most recent representation prevails the final embedding.
Such an assumption is not flexible, whereas, in our pro-
posed FILDNE methods, the combination parameters «
are dynamically estimated from the data. Moreover, our
experiments show that the assumption of exponential decay
is not satisfied in the real world temporal networks (See Fig.
110). The authors do not neglect the fact that proximity-
based embeddings are not comparable across timestamps
and therefore apply embedding alignment. However, they
do it naively by taking all the available reference nodes
between snapshots. Our approach measures the stability
of nodes’ activities to select the most appropriate ones.
Finally, the reported results are not compared to the other
state-of-the-art Dynamic Graph Embedding methods. Fur-
thermore, not commonly used accuracy metrics makes it
impossible to compare with them directly.

5. Experiments

We evaluate the performance of our proposed algorithm
in several experiments and compare the results against com-
monly used baseline methods as well as the Base methods in
naive Dynamic Graph Embedding setting. Firstly, we train
all methods and use the computed embeddings in a link
prediction experiment, which should check whether these
vector representations encode structural graph information,
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which can be used to distinguish connected nodes from non-
connected ones. Next, for two datasets with edge labels,
we use the same embeddings to perform edge classification
— we measure the classification quality. We would like to
preserve the distances between nodes in the resulting em-
bedding space when learning representations on graphs.
Hence, we compute metrics used in graph reconstruction
(distortion, mAP). Finally, we perform a hyperparameter
sensitivity study to show how they influence the model’s
performance.

5.1. Datasets

We conduct experiments on seven popular dynamic
graph datasets downloaded from the Network Repository
[30] — we summarize their statistics in Table 3] Selected
datasets vary in the total time span between the first and
last event (edges): from 2 days (hypertezt09) up to about
5 years (bitcoin-otc). Three of them contain directed edges.
Each dataset is used in link prediction and graph recon-
struction tasks. Availability of edge labels in bitcoin-alpha
and bitcoin-otc datasets allows us to perform edge classifica-
tion. In preliminary experiments, we have checked several
sizes of node embeddings for all networks and selected the
best ones for each one (see Table . We note the differ-
ences in the characteristics of selected datasets. The two
bitcoin networks exhibit a meager amount of intersecting
nodes and edges across pairs of consecutive snapshots when
compared to the others. The fb-forum, fb-messages, and
hypertext09 graphs stay at a moderate level of variability,
while enron-employees and radoslaw-email seem stable.

5.2. Experimental setup

In the following paragraphs, we explain how we have
configured the experimental environment.

Base methods. We evaluate several state-of-the-art and
representative node embedding algorithms from different
method families, i.e. based on: random walks (Node2vec
[16], CTDNE [27]), matrix factorization (HOPE [2§],
LLE [31], LE [T]), graph neural networks (DGI [36]) and
general function optimization (LINE [33]).

These methods do not provide the ability to perform
training incrementally. We use these methods to compute
two kinds of embeddings:

e baseline embeddings to compare our proposed FILDNE
method and other streaming/incremental ones against,
i.e., the node representations are computed on the
cumulative snapshots G ; at a given time ¢;

e embeddings for non-overlapping graphs G4 ¢41, which
are further consumed by our proposed FILDNE method.

Streaming methods. In terms of other incremental methods
designed for graph streams embedding, we compare our
method to: tNodeEmbed [32], two variants of Online-
Node2vec [20] (StreamWalk, SecondOrder) and dyn-
graph2vec [14] (in the AE-RNN version).



Table 3: Statistics of graph datasets. |V| - no. of nodes, |E| - no. of temporal edges (events), D - density of the graph, Directed - is the
graph directed or not. LP, EC, GR - dataset was used in Link Prediction, Edge Classification, Graph Reconstruction tasks, respectively.
Avg. Jaccard Index of nodes and edges computed as the mean of respective Jaccard Indexes across all consecutive snapshot pairs.

DATASET V| |E| D TiMESPAN DIRECTED TAsks EMBEDDING ~ AvVG. JACCARD INDEX
(DAYS) SIZE NODES EDGES
ENRON-EMPLOYEES 151 50 572 4.466 1138 X LP, GR 32 0.864 0.361
HYPERTEXT09 113 20 818 3.290 2 X LP, GR 32 0.816 0.142
RADOSLAW-EMAIL 167 82927 2.991 271 4 LP, GR 32 0.903 0.430
FB-FORUM 899 33 720 0.084 164 X LP, GR 128 0.692 0.253
FB-MESSAGES 1899 61734 0.034 216 X LP, GR 128 0.516 0.093
BITCOIN-ALPHA 3783 24 186 0.002 1901 Vv EC, LP, GR 32 0.217 0
BITCOIN-OTC 5881 35592 0.001 1 903 Vv EC, LP, GR 128 0.213 0

Convergence issues. During the experiments, we found
out that the LLE [3T] method did not converge on three
datasets (fb-messages, bitcoin-alpha, bitcoin-otc). We
checked several hyperparameter settings of the underlying
optimizer, but none of them fixed this issue. We decided
not to report the results of this method for these datasets.

Data preprocessing. For each dataset, we apply the fol-
lowing preprocessing steps: (1) we take all edges and sort
them by time in an ascending manner, (2) we split these
edges into ten equally sized parts according to time, (3)
we convert each edges chunk into a graph snapshot and
call it Gy 41, where t € {0,...,9}. In total, we obtain
10 non-overlapping graph snapshots. We also save cumu-
lative graphs which accumulate all edges from the begin-
ning, i.e. Gy, which contain all edges from snapshots
Go1,Gr2,---,Gi—14-

Note that tNodeEmbed updates its internal model for
every single timestamp. For the method to be comparable
in our experimental scenario, we assume that each of the
ten snapshots, as mentioned earlier, is equivalent to a
single timestamp that is processed by tNodeEmbed. For
this method, we also reuse already calculated Node2vec
embeddings.

Embedding calculation. We train all of the above-mentioned
methods and obtain two groups of embeddings: (1) cu-
mulative Fy, for t € {0,...,9}, which are computed in
all Gy using the Base and Streaming methods; (2) non-
overlapping F; .1 using the Base methods and further
combined by our proposed FILDNE methods to obtain
cumulative embeddings ﬁb,t. Unsupervised embeddings
(all but tNodeEmbed) are trained once and used in all
downstream tasks. tNodeEmbed is a supervised method,
and the embeddings are trained for link prediction and edge
classification individually. We repeat the training and eval-
uation procedure 30 times, reporting averaged statistics, to
address the random initialization and stochastic optimiza-
tion used in the methods (e.g., random walk generation in
Node2vec and CTDNE).

Mean ranks. For each snapshot and dataset, we establish
a ranking of methods based on the average of 30 runs. We
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summarise it as mean rank, which is the average ranking
of methods. We report this score in each results table in
the form of a separate column. Based on this score, we
mark the three best methods in bold.

Fine-tuning. To provide a fair comparison of all meth-
ods, we decided to perform a hyperparameter search, with
an equal number of 100 iterations, overall methods. We
use Tree of Parzen Estimators (TPE) [4] (implemented
in the HyperOPT [3] package) choosing most appropriate
hyperparameters.

Reproducibility. To allow other researchers and developers
to try out our proposed FILDNE model, we make our code
available at https://gitlab.com/fildne/fildne. We
also publish all experiments in the form of a DVC pipeline
[19], so they can be easily reproduced.

0 t t+1
. N . timg
train Goyt Lp EC
embeddings Fy, ’
or | z | _
evaluate T t
embeddings GO,t I Gt,t+1 l

Figure 6: Evaluation protocol. Link prediction (LP) and edge classifi-
cation (EC) tasks are evaluated on the next snapshot Gy ¢41, whereas
graph reconstruction (GR) task is evaluated on the corresponding
graph snapshot Go ;.

5.8. Link prediction

Setup. For each graph snapshot Gy ;y1, we generate a link
prediction dataset. We split existing edges into a train
(75%) and test (256%) dataset and mark as class 1. Then
we sample the same number of non-existing edges from the
graph (negative samples — class 0).

We implement next snapshot prediction evaluation
scheme. The embedding methods are trained on cumulative
snapshots, i.e. Go,1,Go,2,...,Go+ and on non-overlapping
ones, i.e. Go1,G1,2,...,Gi—1. The latter embeddings


https://gitlab.com/fildne/fildne

are further combined by our proposed FILDNE method to
obtain Fy ;). For each embedding Fp;, we evaluate it on
the next snapshot Gy .41 (see Figure @ We follow well
established protocol to provide link-prediction by means of
classification if an edge exists [I6]. Thus, we combine pair
of node embeddings into edge features using Hadamard
operator and feed logistic regression classifier.

Note that the Base methods do not provide any mecha-
nism for obtaining embeddings for previously unseen nodes.
We modify the sampling procedures mentioned above to
consider edges (and negative edges) with nodes present in
the appropriate embedding matrix.

Results. Experiments on the cumulative snapshots with
Base methods are presented in Table 4l We see that LINE
and Node2vec achieve the best results on all datasets.
Based on the mean rank, we observe that the 3 best meth-
ods (LINE, Node2vec, CTDNE) outperform other
methods. Hence, in the other part of this article, we will
focus only on these — using them as Base methods for our
proposed FILDNE algorithm. Although, if the reader is
interested in full results, we provide those in the Appendix
Bl

Based on the mean rank, we see in Table [f] that among
the three best methods, there are two embeddings com-
posed with FILDNE. The results clearly show that our
method beats other streaming approaches in all cases be-
sides the bitcoin-alpha dataset. Considering the three best
methods, we observe that for fb-messages, enron-employees,
and hypertext09, there are two FILDNE-based represen-
tations, whereas for bitcoin-otc and radoslaw-email our
proposed method is placed in all three of them.

We notice that in the LINE Base method on bitcoin-otc
and radoslaw-email, both our FILDNE methods result in
high-performance gain compared to the vanilla Base algo-
rithm. For other methods and datasets, we see comparable
results. In general, we see that the gap between k-FILDNE
and FILDNE is small.

5.4. Edge classification

Setup. This downstream task is defined similarly to the
link prediction setup (see Figure @; however, the dataset
is built differently. We do not need to sample negative
instances. We use the bitcoin-alpha and bitcoin-otc graphs,
where each edge has a label assigned (besides the times-
tamp) — it represents the trust value of a transaction (values
range from -10 to 10). We choose a threshold of 0 to de-
fine two classes (values below 0 — class 0, negative trust,
untrusted; values equal or higher than 0 — class 1, positive
trust). We use the same edge embeddings as in the link
prediction task (all methods but tNodeEmbed, which is
retrained in a supervised way for this problem explicitly)
to train a logistic regression classifier. As the resulting
datasets are mostly imbalanced, we set the "class _weight"
argument to "balanced" to let the algorithm automatically
determine appropriate class weights (we use the Scikit-learn
implementation).
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Results. We report results of edge classification in Table
[fl The tNodeEmbed method outperforms others, but it
is re-fitted in the same task, while the others reuse previ-
ously trained embeddings. Nevertheless, among the three
best results based on the mean rank, two are obtained by
FILDNE. For the bitcoin-otc dataset, we see that FILDNE
improves AUC of edge classification for all Base methods.
Analogously to link prediction (see Section , we see
that FILDNE and k-FILDNE perform similarly as well
as our method beats other streaming approaches (except
tNodeEmbed).

Table 6: Comparison of FILDNE and other methods in edge
classification task (AUC [%]). The presented values are the mean
AUC scores over 8 graph snapshots and 30 methods’ retrains. We
also report the mean ranks of all methods in this experiment. Meth-
ods marked in bold are the 3 best methods based on the mean
rank. Underlined values show the highest AUC score for each dataset
individually.

BITCOIN BITCOIN | MEAN RANK
ALPHA oTC
N2V 65.11 60.92 7.25
LINE 63.09 64.39 6.44
CTDNE 63.81 55.92 8.56
FILDNE(N2V) 61.57 65.47 6.56
FILDNE(LINE) 63.91 66.56 5.00
FILDNE(CTDNE) 59.28 57.85 8.56
K-FILDNE(N2V) 64.10 66.23 5.25
K-FILDNE (LINE) 63.92 66.57 4.94
K-FILDNE(CTDNE) 58.25 59.84 8.06
DYNGRAPH2VEC(AERNN) 56.40 56.14 10.12
TNODEEMBED 71.88 69.32 3.12
ONLINE-N2V(STREAMWALK ) 56.73 56.70 9.25
ONLINE-N2V(SECONDORDER)  63.39 53.93 7.88

5.5. Graph reconstruction

Setup. Contrary to link prediction and edge classification
tasks, we do not use here the next snapshot prediction
(see Figure @ The main goal in graph reconstruction
problems is to tell how well the embedding represents the
graph it was trained on, i.e. a given embedding [y, is
evaluated on its corresponding graph snapshot Gy, (in
case of FILDNE we check how well the composed Base
method embeddings reflect the original cumulative graph).
Graphs are transformed to static ones in order to fulfill the
graph reconstruction framework. We use the two metrics

[9:

e a local one - mAP (mean Average Precision),
which captures local graph properties; for any node
and its embedding vector it checks how many of the
nearest vectors (in the sense of euclidean norm) in the
embedding space are actually first-order neighbours
of this node:

[N

mAP = \V\ Z deg Z

where deg(v) denotes the degree of v, N, = {w,
W, ..., Wdeg(v)} — neighborhood of v, R, ., — is the

|Nv NR,, wl
|Rv w;




Table 4: Comparison of link prediction (AUC [%]) on cumulative graph embeddings Fo ¢, t € {1,...,9} across all Base methods. The presented
values are the mean AUC over 8 snapshots (G2,3,...,G9,10) and 30 methods’ retrains. We select the 3 best methods (LINE, Node2vec,
CTDNE) based on the mean ranks and use those methods in further experiments. Underlined values show the highest AUC score for each
dataset individually. Methods that did not converged are marked as “x”.

BITCOIN  BITCOIN FB FB ENRON HYPERTEXT09 RADOSLAW | MEAN RANK
ALPHA OTC FORUM MESSAGES EMPLOYEES EMAIL
LINE 66.08 54.69 79.03 70.75 90.59 72.71 86.74 1.89
N2V 65.60 52.82 75.84 65.43 92.28 73.76 90.15 1.91
CTDNE  55.58 51.23 65.24 54.35 87.30 67.31 83.32 3.46
HOPE 59.16 49.71 53.72 51.16 58.79 53.89 88.71 4.64
DGI 55.53 50.26 54.34 53.09 59.76 57.23 70.88 4.91
LE 47.46 49.73 54.17 51.81 58.23 55.01 77.99 5.07
LLE X X 55.69 X 59.96 58.13 54.87 5.44

Table 5: Comparison of FILDNE and other methods in link prediction task (AUC [%]). The presented values are the mean AUC scores over 8
graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are the
3 best methods based on the mean rank. Underlined values show the highest AUC score for each dataset individually.

BITCOIN  BITCOIN FB FB ENRON HYPERTEXT09 RADOSLAW | MEAN RANK

ALPHA oTC FORUM MESSAGES EMPLOYEES EMAIL
N2V 65.60 52.82 75.84 65.43 92.28 73.76 90.15 5.43
LINE 66.08 54.69 79.03 70.75 90.59 72.71 86.74 5.77
CTDNE 55.58 51.23 65.24 54.35 87.30 67.31 83.32 9.61
FILDNE(N2V) 59.25 53.36 73.94 64.27 92.43 71.35 91.67 5.75
FILDNE (LINE) 58.28 62.39 74.11 76.11 92.00 73.87 93.42 4.21
FILDNE(CTDNE) 55.39 55.97 66.10 55.86 88.33 65.51 85.64 9.30
K-FILDNE(N2V) 62.22 53.93 75.95 65.09 91.43 71.71 91.66 5.55
K-FILDNE(LINE) 59.41 59.66 75.06 74.83 91.92 73.27 93.62 4.48
K-FILDNE(CTDNE) 53.52 53.38 61.24 57.01 87.85 64.44 85.54 10.00
DYNGRAPH2VEC(AERNN) 67.88 58.67 70.50 66.93 74.66 66.40 85.72 8.38
TNODEEMBED 68.68 48.40 55.96 60.97 83.57 55.79 76.87 9.61
ONLINE-N2V(STREAMWALK ) 69.59 59.66 73.21 69.55 84.84 68.36 91.13 6.68
ONLINE-N2V(SECONDORDER)  68.70 58.33 69.34 75.31 87.59 72.44 89.41 6.23
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smallest set of such points that contains w; (that
is, Ry, is the smallest set of nearest points in the
embedding space required to retrieve the ith neighbor
of v).

a global one — distortion, which compares the dis-
tances in the embedding space (euclidean norm) with
the distances in the graph (shortest path lengths),
the embedding distances are normalized to be within
the range [1;n], where n is the longest shortest path
length (also called diameter of the graph).

1
ol 2

2 u,veU:u#v

|dg(u,v) — da(u,v)|
de(u,v)

D= . (12)

where n is the number of nodes, dg are the graph
distances and dg are the embedding distances.

Note that we are interested in higher mAP values and
lower distortion values (with 100% and 0 as the ideal values,
respectively). We also do not need an auxiliary classifier,
like logistic regression for link prediction and edge classifi-
cation. Using a given graph and its respective embedding,
we compute the metrics.

Results. Table[7] summarizes the graph reconstruction task
results as the mean Average Precision. Considering the
mean ranks, we see both FILDNE and k-FILDNE models
in the top three methods. One of them (k-FILDNE with
Node2vec embeddings) achieves the best results for fb-
forum, improving the pure Node2vec by approximately
10% percentage points. Overall, Node2vec significantly
outperforms other methods on all the remaining datasets.
We observe that the other streaming approaches perform
poorly — they allocate themselves at the three last positions
in the mean ranks.

We also examine distortion as a graph reconstruction
measure (see Table for which our proposed method
improves the results of Base methods in most cases, or
it stays at a comparable level. Contrary to mAP, the
competitive streaming methods occupy two of the top
three positions alongside FILDNE. Moreover, our method
achieves the best performance on fb-forum and hypertext09
datasets.

5.6. Time and memory costs

Setup. In this experiment, we measured the time of com-
puting embeddings using all of the considered methods,
ie.:

e for Base and streaming methods it is only the time
needed to compute the embedding of the graph Gy ¢
(either in batched or streaming manner);

e for both FILDNE and k-FILDNE we sum up the
time of computing: node activities in graph G¢_1 4,
embedding F}_1 ; using a given Base method, the cal-
ibration procedure of this new embedding to previous
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ones, alpha estimation (for the k-FILDNE) and the
time of applying the FILDNE composition equation.

We also measure the peak (highest) memory consumption
of the procedures mentioned above. Note that this also
includes the reading of the graphs into memory, as well as
previously saved models (for streaming methods) or cali-
brated embeddings and node activities (for both FILDNE
methods).

The time measurements are performed while computing
embedding in the main pipeline, so we have 30 measure-
ments for each scenario. Meanwhile, the memory measure-
ments are done in a separate branch of the pipeline, as it
requires to probe the current memory usage with a rela-
tively high frequency to obtain accurate results. It leads
to a massive slowdown of the embedding algorithms, so
eventually, we decided to perform five repetitions of these
measurements.

For the tNodeEmbed method, we report calculation
time and memory utilization measured on the link predic-
tion task.

Results. From the time measurements reported in Table
[ it is visible that our proposed FILDNE method is the
fastest for all datasets. The speedup ratio between the
fastest FILDNE configuration and the next fastest compet-
itive method ranges from approximately two to three times.
Moreover, k-FILDNE is slower than the Basic version, due
to the alpha estimation procedure, described in Section [£.2}
However, the actual time difference is not significant — in
most cases, k-FILDNE is about 1 second slower, what corre-
sponds to a slowdown of 1% — 10%. In the case of memory
utilization (see Table , two FILDNE configurations are
on average in the top three best-performing methods. It
does not mean that our method always improves the Base
method, especially on LINE, we can see no progress nor
degradation. The rise of memory consumption is present
for the hypertext09 dataset due to the small size of the
network. We see that the Online-Node2vec methods are
well optimized for memory, contrary to other streaming
methods.

5.7. Gain results

5.7.1. Comparison to Base methods

For all of the experiments, we compare FILDNE results
to the corresponding Base method, computing gain scores
interpreted as a gain whenever above 1, and as a loss
whenever below. To calculate these scores first, we average
all 30 retrains of each method for each snapshot. Next, we
divide the results of FILDNE by the ones obtained with
the corresponding Base method. We compute the mean of
those ratios and report it as the gain score (see Figure [7)).
Note that we are interested in lower values for distortion,
time, and memory consumption, so we take the fraction’s
reciprocal. Each pair (dataset, Base method) can be viewed
from the perspective of link prediction performance, edge
classification performance, graph reconstruction quality,



Table 7: Comparison of FILDNE and other methods in graph reconstruction task (mAP [%]). The presented values are the mean mAP scores
over 8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold
are the 3 best methods based on the mean rank. Underlined values show the highest mAP score for each dataset individually.

BITCOIN  BITCOIN FB FB ENRON HYPERTEXT09 RADOSLAW | MEAN RANK

ALPHA oTC FORUM MESSAGES EMPLOYEES EMAIL
N2V 65.99 70.18 23.16 67.44 70.46 55.95 42.12 1.36
LINE 10.83 10.81 6.42 9.90 45.35 41.90 39.75 7.52
CTDNE 35.65 47.24 7.85 22.84 55.15 54.80 31.42 4.61
FILDNE(N2V) 28.73 26.40 30.98 30.00 63.90 49.45 40.55 3.55
FILDNE(LINE) 14.70 18.02 12.16 7.12 41.71 38.24 38.38 7.61
FILDNE(CTDNE) 18.20 24.27 9.53 11.59 49.39 45.92 36.84 6.30
K-FILDNE(N2V) 33.46 29.30 33.17 34.66 64.21 53.05 40.92 2.41
K-FILDNE(LINE) 15.39 25.02 15.58 8.92 44.43 38.82 38.08 6.66
K-FILDNE(CTDNE) 16.85 27.46 13.93 20.39 55.10 48.48 37.26 4.98
DYNGRAPH2VEC(AERNN) 0.60 0.66 2.22 1.84 20.46 27.75 26.51 11.32
ONLINE-N2V(STREAMWALK) 1.08 1.83 2.22 1.25 25.85 28.03 29.60 10.70
ONLINE-N2V (SECONDORDER) 1.38 1.54 1.46 1.28 29.09 27.88 27.11 10.98

Table 8: Comparison of FILDNE and other methods in graph reconstruction task (distortion). The presented values are the mean distortion
scores over 8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in
bold are the 3 best methods based on the mean rank. Underlined values show the lowest (best) distortion score for each dataset individually.

BITCOIN  BITCOIN FB FB ENRON HYPERTEXT09 RADOSLAW | MEAN RANK

ALPHA oTcC FORUM MESSAGES EMPLOYEES EMAIL
N2V 0.81 1.29 0.61 0.93 0.66 0.38 0.57 8.41
LINE 0.87 0.94 0.50 0.59 0.65 0.33 0.80 7.52
CTDNE 0.93 1.70 0.76 0.89 0.81 0.36 0.65 10.12
FILDNE(N2V) 0.70 1.05 0.47 0.74 0.69 0.30 0.54 6.21
FILDNE(LINE) 0.65 0.65 0.41 0.54 0.67 0.31 0.70 5.43
FILDNE(CTDNE) 0.85 1.70 0.65 0.93 0.84 0.32 0.66 9.45
K-FILDNE(N2V) 0.64 1.04 0.44 0.72 0.63 0.30 0.67 5.59
K-FILDNE(LINE) 0.65 0.73 0.33 0.50 0.66 0.31 0.74 5.05
K-FILDNE(CTDNE) 0.83 1.65 0.46 0.75 0.68 0.30 0.66 6.84
DYNGRAPH2VEC(AERNN) 0.52 0.53 0.44 0.50 0.62 0.40 0.45 4.20
ONLINE-N2V(STREAMWALK ) 0.64 0.80 0.52 0.53 0.47 0.39 0.56 5.39
ONLINE-N2V(SECONDORDER) 0.54 0.57 0.48 0.49 0.49 0.40 0.45 3.79

Table 9: Comparison of FILDNE and other methods in embeddings calculation time [s]. The presented values are the mean calculation time
over 8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold
are the 3 best methods based on the mean rank. Underlined values show the lowest calculation time for each dataset individually.

BITCOIN  BITCOIN FB FB ENRON HYPERTEXT09 RADOSLAW | MEAN RANK

ALPHA oTC FORUM MESSAGES EMPLOYEES EMAIL
N2V 46.71 133.83 24.94 75.72 4.40 9.52 11.90 7.20
LINE 70.78 63.10 103.97 114.16 114.84 105.17 58.56 11.79
CTDNE 16.25 61.41 3.98 77.44 16.82 4.39 2.65 5.27
FILDNE(N2V) 7.87 22.26 8.44 27.62 2.35 4.79 4.65 2.75
FILDNE (LINE) 42.34 41.66 80.53 82.18 84.43 83.29 43.50 9.07
FILDNE(CTDNE) 7.84 18.11 1.91 33.67 8.69 2.63 0.68 1.98
K-FILDNE(N2V) 8.61 24.04 9.90 30.69 3.71 5.31 6.40 3.93
K-FILDNE(LINE) 43.10 43.20 81.74 85.02 85.67 83.81 45.09 10.11
K-FILDNE(CTDNE) 8.59 19.88 3.33 36.37 9.96 3.15 2.71 3.20
DYNGRAPH2VEC(AERNN) 144.71  341.14  25.54 84.10 15.89 13.35 15.47 7.82
TNODEEMBED 52.46 143.07  31.32 84.88 24.96 16.90 24.85 9.48
ONLINE-N2V(STREAMWALK) 67.76 112.97 27.44 52.09 130.27 12.50 212.59 9.43
ONLINE-N2V(SECONDORDER)  20.78 72.98 70.51 74.15 76.83 20.92 86.89 8.98
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Table 10: Comparison of FILDNE and other methods in max. memory utilization [MB]. The presented values are the mean max. memory

utilization during embeddings calculation over 8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods
in this experiment. Methods marked in bold are the 3 best methods based on the mean rank. Underlined values show the lowest memory

utilization for each dataset individually.

BITCOIN  BITCOIN FB FB ENRON HYPERTEXT09 RADOSLAW | MEAN RANK
ALPHA oTC FORUM MESSAGES EMPLOYEES EMAIL
N2V 580.09 317.12 552.29 360.35 212.27 218.45 227.75 3.71
LINE 917.17 947.08 1291.09 1309.96 1286.30 1277.53 920.00 12.16
CTDNE 1751.63 1262.22 1327.77 1113.66 344.43 320.13 361.23 9.07
FILDNE(N2V) 233.96 344.62 207.13 385.37 206.60 241.49 203.49 2.23
FILDNE(LINE) 888.59 899.76 1275.47 1279.96 1271.36 1269.56 889.90 10.45
FILDNE(CTDNE) 436.55 849.80 338.78 1270.43 514.53 384.26 300.85 6.80
K—FILDNE(N2V) 224.82 344.28 225.41 387.52 213.02 241.50 218.23 2.62
K-FILDNE(LINE) 888.82  901.10 1276.48  1281.39 1271.71 1269.49 889.21 10.66
K-FILDNE(CTDNE) 437.24 848.13 340.99 1272.02 514.99 385.14 300.77 7.09
DYNGRAPH2VEC(AERNN) 1373.12 1934.64 899.86 1023.55 793.38 774.93 816.70 10.20
TNODEEMBED 643.19 1225.00 774.82 827.67 624.12 598.00 618.93 8.54
ONLINE-N2V(STREAMWALK ) 321.29  381.68  269.47 307.71 347.81 249.34 390.14 4.70
ONLINE-N2V(SECONDORDER)  260.86 284.38 258.63 265.96 253.60 246.26 259.93 2.77
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Figure 7: Mean gain scores for FILDNE and k-FILDNE compared to corresponding Base methods. Points above the dashed line (score equal
to 1) indicate a performance gain, whereas points below indicate loss.

memory consumption, and time required for computation.
Such a perspective allows for a thorough inspection of our
method’s properties evaluated on real-world datasets.

In the case of link prediction, edge classification, and
distortion, we either achieve comparable results (least gain
score of 0.85) or improve the performance by a margin
of 75%. We observe the most notable improvements for
the calculation time, where we can speed up the compu-
tations by a factor of 8 for FILDNE (node2vec) and 7 for
k-FILDNE (node2vec). Only for one of the considered cases,
the speedup is below 1, i.e., 0.98 for k-FILDNE(ctdne) on
radoslaw-email dataset. Memory measurements exhibit sim-
ilar characteristics to other indicators — FILDNE performs
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in most cases no worse than Base methods. In the best
case, FILDNE allows reducing memory consumption up to
4 times. The maximum loss of about 30%, compared to
vanilla ctdne is encountered with enron-employes, radoslaw-
email, and fb-messages, which are small to medium-sized
networks.

Results in mean Average Precision exhibit a slightly
different nature of the FILDNE method. For some datasets
(bitcoin-otc, fb-messages), we see a drop in the performance.
At the same time, distortion in these cases remains at a
decent level. We associate such behavior with applying
the embedding alignment step, precisely how we choose
reference nodes. As explored by us, multi-degree activity



function promotes choosing nodes with a similar degree
but does not consider their neighborhood. Implementing
dataset-specific activity and scoring functions could im-
prove the results. However, one has to take into account
the complexity of the function.

5.7.2. Comparison to Streaming methods

We selected Node2vec embeddings as the ones composed
by our FILDNE method because three out of four compet-
itive streaming approaches are built upon random walks.
We compute the gain scores in an analogous way to Section
(.73 In terms of link prediction, our proposed FILDNE
models achieve comparable results as the other stream-
ing approaches. For edge classification, the tNodeEmbed
presents slightly better results than other methods as it is a
fine-tuned end-to-end edge classifier. Graph reconstruction
measured by mean Average Precision shows the superior-
ity of FILDNE by a factor of up to 50. Distortion gain
scores vary between 0.55 and 1.3, what confirms FILDNE
performance acceptable. We observe that other streaming
methods tend to be slow compared to FILDNE method,
which is reflected on the time gain scores — embeddings can
be computed up to 30 (k-FILDNE) or 50 (FILDNE) times
faster. The memory measurements are not surprising — we
provide a comparable utilization to both Online-Node2vec
models (StreamWalk and SecondOrder). Note that these
were explicitly designed to reduce the memory footprint.
At the same time, FILDNE significantly outperforms other
streaming methods.

5.8. Hyperparameter sensitivity

In this experiment, we will demonstrate the influence of
FILDNE’s hyperparameters on downstream link prediction
tasks in the last snapshot G1g. We use Node2vec as the
Base method in all of the following experiments.

Reference node percentage. The first hyperparameter we
evaluate is the percentage of reference nodes that are used
in the alignment step. We proposed in Section [£.] three
selection schemes. Here we focus on the percentage scenario
(with values: 1%, 5%, 10%, . ..,95%, 100%). We examine if
each dataset has an individual percentage that yields the
best results in downstream tasks. We plot the mean AUC
values and standard deviations in link prediction tasks for
each dataset (see Figure[J)) with k-FILDNE (uniform prior)
applied. A single AUC score for a given percentage value
is computed as the mean over 30 experiment realizations.
Finally, we fit a second-order polynomial (least sq. error)
for visualizing the trend on a given dataset and mark in
red the point with the highest AUC value.

There is an optimal reference nodes proportion within
the exclusive range (0%,100%) if we observe a concave
polynomial approximation. For more complex datasets,
e.g., bitcoin-otc, that have a low node and edge Jaccard
Index (see table [3) — representing high dynamics of the
network and few common nodes in consecutive windows —
it turns out that the best results are for 100 % ratio.
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FILDNE alpha parameter. Next, we examine the impact
of a parameter in FILDNE on AUC, exploring a range
from 0 to 1 with a step size of 0.05. The results presented
in Figure for obtained for 30 experiment repetitions.
We utilize the best ratio of reference nodes found in the
previous experiment.

We hypothesized that we should consider both the
historical and recent embedding information while con-
structing node vector representation. Our intuition is con-
firmed as we can observe different « for distinct datasets.
In fb-forum, fb-messages, enron-employees, hypertext09,
radoslaw-email, and bitcoin-otc, the past events are critical
for performance. We see that greater « values indicate an
increase in the embedding quality to a certain level, above
which the performance decreases again. For bitcoin-alpha,
we have to keep a subtle balance between the present and
the past.

k-FILDNE prior. For k-FILDNE, we change the prior
parameter and evaluate both possible values (uniform, in-
crease). We noticed that the downstream task perfor-
mance’s change is not significant — both settings yield
similar results. This shows that, after a certain number of
observations (internal link prediction), the prior values be-
come irrelevant — the likelihood computed from the actual
data becomes more critical (the property that Maximum
Likelihood Estimate is equal to Maximum A Posteriori in
the limit).

5.9. Summary of the results

We provided an extensive experimental protocol that in-
corporated various network-related learning tasks, namely
link prediction, edge classification, and graph reconstruc-
tion. We measured quality in each of those tasks and
time/memory consumption on seven benchmark datasets.
We can conclude that the experiments’ results proved
FILDNE superiority by reducing computation time (up to
50x) and memory consumption (up to 6x), achieving the
same quality.

6. Conclusion and future work

In this paper, we proposed a Framework for Incremental
Learning of Dynamic Networks Embedding (FILDNE). It
utilizes timestep vectors obtained from any existing node
embedding method and produces dynamic representation
reducing the computational costs by working on batched
data (non-overlapping graph snapshots). We showed ex-
perimentally in link prediction, edge classification, and
graph reconstruction tasks on seven real-world datasets
that FILNDE compared to static, dynamic, and temporal
node embedding approaches reduces memory and compu-
tational time costs while providing competitive accuracy
gains. Moreover, we conducted a hyperparameter sensi-
tivity study and provided insights into how FILDNE’s
hyperparameters influence the vector representation qual-
ity. In terms of future work, we plan to address FILDNE’s
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Figure 8: Mean gain scores for FILDNE and k-FILDNE (with node2vec as the Base method) compared to other streaming methods. Points
above the dashed line (score equal to 1) indicate a performance gain, whereas points below indicate loss. Graph reconstruction results are not
reported for tNodeEmbed, because the method performs an end-to-end task. We denote tNodeEmbed as tne, DynGraph2vec(AERNN) as

aernn and both Online-Node2vec models as stwlk and sor.

bitcoin-alpha bitcoin-otc fo-forum fb-messages enron-employees hypertext09 radoslaw-email
MAX: (20, 96.38) MAX: (100, 49.44) MAX: (85, 86.62) MAX: (35, 76.16) MAX: (80, 92.35) MAX: (65, 70.02) MAX: (80, 92.48)
"
97 ° . 57 88 a 81 93 e ® 73 92 > \
i, s, : ° ’
» e s @ y N s, /,
<92 49 ® 80 i 74 eS| 90 67 9|
=] v~ - b, o . i
L7 41 72 67 |’ 87|+ 61 87 |/
82 34 64 60 84 56 85
0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%

Percent of common nodes used for alignment

Figure 9: Link prediction task results (AUC [%)]) for different amounts of reference nodes (given as the mean fraction of common nodes between
snapshots) The dashed line indicates the trend of these values (fitted using a 2nd order polynomial) and the red dot marks the highest AUC
value. Each subtitle presents the name of the dataset and the coordinates of the highest value (percent, AUC).

limitations, namely: (1) it does not provide a mechanism
for online learning (update after the single event) as our
method requires batches (graph snapshots); (2) the cali-
bration step requires an overlapping between consecutive
snapshots in terms of nodes (there must exist common
nodes) — one can expect a new way to calibrate such snap-
shots using nodes’ structural similarity only; (3) we did
not explore how our method works in an attributed envi-
ronment (i.e., using both attributed graphs and embedding
method suitable for such data); (4) in our experimental
setup we decided to use snapshots of equal size (in terms
of time intervals), but it might be required to extend that

scenario.

18

Acknowledgments

The project was partially supported by The National
Science Centre, Poland the research projects no. 2016,/21/D/ST6/02
and 2016/21/B/ST6,/01463, by the European Union’s Hori-
zon 2020 research and innovation programme under the
Marie Sktodowska-Curie grant agreement No 691152 (RENOIR);
the Polish Ministry of Science and Higher Education fund
for supporting internationally co-financed projects in 2016-
2019 (agreement no. 3628/H2020/2016/2) and statutory
funds of Department of Computational Intelligence.



bitcoin-alpha bitcoin-otc fb-forum fb-messages enron-employees hypertext09 radoslaw-email
MAX: (0.5, 97.58) MAX: (0.95, 45.93) MAX: (0.85, 86.55) MAX: (0.65, 71.56) MAX: (0.8, 90.26) MAX: (0.95, 68.88) MAX: (0.95, 91.66)
100.0 53.2 89.8 78.2 91.6 726 91.9
¥
— 98.0 46.9 | 82.1 71.0 e 90.2 O 67.6 91.0 A4
S . : Gl A
o N
< 960 |’ 405 745 63.9 |« 88.8 627 | 01|
94.0 34.2 66.8 56.8 87.4 57.7 89.2
0 0 1 1 0 1 0 0 1

Embedding composition parameter a

Figure 10: Link prediction task results (AUC [%]) for different values of . The dashed line indicates the trend of these values (fitted using a
2nd order polynomial) and the red dot marks the highest AUC value. Each subtitle presents the name of the dataset and the coordinates of
the highest value (a, AUC)

References

(1]

2]

(3]

(4]

(5]

[6]

(7]

(8]

[l

[10]

[11]

(12]

[13]

[14]

[15]

Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation 15(6),
1373-1396 (2003)

Béres, F., Kelen, D.M., Palovics, R., Benczur, A.A.: Node
embeddings in dynamic graphs. Applied Network Science 4(1)
(dec 2019). https://doi.org/10.1007/s41109-019-0169-5
Bergstra, J., Yamins, D., Cox, D.: Making a science of model
search: Hyperparameter optimization in hundreds of dimensions
for vision architectures. In: International conference on machine
learning. pp. 115-123 (2013)

Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms
for hyper-parameter optimization. In: Advances in neural infor-
mation processing systems. pp. 2546-2554 (2011)

Cai, H., Zheng, V.W., Chang, K.C.C.: A Comprehensive Survey
of Graph Embedding: Problems, Techniques, and Applications.
IEEE Transactions on Knowledge and Data Engineering 30(9),
1616-1637 (2018). https://doi.org/10.1109/TKDE.2018.2807452
Chami, 1., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K.:
Machine learning on graphs: A model and comprehensive taxon-
omy. arXiv preprint arXiv:2005.03675 (2020)

Chen, X., Heimann, M., Vahedian, F., Koutra, D.: Consis-
tent network alignment with node embedding. arXiv preprint
arXiv:2005.04725 (2020)

Cui, P., Wang, X., Pei, J., Zhu, W.: A Survey on
Network Embedding. IEEE Transactions on Knowl-
edge and Data Engineering 31(5), 833-852 (2019).
https://doi.org/10.1109/TKDE.2018.2849727

De Sa, C., Gu, A., R¢, C., Sala, F.: Representation tradeofts
for hyperbolic embeddings. Proceedings of machine learning
research 80, 4460 (2018)

Derr, T., Karimi, H., Liu, X., Xu, J., Tang, J.: Deep adversarial
network alignment. arXiv preprint arXiv:1902.10307 (2019)
Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable
representation learning for heterogeneous networks. In: Pro-
ceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining. pp. 135-144 (2017)
Gao, Y., Gong, M., Xie, Y., Zhong, H.: Community-oriented
attributed network embedding. Knowledge-Based Systems 193,
105418 (2020)

Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., Ye, J., Liu, Y.:
Spatiotemporal multi-graph convolution network for ride-hailing
demand forecasting. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 33, pp. 3656-3663 (2019)

Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: Capturing
network dynamics using dynamic graph representation learning.
Knowledge-Based Systems 187, 104816 (2020)

Grave, E., Joulin, A., Berthet, Q.: Unsupervised alignment of
embeddings with wasserstein procrustes. In: The 22nd Interna-

19

[16]

(17]

(18]

[19]

[20]

[21]

[22]

23]

[24]

25]

[26]

27]

28]

tional Conference on Artificial Intelligence and Statistics. pp.
1880-1890 (2019)

Grover, A., Leskovec, J.: node2vec: Scalable feature learning for
networks. In: Proceedings of the 22nd ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. pp.
855-864 (2016)

Hou, C., Zhang, H., He, S., Tang, K.: Glodyne: Global topol-
ogy preserving dynamic network embedding. arXiv preprint
arXiv:2008.01935 (2020)

Huang, F., Zhang, X., Xu, J., Li, C., Li, Z.: Network embed-
ding by fusing multimodal contents and links. Knowledge-Based
Systems 171, 44-55 (2019)

Kuprieiev, R., Petrov, D., Valles, R., Redzynski, P., da Costa-
Luis, C., Schepanovski, A., Pachhai, S., Shcheklein, I., Or-
pinel, J., Santos, F., Rowlands, P., Sharma, A., Zhanibek,
Hodovic, D., Grigorev, A., Earl, karajan1001, Dash, N., Vysh-
nya, G., nik123, maykulkarni, xliiv, Hora, M., Vera, Man-
gal, S., Baranowski, W., Wolff, C., Maslakov, A., Khamutov,
A., Benoy, K.: Dvc: Data version control - git for data &
models (Aug 2020). https://doi.org/10.5281/zenodo.3998731,
https://doi.org/10.5281/zenodo.3998731

Lee, J.B., Nguyen, G., Rossi, R.A., Ahmed, N.K., Koh, E., Kim,
S.: Dynamic node embeddings from edge streams (2019)

Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across
social networks using network embedding. In: Ijcai. pp. 1774~
1780 (2016)

Mahdavi, S., Khoshraftar, S., An, A.: dynnode2vec: Scalable
dynamic network embedding. In: 2018 IEEE International Con-
ference on Big Data (Big Data). pp. 3762-3765. IEEE (2018)
Marceau, D.J., Guindon, L., Bruel, M., Marois, C.: Building
Temporal Topology in a GIS Database to Study the Land-Use
Changes in a Rural-Urban Environment. Professional Geog-
rapher 53(4), 546-558 (2001). https://doi.org/10.1111,/0033-
0124.00304

Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient
estimation of word representations in vector space. CoRR
abs/1301.3781 (2013)

Murphy, K.K.: Machine Learning: A Probabilistic Perspective.
MIT Press (2012)

Nelson, W., Zitnik, M., Wang, B., Leskovec, J., Goldenberg, A.,
Sharan, R.: To embed or not: network embedding as a paradigm
in computational biology. Frontiers in genetics 10, 381 (2019)
Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E.,
Kim, S.: Continuous-Time Dynamic Network Embeddings. pp.
969-976. Association for Computing Machinery (ACM) (2018).
https://doi.org/10.1145/3184558.3191526

Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmet-
ric transitivity preserving graph embedding. In: Proceedings
of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. vol. 13-17-August-2016, pp.
1105-1114. Association for Computing Machinery (aug 2016).


https://doi.org/10.5281/zenodo.3998731

[29]

(30]

31]

32]

33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

https://doi.org/10.1145/2939672.2939751

Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning
of social representations. In: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and
data mining. pp. 701-710 (2014)

Rossi, R., Ahmed, N.: The network data repository with interac-
tive graph analytics and visualization. In: Twenty-Ninth AAAIT
Conference on Artificial Intelligence (2015)

Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by
locally linear embedding. science 290(5500), 2323-2326 (2000)
Singer, U., Guy, L., Radinsky, K.: Node embedding over tem-
poral graphs. In: Proceedings of the 28th International Joint
Conference on Artificial Intelligence. pp. 4605-4612. AAAI Press
(2019)

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line:
Large-scale information network embedding. In: Proceedings
of the 24th international conference on world wide web. pp.
1067-1077 (2015)

Torricelli, M., Karsai, M., Gauvin, L.: weg2vec: Event em-
bedding for temporal networks. Scientific Reports 10(1), 1-11
(2020)

Trivedi, P., Biiyiikgakir, A., Lin, Y., Qian, Y., Jin, D., Koutra,
D.: On structural vs. proximity-based temporal node embeddings
(2020)

Velickovic, P., Fedus, W., Hamilton, W.L., Lio, P., Bengio, Y.,
Hjelm, R.D.: Deep graph infomax. In: ICLR (Poster) (2019)
Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet
for deep spatial-temporal graph modeling. arXiv preprint
arXiv:1906.00121 (2019)

Xu, D., Wei, C., Peng, P., Xuan, Q., Guo, H.: Ge-gan: A
novel deep learning framework for road traffic state estimation.
Transportation Research Part C: Emerging Technologies 117,
102635 (2020)

Xu, S., Liu, S., Feng, L.: Manifold graph embedding with
structure information propagation for community discovery.
Knowledge-Based Systems 208, 106448 (2020)

You, J., Liu, B., Ying, Z., Pande, V., Leskovec, J.: Graph
convolutional policy network for goal-directed molecular graph
generation. In: Advances in neural information processing sys-
tems. pp. 6410-6421 (2018)

Yue, X., Wang, Z., Huang, J., Parthasarathy, S., Moosavinasab,
S., Huang, Y., Lin, S.M., Zhang, W., Zhang, P., Sun, H.: Graph
embedding on biomedical networks: methods, applications and
evaluations. Bioinformatics 36(4), 1241-1251 (2020)

Zang, C., Wang, F.: Moflow: an invertible flow model for gen-
erating molecular graphs. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining. pp. 617626 (2020)

Zhang, Y., Li, Y., Zhu, Y., Hu, X.: Wasserstein gan based on
autoencoder with back-translation for cross-lingual embedding
mappings. Pattern Recognition Letters 129, 311-316 (2020)

20



Appendices

A. Source code of used methods

We base our expirements on following methods imple-
mentations:
DynGraph2Vec - https://github.com/palash1992 /DynamicGEM
DGI - https://github.com/PetarV-/DGI
N2V - https://github.com/eliorc/node2vec/
HOPE - https://github.com/palash1992/ GEM
LLE - https://github.com/palash1992/GEM
SGE - https://scikit-learn.org/
OnlineN2V - https://github.com/ferencberes/online-node2vec
TNE - https://github.com/urielsinger/tNodeEmbed
FILDNE - code of our method will be published upon
aceptance

B. All methods results (mean)

We provide comprehensive experimental results for all
examined streaming approaches, Base methods and both
FILDNE variants applied on these Base methods.
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Table 11: Comparison of FILDNE and other methods in link prediction task (AUC). The presented values are the mean AUC scores over
8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are
the 3 best methods based on the mean rank. Underlined values show the highest AUC score for each dataset individually.

BITCOIN  BITCOIN FB FB ENRON HYPERTEXT09 RADOSLAW | MEAN RANK
ALPHA oTC FORUM MESSAGES EMPLOYEES EMAIL
N2V 65.60 52.82 75.84 65.43 92.28 73.76 90.15 6.29
LINE 66.08 54.69 79.03 70.75 90.59 72.71 86.74 6.48
CTDNE 55.58 51.23 65.24 54.35 87.30 67.31 83.32 11.79
HOPE 59.16 49.71 53.72 51.16 58.79 53.89 88.71 16.32
DGI 55.53 50.26 54.34 53.09 59.76 57.23 70.88 17.36
LE 47.46 49.73 54.17 51.81 58.23 55.01 77.99 18.02
LLE X X 55.69 X 59.96 58.13 54.87 19.69
FILDNE(N2V) 59.25 53.36 73.94 64.27 92.43 71.35 91.67 6.98
FILDNE(LINE) 58.28 62.39 74.11 76.11 92.00 73.87 93.42 4.79
FILDNE(CTDNE) 55.39 55.97 66.10 55.86 88.33 65.51 85.64 11.00
FILDNE(HOPE) 49.83 50.21 53.57 55.20 59.08 59.37 88.16 15.57
FILDNE(DGI) 53.98 51.48 55.57 53.32 63.56 59.89 68.78 15.77
FILDNE(LE) 49.39 50.59 55.27 49.15 62.12 58.03 80.72 16.79
FILDNE(LLE) X X 56.19 X 62.74 58.99 55.53 18.38
K-FILDNE(N2V) 62.22 53.93 75.95 65.09 91.43 71.71 91.66 6.52
K-FILDNE(LINE) 59.41 59.66 75.06 74.83 91.92 73.27 93.62 5.21
K-FILDNE(CTDNE) 53.52 53.38 61.24 57.01 87.85 64.44 85.54 12.25
K-FILDNE(HOPE) 53.60 49.50 53.35 54.08 53.30 58.36 78.47 17.39
K-FILDNE(DGI) 51.32 47.97 55.71 53.86 61.75 58.83 66.27 17.23
K-FILDNE(LE) 51.60 50.59 54.12 49.41 61.40 57.98 60.27 17.93
K-FILDNE(LLE) X X 55.84 X 61.33 57.73 56.53 19.44
DYNGRAPH2VEC(AERNN) 67.88 58.67 70.50 66.93 74.66 66.40 85.72 9.41
TNODEEMBED 68.68 48.40 55.96 60.97 83.57 55.79 76.87 13.93
ONLINE-N2V(STREAMWALK ) 69.59 59.66 73.21 69.55 84.84 68.36 91.13 7.50
ONLINE-N2V(SECONDORDER)  68.70 58.33 69.34 75.31 87.59 72.44 89.41 6.77

Table 12: Comparison of FILDNE and other methods in edge classification task (AUC). The presented values are the mean AUC scores
over 8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold
are the 3 best methods based on the mean rank. Underlined values show the highest AUC score for each dataset individually.

BITCOIN  BITCOIN | MEAN RANK
ALPHA oTC
N2V 65.11 60.92 8.69
LINE 63.09 64.39 7.81
CTDNE 63.81 55.92 10.56
HOPE 57.76 43.04 17.25
DGI 57.58 59.39 12.00
LE 53.60 44.60 16.41
LLE X X X
FILDNE(N2V) 61.57 65.47 7.75
FILDNE (LINE) 63.91 66.56 6.19
FILDNE(CTDNE) 59.28 57.85 10.94
FILDNE(HOPE) 58.89 50.77 15.03
FILDNE (DGI) 58.26 52.81 14.38
FILDNE(LE) 52.31 54.63 16.25
FILDNE(LLE) X X X
K-FILDNE(N2V) 64.10 66.23 6.25
K-FILDNE(LINE) 63.92 66.57 6.12
K-FILDNE(CTDNE) 58.25 59.84 10.19
K-FILDNE(HOPE) 57.87 49.84 15.00
K-FILDNE(DGI) 58.29 54.61 12.94
K-FILDNE(LE) 47.80 49.87 18.50
K-FILDNE(LLE) X X X
DYNGRAPH2VEC(AERNN) 56.40 56.14 13.62
TNODEEMBED 71.88 69.32 3.62
ONLINE-N2V(STREAMWALK ) 56.73 56.70 12.81
ONLINE-N2V(SECONDORDER)  63.39 53.93 10.69
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Table 13: Comparison of FILDNE and other methods in graph reconstruction task (mAP). The presented values are the mean mAP
scores over 8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in
bold are the 3 best methods based on the mean rank. Underlined values show the highest mAP score for each dataset individually.

BITCOIN  BITCOIN FB FB ENRON HYPERTEXT09 RADOSLAW | MEAN RANK
ALPHA oTC FORUM MESSAGES EMPLOYEES EMAIL
N2V 65.99 70.18 23.16 67.44 70.46 55.95 42.12 1.84
LINE 10.83 10.81 6.42 9.90 45.35 41.90 39.75 8.05
CTDNE 35.65 47.24 7.85 22.84 55.15 54.80 31.42 5.25
HOPE 0.51 0.64 2.43 1.39 13.20 28.10 27.06 18.32
DGI 0.66 0.66 2.55 1.45 12.44 27.11 26.91 18.48
LE 0.81 1.12 2.71 1.22 11.89 28.04 76.53 14.00
LLE X X 2.65 X 11.98 27.16 48.62 15.38
FILDNE(N2V) 28.73 26.40 30.98 30.00 63.90 49.45 40.55 4.04
FILDNE(LINE) 14.70 18.02 12.16 7.12 41.71 38.24 38.38 8.18
FILDNE(CTDNE) 18.20 24.27 9.53 11.59 49.39 45.92 36.84 6.86
FILDNE (HOPE) 0.59 0.67 2.50 1.46 12.90 27.42 27.55 18.27
FILDNE(DGI) 0.77 0.80 2.88 1.68 12.69 27.20 29.66 15.50
FILDNE(LE) 0.76 0.94 2.71 1.29 13.08 27.64 60.00 14.09
FILDNE(LLE) X X 2.58 X 11.21 28.12 26.34 19.34
K-FILDNE(N2V) 33.46 29.30 33.17 34.66 64.21 53.05 40.92 2.89
K-FILDNE(LINE) 15.39 25.02 15.58 8.92 44.43 38.82 38.08 7.23
K-FILDNE(CTDNE) 16.85 27.46 13.93 20.39 55.10 48.48 37.26 5.52
K-FILDNE (HOPE) 0.59 0.70 2.42 1.48 13.28 29.80 23.92 17.43
K-FILDNE(DGI) 0.93 0.94 3.24 2.06 12.72 27.76 29.04 14.04
K-FILDNE(LE) 0.73 0.90 2.81 1.40 12.84 29.05 41.80 13.79
K-FILDNE(LLE) X X 2.98 X 12.58 28.63 31.78 14.91
DYNGRAPH2VEC(AERNN) 0.60 0.66 2.22 1.84 20.46 27.75 26.51 17.07
ONLINE-N2V(STREAMWALK) 1.08 1.83 2.22 1.25 25.85 28.03 29.60 15.20
ONLINE-N2V (SECONDORDER) 1.38 1.54 1.46 1.28 29.09 27.88 27.11 16.04

Table 14: Comparison of FILDNE and other methods in graph reconstruction task (distortion). The presented values are the mean distortion
scores over 8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in
bold are the 3 best methods based on the mean rank. Underlined values show the highest distortion score for each dataset individually.

BITCOIN  BITCOIN FB FB ENRON HYPERTEXT09 RADOSLAW | MEAN RANK
ALPHA oTC FORUM MESSAGES EMPLOYEES EMAIL
N2V 0.81 1.29 0.61 0.93 0.66 0.38 0.57 17.66
LINE 0.87 0.94 0.50 0.59 0.65 0.33 0.80 15.93
CTDNE 0.93 1.70 0.76 0.89 0.81 0.36 0.65 19.41
HOPE 0.58 0.60 0.36 0.48 0.48 0.34 0.44 8.93
DGI 0.51 0.55 0.36 0.61 0.49 0.34 0.38 7.38
LE 0.58 0.58 0.33 0.45 0.47 0.33 0.48 8.43
LLE X X 0.54 X 0.77 0.35 0.77 18.91
FILDNE(N2V) 0.70 1.05 0.47 0.74 0.69 0.30 0.54 14.29
FILDNE(LINE) 0.65 0.65 0.41 0.54 0.67 0.31 0.70 12.70
FILDNE(CTDNE) 0.85 1.70 0.65 0.93 0.84 0.32 0.66 18.54
FILDNE(HOPE) 0.56 0.60 0.40 0.48 0.48 0.34 0.42 8.89
FILDNE(DGI) 0.53 0.72 0.30 0.55 0.47 0.33 0.38 7.68
FILDNE(LE) 0.55 0.65 0.28 0.38 0.41 0.34 0.47 6.96
FILDNE(LLE) X X 0.46 X 0.88 0.35 0.81 19.00
K-FILDNE(N2V) 0.64 1.04 0.44 0.72 0.63 0.30 0.67 12.91
K-FILDNE(LINE) 0.65 0.73 0.33 0.50 0.66 0.31 0.74 11.61
K-FILDNE(CTDNE) 0.83 1.65 0.46 0.75 0.68 0.30 0.66 14.73
K-FILDNE (HOPE) 0.57 0.60 0.43 0.48 0.48 0.32 0.40 8.50
K-FILDNE(DGI) 0.52 0.72 0.30 0.51 0.49 0.33 0.42 7.30
K-FILDNE(LE) 0.55 0.61 0.28 0.38 0.43 0.32 0.43 5.52
K-FILDNE(LLE) X X 0.40 X 0.60 0.33 0.60 11.78
DYNGRAPH2VEC(AERNN) 0.52 0.53 0.44 0.50 0.62 0.40 0.45 10.54
ONLINE-N2V(STREAMWALK ) 0.64 0.80 0.52 0.53 0.47 0.39 0.56 13.95
ONLINE-N2V (SECONDORDER) 0.54 0.57 0.48 0.49 0.49 0.40 0.45 10.20
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Table 15: Comparison of FILDNE and other methods in embeddings calculation time (in seconds). The presented values are the mean
calculation time over 8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods
marked in bold are the 3 best methods based on the mean rank. Underlined values show the lowest calcualtion time for each dataset individually.

BITCOIN  BITCOIN FB FB ENRON HYPERTEXT09 RADOSLAW | MEAN RANK
ALPHA oTC FORUM MESSAGES EMPLOYEES EMAIL
N2V 46.71 133.83 24.94 75.72 4.40 9.52 11.90 17.91
LINE 70.78 63.10  103.97  114.16 114.84 105.17 58.56 22.50
CTDNE 16.25 61.41 3.98 77.44 16.82 4.39 2.65 15.86
HOPE 3.12 4.93 1.51 2.29 0.81 0.48 1.39 6.09
DGI 3.57 15.83 2.95 5.10 0.43 0.58 0.53 8.46
LE 5.34 13.81 1.71 2.64 0.29 0.25 0.38 5.52
LLE X X 4.22 X 0.28 0.25 0.66 7.09
FILDNE(N2V) 7.87 22.26 8.44 27.62 2.35 4.79 4.65 13.29
FILDNE (LINE) 42.34 41.66 80.53 82.18 84.43 83.29 43.50 19.79
FILDNE(CTDNE) 7.84 18.11 1.91 33.67 8.69 2.63 0.68 10.84
FILDNE(HOPE) 1.09 1.52 1.02 1.35 0.34 0.25 0.46 2.71
FILDNE(DGI) 0.86 4.59 2.10 2.91 0.34 0.51 0.38 5.09
FILDNE(LE) 1.24 2.01 1.45 1.68 0.25 0.19 0.28 2.38
FILDNE(LLE) X X 1.81 X 0.16 0.11 0.33 2.34
K-FILDNE(N2V) 8.61 24.04 9.90 30.69 3.71 5.31 6.40 14.50
K-FILDNE(LINE) 43.10 43.20 81.74 85.02 85.67 83.81 45.09 20.82
K-FILDNE(CTDNE) 8.59 19.88 3.33 36.37 9.96 3.15 2.71 13.61
K-FILDNE(HOPE) 1.78 3.50 2.24 4.14 1.42 0.75 1.91 8.21
K-FILDNE(DGI) 1.56 5.99 3.15 5.18 1.44 0.98 1.80 9.57
K-FILDNE(LE) 1.94 3.42 2.48 3.96 1.31 0.65 1.67 7.70
K-FILDNE(LLE) X X 2.80 X 1.29 0.63 1.74 9.34
DYNGRAPH2VEC(AERNN) 144.71  341.14  25.54 84.10 15.89 13.35 15.47 18.54
TNODEEMBED 52.46 143.07 31.32 84.88 24.96 16.90 24.85 20.20
ONLINE-N2V(STREAMWALK) 67.76 112.97 27.44 52.09 130.27 12.50 212.59 20.14
ONLINE-N2V(SECONDORDER)  20.78 72.98 70.51 74.15 76.83 20.92 86.89 19.70

Table 16: Comparison of FILDNE and other methods in in max. memory utilization (in MB). The presented values are the mean max. memory
utilization during embeddings calculation over 8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods
in this experiment. Methods marked in bold are the 3 best methods based on the mean rank. Underlined values show the lowest memory
utilization for each dataset individually.

BITCOIN  BITCOIN FB FB ENRON HYPERTEXT09 RADOSLAW | MEAN RANK
ALPHA oTC FORUM  MESSAGES EMPLOYEES EMAIL
N2V 580.09 317.12 552.29 360.35 212.27 218.45 227.75 8.70
LINE 917.17 947.08 1291.09  1309.96 1286.30 1277.53 920.00 22.75
CTDNE 1751.63 1262.22 1327.77 1113.66 344.43 320.13 361.23 19.18
HOPE 669.68 938.47 300.07 384.13 258.63 253.09 257.59 13.05
DGI 501.36 776.38 418.67 504.65 344.67 338.79 352.69 16.16
LE 538.78  728.63  283.31 329.16 260.49 254.95 273.09 11.89
LLE X X 259.21 X 235.45 217.13 258.49 7.56
FILDNE(N2V) 233.96 344.62 207.13 385.37 206.60 241.49 203.49 4.75
FILDNE (LINE) 888.59  899.76  1275.47  1279.96 1271.36 1269.56 889.90 20.96
FILDNE(CTDNE) 436.55  849.80  338.78 1270.43 514.53 384.26 300.85 16.14
FILDNE(HOPE) 268.60 298.96 247.20 268.57 218.52 219.81 220.97 4.73
FILDNE(DGI) 342.13  437.32  381.80 401.09 323.55 323.18 328.49 13.36
FILDNE(LE) 247.31 266.87 242.43 247.96 220.95 219.35 220.60 3.43
FILDNE(LLE) X X 228.67 X 215.67 213.14 216.45 2.62
K-FILDNE(N2V) 224.82 344.28 225.41 387.52 213.02 241.50 218.23 5.38
K-FILDNE(LINE) 888.82 901.10 1276.48  1281.39 1271.71 1269.49 889.21 21.18
K-FILDNE(CTDNE) 437.24  848.13  340.99 1272.02 514.99 385.14 300.77 16.43
K-FILDNE(HOPE) 265.25 300.65 260.65 290.92 232.45 228.96 241.79 6.79
K-FILDNE(DGI) 344.94 44224 392.31 405.24 333.50 329.50 343.56 14.32
K-FILDNE(LE) 252.32 267.62 261.33 265.87 233.62 224.25 238.77 5.61
K-FILDNE(LLE) X X 255.57 X 237.24 225.54 239.13 7.47
DYNGRAPH2VEC(AERNN) 1373.12 1934.64 899.86 1023.55 793.38 774.93 816.70 20.91
TNODEEMBED 643.19 1225.00 774.82 827.67 624.12 598.00 618.93 19.14
ONLINE-N2V(STREAMWALK) 321.29  381.68  269.47 307.71 347.81 249.34 390.14 11.59
ONLINE-N2V(SECONDORDER)  260.86  284.38  258.63 265.96 253.60 246.26 259.93 7.61
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