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ABSTRACT
Recommending medications for patients using electronic health records (EHRs) is a crucial data min-
ing task for an intelligent healthcare system. It can assist doctors in making clinical decisions more
efficiently. However, the inherent complexity of the EHR data renders it as a challenging task: (1)
Multilevel structures: the EHR data typically contains multilevel structures which are closely related
with the decision-making pathways, e.g., laboratory results lead to disease diagnoses, and then con-
tribute to the prescribed medications; (2) Multiple sequences interactions: multiple sequences in EHR
data are usually closely correlated with each other; (3) Abundant noise: lots of task-unrelated features
or noise information within EHR data generally result in suboptimal performance. To tackle the above
challenges, we propose a multilevel selective and interactive network (MeSIN) for medication recom-
mendation. Specifically, MeSIN is designed with three components. First, an attentional selective
module (ASM) is applied to assign flexible attention scores to different medical codes embeddings
by their relevance to the recommended medications in every admission. Second, we incorporate a
novel interactive long-short term memory network (InLSTM) to reinforce the interactions of multi-
level medical sequences in EHR data with the help of the calibrated memory-augmented cell and an
enhanced input gate. Finally, we employ a global selective fusion module (GSFM) to infuse the multi-
sourced information embeddings into final patient representations for medications recommendation.
To validate our method, extensive experiments have been conducted on a real-world clinical dataset.
The results demonstrate a consistent superiority of our framework over several baselines and testify
the effectiveness of our proposed approach.

1. Introduction
Recently, healthcare intelligence has become a hot re-

search topic, which is mainly due to the following factors:
1) the wide utilization of digital healthcare systems that pro-
duce huge valuable data such as electronic health records
(EHRs); 2) the tremendous advancements of computational
models, in particular the deep learning methods; 3) an ur-
gent need of intelligent healthcare systems to assist the junior
doctors and solve the inefficiency of medical resources (Fig-
ure 1 (a)), brought by the emergent public health incidents,
such as COVID-19 or Coronavirus Pandemic [14]. One of
the core EHR-based applications is recommending medica-
tions for patients, with the aim to assist or even replace doc-
tors in making effective and safe medication prescriptions
for certain patients, as shown in Figure 1 (c).

However, recommending medications for patients is a
challenging task due to the complexity of EHR data. As il-
lustrated in Figure 1 (b), this complexity can be attributed to
several factors. First, the EHR data typically comprises of
multilevel medical records including three key aspects, e.g.,
laboratory results, diagnosed diseases, and prescribed treat-
ment medications. Within each visit, the multilevel structure
is closely related with the decision-making pathway, which
is a kind of hierarchical structure. As shown in Figure 1
(b), the hierarchy generally begins with the laboratory re-
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sults that precisely record the detailed health progression of
a patient, the middle is the diseases diagnosed by doctors
according to corresponding laboratory results, and the top
is the medications prescribed by doctors after comprehen-
sive decision-making processes. Thus, how to fully lever-
age the inherent multilevel structural information has be-
come a critical factor for modeling the intelligent medication
recommendation systems. Most existing medication recom-
mendation studies [31, 39, 15] put more efforts on model-
ing the mapping relations between diagnosed diseases and
recommended medications. Though these algorithms have
achieved early success on the medication recommendation
task, they often over-emphasize the visit-level temporal de-
pendency, and overlook the critical influence of such a hier-
archy shown in Fig.1.

Second, along with the temporal dependencies of multi-
ple medical sequences, the complex sequential correlations
embodied in the multilevel structure of EHR data (Figure
1 (b)) is another challenge for a medication recommenda-
tion task. For example, the laboratory results can provide
enough hints for certain diseases, e.g., when the anion gap is
abnormally high, creatinine is abnormally low, and aspartate
is abnormally high, it demonstrates some pulmonary related
diseases including respiratory infections, pulmonary emphy-
sema, and the patient needs corresponding treatments such
as glucose, sodium bicarbonate, xylitol and budesonide. Such
phenomenon clearly indicatesmultilevel correlations of EHR
data. While most existing methods [31, 39, 22] overlook

Yang An et al.: Preprint submitted to Elsevier Page 1 of 15

ar
X

iv
:2

10
4.

11
02

6v
1 

 [
cs

.A
I]

  2
2 

A
pr

 2
02

1



MeSIN

 (b) Multilevel EHRs data (c) Intelligent systems  (a) Problems

 

tInefficiency

Junior doctor

...   
.........

.............................
...   Laboratory 

results

Treatment 

sequence

T

................................ ......
 

.........................

Diagnosed 

diseases

Causal relation

Noise feature 

...   

...   

...   

...   

Figure 1: The urgent need of developing intelligent system
with multilevel EHRs data, and corresponding complexity.

such important relations of medical sequences and only con-
sider the temporal dependencies. Though LSTM-DE [18]
and RAHM [2] model the interactions of two sequences,
they only considered the effects of related input sequences
on the memory cell state while neglecting the influence on
the current input state. Thus, in this paper, we consider in-
fusing the interactions of two sequences both on the memory
cell state and input cell state simultaneously into the tempo-
ral sequence learning network.

Third, unlike the above discussed structure-related lim-
itations, how to recognize and filter out noisy information
existing in EHR data at each timestamp is another important
challenge that inhibits the recommendation performance. How-
ever, few deep learning studies in health informatics focus on
infusing the feature selections into the learning process ex-
cept LSAN [35] which considers assigning flexible attention
weights to different diagnosis codes via their relevance to
corresponding diseases for reducing the effect of irrelevant
diagnosis codes in EHR data. However, the doctors practi-
cally pay more attention on the critical few factors and ne-
glect the irrelevant medical indicators or historical medical
codes. In other words, irrelevant features should be deleted
in the decision-making process, and unimportant historical
medical codes should be given less attention. In this way,
the general attention mechanism might not be appropriate in
the learning process.

To address the aforementioned challenges, in this paper,
we develop a Multilevel Selective and Interactive Network,
called MeSIN. The key idea lies in three aspects. First, a

multilevel learning framework is designed to encode the the
inherent multilevel structure of EHR data, which imitates the
decision-making process of doctors in hospitals. Second, to
capture the intra-correlations of multiple visits within each
medical sequence and the inter-correlations of multiple se-
quences of EHR data, we propose a novel interactive tem-
poral sequence learning network. Third, due to the multi-
ple heterogeneous inputs including medical codes embed-
dings and learned laboratory results embeddings, we intro-
duce multiple attentional selective modules into the frame-
work to make automatic and intelligent selections. There-
fore, our developed framework MeSIN consists of three key
components including the attentional selectivemodule (ASM),
the interactive long-short term memory network (InLSTM),
and the global selective fusion module (GSFM). In MeSIN,
they tightly work together and significantly enhance each
other for medication recommendation.

The main contributions of this study are as follows:
• Multilevel Selective and InteractiveNetwork (MeSIN).

To the best of our knowledge, MeSIN is the first to for-
mulate medications recommendation task as a multi-
level learning framework, which is a challenging pro-
cess in clinical decision-making systems. It can fully
leverage the inherent multilevel structure of EHR data
to learn a comprehensive patient representation for rea-
sonable medication recommendation.

• Interactive Long-Short TermMemoryNetwork (InL-
STM). InLSTM can effectively reinforce the interac-
tions of multiple temporal heterogeneous sequences
with the help of a recurrent neural structure, a new cal-
ibrated memory-augmented cell and a novel enhanced
input gate.

• Attentional Selective Module (ASM). We incorpo-
rate multiple improved attentional selective modules
into MeSIN, which can intelligently assign relevance
scores to the learned medical codes embeddings ac-
cording to their importance with recommended med-
ications.

• Global Selective Fusion Module (GSFM). We de-
sign a self-attention based global selective fusionmod-
ule (GSFM) to effectively infuse the obtained hetero-
geneous embeddings into patient representation accord-
ing to their respective importance and minimize the
adverse effects induced by the irrelevant information.

2. Related works
Related studies in healthcare informatics are reviewed

from the following three perspectives: medication recom-
mendation, attention mechanism in health informatics, se-
quence modeling in health informatics.
2.1. Medication recommendation

Recently, artificial intelligence, particularly computational
intelligence and machine learning methods and algorithms,
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has been naturally applied in the development of recommender
systems to improve prediction accuracy [36]. Recommend-
ing rational and effective medications in time for patients,
as a paramount recommendation task in health domain, has
attracted great amount of studies. Shang et al. [31] catego-
rizedmedication recommendation-related tasks into instance-
based and longitudinal sequential recommendationmethods.
Instance-basedmethods are based on the current disease pro-
gression of patients. For example, Zhang et al. [38] formu-
lated the medications recommendation task as a sequential
decision-making problem and leveraged a recurrent decoder
to model label dependency. Wang et al. [34] addressed the
recommendation issues by casting the task as an order-free
Markov decision process (MDP) problem. However, they
all ignored valuable historical information. Until now, lon-
gitudinal sequential recommendation methods mainly con-
sider the impact of historical medical records by modeling
their temporal dependencies. For instance, Jin et al. [19]
developed three different LSTMs to model heterogeneous
data interactions for predicting the next-period prescriptions.
Shang et al. [31] incorporated historical diseases and proce-
dure codes, as well as medication records, in their model.
Shang et al.[30] considered hierarchical knowledge about
diagnoses and medications to enhance the code representa-
tion for medication recommendation. An et al. [2] formu-
lated the medication prediction task as hierarchical multi-
task learning framework for improving the interpretability
of predicted resutls. However, few of them simultaneously
consider all the multiple heterogeneous sequences and the
correlations between them in the decision-making of medi-
cations recommendation.
2.2. Attention mechanism in health informatics

The attention mechanism has been proposed to automat-
ically assign importance scores according to the information
relevance. In this case, larger weights indicate that the corre-
sponding vectors are more relevant to generating the output.
Due to its powerful ability, the attentionmechanism has been
widely used in various neural network based applications
such as language understanding tasks [11],[28], computer
vision problems [32],[17]. Likewise, attention mechanism
in health informatics has been prevalent in predictive mod-
elling. For instance, GRAM [7], KAME [25], and G-BERT
[30] leveraged the attention mechanism to integrate domain
knowledge into disease or medication code representations
for better performance. Retain [8], Dipole [24], Timeline
[3] and LSAN [35] all introduced attention mechanism to
model the disease progression by considering the dependen-
cies among visits and provide some interpretable insights. In
addition, GCT [10] were equipped with advanced attention
networks, i.e., Transformer [33], to build the correlations be-
tween medical codes from every visits based on the auto-
matically learned attention weights. Likely, AMANet [15]
utilized multiple attention networks including self-attention
and inter-attention to capture the intra-view interaction and
inter-view interaction. However, the attention mechanism
used in abovemodels all generated the dense attentionweights

without zeroweights value, whichmeans that they cannot fil-
ter out the noise information and attend focus on the critical
aspects.
2.3. Sequence modeling in health informatics

Due to the complexity of clinical scenarios, as shown in
Fig.1, EHR systems in hospitals accumulate complex tempo-
ral and heterogeneous sequences. Existing studies in health
informatics havewidely utilize the temporal sequential records
from EHRs to solve healthcare problems such as predicting
disease progression [9], [29], [40], [35], medications rec-
ommendation [38], [31], [18] and clinical trial recruitment
[5], [37]. However, most of the studies such as T-LSTM [4],
MNN [29] and LSAN [35] mainly focused on modelling the
temporal dependencies of multiple visits of homogeneous
sequence such as the history diseases sequence. While the
medication recommendation task involvesmultiple temporal
and heterogeneous sequences, not only the temporal intra-
dependencies but also the inter-correlations between the se-
quences should be considered when modelling the sequence
learning process. Though GAMENet [31] utilized two med-
ical sequences to model the temporal dependencies for med-
ications recommendation, it didn’t consider the correlations
of sequences. DMNC [22] presented a two-view sequential
learningmodel to model the complex interactions. However,
the complex differentiable neural computer (DNC) blocks
used in DMNC [22] do not explicitly model sequential inter-
actions. In contrast, Jin et al. [18] developed three heteroge-
neous LSTM models to model the correlations of different
types of medical sequences by connecting hidden neurons,
but neglect the impact on patient’s current status. MiME [9]
modelled the inherent multilevel structures of medical codes
by incorporating the relationships between the diagnoses and
their treatments into patient visit representations. AMANet
[15] utilized multiple attention networks to capture the intra-
and inter- view interactions of heterogeneous and temporal
sequences, but overlook the multilevel nature of EHR data.

3. Methods
3.1. Problem definitions

To facilitate the latter introduction of our computational
methods and generalize the applicable dataset, we define the
data from electronic health record system (EHR) using the
mathematical symbols as follows. The longitudinal EHR
data contains a large number of patient records, and each
patient can be represented as a sequence of multivariate ob-
servations:  =

{

1,2, ..., tn
} over time, where n ∈

{1, 2,… , N}, N is total number of patients, and tn is the
number of visits for the n-th patient. Without loss of gener-
ality, we will describe the model for a patient and the sub-
script (n) will be dropped whenever it is unambiguous. Each
visit  t consists of sequential laboratory indicator-wise re-
sults t = {

[l11,… , l1T ],… , [lq1,… , lqT ]
}, where lqT de-

notes the q-th indicator result at T -th timestamp within t-th
visit, and categorized data including td ⊂ d (a union set ofdiagnoses codes) and tm ⊂ m (a union set of medications
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Figure 2: The architecture of MeSIN. Overall, from the bottom up, MeSIN comprises of three hierarchically correlative modules
and a global fusion module. The laboratory results embedding module first projects the temporal sequence of each laboratory
indicator {lq1,… , lqT } into embedded vectors {hl1T ,… ,hlqT } via a multi-channel GRU, and then uses the attentional selective

module to compute the enhanced embedding elct which would be input into LSTM to obtain the visit-level embedding hlt; The
diagnoses codes embedding module and medications codes embedding module respectively contain three substructures: the
medical codes embedding layer for mapping the medical codes set C t

∗ into dense embeddings set Et
∗, the attentional selective

module for computing the enhanced embedding e∗ct , and the interactive LSTM (InLSTM) for calculating the visit-level embedding
h∗t . Finally, the global selective fusion module is used to infuse the learned multi-sourced embeddings into patient representation
Op for medication recommendation.

codes). For simplicity, we use t∗ to represent the unified
definition of medical codes. ∗ denotes the medical code set
and |∗| denotes the size of medical code set. cj∗ is the jtℎ
medical code in ∗.
Problem Definition 1 (Medication recommendation). Given
the historical visit records of a patient

{

1,2, ..., t−1},
the current laboratory results t and the diagnosed diseases
td , our goal is to recommend reasonable medications by
generating the multi-label output ŷmt ∈ {0, 1}|m|:

ŷmt = f (
{

1,2, ..., t−1} ,t,td). (1)
3.2. Multilevel selective and interactive network

We propose a novel architecture, MeSIN, to implement
the medications recommendation task. As shown in Fig.2,
MeSIN is a multilevel learning framework, which mainly
consists of two steps. In step I, the hierarchical historical in-
formation embeddings learning process begins with the lab-
oratory results embedding learning module, followed by the
diagnoses codes embedding module, and then the medica-
tions codes embedding module. In step II, the global selec-
tive fusion module is utilized to infuse the learned heteroge-
neous embeddings into the patient representation according

to the selective weights.
3.2.1. Laboratory sequence embedding module

As shown in Fig.2, the module mainly consists of three
key parts: a multi-channel time-series embedding layer, an
attentional selective layer, and a temporal sequence learning
network.
Multi-channel time-series embedding layer. As themean-
ings of particular clinical features for patients in diversemed-
ical conditions are different, the progression of laboratory in-
dicators are distinct accordingly. Thus, the embedding of se-
quential feature representing the indicator changing progress
is distinct from each other. Here, inspired by ConCare [26],
we employ the multi-channel time-series embedding layer
to embed the sequence of each laboratory indicator feature
separately by multi-channel GRUs:

hlqT = GRUq
(

lq1, lq2,… , lqT
)

, (2)
where {lq1, lq2,… , lqT } denotes the time series and hlqT rep-
resents the embedded vectors of feature q. Therefore, all
the embedded vectors of time series of indicator features
{hl1T ,… ,hlqT } can be acquired in the same way. To reduce
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clutter, the superscript (t) representing the results generated
at t-th visit will be dropped whenever it is unambiguous.
ASM for laboratory results embeddings selection. For
each sequence of laboratory results, we gain the correspond-
ing embeddings hl1T ,… ,hlqT . However, in clinical scenar-
ios, doctors pay attention to only a few paramount indicators
according to clinical experience, which can effectively im-
prove work efficiency.

In this case, the attention mechanism that computes the
attention weights using softmax function [6] might be in-
appropriate, because it results in dense attention alignments
that is wasteful and making models less interpretive. There-
fore, we introduce a sparse attention using entmax [27] com-
puting attention weights for ASM of MeSIN to increase fo-
cus on relevant source medical codes embeddings and make
the model more interpretable. Here, we employ the specially
proposed ASM to compute the enhanced laboratory results
embedding elct :

elct =
q
∑

i=1
�lih

l
iT (�

l
i ∈ �

l),

�l = �−entmax([�l1, �
l
2,… , �lq], 
l),

�li = tanh(W la
⊺hliT + bla ),

(3)

where W la ∈ ℝd and bla ∈ ℝ are the parameters of ASM
to be learned. � − entmax [27] is a special method of ent-
max, by which we can find the optimal equilibrium point
by controlling the value of 
l. For 
l > 1, as the value
increases, entmax tends to produce sparse probability dis-
tributions, yielding a function family interpolating between
softmax and sparsemax. In this way, we can compute all
the enhanced laboratory results embeddings {elc1 ,… , elct } ateach timestamp.
Temporal sequence learning network. To further cap-
ture the temporal dependency of multi-visit laboratory re-
sults, the enhanced laboratory results embeddings {elc1 ,… , elct }will be input into the temporal sequence learning network for
combining with the historical laboratory results:

hlt = LSTML

(

hlt−1, e
lc
t

)

, (4)
whereLSTML represents the long-short temporal neural net-
work (LSTM) for capturing the temporal dependency of lab-
oratory examination sequence, hlt denotes the obtained visit-level laboratory results embedding containing the history in-
formation at t-th visit. With the same calculations in the re-
maining timestamps, we can finally have all the history lab-
oratory results embeddings {hl1,… ,hlt} which will be inputinto the following embedding modules.
3.2.2. Diagnoses codes embedding module

After checking the laboratory results, the doctors tend to
retrieve the history diagnosed diseases and combines them
with current disease condition for comprehensive decision-
making. Likely, as shown in Fig.2, we design a module that

contains three critical parts: a diagnosis code embedding
layer, an attentional selective module and a novel temporal
sequence interactive learning network.
Diagnosis code embedding layer. Taking the timestamp
t as an example, MeSIN first encodes each diagnosis code cdiinto a dense representation vector edi ∈ ℝd as:

edi = W d
e c

d
i , (5)

where W d
e ∈ ℝd×|∗| is the embedding matrix of medical

codes that needs to be learned, d is the size of embedding
dimension, and |∗| is the size of medical code set. Thus,
for the diagnosis code set d , we can represent it by a collec-tion of dense representation vectors Ed = [ed1 ,… , ed

|d |
] ∈

ℝd×|d |. Then, for the i-th visit, we can obtain dense embed-
ding set Edt = [ed1 ,… , edm] ∈ ℝd×|m, in which each embed-
ding vector is extracted from Ed if it exists in i-th visit.
ASM for diagnoses codes embeddings selection. How-
ever, as discussed before, not every historical disease has im-
pact on the future disease risk, we should assign different
relevance scores on each code embedding according to their
importance degree. Here we also leverage ASM for diag-
noses codes embeddings selection. The enhanced diagnosis
code embedding edct can be calculated as:

edct =
m
∑

i=1
�di e

d
i (�

d
i ∈ �d),

�d = �−entmax([�d1 , �
d
2 ,… , �dm], 
d),

�di = tanh(W da
⊺edi + bda ),

(6)

whereW da ∈ ℝd and bda ∈ ℝ are the parameters of ASM
to be learned. 
d is the hyper-parameter of � − entmax [27]
in this module. In this way, we can compute all the enhanced
diagnoses codes embeddings Edc = {edc1 ,… , edct }.
InLSTM in diagnosis code sequence learning. In ad-
dition to modeling of the temporal dependency of a single
sequence, we should also consider the interactions of multi-
ple sequences in the sequence learning network. As before,
the laboratory results could be regarded as critical references
whenmaking the diagnoses by doctors. Hence, the sequence
of laboratory results should be used to control the diagnosed
disease sequence learning process. Therefore, such kind of
network will adopt two input sequences: one is the primary
input xpt of sequence learning network such as the gained di-
agnosis code embedding edct , another is the auxiliary input
xat for assisting in controlling the primary sequence learn-
ing process such as the learned visit-level laboratory results
embedding hlt.Therefore, the basic LSTM model [16] is not appropri-
ate under such circumstances. Inspired by LSTM-DE [19],
we propose a novel interactive long-short term memory net-
work (InLSTM), as shown in Fig.3, to reinforce the inter-
action process of two associated sequences, which brings
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Figure 3: The structure of InLSTM.

in two novel components including a calibrated memory-
augmented cell and an enhanced input gate. It can be defined
as:

ht = InLSTM
(

ht−1, x
p
t , x

a
t
)

, (7)
where the detailed mathematical expression of InLSTM is:

⎡

⎢

⎢

⎢

⎣

C̃ t
ot
it
f t

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

tanh
�
�
�

⎤

⎥

⎥

⎥

⎦

(

W
[

xt
ht−1

]

+ b
)

,

Ct = f t ∗ (C t−1 + C̃
e
t ) + i

e
t ∗ C̃ t,

ht = ot ∗ tanh(C t),

(8)

where C̃et denotes the calibratedmemory-augmented cell state
calculated through Eq. (9), and iet represents the enhancedinput gate which can be computed through Eq. (10):

dt = tanh(W enℎC t−1 + benℎ),
det = �(U r

d ReLU(W
r
dx

a
t ),

C̃et = dt ∗ d
e
t ,

(9)

îet = tanh(W e
ix
a
t + b

e
i ),

ĩet = it ∗ î
e
t ,

iet = �(ĩet + it)
= �((iet + 1)it),

(10)

where dt indicates the obtained history memory state, det de-notes the calibrated gate calculated with auxiliary input xat .Afterwards, det will be used to obtain the calibratedmemory-
augmented cell state value C̃et by multiplying the dt. By thisway, the calibrated gate can selectively assign more weights
to the representative and predictive memory neurons while
suppressing the unimportant neurons. For the input cell, be-
sides the primary input xpt itself, it is also influenced by the
auxiliary inputxat . Under such a circumstance, the calibrated
auxiliary input îet is introduced to calculate the auxiliary in-
fluence score ĩet by multiplying the normal input gate it. Fi-nally, the enhanced input gate iet is computed by the addi-
tion of the auxiliary influence score ĩet and the normal input

gate it, and then adjusted to the value between 0 and 1 via a
sigmoid function.

Therefore, for the diagnoses codes embedding module,
we can calculate the final visit-level diagnoses codes embed-
ding hdt by fusing with the historical diagnosed disease as:

hdt = InLSTMd

(

hdt−1, e
dc
t ,h

l
t

)

, (11)
where InLSTMd denotes the proposed InLSTM (Eq.(7)) in
this module, which is used to capture the correlations be-
tween the primary input of diagnosis code embedding se-
quence and the auxiliary input of laboratory results embed-
ding sequence.
3.2.3. Medications codes embedding module

Similar to the previous hierarchy, diagnoses codes em-
bedding module, the medications codes embedding module
still comprise three main parts: a code embedding layer, an
attentional selective module, and the temporal sequence in-
teractive learning network.
Medication code embedding layer. In thismodule, MeSIN
still first encodes each medication code cmz into a dense em-
bedding vector emz ∈ ℝd as:

emz = W m
e c

m
z , (12)

where W m
e ∈ ℝd×|∗| is the embedding matrix of medi-

cal codes that needs to be learned. Then we can gain the
dense medication code embedding set Emz = [em1 ,… , emn ] ∈
ℝd×|n, in which each embedding is extracted from Em =
[em1 ,… , em

|m|
] ∈ ℝd×|m| if it existed in i-th visit.

ASM for medications codes embeddings selection. As
mentioned before, MeSIN needs to filter out the noise com-
ing from irrelevant historical medication codes sets medica-
tions at each timestamp. In this case, we should assign dif-
ferent relevance scores on different codes embeddings using
the attentional selective module for computing the enhanced
medications set embedding emct−1:

emct−1 =
n
∑

i=1
�mi e

m
i (�

d
i ∈ �d),

�m = �−entmax([�m1 , �
m
2 ,… , �mn ], 
m),

�mi = tanh(W ma
⊺emi + bma ),

(13)

whereW ma ∈ ℝd and bma ∈ ℝ are the parameters of ASM
to be learned. 
m is the hyper-parameter of � − entmax [27]
in this module. Likely, we can compute the enhanced med-
ications codes embeddings sequence Emc = {emc1 ,… , emct−1}at historical timestamps.
InLSTM in medications codes sequence learning. Fi-
nally, for capturing the temporal dependency of historical
medications, the gained enhanced medication code embed-
ding sequence Emc is treated as the primary input of se-
quence learning network. In addition, recommending medi-
cations is essentially a comprehensive decision-making pro-
cess, the historical prescribed medications must be affected
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by the laboratory results and diagnosed diseases. Therefore,
the sequences of laboratory results and diagnosed diseases
are taken as the auxiliary input assisting in controlling the
sequence learning process. Then, we can calculate the fi-
nal visit-level medication code embedding hmt−1 by fusing thehistorical disease progression using InLSTM Eq.(7) as:

hmt−1 = InLSTMm
(

hmt−2, e
mc
t−1,h

c
t−1

)

, (14)
where InLSTMm denotes the proposed InLSTM in this mod-
ule, which is used to capture the correlations between the pri-
mary input of diagnosis code embedding and the auxiliary
input hct−1. Further, the auxiliary input hct−1 is calculated viaa fusion module:

hct−1 = �
(

W d
c h

d
t−1 +W

l
ch
l
t−1

)

, (15)
where W d

c ,W
l
c ∈ ℝd×d , � denotes the activation function

tanh. hlt−1 and hdt−1 respectively represent the obtained visit-level laboratory results embedding using Eq. (4) and diag-
nosed diseases embedding using Eq. (11).
3.2.4. Global selective fusion module

In step I, by modeling the hierarchically interactive tem-
poral sequence learning process, we can obtain the visit-
level laboratory results embedding hlt, diagnoses codes em-
bedding hdt and the medications codes embedding hmt−1. Allabove three kinds of embeddings have incorporated corre-
sponding historical information. For recommending medi-
cations at current timestamp, the current enhanced labora-
tory results embedding elct and diagnosis code embedding
edct should be given more attention when making final deci-
sions.

To effectively fuse above five heterogeneous embeddings
according to their importance scores and minimize the effect
introduced by irrelevant information as much as possible, in
step II, we design a global selective fusion module, which is
realized by a self-attention mechanism. Since the five types
of embeddings are heterogeneous, here, we first calculate the
information importance scores by themselves as:
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whereW a
m,W

a
d ,W

a
l ,W

a
dc ,W

a
lc and bam, bad , bal , badc , balc arethe parameters to be learned. �m, �d , �l, �dc , �lc are the in-formation importance scores, by which we can calculate the

final information importance scores a as:
� = sof tmax([�m, �d , �l, �dc , �lc]), (17)

where a = [�′m, �
′
d , �

′
l , �

′
dc , �

′
lc].Finally, we obtain the ultimate patient representation vec-

tor by summing up the heterogeneous information vectors
according to importance scores from Eq.(17) as:

Op = �′mh
m
t−1 + �

′
dh

d
t + �

′
lh
l
t + �

′
dce

dc
t + �′lce

lc
t , (18)

where Op is the patient representation vector to be used to
recommend reasonable medications in the next subsection.
3.2.5. Medication recommendation

Doctorsmake decisions about recommending reasonable
medications for patients after comprehensive consideration.
Likewise, the learned patient representationOp is employed
in this study to recommend reasonable medications as:

ŷt = sof tmax
(

Wo ⋅Op + bo
)

, (19)
where ŷt denotes the set of recommended multi-label med-
ications, Wo ∈ ℝdm×r and bo ∈ ℝdm are parameters to be
learned.
3.3. Model training

Since medication recommendation task belongs to the
domain of sequential multi-label prediction task, we utilize
the binary cross-entropy lossce andmulti-label margin loss
mg as the objective functions. The prediction objective
function binary cross-entropy loss ce is formulated as:

ce = −
T
∑

t=1
yt log �

(

ŷt
)

+
(

1 − yt
)

log
(

1 − �
(

ŷt
))

, (20)

The corresponding objective functionmulti-labelmargin
loss mg is:

mg =
T
∑

t

||
∑

i

|Y t|
∑

j

max
(

0, 1 −
(

ŷt[Y tj ] − ŷt[i]
))

L
, (21)

where ŷt[i] is the value of itℎ coordinate at ttℎ visit and ŷt[Y tj ]
denotes the predicted label value indexed by Y tj , the jtℎ value
in the ground truth label set Y t at t-th visit for a patient. For
function (20) and (21). So we can get two binary cross en-
tropy loss functions dce, mce, and two multi-label margin
loss functions dmg , mmg .To facilitate the joint optimization process of two tasks,
we combine the aforementioned loss functions to build a
joint loss function :

 = �ce + "mg , (22)
where �, " ⩾ 0 are the mixture weights, and � + " = 1. The
training algorithm is detailed in Algorithm 1.

4. Experiments and discussion
4.1. Datasets description

As is analyzed in Section 1, the aim of study is to recom-
mend medications for patients based on the heterogeneous
multilevel EHR data. Hence, we should conduct experi-
ments on a cohort where patients have at least two visits
and their EHRs are complete. Here, we choose a real-world
publicly available dataset MIMIC-III [20] 1, in which pa-
tients stayed within the intensive care units (ICU) at Beth Is-
rael Deaconess Medical Center and had relatively complete

1https://mimic.physionet.org
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Algorithm 1Model training for MeSIN.
Require: Training setR, training epochsN , batch sizeBS,

mixture weights �, " in Eq. (22);
Use uniform distribution to initialize the model param-
eters � ∼ U (−1, 1);

1: for i = 1 toN ∗ |R| do
2: Sample BS patients (P =

{

1,… ,Tn
}) from R;

3: for t = 1 to Ti do
4: /**Laboratory results embedding module**/
5: Obtain multi-channel time-series embeddings

{hl1T , ...,h
l
qT } using Eq. (2);

6: Obtain enhanced laboratory results embedding elctusing ASM using Eq. (3);
7: Compute the visit-level laboratory results embed-

ding hlt using Eq. (4);
8: /**Diagnoses codes embedding module**/
9: Obtain diagnoses codes embeddings Edt =

[ed1 ,… , edm] ∈ ℝd×|m using Eq. (5);
10: Obtain the enhanced diagnosis code embedding

edct using ASM as Eq. (6);
11: Compute the visit-level diagnoses codes embed-

ding hdt using InLSTM (Eq. (7-11));
12: /**Medications codes embedding module**/
13: Obtain the medications codes embeddings Emz =

[em1 ,… , emn ] ∈ ℝd×|n using Eq. (12);
14: Obtain the enhanced medications codes embed-

ding emct−1 using ASM as Eq. (13);
15: Compute the visit-level medications codes embed-

ding hmt−1 using InLSTM (Eq. (7-11));
16: /**Global selective fusion module**/
17: Incorporate the multi-source embeddings into pa-

tient representation Op using Eq. (16-18);
18: Compute recommended medications ŷt in Eq.(19);
19: end for
20: Update � by optimizing the total loss  in Eq. 22;
21: end for

health records with multilevel heterogeneous data. Though
MIMIC-III belongs to the ICUdata, there are certain patients
with multiple visits. Hence, we utilize it as our experimen-
tal dataset. Similar to [31], we choose the medications pre-
scribed by doctors for each patient within the first 24 hours
as medicine set since it is usually a critical period for each
patient to get rapid and accurate treatment [12]. Besides, the
medicine codes form NDC are transformed to ATC Level
3 for integrating with MIMIC-III. Meanwhile, we employ
the second hierarchy codes of the ICD9 codes2 as the dis-
ease category labels, since predicting category information
not only guarantees the sufficient granularity of all the di-
agnoses but also improves the training speed and predictive
performance [24, 7]. For considering the laboratory results
into decision-making process, we follow the feature extrac-
tion method used in [13]. Here, the time-window of each
laboratory indicator is 24 hours. More information about

2http://www.icd9data.com

Table 1
Statistics of the MIMIC-III datasets

MIMIC III Quantity

# of patients 4631

# of unique diagnosis 1879

# of unique medication 143

# of unique laboratory indicators 17

avg # of visits 2.55

avg # of diagnoses 10.16

avg # of medications 7.33

the patients cohort from the dataset is listed in Table 1.
4.2. Evaluation metrics

To evaluate the performance, we adopt the Jaccard Simi-
larity Score (Jaccard), Precision Recall AUC (PR-AUC), Av-
erage Recall (Recall) and Average F1 (F1) as the evaluation
metrics. Jaccard is defined as the size of the intersection di-
vided by the size of the union of predicted set Ŷ it and groundtruth set Y it . Precision is used to measure the correctness of
predicted medicines and Recall is used to measure the com-
pleteness of predicted medicines. F1 is often used as the
comprehensive evaluation metric of prediction model.

Jaccard = 1
∑N
i
∑Ti
t 1

N
∑

i

Ti
∑

t

|

|

|

Y it ∩ Ŷ
i
t
|

|

|

|

|

|

Y it ∪ Ŷ
i
t
|

|

|

, (23)

whereN denotes the number of patients in test set and Ti isthe number of visits for the itℎ patient. Given

Recall = 1
∑N
i
∑Ti
t 1

N
∑

i

Ti
∑

t

|

|

|

Y it ∩ Ŷ
i
t
|

|

|

|

|

Y it ||
, (24)

Precision = 1
∑N
i
∑Ti
t 1

N
∑

i

Ti
∑

t

|

|

|

Y it ∩ Ŷ
i
t
|

|

|

|

|

|

Ŷ it
|

|

|

, (25)

the valuation metric F1 can be calculated as:

Jaccard = 1
∑N
i
∑Ti
t 1

N
∑

i

Ti
∑

t

2 × Precision × Recall
Precision + Recall . (26)

4.3. Benchmark methods
To evaluate the effectiveness of the proposed model, it

was compared to the following baseline methods:
• Nearest. To predict treatment medicines for a patient pi,Nearest was proposed to choose the treatmentmedications

prescribed for patient pj , who has the most similar histor-
ical laboratory indicators and medications with pi.

• LR [23]. It is a logistic regression with L1/L2 regulariza-
tion. We sum the multi-hot vector of each visit together
and apply the binary relevance technique [23] to handle
multi-label output.
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• NBN [1]. Here, thismethodmainly utilizes the prior knowl-
edge and employ the statistical methods to recommend
corresponding medications for patients.

• Retain [8]. RETAIN is an interpretable model with a two-
level reverse time attention mechanism to predict diag-
noses, which can detect significant past visits and asso-
ciated clinical variables. It can be used for similar sequen-
tial prediction tasks, such as predicting treatmentmedicines.

• DELSTM [18]. This model utilizes additional input se-
quence as the input of a decomposed gate to control the
memory cell state, which indirectly interacts with primary
input sequence.

• PCLSTM [18]. This structure takes all heterogeneous se-
quences as input. In other words, multiple sequences in-
teract with each other via the neuron interactions in the
way of concatenating both hidden states.

• RAHM [2]. It builds a relation augmented hierarchical
multi-task learning framework for learning multi-level re-
lation aware patient representation for medication predic-
tion.

• LEAP [39]. Leap formulates themedicine prediction prob-
lem as amulti-instancemulti-label learning problem, which
mainly uses a recurrent neural network (RNN) to recom-
mend medicines.

• DMNC [22]. DMNC uses a memory augmented neural
network to model the interaction of two asynchronous se-
quences for treatment prediction task [22].

• GAMENet [31]. It employs a dynamic memory network
to save encoded historical medication information, and
further utilizes a query representation formed by encod-
ing sequential diagnosis and procedure codes to retrieve
medications from the memory bank.

• AMANet [15]. AMANet leverages self-attention and inter-
attention to capture the intra-view and inter-view inter-
actions. Then it concatenates the information from his-
tory attention and dynamic external memory to predict the
medications.

4.4. Experimental settings
We randomly split the patients in MIMIC-III dataset into

training, validation and test sets with 2/3 : 1/6 : 1/6 ratios.
The random splitting and training processes were performed
five times. Table 2 lists the results as averages across the
five runs obtained for all the compared models in terms of
the four evaluation metrics described in Section 4.2 . Speci-
ficially, the embedding size and the hidden layer dimension
for LSTM and GRU are all set as 128 and 128, respectively.
The dropout rate is set as 0.4, batch size is set as 10, and
the mixture weights of objective function are set as � =
0.99, " = 0.01. The values of attention sparse degree con-
trolling parameters 
l in ASM are set as 1.5, 1.5, 1.3, respec-
tively. Training is done through Adam [21] at learning rate

Table 2
Performance Comparison of Benchmark Methods on MIMIC-III
Dataset

Methods Jaccard PR-AUC Recall F1

Nearest 0.2019 0.2227 0.3099 0.2899

LR [23] 0.3401 0.5549 0.4549 0.4901

NBN [1] 0.3341 0.5479 0.5081 0.4839

Retain [8] 0.3267 0.5364 0.4841 0.4905

DELSTM [18] 0.3357 0.5371 0.5144 0.5005

PCLSTM [18] 0.3301 0.5109 0.4952 0.4940

RAHM [2] 0.3558 0.5393 0.5357 0.5122

LEAP[39] 0.3111 0.4212 0.4541 0.4627

DMNC [22] 0.3272 0.4476 0.5136 0.5021

GAMENet [31] 0.3452 0.4828 0.5246 0.5115

AMANet [15] 0.3641 0.5595 0.5547 0.5381

MeSINDE 0.3929 0.5633 0.5717 0.5624

MeSINSoft 0.3941 0.5663 0.5798 0.5636

MeSIN 0.3975 0.5684 0.5934 0.5670

2e-4, and we report the model performance in test set within
40 epochs. All methods are trained on an Ubuntu 16.04 with
64GB memory and Nvidia TAITAN XP GPU using the Py-
torch 1.0 framework.
4.5. Performance comparison

As demonstrated in Table 2, the benchmark models used
in health informatics are divided into three categories: Shal-
low methods, including Nearest, LR and NBN; Predictive
models, including Retain, DELSTM, PCLSTM and RAHM;
Recommendationmodels,including LEAP,DMNC,GAMENet
and AMANet. From the table, we have an impressive obser-
vations that the proposed MeSIN achieves the superior per-
formance over the listed benchmark models. Through de-
tailed comparison with the benchmark models, several in-
teresting observations can be made as follows.

First, as for the shallow methods, Nearest, LR and NBN
achieved about at least 5.74%, 1.35%, 8.53% and 7.69% lower
scores on medication recommendation task with respect to
Jaccard, PR-AUC, Recall and F1 score, respectively, than
MeSIN. On the one hand, this kind of method does not con-
sider the temporality and heterogeneity of EHR data, and
also overlook the relations between multiple sequences. On
the other hand, Nearest achieves theworst performancewhich
indicates that most of the patients possess distinct disease
conditions within continuous admissions to hospital.

Second, as for predictive models in health informatics,
Retain, DELSTM, PCLSTM and RAHM also achieve poor
performance onmedication recommendation task thanMeSIN.
We think that themain reasonmight be that they can not con-
sider the current medical records including laboratory indi-
cators and diagnosed diseases status, and only take the his-
torical records into accounts. In addition, Retain is a two-

Yang An et al.: Preprint submitted to Elsevier Page 9 of 15



MeSIN

level attention based model, that can capture temporal cor-
relations and identify influential past visits. However, it can
not consider all heterogeneous sequences respectively and
can just concatenate the heterogeneous embeddings into one
embedding which would confuse the embeddings obtained
from different hierarchies of EHRdata. DELSTMand PCLSTM
mainly paymore attention on the sequences interaction in the
temporal sequence learning process while overlook the in-
herent hierarchy structure of EHR data. In MeSIN, the mul-
tilevel learning framework is incorporated to extract useful
information from such kind of inherent structure. RAHM
partially employs the hierarchy nature of EHR data to ac-
quire better performance via multi-task learning framework.
However, it still employ single sequence learningmethods to
integrate with the historical information which might cause
the confusion of different historical medical sequences.

Third, our proposedMeSIN outperforms all state-of-the-
art methods used for medication recommendation such as
LEAP,DMNC,GAMENet andAMANet about atmost 8.64%,
14.72%, 13.93% and 10.43%, and at least 3.34%, 0.92%, 3.87%
and 2.89% with respect to Jaccard, PR-AUC, Recall and F1
score. In practice, the medication recommendation problem
within an admission might not be the pure sequential recom-
mendation process and it also refers to the diverse correla-
tions. Their poor performance could be attributable to the
poor ability to capture such complicated correlations. Par-
ticularly, LEAP cannot capture the inherent multiple rela-
tions among heterogeneous sequences. While DMNC re-
alizes the interactions of two sequences through attention
based DNC blocks but neglecting the utilization of medi-
cations in the history visits. Similarly, AMANet also does
not consider historical medications prescribed for patients,
but it achieves relatively better performance through multi-
ple attention networks for capturing the inter- and intra- cor-
relations of heterogeneous sequences. However, AMANet
neglects the captured evolution information such as disease
progression through temporal sequence learning network, which
is still a kind of important information in decision-making
process.

Finally, we can observe theMeSIN also outperforms two
special variants,MeSINDE andMeSINSoft. For the former
variant, we replace the developed interactive LSTM network
(InLSTM) in MeSIN with DELSTM network [18]. In this
variant, the interaction processes just consider the impact
of auxiliary input on the memory cell state of primary in-
put sequence learning network, and overlook the impact on
the current input cell state. While the InLSTM network in
MeSIN simultaneously considers the sequential interactions
from above two aspects. For the latter variant, we replace the
incorporated attention weights computation method Entmax
in attentional selective module (ASM) of MeSIN with Soft-
max. In this variant, unlike Entmax, Softmax will generate
the dense attention alignments that is wasteful, and can not
pay more focus on the really important feature embeddings.

Therefore, the critical reasons that MeSIN achieves the
best performance compared with all benchmark models can
be summarized as follows: (1) Themultilevel learning frame-

work can help capture the inherent causal relations of adja-
cent hierarchies; (2) The incorporated multiple attentional
selectivemodules in the framework realizes the effective em-
beddings selection and make the learned patient representa-
tion be more expressive; (3) The designed InLSTM further
reinforces the sequences interactions from both the histori-
cal memory cell and the input cell, which can further opti-
mize the temporal sequence learning process by incorporat-
ing more useful calibrated information.
4.6. Ablation study

We now need to examine the effectiveness of different
components in MeSIN and evaluate the contribution of dif-
ferent source data. Hence, we conduct two kinds of abla-
tion studies respectively on model’s components and multi-
sourced EHR data.
4.6.1. Model components

This ablation study is conducted to verify the effective-
ness of different MeSIN components to its overall perfor-
mance. To determine whether the incorporated components
improve the performance, we add them one by one from
scratch and verify their performance by all evaluation met-
rics including Jaccard, PRAUC,Recall and F1 score. Table 3
presents the recommendation results of distinct MeSIN vari-
ants on the MIMIC-III dataset. One of the basic baseline
models, Vanilla, the medical codes are respectively added
together as the enhanced embeddings in every module. Be-
sides, the standard LSTM networks are also respectively em-
ployed as the temporal sequence learning networks in three
distinct modules, and we employ the concatenation-based
fusion method to replace the proposed global selective fu-
sion module. However, Vanilla still achieves relatively bet-
ter performance compared with benchmark models, which
can attribute to the incorporation of multi-sources data and
the integration of current laboratory results and diagnosed
disease by concatenation-based fusion method.

Attentional selective module (ASM). As explained in
Section 3.2, ASM is introduced to automatically select the
useful information and filter out noise information as much
as possible by assigning corresponding attention weights to
embeddings according to their respective importance. The
following variants are tested to evaluate the contribution of
ASMs from different modules to the overall performance of
MeSIN:
• ASML. In this variant, we incorporate an attentional se-

lective module for laboratory results embeddings selec-
tion. The overall performance is slightly improved by
0.17% on Jaccard in this case compared with the Vanilla
model. This testifies that the introduced ASMmodule can
help focus on the useful laboratory results embeddings by
controlling the value of 
l, by which we can obtain rela-
tively better enhanced embedding as the input of temporal
sequence learning network.

• ASMLD. Similar to ASML, in this variant, we introduce
an attentional selective module to replace the addition op-
eration for diagnoses codes embeddings selection. In this

Yang An et al.: Preprint submitted to Elsevier Page 10 of 15



MeSIN

Table 3
Performance Comparison of the variants of MeSIN on MIMIC-III Dataset

Model
ASM InLSTM GSFM Recommendation performance

Lab Diag Med Diag Med Fusion Jaccard PR-AUC Recall F1

Vanilla 7 7 7 7 7 7 0.3832 0.5579 0.5451 0.5482

ASML 3 7 7 7 7 7 0.3849 0.5592 0.5522 0.5501

ASMLD 3 3 7 7 7 7 0.3865 0.5595 0.5549 0.5546

ASMLDM 3 3 3 7 7 7 0.3887 0.5592 0.5684 0.5583

ASM_InLSTMD 3 3 3 3 7 7 0.3916 0.5643 0.5673 0.5619

ASM_InLSTMDM 3 3 3 3 3 7 0.3935 0.5651 0.5768 0.5639

MeSIN 3 3 3 3 3 3 0.3975 0.5684 0.5934 0.5670

way, the diagnoses codes embeddings that are irrelevant
with the recommendation taskwould be discarded by sparse
attention under the value control of 
d . As a result, the
performance ofASMLD is improved by 0.16% on Jaccard,
which indicates the importance of the ASM in MeSIN in
selecting the useful information from numerous medical
codes embeddings.

• ASMLDM . In this variant, we further incorporate the third
ASM module into the prescribed medications embedding
module for selecting the most relevant historical medi-
cation codes embeddings to build the patient representa-
tion. As a result, ASMLDM makes relatively better im-
provement compared with ASML and ASMLD. We think
that it can attribute that the medication embedding mod-
ule has direct relevance with the medication recommen-
dation task. In the end, the incorporation of above three
attentional selective modules bring about 0.55% on Jac-
card, 0.13% on PR-AUC, 2.33% on Recall, 1.01% on F1
in total compared with Vanilla. But the important is that
ASMmakesMeSINmore interpretable by focusing on the
really important features.
Interactive Long-Short TermMemory network (InL-

STM). InLSTM is developed for reinforcing the interaction
process of heterogeneous sequences, which is beneficial to
capture the correlations of sequences. The following vari-
ants are tested to evaluate the contribution of InLSTM to the
overall performance of MeSIN:
• ASM _InLSTMD. In this variant, we incorporate a novel

InLSTM to replace the standard LSTM in ASMLDM in
diagnoses codes embedding module for enhancing the in-
teraction process of disease progression and changing lab-
oratory results. It achieves by 0.29% on Jaccard compared
with ASMLDM , which verifies the importance of consid-
ering the correlations of sequences such as between lab-
oratory results and diagnosed diseases into the temporal
sequence learning process.

• ASM _InLSTMDM . Here, the interactive LSTM is fur-
ther introduced to the top hierarchy, prescribed medica-
tions embedding module for facilitating the medication

Table 4
Contribution of different data sources to MeSIN performance

Methods Jaccard PR-AUC Recall F1

NoLab 0.3861 0.5612 0.5526 0.5567

NoDiag 0.3552 0.5548 0.5158 0.5236

NoMed 0.3859 0.5587 0.5514 0.5537

AllData 0.3975 0.5684 0.5934 0.5670

codes sequential learning process. In this sequence learn-
ing network, the diagnosed diseases are utilized to en-
hance the interaction process with prescribed medications
for providing complimentary useful information. Thus,
the performance of ASM _InLSTMDM outperforms the
fifth variant ASM _InLSTMD by 1.9% on Jaccard, which
further indicates the superiority of InLSTM in MeSIN
than the standard LSTM in ASMLDM .
Global selective fusion module (GSFM). After step I,

the hierarchically interactive temporal sequence learning pro-
cedure, the obtainedmulti-sourced embeddings are integrated
together via proposed global selective fusionmodule (GSFM)
for obtaining the patient representation. In this way, MeSIN
can automatically learn the contribution scores of distinct
embeddings to the medication recommendation task. As a
result, it improves by 0.4% on Jaccard compared with the
sixth variantASM _InLSTMDM . This also indicates the ad-
vantage of GSFM than the concatenation-basedmethod used
in above six variant models. However, owe to the utilization
of concatenation-based fusion method, Vanilla gains rela-
tively better performance than the benchmark methods.
4.6.2. Heterogeneous Data

According to the proposed method, multilevel EHR data
need to be input to MeSIN for obtaining the final patient rep-
resentation. Though each of them plays a paramount role in
the clinical decision-making scenario, here, we would build
the following MeSIN variants to evaluate the impact of dif-
ferent heterogeneous data on medication recommendation
results (Table 4). In NoLab, the laboratory results embed-
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dingmodule inMeSIN is removed, and the introduced InLSTMdin diagnoses codes embedding module needs to be replaced
by the standard LSTM network. In this case, patient’s de-
tailed health status is unknown. In NoDiag, the diagnoses
codes embedding module is removed from MeSIN, and just
retains the remain two modules. Under such circumstance,
the learned patient representation will lose the key disease
progression information. In NoMed, the medications codes
embedding module is removed fromMeSIN. In this way, the
learned patient representation will lose the historical medi-
cations information.

Clearly, it can be noticed from Table 4 that the perfor-
mance of variants all drop owing to some apparent reasons.
First, in practice, most medications are prescribed condi-
tioned on the diagnosed diseases. Therefore, the performance
of NoDiag drops dramatically, which validates the crucial
role of diagnosed diseases and disease progression in medi-
cation recommendation task. Second, though historicalmed-
ications in ICU are not so much valuable for most patients,
but are still a kind of important information in understanding
patient’s history diseases which can help know some detailed
information such as allergic condition. Thus, the perfor-
mance of NoMed also drops significantly on medications
recommendation task. Third, the performance of NoLab
also drops significantly in this case but slightly compared
with NoDiag. The main reason is that the current patient
health status including diagnosed diseases and key labora-
tory indicators results is still a paramount indicator indicat-
ing patient’s health status. Thus, though the importance of
each hierarchy data within EHRs are diverse from each other,
all of them play important roles in medication recommenda-
tion task.
4.7. Attention analysis in selective module

As discussed above, our newly developed MeSIN out-
performs all benchmark models on medication recommen-
dation for patients. Among the constituent components of
MeSIN, the attentional selectivemodule (ASM) plays a great
role in the model, which has been testified through ablation
studies about MeSIN in section 4.6.1. Actually, the positive
influence of ASM should attribute to the selective ability
of entmax, which can increase focus on important medical
codes embeddings and make the process more interpretable.
Hence, we perform attention analysis to explore the crucially
attentive process shown in Figure 4, visualize the difference
of softmax and entmax shown in Figure 5, and investigate the
importance of multi-source embeddings shown in Figure 6.

The attentive process. To clearly interpret the attentive
process, as shown in Figure 4, we just consider the relations
between the second and third hierarchies (diagnoses codes
embedding module and prescribed medications embedding
module) within our multilevel learning framework. In addi-
tion, the quantitative value in column DA and column MA
respectively denotes the attention weights calculated by Eq.
(6) and Eq. (13). As shown in Figure 4, the attentive pro-
cess can be categorized into four distinct but correlated pro-
cesses. In this case, we have four interesting observations.

DC DA MC MA DC DA MC MA DC DA Recommend Label

40301 0.243 N02B 0.022 99673 0.112 N02B 0.034 40301 0.107 A06A A06A

5856 0.219 A02B 0.013 5856 0.114 B01A 0.025 5856 0.094 A02B A02B

2724 0.182 B01A 0.009 4538 0.012 C09A 0.184 41071 0.103 C10A C10A

41401 0.208 A01A 0.024 40301 0.130 C01D 0.179 99673 0.092 C07A C07A

4168 0.148 C09A 0.142 41071 0.117 A04A 0.151 44489 0.050 N02B N02B

28521 0.000 C10A 0.161 7863 0.084 A06A 0.052 4254 0.044 B01A B01A

A06A 0.025 4280 0.075 V03A 0.155 4592 0.096 A04A N02A

A04A 0.124 E8791 0 C07A 0.021 E8791 0 A01A A04A

C01D 0.145 30560 0.105 C08C 0.199 2767 0.073 C09A A01A

D04A 0 V4511 0.121 4240 0.061 C01D C09A

V03A 0.109 V1581 0.050 V4511 0.101 C08C C01D

C08C 0.137 V1251 0.079 V1581 0.039 V03A C08C

C07A 0 V5861 0.077 A03B

N02A 0.089 V1251 0.063 C02A

B03A 0 V03A

Visit 1 Visit 2 Visit 3   Medication Recommendation

DA  Attention in ASMdDC Diagnoses codes

Medication codes: ATC  

Disease codes: ICD-10

MA Attention in ASMmMC Medication codes

(1)
(2) (3)

(4)

(1)
(2) (3)

(4)

Figure 4: The visualization of attentive process between the
second and third hierarchy within our multilevel learning frame-
work.

First, in the attentive process (1), the learned visit-level di-
agnoses codes embedding will be input into the medication
codes embedding module for interacting with the medica-
tions codes embedding within historical visits. Thus, we
can observe that there exists strong causal relations between
DC column (diagnoses codes) and MC (medication codes)
within each visit. In this way, the diagnoses codes that corre-
sponds to the medications codes existing in the recommen-
dation label column will be assigned more attention weights
within each visit. Second, owing to the temporal dependen-
cies of EHR data, the recommended medications in Recom-
mend column not only depends on the diagnosed diseases in
DC column in the third visit, but also relies on the histori-
cal prescribed medications and diseases progression. As for
this, as shown in the attentive process (2), the medication
codes embeddings in historical visits but existing in label
column will be assigned more attention weights. Similarly,
in the attentive process (3), as for the inherent causal rela-
tions between diseases and medications, the corresponding
diagnoses codes embeddings will be also assigned more at-
tention weights. In the end, as shown in attentive process
(4), for capturing the temporal dependency of EHR data, the
medications codes sequence learning process will be influ-
enced by the diagnoses codes sequence learning process un-
der the help of proposed InLSTM in MeSIN.

The calculation methods of attention weights: Soft-
max andEntmax. InMeSIN,Entmax has been incorporated
into the attentional selective module (ASM) to make more
intelligent selections: assist to filter out noisy information
and pay more focus on the important feature embeddings. In
figure 5, we provide a hot map which demonstrates the dif-
ference of attention weights computed by Entmax [27] and
Softmax in laboratory results embeddings selection module.
As shown in figure, we observe that the calculation method
Entmax can generate sparse attention weights within each
visit, in other words, it can make the attention scores of some
unimportant indicator results embeddings to zero such as
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Softmax 0.017 0.011 0.047 0.140 0.126 0.127 0.203 0.045 0.044 0.045 0.011 0.011 0.025 0.046 0.046 0.046 0.011

Entmax 0 0 0.080 0.159 0.080 0.080 0.239 0.048 0.036 0.039 0 0 0 0.080 0.080 0.080 0

Softmax 0.017 0.012 0.048 0.121 0.096 0.130 0.191 0.026 0.044 0.045 0.041 0.033 0.045 0.047 0.047 0.047 0.011

Entmax 0 0 0.095 0.131 0 0.095 0.212 0.057 0.022 0.073 0 0 0.060 0.085 0.085 0.085 0

Softmax 0.018 0.012 0.050 0.113 0.100 0.137 0.201 0.048 0.049 0.048 0.034 0.012 0.018 0.050 0.049 0.049 0.012

Entmax 0.000 0.000 0.098 0.099 0.000 0.099 0.197 0.070 0.083 0.078 0.000 0.000 0.000 0.099 0.089 0.089 0.000

CRR DBP FIO GCSE GCSM GCS GCSV GLU HR HT MBP SAT RR SBP T WT pH

Visit 1 

Visit 2

Visit 3

Figure 5: The comparison of attention weights computed by Entmax and Softmax in laboratory results embeddings selection
module.

Figure 6: Attention weights distribution in global selective
module.

CRR, DBP, MBP, OS, RR and PH. In this way, the MeSIN
can intelligently make selections about which features em-
beddings are more important to be focused on and which are
unnecessary to be payed so much attention on when mak-
ing decisions in clinical decision-making process. There-
fore, such attention weights computation method in ASMs
can help MeSIN increase focus on the really important fea-
tures embeddings and make the model more interpretable.

The importance ofmulti-source embeddings. Asmen-
tioned in section 3.2.4, the global selective fusion module, to
fuse the obtained five heterogeneous embeddings, we intro-
duce a global selective fusion module, which can integrate
them into patient representation according to respective im-
portance score and minimize the adverse effect caused by
noisy information. In figure 6, we can observe that �′d >
�′lc > �′m > �′dc > �′l (see details in Eq.(16-18)), which in-
dicates the importance ranking of multi-source embeddings.
Such a phenomenon further testifies that diagnosed diseases
especially the disease progression with historical disease in-
formation is the most important information for the medica-
tion recommendation task, which have been proved in the
ablation study shown in Table 4. The current laboratory
result is the second critical factor when making decisions
about the recommended medications. In addition, the his-
torical prescribed medications are also taken into account.
Finally, the historical laboratory results might be not so im-
portant in the intensive care unit (ICU). However, owing to
that different patients might have different diseases status,
the learned attention weights are also dynamically changing,
which makes the computed relevance scores distribution are
also diverse. For example, the historical medications might

be more important than the diagnosed diseases when the di-
agnosis is adverse drug reaction. Through the above analy-
sis, we can see that MeSIN can provide some insightful and
interpretable recommendation results.

5. Conclusion
In this paper, we propose a novel multilevel selective

and interactive network formedication recommendation task
with clinical EHR data. In our model, the inherent causal
relations and temporal dependencies of EHR data are ef-
fectively captured via proposed multilevel learning frame-
work and a novel interactive LSTM cell. Considering the
inevitable noise within EHR data, multiple attentional se-
lective modules are incorporated into model for paying more
focus on the really important feature embeddings and mean-
while provide insightful and interpretable recommendation
results. Finally, we evaluate our model on a real world and
public clinical dataset. The experimental results show that
our model achieves the best recommendation performance
against eleven baselines in terms of Jaccard, PR-AUC, Re-
call and F1 score. In the future, we plan to adapt the pro-
posed approach for more healthcare prediction tasks based
on sequential data and explore its usage in domains other
than healthcare.
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