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a b s t r a c t 

With increasingly massive amounts of high-resolution images of Mars, automated detection of geological landforms on Mars 
has received widespread interest. It is significant for acquiring knowledge of distant planetary surfaces and processes, or 
manifold onboard applications such as spacecraft motion estimation and obstacle avoidance. This is a challenging task, not only 
because of the multiple sizes   of targets and complex image backgrounds, but also the various orientations of some bar-shaped 
landforms in satellite images captured from the top view. The existing methods for directed landform detection require several 
pre or post-processing operations to extract possible regions of interest and final detection results with orientation, which are 
very time consuming. In this paper, a new end-to-end deep learning framework is developed for detecting arbitrarily-directed 

landforms. This framework, named Rotated-SSD (Single Shot MultiBox Detector, SSD), can locate and identify different 

landforms on Mars in one pass, by using rotatable anchor-box based mechanism. To enhance its robustness against angle 
variation of the targets and complex backgrounds, a new efficient match strategy is proposed for anchoring default boxes to 
ground truth boxes in the model training process and an autoencoder-based unsupervised pre-training operation is introduced 
to improve both the model training and inference performance. The proposed framework is tested for detection of bar- shaped 
buttes and dark slope streaks on satellite images. The detection results show that our framework can significantly contribute to 
onboard motion estimation systems. The comparative results demonstrate that the proposed match strategy outperforms other 
state-of-the-art match strategies with regard to model training efficiency and prediction accuracy. The pre-training strategy can 
facilitate the training of deep architectures in case of limited available training data. 

1. Introduction

As interest in Mars exploration grows in recent decades, the enormous number of images generated by orbiting 

spacecraft and surface rovers continues to grow on a daily basis. These images are significant materials for the study 

of Martian geology, including the age of planetary features, physical parameters, the effect of climate and erosion, 

transposition mechanics, etc. In addition, these data are desired to provide knowledge for per- forming onboard-mode 

tasks, which means that a spacecraft or a rover can autonomously analyze its collected imagery in real time and take 

appropriate actions by using the onboard processing system. For example, the descent and landing system of a 

spacecraft needs to deliver the rover and payload safely onto the Martian surface. This is conducted by an intelligent 

system, named as the motion estimation system, which estimates velocity and position by processing the imagery, 

altitude and inertial measurements. Another case is the onboard navigation system embedded on rovers: using their 

cameras and stereo imagers with associated algorithms, the rovers can figure out for themselves the safest and best 

way to a certain destination of interest. To fulfill these tasks, an efficient landform detection algorithm is of paramount 

importance, which can localize and identify some common types of geologic landforms in real time, such as volcanoes, 

craters, cones, dunes, dark slope steaks, etc. 

Based on retrospective study on remote sensing data analysis, the importance of object detection for target 

landforms has been highlighted [1–5]. Most previous research on landform detection have focused on the automated 

detection of craters [6,7], which are regarded as significant landmarks on Mars and can also provide useful 

information about the geological processes. Other kinds of impact landforms are also considered as target objects in 

some researches, such as volcanic rootless cones [8], gully [9], and dark slope streak [10]. In these studies, involved 

object detection algorithms are categorized as highlight and shadow region matching [11], curve fitting [12], 

mathematical morphology [9,13], texture analysis [14], and machine learning [8,15–17]. While promising and showing 

good performances in their case studies, these approaches have some common flaws: due to the limitation of 

morphology-based detection models or low capacity of shallow machine learning models, little work has been done to 

develop generalized detectors for multiple geological landforms; most proposed detection algorithms rely on pre-

defined hand- crafted features or geo-object-based features as their input, which require complicated feature selection 
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and extraction operations. Sometimes these pre-defined features might be unrepresentative, incomplete or redundant. 

Sliding window is widely used to extract region of interest in previous machine learning-based detectors, which is 

quite time-consuming and cannot meet the requirement of onboard processing system. 

 

Generally, the challenges of developing object detection algorithms for Martian landforms can be summarized thus. 

First, in those remote sensing images captured by orbiters or spacecrafts, the same landform may present multiple scales 

within the extent of a single image scenes. Target objects in remote sensing images are relatively small compared with 

objects in nature images and the background environments are more complex. Second, the contour of a landform may 

possibly appear similar to another kind of landform. As shown in Fig. 1, both craters and cones show similar the circle-like 

shape and contain similar shadow on the edge. In addition, for some bar-shaped landforms, the ratio between width and 

length may vary dramatically.  Third, as the remote sensing images are captured from the top view, target landforms are 

rotated arbitrarily around the vertical axis, which makes it inappropriate to use rectangle box with fixed orientation to 

locate certain landforms. Fourth, although an in- creasing number of remote sensing images captured by onboard cameras 

on orbiters have opened to public, available training images with expert annotations are significantly more limited and less 

accessible than popular data for many computer vision problems. With limited data and annotation, the capability of 

existing object detection algorithms based on machine learning would be constrained and potential over-fitting 

phenomenon might be difficult to avoid [18]. These four challenges make it very difficult to develop an object detection 

algorithm that can localize and identify multiple target landforms in the image scene, based on template, morphology, or 

hand-crafted features. Therefore, a new framework with ample model capacity needs to be introduced in this task, in order to 

design an efficient landform detection algorithm.  

 

Recently, deep learning techniques have achieved dramatic progress in object detection and other kinds of computer vision 

applications [19–23]. With the help of powerful feature extraction ability from convolutional neural network (CNN) and the 

combi- nation of large-scale data sets and high-performance computing hardware GPUs, deep learning-based object detection 

models have obtained faster speed and higher accuracy than traditional methods in manifold application fields [24,25]. The deep 

CNN is able to automatically learn and discover important features from input images in model training process, instead of 

depending on pre-defined hand-crafted features in the conventional pattern recognition workflow. The number of object 

detection algorithms containing deep CNN have exploded in the last five years, from region proposal-based methods (e.g. R-

CNN [26], fast R-CNN [27], and faster R-CNN [20]) to regression-based methods (e.g. Yolo [21] and SSD [22]). Although 

presenting good performance, these algorithms use a horizontal bounding box to locate a certain object, which is not suitable for 

landforms with arbitrary orientations in remote sensing images. Besides, model with deep architecture may demand a huge 

number of training data, which is unrealistic in this specific field. The transfer learning strategy has recently been proposed in 

deep learning techniques to solve this problem, by transfer the knowledge across different domains [28]. However, the gap 

between the remote sensing domain and the nature scene domain remains significant, so it may be not easy for a landform 

detection model to inherit some promising initializations from existing well-trained deep architectures. 

 

To address these problems, in this study, we propose an end- to-end detection algorithm, named as Rotated-SSD (R-SSD), 

to detect two common landforms on Martian surface by using rotated bounding boxes with arbitrary orientations. The two 

landforms are defined as bar-shaped buttes and dark slope streak (DSS), which are two distinct landmarks and meaningful for 

motion estimation system and geological study. A butte is defined as an isolated hill with steep (often vertical) sides and can be 

understood as small mesa or plateau. A DSS is normally seen as narrow, dark, fan-shaped features and it normally appears on 

dust-covered slopes. Each DSS varies in the ratio of length to width and often appears very near to adjacent ones and thus cannot 

be easily detected by traditional sliding window-based methods. The objective of this study is to develop a single detector for 

these two landforms, so the difficulty of the task is further increased. Our detection algorithm develops from the Single Shot 

MultiBox Detector (SSD) model [22], which generates a set of default boxes with various ratios and scales from different 

convolutional layers to simultaneously predict the location and type of the target object. In the present algorithm, we add an 

angle parameter to each default box and in this way our algorithm can detect landforms in an end-to-end way using rotated 

bounding boxes, which is extremely fast. The default boxes are generated from multiple feature maps and the corresponding 

predicted results are combined at the final layer. This mechanism ensures the accuracy of landform detection. Overall, the main 

contributions of this study can be summarized as follows:  

(1) An angle parameter is added to both the ground truth box and the default box and a new match strategy is designed for 

anchoring each default box to ground truth boxes in the model training process. With the match strategy, each default box is 

regarded as positive, negative, or neutral box and then its offset can be calculated via the pre-defined loss function. This 

operation plays a crucial role in training the entire deep neural network, but to our best knowledge, there is little work 

exploring the mechanism and effectiveness of match strategy. 

(2) An autoencoder-based deep CNN is introduced for the model pre-training. This operation is essentially an unsupervised 

learning process and is conducted before the normal model training. By the pre-training operation, the base network of R-

SSD is expected to get a promising initialization from the pre-trained network, which enhances the efficiency of the normal 

model training. To some degree, this unsupervised pre-training strategy is equivalent in function to the transfer learning, 

without introducing irrelevant information from the nature scene domain. 

(3) All images used for model training and performance evaluation are collected from the High-Resolution Imaging Science 

Experiment (HiRISE) database. The camera of this project can take pictures of Martian surface with resolutions of 0.3 m/pixel, 

which makes it possible to simulate a closer look at impact landforms on Mars. The training and testing images are collected 

from different positions of HiRISE images with multi-scales, with the purpose of simulating the real scene of Mars captured 



by the onboard cam- eras in landing procedure. This design ensures the reliability and practicality of evaluation results. Since 

the present detector does not explicitly elaborate the feature design and feature extraction, the deep learning-based 

framework can be easily generalized to other kinds of landforms or rotated objects. 

 

The rest of this paper is organized as follows. Section 2 reviews the related works of this study. Section 3 describes the detail 

of our methodology, including the framework of R-SSD and details of the proposed match strategy and pretraining strategy. 

Section 4 presents and discusses the evaluation results. Section 5 concludes the paper. 

 

2. Related works 
 

2.1. Landform detection methods 

 

Among existing geographic object-based image analysis and object detection researches, crater detection is frequently 

concerned, because of the useful information on geological processes provided by impact craters [11,29,30]. Other common types 

of landforms, such as volcanoes, rootless cones [8], dark slope streaks [10], or gullies [9], are also set as the target in   some 

approaches. From the view of object detection algorithm, the morphology-based algorithms and machine learning-based 

algorithms are the most widely used. As for morphology-based algorithm, a single type of landforms is detected based on its 

unique mathematical morphology-based features, such as the linear features of gully or the circular or elliptical shape of crater. 

For example, Vamshi et al. [29] designed an object-based image analysis (OBIA) algorithm to detect impact craters on the Moon, 

in which the interested objects are extracted by multiresolution segmentation and their circularity and slope information are 

calculated for classification. Zhou et al. [30] designed a new crater detection algorithm by extracting higher change rate of slope 

of aspect values at crater rims. The noise of non-crater rims were filtered based on the neighborhood mean algorithm and 

reclassification method. As for the machine learning-based algorithms, most relevant approaches used the sliding window- based 

strategy to extract regions of interest (RoI), i.e., a square window with fixed or variable size slides across the entire input image 

to generate plenty of regions of interest. Then, features can be extracted from these regions as the input for machine learning 

models, by using pre-defined feature description methods. For instance, Burl et al. [3] introduced multiple machine learning 

models for crater detection, with training and testing examples generated by sliding windows. Limited to the fixed angle of each 

sliding window, these methods cannot be easily generated to landforms with arbitrary orientations. 

Some researches attempted to use morphology-based strategies instead of sliding window to generate more flexible RoIs: 

Wang et al. [10] designed a novel DSS detection method by combining a new region extraction algorithm and machine learning 

techniques. Xin et al. [31] extracted impact sites candidates from full HiRISE images by dark area extraction and a series of 

morphological operations and then the AdaBoost classifier is trained with a cascade of features calculated from the candidates. 

How- ever, the morphology-based region extraction algorithm requires complex pre-processing operation and is restricted to the 

unique characteristic of a single type of landform. Hence, to design a general object detection algorithm for different landforms 

with arbitrary orientations, both the RoI extraction algorithm and the machine learning model need to be improved. 

 

2.2. Deep convolutional neural network-based object detection methods 

 

With the success of AlexNet [32] in ImageNet Large Scale  Visual Recognition Challenge, deep CNN-based frameworks 

have achieved dramatic progress in the following years, in computer vision-related tasks [33,34]. Starting from R-CNN, deep 

CNN- based object detection methods exhibit high performance in detecting common objects in normal images, by adopting a 

two- stage pipeline: region proposal and object classification. This type of detection methods is named as region proposal-based 

net- works and consists of R-CNN, Fast R-CNN [27], Faster R-CNN [20], R-FCN (region-based fully-convolutional network) [35], 

etc. To further decrease the model inference time, regression-based net- works are proposed by using a single CNN-based 

network to generate bounding boxes and object probabilities simultaneously in one pass, including YOLO [21] and SSD [22]. 

Since it is extremely laborious to manually annotate object bounding boxes, image sets with object-level annotations are quite 

limited and valuable. Hence, transfer learning techniques are frequently used in order   to train deep CNN with small-scale data 

sets, while applying these networks to solve different object detection tasks [36– 39]. However, all these networks are designed 

for objects in nature scene, which appear in the horizontal or vertical direction. Recently, some deep CNN-based networks are 

re-designed for generating bounding boxes with arbitrary orientations and they are applied for ship, airplane and vehicle 

detection in remote sensing images [40–42]. For example, Tang et al.  [43]  designed an end-to-end method to detect the vehicle’s 

localization and orientation from aerial imagery data sets. Similarly, a rotated region proposal network (R2PN) is proposed to 

generate multi- orientated proposals with orientation angle information for ship detection from remote sensing images [42]. As 

far as we know, there is no well-designed framework for detecting landforms with arbitrary orientations. 
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3. Methodology 

3.1. Overall network structure of R-SSD 
 

The overall structure of the proposed R-SSD is illustrated in    Fig. 2. This is an end-to-end detector: the input image goes 

through deep CNN to generate detection results (both object class score and location) in one pass. The entire deep framework 

can be divided into two parts: base network and extra feature layers, according to their different functions. The lower 7 layers   

are the base network, which is a modified version of VGG-16 network. Similar with VGG-16, the base network consists of 7 pairs 

of convolutional (C) layers and max-pooling (M) layers, but the fully connected layers are removed at the end of the base network. 

This modification can enhance the connectivity between the base network and extra feature layers whilst making the entire 

architecture more condensed. The base network plays a significant role in extracting useful features from input images and 

learning feature representations for the downstream extra feature layers. Based on some initial comparative tests, we have found 

that 7 C and M layers is a suitable setting for our task, which can drive the training and validation error to converge on a 

reasonable interval after the model training.  

The extra feature layers can generate default boxes with different sizes (controlled by the size of convolutional layer), aspect 

ratios, and angles, which are used for searching and locating ground truth boxes. For a single extra feature layer, it is a grid firstly 

installed with a fixed kernel size of 3 * 3. Each kernel    can generate k rectangular default boxes at center of itself. In each kernel, 

the size of default boxes is determined by two pre- defined hyper-parameters: aspect-ratio and scale. k is determined by both the 

number of aspect-ratios per layer and the multiple angles of each default box. All default boxes generated from different layers 

are assembled at the end of extra feature layers and then a matching process is executed to anchor the massive number of default 

boxes on ground truth boxes. In the matching process, if the overlap between a default box and a ground truth box is larger than 

a threshold, then the default box is identified as a positive one. All downstream operations, including obtaining offsets between 

default boxes and ground truth boxes, loss function and gradient calculation, and weights update of entire model, are based on 

matching results. Therefore, a well-designed match strategy for estimating the overlap between two bounding boxes with 

arbitrary orientations can significantly enhance the performance of model training and inference. More details of the proposed 

match strategy are described in the following section. 

3.2. Match strategy 

 

As shown in Fig. 2, we add an angle parameter to the rectangular bounding box with the purpose of making detection 

bounding boxes oriented. For both rotated default boxes and ground truth boxes, they are parametrized by five tuples (xc , yc , w, 

h, θ ), where (xc , yc ) is the center of the rotated bounding box, w, h is the length of the short  side  and  the  long  side,  respectively  

(See  Fig. 3(a)). θ        0, π/6, π/3, π/2, 2π/3, 5π/6, π                is the orientation of the long side with respect to the y-axis. These 

multi-angle default boxes can cover almost shapes of landforms, with different sizes and aspect ratios. Given a default box D and 

a ground truth box GT, it is important for a match strategy to evaluate their distance and overlap, which is used to select positive 

and negative default boxes for calculating the loss function. The most commonly used criterion is the Intersection-over-Unior, 

which is defined as is the orientation of the long side with respect to the y-axis. These multi-angle default boxes can cover almost 

shapes of landforms, with different sizes and aspect ratios. Given a default box D and a ground truth box GT, it is important for 

a match strategy to evaluate their distance and overlap, which is used to select positive and negative default boxes for calculating 

the loss function. The most commonly used criterion is the Intersection-over-Unior, which is defined as  

IoU (D, GT ) = area(D ∩ GT )/area(D ∪ GT ) (1) 

However, unlike the case for two vertical or horizontal boxes, the Boolean calculation for two rotated boxes is much more 

complex because the intersection of two rotated boxes can be any polygon with no more than eight sides [44], as shown in Fig. 

3(b), (c), and (d). To solve this problem, an efficient two-stage match strategy is proposed in this study, which estimates the 

approximate IoU between two rotated boxes by concerning both the distance and the angle offset. Details of the match strategy 

is illustrated in Fig. 4. First, the angle of two rotated boxes D and GT are ignored and the non-rotated IoU is defined as: 

NRIoU (D, GT ) = area(Dˆ  ∩ GˆTˆ)/area(Dˆ  ∪ GˆTˆ), (2) 

where where D̂  and ĜT̂  keep the same shape with D and GT but rotated back to the vertical orientation. The 

criterion NRIoU efficiently estimates the overlap ratio between two rotated boxes because the overlap of two 

vertical bounding boxes is definitely a rectangle. If the NRIoU of D and GT is larger than a predefined threshold 

T1, then their angle difference is calculated. Only one D with minimum angle difference on that position will be 

matched to the corresponding GT if the θT is set to π/12. The entire matching process is actually a two-stage 

filtering process for picking up positive default boxes and the selection scope is narrowed down after the first stage. 

In this way, the computational cost is significantly reduced and the quality of matching results is still maintained. 

If the NRIoU of D and GT is smaller than T2, then the D is recognized as a negative default box (i.e., background). 

All remaining default boxes are recognized as neutral and irrelevant to the loss function calculation, because they 

are too close to a GT to be valid background boxes. In this study, T1 and T2 are set as 0.4 and 0.2, respectively, 

based on exhaustive initial tests. 

 



3.3. Loss function and learning algorithm 

 
In model training process, a loss function is calculated for weights update after every matching process. All positive and 

negative default boxes with associated ground truth boxes are involved for the calculation. Overall, the objective of the loss 

function is defined as a weighted sum of object confidence loss and localization loss:  

L(x, c, l, g ) = 1 (Lconf (x, c) + αLloc (x, l, g)) (3) 

 

where N is the number of matched (positive) default boxes;  { 0, 1} is an indicator variable of matching ith default box to jth 

ground truth box of class p. α is a weight term determining trade- off between two loss terms. Same as the original SSD model, 

the object confidence loss Lconf is the softmax loss over multiple classes confidences c: 

 

 
 

The localization loss Lloc is a Smooth L1 loss between the predicted box (l) and the ground truth box (g). Here we add the angle 

difference of D and associated GT to the localization loss of original SSD and regress to offsets for the center (cx; cy), width (w), 

height (h) and angle (θ) of the default bounding box (d):  

 

 

Due to the huge number of default boxes generated from multiple extra feature layers, most default boxes are negative 

ones. Using all these negative boxes with limited positive ones will lead to a significant imbalance between positive and negative 

training examples. To overcome this problem, a hard-negative mining strategy [22] is introduced, which fixes the ratio between 

positive and negative default boxes to 1:3 by only using negatives with high confidence loss. This screening process can make 

the weight optimization more efficient and stable. 

Unlike the original SSD, we introduce a more robust optimizer Adam as the model learning algorithm. Adam is a variant 

of the stochastic gradient descent algorithm and its details are described in the reference [45]. In Adam optimizer, the exponential 

moving averages of gradients and squared gradients are updated in every epoch, while their exponential decay rates are 

controlled based on two hyper-parameters. This optimizer can be understood as a combination on advantages of two popular 

algorithms: Ada- Grad [46] and RMSProp [47] with some important improvements. One is that the momentum is determined as 

an estimate of the first-order moment of the gradient. Another one is that the Adam adds bias corrections to the estimates of both 

the first-order moments (i.e., the momentum term) and the second-order moments, which help to counteract their initial biases 

towards zero. Generally, the advantages of Adam optimizer can be summarized as invariant magnitudes of weight update with 

respect to rescaling of the gradient and bounded learning rate by hyperparameters. 

3.4. Autoencoder-based pretraining strategy 

 

Although the convolutional deep architectures have been successfully applied to various areas, it is very difficult to train 

them with small scale data sets due to some optimization challenges. For example, the weight in lower layers is more difficult to 

get converge compared with upper layers, because of the gradient vanish phenomenon [48]. Similar to most of non-convex 

optimization problems, deep CNN-based architectures contain enormous local minima and it is very likely that model 

parameters can become stuck in the same minima during the training process. Therefore, it is meaningful to train deep 

architectures from promising initializations instead of scratch (random initialization). To solve this problem, most relevant 

studies on object detection have applied a transfer learning strategy, in which a base network is trained on a base data set 

(normally a large image set with various classes of objects). Then learned features (i.e., model parameters) in the base network is 

set as the initialization for the target network, which will be trained on a target data set and task. This strategy will tend to work 

in cases where features are suitable to both base and target tasks. However, there exists an obvious gap between Martian surface 

images taken by orbiters and popular object detection data sets (e.g., COCO), which are taken from everyday scenes. In this 

study, we design an autoencoder-based pretraining strategy to obtain a promising initialization, which is actually an 

unsupervised learning process and can learn intrinsic features from unlabeled HiRISE images. 

The main idea of the strategy is to train a deep autoencoder which can reconstruct the input images. The structure of the 

proposed autoencoder network is shown in Fig.  5,  which  is a fully convolutional deep neural network. The encoder part is set   

as the same as the base network of R-SSD, which consists of 7 convolutional layers with two max-pooling layers. The decoder 



consists of 7 deconvolutional layers with two up-sampling layers, which are the reverse of the encoder with no tied weights. In 

de- convolutional layers, the learned filters serve as the foundation to reconstruct the information of the input. The up-sampling 

layers act as the reverse operation of max-pooling and it can reconstruct the original convolutional kernel. In this way, the 

autoencoder can output a tuple with the same size as the model input. The mechanism of the autoencoder is under a hypothesis 

that the network can spontaneously abstract essential information from input images, by learning relevant features of input 

images with low reconstruction error. Training the autoencoder does not need annotation information of the input data. The 

objective is to minimize the re-construction error between input and associated output, by using the back-propagation algorithm 

to adjust the parameters of both encoder and decoder. After the autoencoder is pre-trained, the parameters in the encoder part is 

saved and used as initialization for training the R-SSD. 

4. Experiments and results 

4.1. Image data preparation 

All training and testing images are collected from the HiRISE image library. HiRISE is the most powerful camera ever sent 

to Mars, one of six instruments onboard the Mars Reconnaissance Orbiter. The camera is designed to capture surface features of 

Mars in greater detail than has previously been done from orbit. The high-resolution capability of HiRISE allows better studies 

of Martian landforms and stimulate the development of object detection algorithms for Martian landforms localization and 

identification. As the target objects are set as buttes and DSSs in this study, we selected 13 map-projected HiRISE images with 

high density of buttes or DSSs (see Fig. 6) as raw materials for generating training and testing data : ESP_011966_1700, 

ESP_013544_1995, ESP_017411_1715, ESP_011289_1950, ESP_012383_1905, ESP_014394_2045, ESP_015937_1760, 

ESP_028642_1800, ESP_036851_1995, ESP_040386_1915, ESP_043523_2040, ESP_038343_1785, PSP_003570_1915. For each 

selected HiRISE image, it is firstly downsized to a series of images with low resolutions (width equal to 800, 1200, 1600, 1800, 

2000, 2400, 3000, and 3200 pixels). Then, all training and testing images with fixed size (300*400 pixels) are collected from these 

downsized images. Some images in training and testing sets are collected from the same raw material but have  different  scales  

and the corresponding image group simulates the real scene captured by the onboard camera at different altitude during the 

landing procedure (see Fig. 7). Moreover, the robustness and the universal property of R-SSD are enhanced as the model is 

trained on varying object sizes. Table 1 shows the number of images and target objects in each data set.  The training set and 

testing set I are collected from first eleven original HiRISE images and the testing set II is collected from the remaining two 

original HiRISE images. All images in the training set is annotated manually by the authors, by using an efficient tool named as 

roLabelImg (downloadable from https://github.com/cgvict/roLabelImg). The roLabelImg is a graphical image annotation tool 

which can label arbitrarily rotated objects with rotated rectangular bounding boxes. Each box is recorded by using five 

parameters: the x and y coordinates of its center point, the width, the length, and the angle deviation from the vertical direction. 

4.2. R-SSD implementation and evaluation 

 

The implementation of R-SSD is based on a Keras implementation of SSD architecture [49], by adding the proposed 

strategies and modules. The number of total parameters of R-SSD is 981,766 and the number of floating-point operations per 

second is 23502k. All involved comparative experiments are written in Python 3.6 and run on a workstation equipped with 3.7 

GHz Intel ® Core ™ i7-8700 K CPU, 64-GB RAM. dual NVIDIA® GTX 1080Ti GPUs. To evaluate the effectiveness of proposed 

individual modules and overall efficacy of R-SSD, the experimental evaluations of our deep architecture-based landform 

detection system are conducted in three parts. In the first part, the effectiveness of proposed match strategy is investigated, by 

comparing it with other 4 types of state-of-the-art match strategies for anchoring default boxes to ground truth boxes. Second, 

the proposed autoencoder-based pretraining strategy is evaluated, by comparing it with non-pretrained R-SSD, R-SSD pretrained 

on common image sets and transfer learning. In this part, the training error in the model fine-tuning stage is monitored epoch by 

epoch to investigate the effect of pretraining strategy on the normal model training. In the third part, the overall performance of 

R-SSD on two types of landforms is qualitatively illustrated. For comparative experiments in first two part, all involved methods 

are evaluated on both testing set I and II, and an IoU- based criterion is applied to judge if a predicted box is a true positive 

detection: by calculating the IoU between a given predicted box and any ground truth box, each predicted box is recognized as 

either true-positive or false-positive. As positive and negative detections are defined, the average precision (AP) is introduced as 

the quantitative metric for model performance, like the model evaluation in most object detection tasks. AP measures the area 

under the precision–recall curve and in this study, it is approximated by a finite sum over positions in the ranked sequence of 

detections:  

 

where Rn and Pn are the recall and precision at the nth threshold. 

 

 

 

https://github.com/cgvict/roLabelImg


4.3. Evaluation of proposed match strategy 

To evaluate the efficacy of the proposed two-stage match strategy, four state-of-the-art match strategies are considered 

here, which are abstracted from the three most relevant approaches. The Match Strategy 1 (MS1) is a center point-based method, 

based on Tang et al.’s approach [43]. The criterion can be summarized as: for any ground truth box, if the center of a default box 

is inside a ground truth box and the ratios between the default box and the ground truth satisfy Eq. (7), then the default box is 

recognized as positive. In Eq. (7), wd and hd denote the width and height of the default box and wgt and hgt denote those of the 

ground truth boxes. 

 

The Match Strategy 2 (MS2) is a variant version of MS1, in which the size related criterion is replaced with the angle difference 

of two boxes, i.e., the Eq. (7) is replaced with: 

 

where θd and θgt denote the angle of the default box and the ground truth box, respectively. The Match Strategy 3 (MS3) is 

abstracted from Liu et al.’s work [44] and it is described as: a default box D is assigned to a ground truth box GT if ArIoU (D, GT) 

is larger than a pre-defined threshold. The ArIoU is defined as Eq. (9), which merges the distance difference with angle difference. 

box D is assigned to a ground truth box GT if ArIoU (D, GT ) is larger than a pre-defined threshold. The ArIoU is defined as Eq. 

(9), which merges the distance difference with angle difference. 

 

The Match Strategy 4 (MS4) is derived from Xia et al.’s work [42] and based on 4 vertexes of a rotated rectangular box. Let  
 and  denote the coordinates of the ith vertexes of a default box and a ground truth box. If their mean deviation is less 

than a threshold (see Eq. (10)), then the default box is considered as positive and matched to the associated ground truth box. 

 

 

All these four match strategies and the proposed match strategy (MS) are embedded in the same deep architecture (i.e., R-

SSD) and trained with the same data set under the same configuration: the number of epochs is set to 20 with 300 steps per epoch 

and the batch size is set as 20. Other significant hyper-parameters (e.g., scales and aspect ratios of default boxes, T1, T2, and T) 

are optimized via the grid search algorithm. Comparison results with the model training time and model inference performance 

on two testing sets are shown in Table 2. Specially, the proposed MS takes less training time than MS1, MS2, and MS4, which 

demonstrates the high efficiency of the two-stage filtering mechanism and NRIoU-based location deviation estimation method. 

MS3 achieves comparable training time whereas worse performance than MS1 for the detection of DSS on the testing set II. This 

may indicate that converting two kinds of objectives into one criterion may have side-effects on model accuracy. In addition, can 

be observed that MS outperforms MS2, MS3, MS4 in most assessment cases, which shows the high accuracy of MS. MS1 obtains 

comparable AP in testing set II but performs bad in testing set I and hence further suggests the effectiveness of the proposed MS. 

4.4. Evaluation of the pretraining strategy 

 

The non-pretrained R-SSD is firstly compared with pretrained R-SSD using similar HiRISE images. The pretraining data 

set is collected from the training set and similar HiRISE images containing high density of buttes or DSSs. With regard to the 

proposed autoencoder-based pretraining strategy, all these images are un- labeled. To further test the impact of number of 

pretraining images on model performance, we pretrain the R-SSD with 200, 400, and 600 rescaled HiRISE images, respectively. 

In the pretrain- ing stage, the batch size is set as 25 and the number of epochs   is set as 200. The loss function values of non-

pretrained R-SSD and pretrained R-SSD during the model fine-tuning process are monitored and plotted in Fig. 8. 

In Fig. 8, pretrain_200, pretrain_400, and pretrain_600 de- note that the corresponding model is pretrained with 200, 400, and 600 

rescaled HiRISE images, respectively. The loss function value of three pretrained models is lower than that of the non- pretrained 

model in the first epoch, which means that this un- supervised pretraining operation can still help model to get into a promising 

state at the beginning of finetuning stage. From the loss function values in each epoch, we cannot find any significant difference 

among pretrain_200, pretrain_400, and pretrain_600. Although there is an abnormal point in the model fine-tuning process of 

pretrain_600 (12th epoch), the loss function value of pretrain_600 is still lower than that of non-pretrain at the final epoch (0.319 

vs 0.400). Detection results of these models on two testing sets are listed in Table 3. Based on the result, a significant improvement 

of AP is achieved by pretrained models compared with the non-pretrain model. Although the difference of AP is not significant 

with respect to testing set I, all pretrain_200, pretrain_400, and pretrain_600 obtain higher AP on both buttes and DSSs detections 



with respect to testing set II, compared with the non-pretrain. Hence, the autoencoder-based pretraining strategy has a 

remarkably positive effect on model inference and the quality of detection results. Pretrain_400 outperforms pretrain_200 on 

detection of buttes and DSS in both two testing sets. However, pretrain_600 obtains very low AP on detection of DSS in testing 

set II, though it performs well on detection      of buttes. The unbalanced results indicate the low stability and universal property 

of pretrain_600. Therefore, the scale of pre- training set should be controlled in a reasonable range and in this study pretrain_400 

is selected as final model and used for further experiments. 

To give insight on the intermediate results learned by the autoencoder-based pretraining process, we visualize the filters 

learned by the autoencoder of the 3rd convolutional layer with and without pretraining. Fig. 9 shows nine visualized filters of 

one example in the training set, learned by the autoencoder with pretraining; Fig. 10 shows the same nine visualized filters in the 

autoencoder without pretraining. By comparing these two figures, it is revealed that the autoencoder with pretrained weights to 

process the input data can learn edges and skeletons of most buttes whereas the autoencoder with random-generated weights 

just blurs the input images. The visualization of intermediate results corroborates the effectiveness of the pretraining strategy. 

To evaluate the influence of image property on the autoencoder-based pretraining strategy, we introduce two bench- mark 

large-scale image sets, COCO and KITTI, for model pretraining and compare their performance with pretrain_400. COCO [50] is 

a large-scale object detection, segmentation, and captioning data set containing 80 complex everyday scenes of common objects. 

KITTI [51] consists of real-world traffic situations captured by cameras and laser scanners on autonomous vehicles driving 

through a city. These two data set are widely used for object detection model evaluation. The loss function values of R-SSD 

pretrained from pretrain_400, pretrain_COCO, and pretrain_KITTI are plotted in Fig. 11 and detection results of these models 

are shown in Table 4. 

From Fig. 11, it can be observed that the loss function values of both pretrain_COCO and pretrain_KITTI is distinctly higher 

than those of pretrain_400 during the first five epochs. This phenomenon means that the autoencoder pretrained on COCO or 

KITTI data set can hardly learn anything useful for our task, so it cannot provide a promising initialization for R-SSD fine-tuning. 

From Table 4, pretrain_COCO and pretrain_KITTI still perform worse than pretrain_400, especially in testing set II. Additionally, 

pretrain_KITTI only results in 0.082 AP on detection of DSS in testing set II. Therefore, it is summarized that autoencoders pre- 

trained on COCO and KITTI bring negative effect on the model performance, probably because the underlying domain gap be- 

tween HiRISE images and daily scenes may be too large to benefit the detection performance. 

To compare the autoencoder-based pretraining with the widely-used transfer learning scheme, we employ model weights 

of the original SSD330 trained from three large-scale data sets, which are the Pascal VOC [52] (PASCAL Visual Object Classes), 

the COCO, and the ILSVRC [53] (ImageNet Large Scale Visual Recognition Challenge). The transfer learning is implemented as 

follows: the base network of R-SSD is firstly replaced with one of these pretrained base network, which is the reduced VGG-16 

network with model weights converged to a certain data set. Then, the model fine-tuning is conducted by training the modified 

R-SSD with our own data set (the training set). Based on the data set used in transfer learnings, we denote these three-transfer 

learning schemes as TL_Pascal_VOC, TL_COCO, and TL_ILSVRC. The associated efficiency of model training and detection 

results are shown  in Fig.  12  and  Table  5.  From  Fig.  12,  the  loss function value of TL_Pascal_VOC, TL_COCO, and TL_ILSVRC 

is distinctly higher than that of pretrain_400 during the entire model fine-tuning stage, which indicates that all these transfer 

learning-based R- SSDs cannot reach convergence in the model fine-tuning process. These non-convergent models lead to 

extremely poor detection results as shown in Table 5. Therefore, it is risky to apply transfer learning scheme if the domain gap is 

too large. 

4.5. Evaluation of the overall performance 

 

To evaluate the overall performance of the proposed R-SSD, we employed two classical hand-crafted feature-based object 

de- tection algorithms and three types of well-known deep learning- based object detection framework. As for two hand-crafted 

feature- based method, one is morphology-based, in which each input image is firstly converted to grayscale image with binary 

matrix. Then, the rectangular structure element is extracted from the ob- tained binary map, followed by morphological erosion 

operation. After that, we conduct contour extraction operation to find the minimum outer of each rectangle area. Finally, all these 

rectangle boxes are collected and filtered with a pre-defined threshold   on minimum area, maximum width and maximum height 

to generate the final detection results.  We set different thresholds for two different objects, and each threshold is finetuned on   

the training set. Another method is color-based, in which each input image is firstly converted to HSV color space and the color- 

based segmentation operation is conducted on the current color space. Then, the segmentation result is filtered by erosion and 

dilation operation. Per-element bit-wise conjunction of filtered result and the corresponding original image is calculated to 

obtained the possible target of interest. Finally, similar with the first method, contours of rectangle areas are obtained by finding 

the minimum outer quadrilateral for each contour and the same filtering operation is conducted to get the final detection results. 

These two hand-crafted feature-based methods are implemented with OpenCV library and the performance on testing sets are 

listed in Table 6. As the two models work in unsupervised way and cannot output confidence interval for each predictive rectan- 

gle box, we calculate the accuracy of detection results on two testing sets as the evaluation metric. From  Table  6,  we  notice that 

these two hand-crafted feature-based detection algorithms obtain extremely low accuracies, especially on detection of DSS in 

both two testing sets. The results further validate the predictive power of R-SSD and the difficulty of detecting butte and DSS 

from remote sensing images, as both targets varies in the ratio of length to width and DSSs often appear very near to adjacent 

ones and thus cannot be easily detected by traditional hand-crafted feature-based methods. 



As for deep learning-based object detection framework, we employed two state-of-the-art end to end frameworks, namely 

YOLOv2 and YOLOv3, and a two-stage detector, namely Faster R-CNN as benchmark methods. To remove the inference of pre- 

training to model performance, these three models are trained from scratch and the testing results are compared with R-SSD 

without pretraining operation. To reduce the inference brought by model complexity, the base networks of three benchmark 

methods are adjusted to make their number of parameters sim- ilar to the proposed R-SSD. The number of multiply-accumulate 

operations and model parameters of these models are listed in Table 7. Comparative results shown in Table 8 indicate that both 

end-to-end and two stage detectors obtain lower AP than R-SSD, especially on detection of DSSs in two testing sets, which further 

validates the effectiveness of proposed match strategy for two bounding boxes with arbitrary orientations and the effectiveness 

of R-SSD on detecting two specific Martian landforms. 

4.6. Qualitative analysis 

Fig. 13 demonstrates some typical detection results achieved by the pretrained R-SSD and the input images are sampled 

from the testing set I and II. The ground-truth buttes and DSSs are an- notated by green rotated boxes and predicted results are 

denoted by light blue boxes (for buttes) and red boxes (for DSSs), with associated object name and confidence score. In Fig. 13(a) 

and (b), most buttes and DSSs are identified with relatively high fitting degree on both location and orientation, though two 

rugged areas are falsely detected as DSSs with low confidence values. 

In addition, the pretrained R-SSD is capable of discriminating between buttes and DSSs appearing in complicated 

background. In, Fig. 13(c) to (f), although the accuracy of detection results is     not as good as that in (a) and (b), most distinct 

objects are well identified with high confidence value. Especially in Fig. 13(e) and (f), even if some DSSs are densely located, the 

pretrained R-SSD  can still correctly predict their locations and orientations in most cases. This suggests that the pretrained R-

SSD maintains the high universal property to some degree, on detecting target objects in new backgrounds. 

Several difficult cases that the pretrained R-SSD yields low-quality detections are illustrated in Fig. 14. From Fig. 14(a), it 

can be observed that distinct buttes cannot be identified by the proposed framework if they are surrounded by similar patterns 

or located in the environment full of hills. From Fig. 14(b) and (c), some DSSs cannot be detected in case that the surrounding 

environment is too dark or the DSS is faded. These poor performances indicated that the robustness of our system against 

challenging environments need to be further improved. In this paper, we mainly focus on the match strategy design and 

pretraining strategy design for training deep architectures with small-scale data. We leave other model performance 

improvement-related issues for future studies. 

5. Conclusion 

Distinctive of existing morphology-based or traditional ma- chine learning model-based Martian landform detection 

algorithms, the proposed deep neural network, R-SSD, aims to solve three major challenges: autonomous feature extraction and 

feature learning, objects with arbitrary orientations, and limited training data, for the automatic detection of two types of land- 

forms on Mars. To efficiently match arbitrarily oriented ground truth boxes with rotated default boxes, a two-stage match strategy 

is developed and executed in every epoch of model training. In addition, an autoencoder-based unsupervised pretraining 

operation is conducted before the normal model training and the pretrained encoder part is embedded in the base network   of 

R-SSD to serve as a promising initialization. Our composite deep learning-based system has been evaluated with extensive 

comparative experiments and results demonstrate that both the match strategy and the pretraining strategy are helpful to 

improve the efficiency, performance and universal property of R- SSD. Instead of implementing a series of routine operations in 

traditional object detection algorithms (e.g., feature selection, region of interest extraction, classification,.. . ), the R-SSD works in 

an end-to-end way, attributed to the proposed strategies and high-flexibility of CNN-based feature extractor. 

Overall, the main contribution of this paper can be summarized as two folds: practically, the developed R-SSD may help 

to improve the onboard motion estimation system, by locating and identifying impact landforms more efficiently and accurately. 

Theoretically, this study would shed a light on the potential ability of composite deep architectures on the processing of objects 

with arbitrary orientations. Moreover, it may bring new ideas to the future studies on detecting other kinds of significant 

landforms, or even other common objects with arbitrary orientations. 
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Fig. 1. Illustration of some common landforms on Mars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Network structure of R-SSD 



  
 

 

Fig. 3. Cases of the intersection of two rotated boxes. 

 

 

 

Fig. 4. Illustration of the proposed two-stage match strategy. 

 
 

Fig. 5. Architecture of the deep autoencoder used in this work. 



 

 

Fig. 6. Illustration of three HiRISE images used in this study, all are downloadable 

from the HiRISE website https://www.uahirise.org. 

 
 

Fig.  7.   Three examples in the training image set. The examples are collected from the 
same raw material but have different scales. The latter one can be regarded as an 
enlargement of the former image of a given field. 
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Fig. 8. Monitoring loss function values of pretrained R-SSD with different number 

of images and non-pretrained R-SSD. 

 

 

Fig. 9. Visualization of nine filters learned by the autoencoder after the 

pretraining process. 



 

 

Fig. 10. Visualization of nine filters in the autoencoder with randomly generated 

model weights. 

 

 
 

Fig. 11. Monitoring loss function values of R-SSD pretrained from different data 

sets. 



 

 

Fig. 12. Monitoring loss function values of R-SSD with autoencoder-based 

pretraining and transfer learning scheme. 

 
 

Fig.  13.   Demonstration of typical detection results of R-SSD with pretrain_400: (a) 
and (b) are sampled from the testing set I; (c), (d), (e), and (f) are sampled from            
the testing set II. 



 
 

Fig. 14. Demonstration of some difficult cases that our system yields low-quality detections. 

 

 

 

 

 

 

Table 1 

Number of images and target objects in each data set.  

 

Data set No. of images Total No. of buttes Total No. of DSSs 

training set 232 733 428 
testing set I 10 33 26 

testing set II 65 396 98 

 

Table 2 
 

Comparison results between different match strategies.  

 
 

 

Table 3 
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Table 5 
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