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A B S T R A C T

The entity alignment task aims to align entities corresponding to the same object in different KGs. The
recent work focuses on applying knowledge embedding or graph neural networks to obtain entity em-
bedding for entity alignment. However, there are two challenges encountered by these models: one is
some models need to design hyper-parameter to balance embedding loss and alignment loss, the other
is the limited training data size. In this paper, we propose a novel entity alignment framework named
RpAlign (Relation prediction based cross-knowledge-graph entity Alignment) to address these two
issues. Specifically, RpAlign transforms the entity alignment task to the KG completion task to solve
and does not need to design any extra alignment component. Unlike the existing models that predict
aligned entities by using entity vector distance, the RpAlign defines a new relation called ‘anchor’ for
aligned entities, and it predicts new aligned entities based on the relational predictions between the
entities. RpAlign employs several data augmentation and improved self-training techniques to miti-
gate the impact of the data limitation. We conduct experiments on two datasets, and the experimental
results show that the RpAlign model significantly outperforms the current state-of-the-art models.

1. Introduction

The large Knowledge Graphs (KGs) such as DBPe-
dia [17], Freebase [3], and Yago [28], have effectively
sustained various Natural Language Processing (NLP) ap-
plications, e.g., question answering [12], recommendation
systems[37], event classification [26], and dialogue gener-
ation [35]. These KGs store knowledge as triples (ℎ, 𝑟, 𝑡),
where ℎ is the head entity, 𝑡 is the tail entity, and 𝑟 is
the relationship between the two entities. Knowledge em-
bedding models are applied to project entities and relations
into a low-dimensional vector space so that various appli-
cations can directly apply symbolic knowledge in computa-
tional form. Recently, cross-domain tasks have attracted ris-
ing attention in NLP research, e.g., cross-domain question
answering [22], cross-domain language understanding [8],
and cross-domain machine reading [9]. The cross-domain
tasks require the integration of data information from dif-
ferent data domain sources via the entity alignment method
on cross-domain data, such as user alignment [18] for cross-
domain social network tasks. So, researchers need to build
the cross-domain KGs constructed by the entity alignment
approach that can help provide sufficient knowledge assisted
information for the cross-domain NLP tasks.

Traditional entity alignment methods manually define
various features of entities, which heavily rely on devel-
opers’ personal experience, leading to high time and labor
costs. Recent work has achieved promising performance in
various entity alignment tasks by utilizing Knowledge Em-
bedding models and Graph Neural Networks (GNNs). The
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embedding-based methods employ a triple function to learn
the entities’ embedding. Among them, classic TransE [4]
has been widely used (e.g., MTransE [7]). The GNN-based
methods construct an entity network with the relationships
between the entities and employ GNNs to learn the enti-
ties’ embedding. GCN-Align [39] builds a weighted net-
work based on the relationship between entities and employs
Graph Convolutional Network (GCN) [15] to learn the enti-
ties’ embedding. These approaches project multi-source KG
entities into a unified semantic vector space. They determine
newly aligned entities by calculating the vector distances be-
tween entities on two KGs.

However, there are three challenges that existing meth-
ods cannot well address. First, the loss functions of existing
models (e.g., MTransE [7], BootEA [32], and NAEA [47]),
are usually composed of embedding loss and entity align-
ment loss. Therefore, these models need to manually ad-
just the weights of the two losses according to the alignment
performance, which heavily relies on personal experience
and is not suitable for real scenarios. In dealing with dif-
ferent knowledge alignment tasks, it is necessary to design
extra hyper-parameters to balance the alignment loss and
the knowledge representation learning loss. It seriously re-
stricts such models’ generalization performance. Therefore,
when this method is directly migrated to different knowl-
edge graph alignment tasks, additional manual experience
is needed to adjust the model parameter. It reduces the
scope and convenience of these models’ practical applica-
tion. Second, due to the limited scale of labeled data used
for training, the performance of most models cannot effec-
tively model the alignment of entities. Because the scale
of existing KGs is enormous in reality, it is hard to label
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enough aligned knowledge entities due to human resource
constraints. It makes the above models unable to learn high-
quality knowledge embedding due to limited entity aligned
information, and further limits the performance of entity
alignment. Third, in reality, the knowledge information in
the two knowledge bases is different. The inconsistency of
the same entity’s knowledge information in different knowl-
edge bases leads to inconsistent neighborhood structure in-
formation around the entity. To solve the problem, some
embedding-based models like BootEA [32] applied the pa-
rameter sharing method on the aligned entity pairs to share
all knowledge triples for aligned entities. Some GNN-based
method proposes to use graph attention to select and aggre-
gate the neighbor information of nodes to alleviate the chal-
lenge. For example, DAEA [29] proposes using a dual at-
tention network, including relational-aware graph attention
and hierarchical attention. Hierarchical attention adaptively
aggregates low-hierarchy and high-hierarchy information to
balance the neighborhood information of the entity. How-
ever, the above models only consider sharing and comple-
menting the same entities’ knowledge information in differ-
ent knowledge spaces. They do not share and complement
all available knowledge information in two KGs.

In this paper, we propose a novel entity alignment frame-
work named RpAlign (Relation prediction based cross-
knowledge-graph entity Alignment), which introduces a spe-
cific ‘anchor’ relation as the relation of alignment entities.
First, our model’s purpose of introduction of the ‘anchor’
relation is to merge the two knowledge bases into one knowl-
edge base and use this anchor relation to align the same en-
tity from different source knowledge bases. And RpAlign
does not include the extra alignment component, and thus
it does not need to specify hyper-parameters that balance
multi-source losses. Second, we adopt new data augmen-
tation [27] idea to mine more information for entity align-
ment. We use pre-aligned entities to mine likely aligned
relations between two KGs and utilize them to enrich the
size of training triples to help obtain a higher-quality knowl-
edge embedding. So our model can enrich the knowledge
information of the two KGs by exchanging the triples from
alignment entities and the calculated likely alignment rela-
tions. The extra knowledge information can improve the
knowledge embedding quality obtained by the model’s train-
ing. The other purpose for our model’s sharing the same
relation’s knowledge information from different knowledge
bases is to make the consistency of the vector space distribu-
tion of the two knowledge bases as much as possible. This
makes much easier for our model to align and merge two
different knowledge bases. Third, the self-training[23] tech-
nique is also utilized to modify the composition of the train-
ing samples between different epochs to adjust the semantic
knowledge space dynamically. The self-training technique
can also add the new predicted alignment entity informa-
tion and enrich the knowledge information by exchanging
the new predicted alignment entity’s triples in different KGs.
Its brought knowledge information can improve the knowl-
edge embedding quality, leading to improved entity align-

ment task performance.
We evaluated RpAlign on two real-world, large-scale

datasets: DBP15K and DWY100K. Experimental results
show that our method significantly outperforms the state-
of-the-art methods. In terms of Hits@1, RpAlign model is
at least 5% better than the existing state-of-the-art methods.
Besides, additional visualization and interpretation experi-
ments were conducted to demonstrate the performance of
different components in the RpAlign framework. The main
contributions of this paper are as follows.

• We propose a novel framework to achieve entity align-
ment between different KGs through relation predic-
tion on entities. No extra hyper-parameter configu-
ration is required for our framework to balance the
losses of various sources in the existing methods. So
our model needs to adjust fewer hyper-parameter and
avoid performance loss from the failing manual setting
of the balance hyper-parameter.

• We propose two new data augmentation technologies:
the introduction of ‘anchor’ relation and parameter
sharing operation applied on likely aligned relations.
They can supplement the missing knowledge informa-
tion and make the information of the two KGs consis-
tent. Our model calibrates two KGs with more minor
differences by sharing knowledge triples on aligned
entities and likely aligned relations.

• The experimental results show that RpAlign signifi-
cantly outperforms the state-of-the-art models. The
experimental results also show that our model can also
get promising performance compared with other mod-
els when with less labeled training data, and the ex-
perimental result decreases much less than that of the
current state-of-art models.

The rest of this paper is organized as follows. We discuss
the related work about the major existing entity alignment
models and knowledge embedding methods in Section2. We
describe our RpAlign model in detail in the Section 3. In the
Section 4, we report the experimental details and analyze
the experimental results. We report our conclusion of this
paper’s work in the Section 5.

2. Related Work

In this section, we describe the related work that consists
of entity alignment and knowledge embedding.

2.1. Entity Alignment
The goal of entity alignment is to align the entities in

different KGs. The traditional methods rely on artificial
designed features, e.g., [13] employs the OWL properties
as features of the entities, [38] utilizes the concept of an-
notation as entity features. Since human-crafted features
are extremely experience-dependent and costly, the perfor-
mance of such methods is not stable. Besides, some early
works applies the ontology information to align entities,
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e.g., PROMPT [24], and anchor-prompt[25]. Among them,
anchor-prompt takes the set of paired term pairs in the two
ontologies as input, views the ontology as a graph structure
(categories as nodes and slots as edges). It generates a new
matching term pair (anchor) by analyzing the path between
the aligned entity pairs. However, the early ontology-based
methods did not embed the knowledge triple information to
align entities. Therefore, they could not use the semantic in-
formation of the KG triples, which is essential for the align-
ment of entities. Recent work proposes embedding-based
and GNN-based approaches to learn valuable features au-
tomatically. These methods embedded the mixed KG into
a unified semantic vector space. They designed a specific
entity alignment loss function to minimize vector distance
between aligned entities.

Embedding-based approaches use the relationship struc-
ture and attributes of the entities to obtain entity embed-
dings. For example, MTrasnE [7] adopts the TransE [4] to
learn the embeddings of two KGs independently and design
a mapping function to transform the embeddings between
two KGs. MTransE uses the vector distance method to pre-
dict the alignment entity. This method’s mapping function
maps the entity vectors in the source KG vector space to the
target KG vector space. The optimization goal of the model
is to minimize the vector distance between the aligned en-
tities. JAPE [31] applied the relationship triple and struc-
ture information to learn the embedding of two KGs. It
also leverages attribute information of entities to help learn
more accurate embeddings of entities and applies the vector
distance of entities to predict alignment entities. IPTransE
[46] is an iterative model that utilizes the parameter sharing
method on newly predicted entities to update knowledge em-
bedding. IPTransE model designs the specific ‘anchor’ rela-
tion as the translation bridge of aligned entities in two KGs.
The model designs alignment loss from the euclidean vector
distance between translated source entities and target enti-
ties. It applied PTransE [20] as the KG embedding module
to learn embeddings of two KGs. BootEA [32] utilizes self-
training also named bootstrapping idea to compute align-
ment loss by adding new predicted alignment entity pairs
to the origin training data. It also applies data augmenta-
tion methods on pre-aligned entitiy pairs to genearte cross-
KG triples to help solve the problem of limited training data.
NAEA [47] employs the attention mechanism to obtain the
neighbor-level features, applies the TransE model to get the
relation-level features. It finally makes the prediction based
on the similarity of the entity features. The OntoEA [41] is
the first method that jointly embeds topological structure and
knowledge information into a vector representation space for
entity alignment. OntoEA uses class hierarchy and class dis-
jointness to prevent false matches. Moverover, some work
has applied the human-in-the-loop idea in the task on knowl-
edge graph to reduce the work of the human labeling. For
instance, Berrendorf et al. [1] proposed an active-learning
based model on entity alignment task. They design labeling
strategies from existing heuristics methods and their intu-
itions to select the most informative examples for the entity

alignment model’s training.
GNNs have achieved promising performance in prac-

tical applications[42, 6, 19]such as recommendation sys-
tems, anomaly detection, traffic prediction, and social net-
work. Of course, some works have proposed GNN-based
models to solve the task of entity alignment. The GNN-
based methods build an entity network based on the rela-
tionship structure and acquire the entities’ embedding us-
ing GNNs (e.g., GCN [15] and GAT [36]). These models
first use the knowledge representation learning model and
the word vector to obtain the entity’s initial vector repre-
sentation. These methods then apply the relation structure
information of two kGs and regard the aligned entities as
the bridge connecting two KGs to construct an entity net-
work. They utilize the graph neural network to learn its
nodes’ embedding. They set the vector distance between
the aligned entities in two KGs as the objective optimiza-
tion function. Among them, the GCN-Align [39] constructs
weighted graphs based on the relationship between entities
and adopts the GCN to aggregate the entity’s neighbor in-
formation to get the entities’ embedding. Graph Matching
[43] first applied monolingual fastText[2] embeddings and
the word alignment method proposed in [16] to obtain word
representations for entities. It applies the GNN to model the
local matching information of entities to derive a graph-level
matching vector for entity alignment. MuGNN [5] designs
the multi-channel GNNs to encode KGs towards KG com-
pletion and pruning exclusive entities and further combines
features for obtaining high-quality embedding. The work
of AVR-GCN [45] applies the vectorized relational GCN
to combine the relationship features and the neighbor infor-
mation of the entities. The entities’ neighborhood structure
information in different knowledge bases is usually differ-
ent, which is a challenge for the GNN-based models to align
entities. AliNet [33] introduces distant neighbors to extend
the overlapping part of the neighbor structure. The attention
mechanism is also used to emphasize helpful distant neigh-
bors and reduce noise. Then It uses the gate mechanism
to aggregate the information of direct neighbors and distant
neighbors. DAEA [29] proposed a dual attention mecha-
nism that includes relation-aware attention and hierarchical
attention. The hierarchical attention mechanism can adap-
tively aggregate low-hierarchy and high-hierarchy informa-
tion to balance counterpart entities’ neighborhood informa-
tion and distinguish non-corresponding entities with similar
structures. Although the GNN-based models aggregate the
neighbor information around entities to aid entity alignment,
it does not fully utilize the semantic information of the rela-
tions among entities when constructing the network. Simul-
taneously, in real life, the KG’s network scale is massive,
the cost of constructing a large-scale network is enormous,
so the application scope of these methods is not vast.

Although these methods have achieved promising per-
formance in entity alignment tasks, there are still some short-
comings for the models. Most models need to adjust hyper-
parameters to balance the entity alignment loss and knowl-
edge embedding loss, which requires a lot of experimental
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adjustment and mature expert experience. For example, the
IPTransE [46] model also defines a special relation connect-
ing the alignment entities from two KGs. However, the IP-
TransE model still needs to optimize different loss functions
to achieve the entity alignment task and the knowledge repre-
sentation learning task. Our model regards the entity align-
ment task as judging that two entities satisfy the anchor re-
lations, which means our RpAlign model only need to op-
timize one loss function. Moreover, they are also affected
by limited training data size, which prevents them from im-
proving the quality of knowledge embedding.

BootEA and NAEA also apply the data augmentation
method and self-training method [23] to help solve the prob-
lem of insufficient data. They just employ these two methods
on pre-aligned entities to generate external training data but
not on likely aligned relations. They do not fully use the
relation structure information in the mixed KG, especially
information from likely aligned relations. So it reduces the
quality of knowledge embedding of the mixed KG. Besides,
these models only consider the difference of aligned entities
of two KGs the difference without considering the difference
of relations. Embedding-based methods, such as BootEA
and JAPE, share the knowledge information among aligned
entity pairs; that is, aligned entities share neighbor node in-
formation to realize the same neighbor information of entity
nodes. GNN-based methods such as AliNet, DAEA design a
unique attention mechanism to aggregate neighbor node in-
formation at different distances to alleviate entities’ incon-
sistent neighbor structure. Aiming to solve the problem, our
model proposed data augmentation technologies to alleviate
the challenge caused by two KGs’ different relational struc-
ture information.

2.2. Knowledge Embedding
Knowledge embedding aims to project entities and re-

lations in the KB into a low-dimensional vector space and
used in other downstream tasks. Nowadays, the major exist-
ing knowledge embedding methods design a score function
for triples in KB, which measures the existence of triples.

Traditional knowledge embedding models, such as
TransE [4], TransR [21], TransH[40], and TransD [14], re-
gard triple as geometric relations in vector space, and equip
many extra components to enhance the constraints. Unlike
these models, some recent work tries to model triples by
introducing various functions, e.g., three-way interactions
[44], complex space [34], and convolution [10]. In partic-
ular, RotatE [30] assumes that the vector of the head en-
tity, relation, and tail entity in any triple (ℎ, 𝑟, 𝑡) obeys the
rule: 𝐡◦𝐫 = 𝐭, so the score function of the model is de-
fined as 𝑓𝑟(𝐡, 𝐭) = − ‖𝐡◦𝐫 − 𝐭‖2, where ◦ is the Hadamard
(element-wise) product operation. RotatE can effectively
model three relation patterns: symmetric/antisymmetric, in-
version, and composition. RpAlign introduces the ‘anchor’
relation into the mixed KG and generates many triples with
symmetric/antisymmetric patterns, so we choose to leverage
the RotatE model’s ability to help embed the mixed KG.

3. Methodology

In this section, we first define the problem of entity align-
ment and then describe RpAlign in detail.

KGs store knowledge as triple (ℎ, 𝑟, 𝑡), where ℎ and 𝑡 rep-
resents head and tail entities, and 𝑟 denotes the relation. We
formalize a KG as 𝐾𝐺 = (𝐸,𝑅, 𝑇 ), where 𝐸, 𝑅, 𝑇 are
the sets of entities, relations and triples. We suppose that
𝐾𝐺𝑠 = (𝐸𝑠, 𝑅𝑠, 𝑇𝑠) and 𝐾𝐺𝑡 = (𝐸𝑡, 𝑅𝑡, 𝑇𝑡) are two KGs to
be aligned, and 𝐴 = {(𝑒𝑠𝑖, 𝑒𝑡𝑖)|𝑒𝑠𝑖 ∈ 𝐸𝑠, 𝑒𝑡𝑖 ∈ 𝐸𝑡}

𝑚
𝑖=1

rep-
resents the set of pre-aligned entity pairs, where 𝑒𝑠𝑖 and 𝑒𝑡𝑖
indicate two prior aligned entities in two KGs, respectively,
𝑚 is the number of prior aligned entity pairs. The goal of
entity alignment task is to predict the remaining unknown
aligned entity pairs set𝐴′ = {(𝑒′

𝑠𝑖
, 𝑒′

𝑡𝑖
)|𝑒′

𝑠𝑖
∈ 𝐸𝑠, 𝑒

′
𝑡𝑖
∈ 𝐸𝑡}

𝑛
𝑖=1

, where 𝑒′
𝑠𝑖

and 𝑒′
𝑡𝑖

indicate two entities to be aligned in two
KGs, respectively.

Our model comprises the following modules: data
augmentation module, knowledge embedding, self-training
learning module. Our data augmentation module mines
more knowledge triples from the known alignment entities
and relations to help the model learn more accurate knowl-
edge representations. Besides, our model shared the knowl-
edge information of aligned relationships and entities to
make the two KG’s embedding vector space consistent. Our
model uses the knowledge embedding module to learn vec-
tor representations of entities and relations and predict new
aligned entity pairs. As shown in Figure 1, our proposed
RpAlign regards the pre-aligned entities as the bridge con-
necting two KGs and merge two KGs into one KG. We in-
troduce a new relation 𝑟𝑎 named ‘anchor’ to associate two
aligned entities as a new triple into the new mixed KG.
Specifically, the triple (ℎ, 𝑟𝑎, 𝑡) with the ‘anchor’ relation
means that the head entity ℎ and the tail entity 𝑡 correspond
to the same real-world object. The knowledge embedding
module define various score functions to measure the exis-
tence of each triple in KG. Hence, we can measure the possi-
bility of alignment for two entities by computing the value of
𝑓𝑟𝑎

(𝐞𝑠, 𝐞𝑡). Our model’s self-training module continuously
discovers and updates the set of aligned entity pairs from the
test set. Combined with the data augmentation module to
supplement and update the missing knowledge triples, our
model can iteratively retrain our model to obtain a more ac-
curate model with better performance.

3.1. Data Augmentation
As shown in Figure 1, we adopt data augmentation tech-

nology to produce more cross-KG supervised triples to solve
the issue of limited training data. The data augmentation
technology of our model can fully exchange the knowledge
information of two knowledge bases. So that it can help
supplement the missing knowledge information of a single
knowledge base and assist the model in learning more accu-
rate knowledge representation. We equip RpAlign with the
following data augmentation approaches to generate super-
vised cross-KG triples for model training.
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Figure 1: The visualization of SARP framework and how three data augmentation methods combined with self-training technology
produce new triples. 𝐾𝐺𝑠 and 𝐾𝐺𝑡 are two different KGs. The red dashed lines indictae the ‘anchor’ relation.

3.1.1. Triples From Likely Aligned Relations

Because the triple knowledge information of the same
relation in different entities is different, the semantic infor-
mation learned by the same relation in different KG vector
spaces is also different. Therefore, it is difficult to align the
same entities in two KGs with different semantics for the
same relations. In addition, the lack of knowledge informa-
tion reduces the quality of the representation vector of the
entire KG. To solve the problem, our model adopts the shar-
ing operation on the same relations to make two KGs carry
the same knowledge information as possible and discover
more missing knowledge triples.

We first infer the likely aligned relations on two KGs that
may correspond to the same relationship in the real world.
These relations assist our model to exchange triple informa-
tion related with these alignment relations between the two
KGs. On the one hand, alignment relations have identical
triples, which can achieve the goal of learning knowledge
vectors with the same semantics for aligned relations. Fur-
thermore, the similarity of vectors of aligned relations can
help the model calibrate two KGs’ vector space.

RpAlign then calculates the probability of how a relation
in one KG can be replaced by another relation in a different
KG to obtain its possible aligned relations. The probability
that the relation 𝑟𝑠 in 𝐾𝐺𝑠 can be replaced by relation 𝑟𝑡 in
𝐾𝐺𝑡 depends on the number of triples they share. We count
the number of triples they share as follows:

𝑐(𝑟𝑠, 𝑟𝑡) =𝑐𝑜𝑢𝑛𝑡({(ℎ𝑠, 𝑟𝑠, 𝑡𝑠)|(ℎ𝑠, 𝑟𝑠, 𝑡𝑠) ∈ 𝑇𝑠,

(ℎ𝑡, 𝑟𝑡, 𝑡𝑡) ∈ 𝑇𝑡, (ℎ𝑠, ℎ𝑡) ∈ 𝐴, (𝑡𝑠, 𝑡𝑡) ∈ 𝐴})
(1)

where A is the set of pre-aligned entity pairs. For a relation
pair (𝑟𝑠, 𝑟𝑡), where 𝑟𝑠 ∈ 𝑅𝑠 and 𝑟𝑡 ∈ 𝑅𝑡, we calculate the
probability that relation 𝑟𝑡 is the replacement of relation 𝑟𝑠
as follows:

𝑝𝑎𝑟(𝑟𝑡|𝑟𝑠) =
𝑐(𝑟𝑠, 𝑟𝑡)∑

𝑟𝑖∈𝑅𝑡
𝑐(𝑟𝑠, 𝑟𝑖)

. (2)

RpAlign brings about the set of aligned relation pairs for the

relations in 𝐾𝐺𝑠:

𝑅𝐴𝑠
= {(𝑟𝑠, 𝑟𝑡)|𝑟𝑠 ∈ 𝑅𝑠, 𝑟𝑡 = max

𝑟𝑖∈𝑅𝑡

𝑝𝑎𝑟(𝑟𝑖|𝑟𝑠)}, (3)

where 𝑅𝑠 and 𝑅𝑡 are sets of the relations of 𝐾𝐺𝑠 and 𝐾𝐺𝑡.
We also calculte 𝑝𝑎𝑟(𝑟𝑠|𝑟𝑡) which represents the probability
that 𝑟𝑠 is the replacement of 𝑟𝑡, and generate the aligned re-
lation pairs 𝑅𝐴𝑡

for 𝐾𝐺𝑡. Because different languages have
inconsistent definitions of the same relationship, some re-
lationships in the source knowledge base may correspond
to multiple relationships in the target knowledge base. To
avoid the above problem introducing too much noise, our
model finds a relationship with the highest alignment proba-
bility as an alignment relationship in the target KG for each
relationship in the source KG.

We can further replace the relations with aligned rela-
tions in their relevant triples to generate supervised cross-
KG triples. Given each pair of aligned relations (𝑟𝑠, 𝑟𝑡) ∈

𝑅𝐴𝑠
, we replace relation 𝑟𝑠 with relation 𝑟𝑡 in its relevant

triples to produce the following supervised triples:

𝑇 𝑠
𝑟
= {(ℎ, 𝑟𝑡, 𝑡)|(𝑟𝑠, 𝑟𝑡) ∈ 𝑅𝐴𝑠

, (ℎ, 𝑟𝑠, 𝑡) ∈ 𝑇𝑠}. (4)

We can also obtain more supervised cross-KG triples 𝑇 𝑡
𝑟

from likely aligned relations on 𝐾𝐺𝑡. RpAlign adds these
supervised cross-KG triples set 𝑇 𝑠

𝑟
and 𝑇 𝑡

𝑟
to the two KGs’

original training triples.
The information of these triples can help supplement a

single knowledge base’s missing information. Some related
entities can obtain more knowledge information directly so
that our model can learn more accurate entity embedding
for entity alignment tasks. The main work of these triples
is make sure the same knowledge information for likely
‘aligned’ relations in two KGs, which assist in calibrating
embedding of two KGs by relations alignment.

3.1.2. Triples From ‘Anchor’ Relations

We introduce the ‘anchor’ relation 𝑟𝑎 as the relation for
aligned entities on two KGs. So we can generate the fol-
lowing supervised triples that can be added to the original
training triples:
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𝑇𝑎 = {(𝑒𝑠, 𝑟𝑎, 𝑒𝑡) ∪ (𝑒𝑡, 𝑟𝑎, 𝑒𝑠)|(𝑒𝑠, 𝑒𝑡) ∈ 𝐴}, (5)

where 𝐴 is the set of aligned entity pairs, 𝐸𝑠 and 𝐸𝑡 are set of
entities of two KGs. Hence, the number of triples with ‘an-
chor’ relation in our training data is larger than that of all en-
tities on two KGs, which alleviates the problem of the limited
pre-aligned entity pairs. These triples can make the model
learn the score function for the anchor relation. The model
can apply this score function of the relation to measure the
existence of aligned entities. Thus, RpAlign would produce
new triples with the three relation patterns: symmetric/anti-
symmetric, inversion, and composition. The triples gener-
ated by the anchor relation have multiple relation patterns,
which brings challenges for our model to learn the scoring
function of the relation.

3.1.3. Triples From Aligned Entities

Because the triple knowledge information of the same
entity in two KGs is different, the semantic information
learned by the same entity in different KG vector spaces is
also different. Therefore, it is difficult to align these entities.
In addition, the lack of knowledge information reduces the
quality of the representation vector of the entire knowledge
base. So our model adopts the sharing operation on the same
entity in two KGs to help calibrate the representation vector
spaces of two KGs.

Similar to BootEA [32], we also apply parameter shar-
ing [11] operation on aligned entities by exchanging them
in their relevant triples to generate more supervised triples.
The operation can keep the semantic consistency of aligned
entities in the unified knowledge embedding vector space.
Given a pair of aligned entities (𝑒𝑠, 𝑒𝑡) ∈ 𝐴, we can produce
the new following triples:

𝑇𝑠𝑤 = {(𝑒𝑡, 𝑟, 𝑡)|(𝑒𝑠, 𝑟, 𝑡) ∈ 𝑇𝑡} ∪ {(ℎ, 𝑟, 𝑒𝑡)|(ℎ, 𝑟, 𝑒𝑠) ∈ 𝑇𝑠}

∪ {(𝑒𝑠, 𝑟, 𝑡)|(𝑒𝑡, 𝑟, 𝑡) ∈ 𝑇𝑠} ∪ {(ℎ, 𝑟, 𝑒𝑠)|(ℎ, 𝑟, 𝑒𝑠) ∈ 𝑇𝑡},

where 𝑇𝑠 and 𝑇𝑡 are triples of 𝐾𝐺𝑠 and 𝐾𝐺𝑡, respectively.
The triples 𝑇𝑠𝑤 can be added to origin training triples to cal-
ibrate embeddings of entities on two KGs. These triples are
added to the model to ensure that aligned entities have the
same relational structure information in the merged KG.

3.2. Learning Knowledge Embedding
After the RpAlign framework obtains the external triples

generated by the data augmentation module, RpAlign uses
the knowledge embedding module to learn embeddings of
entities and relations in the mixed KG. According to sec-
tion 3.1.2, RpAlign introduces the relation 𝑟𝑎 as the relation
between two aligned entities on the mixed KG, which gen-
erates the external triples with symmetric/antisymmetric re-
lation pattern. Because pRotatE can more effectively model
symmetric/antisymmetric relation patterns than other exist-
ing knowledge embedding models. RpAlign chooses the
pRotatE as its knowledge embedding module. pRotatE is a
variant of RotatE model, modulus of the entity embeddings

are constrained: |𝐡𝑖| = |𝐭𝑖| = 𝐶 , where 𝐡𝑖 and 𝐭𝑖 denote head
and tail entities, and the symbol | ⋅ | denotes the cardinality
of a vector. It define the distance function for each triple
(ℎ, 𝑟, 𝑡): 𝑑𝑟(𝐡, 𝐭) = ‖𝐡◦𝐫 − 𝐭‖2. The optimization objective
is to minimize the distance function values of all triples. The
knowledge embedding module of RpAlign adopts the neg-
ative sampling technique to optimize the model effectively.
The final loss function of the knowledge embedding module
for RpAlign is:

𝐿 = − log 𝜎(𝛾 − 𝑑𝑟(𝐡, 𝐭))

−

𝑛∑

𝑖=1

𝑝(ℎ′
𝑖
, 𝑡′
𝑖
|ℎ, 𝑟, 𝑡) log 𝜎(𝑑𝑟(𝐡′𝑖, 𝐭

′
𝑖
) − 𝛾),

(6)

where 𝜎 is the sigmoid function, 𝛾 is a fixed margin, and
𝑝(ℎ′

𝑖
, 𝑡′
𝑖
|ℎ, 𝑟, 𝑡) is the distribution that knowledge embedding

module sample negative triples.

3.3. Predicting New Aligned Entities
After obtaining knowledge embedding of the mixed KG,

RpAlign uses embedding of entities and ‘anchor’ relation 𝑟𝑎
to predict the relations between entities and then applies the
relation prediction results to find aligned entities. For each
unaligned entity 𝑒𝑠 in 𝐾𝐺𝑠, RpAlign adopts the following
formula to predict the probability distribution of potentially
corresponding alignment entity in 𝐾𝐺𝑡:

𝑃 ((𝑒𝑠, 𝑒𝑡) ∈ 𝐴′|𝑒𝑠 ∈ 𝐸𝑠, 𝑒𝑡 ∈ 𝐸𝑡) =
exp 𝑓𝑟𝑎 (𝐞𝑠, 𝐞𝑡)∑

𝑒𝑖∈𝐸𝑡
exp 𝑓𝑟𝑎 (𝐞𝑖, 𝐞𝑡)

,

(7)

where 𝐸𝑡 is the set of entities in 𝐾𝐺𝑡 and 𝑟𝑎 is the ‘anchor’
relation between unaligned entities.

3.4. Improved Self-Training
As shown in Figure 1, we also adopt the self-training

paradigm to help solve the issue of limited training data. The
concept of self-training is to label the unlabeled data from
the prediction results after each round of training, and then
add new labeled data to the origin training data to retrain the
model at the next training iteration. We perform one-to-one
entity alignment labeling on unaligned entities in two KGs.
For each unaligned entity 𝑒𝑠 in 𝐾𝐺𝑠, we find its most likely
aligned entity 𝑒𝑡 from 𝐾𝐺𝑡 by the value of 𝑓𝑟𝑎 (𝐞𝑠, 𝐞𝑡). Then
RpAlign can produce the following new aligned entity pairs:

𝐴𝑛𝑒𝑤 = {(𝑒𝑠, 𝑒𝑡)|𝑒𝑠 ∈ 𝐸𝑠, 𝑒𝑡 = max
𝑒𝑡∈𝐸𝑡

𝑓𝑟𝑎
(𝐞𝑠, 𝐞𝑡)}. (8)

Note that conflicts may happen during the labeling process,
such as (𝑒1, 𝑒𝑡) and (𝑒2, 𝑒𝑡) both exist in 𝐴𝑛𝑒𝑤, which also
means there is a wrong entity alignment pair. Hence, the
conflicts will introduce error training data, which in turn
will reduce the effectiveness of RpAlign. So we would like
to choose the one with a higher probability of presence to
solve the above conflicts. Formally, we compute the follow-
ing probability difference to solve the conflict:

Δ(𝑒1, 𝑒2, 𝑒𝑡) = 𝑓𝑟𝑎
(𝐞1, 𝐞𝑡) − 𝑓𝑟𝑎

(𝐞2, 𝐞𝑡). (9)
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Δ(𝑒1, 𝑒2, 𝑒𝑡) > 0 means that the existence probability of
aligned entity pair (𝑒1, 𝑒𝑡) is larger than (𝑒2, 𝑒𝑡), which in-
dicates that we should choose (𝑒1, 𝑒𝑡) to add to 𝐴𝑛𝑒𝑤. Be-
sides, after each round of training, the self-training learning
module will update the aligned entities in the target KG cor-
responding to each source KG’s entities in the test set. If
the newly predicted alignment entity pair’s scoring function
value is higher than that of the old alignment entity pair for
an entity in the source KG, the target alignment entity cor-
responding to this entity will be updated.

We sort the newly obtained aligned entity pairs in 𝐴𝑛𝑒𝑤

by using the value of 𝑓𝑟𝑎 (𝐞𝑠, 𝐞𝑡) for each entity pair (𝑒𝑠, 𝑒𝑡),
and we preserve the top confident 𝑁% of aligned entity pairs
in 𝐴𝑛𝑒𝑤 and drop the others. 𝑁 is the hyper-parameter our
model sets to avoid adding much noise at the early self-
training phase. Before self-training starts, the KG’s embed-
ding learned by the model contains insufficient knowledge
information, so the newly predicted aligned entity pair set
contains more errors. Therefore, in the early stage of the
self-training module, N will be set to be minor, and those
new predicted alignment entity pairs with a higher possibil-
ity are added to the known alignment entity pair set. After
our model then learns more accurate KG embedding, N is set
larger to generate more triples to improve the performance.

Unlike BootEA [32], we do not directly use the new ob-
tained aligned entity pairs to calculate alignment loss for op-
timal embedding. The purpose of designing the self-training
module of our model is to use the newly acquired aligned
entity pairs to dig out more unknown knowledge informa-
tion and then generate more knowledge triples. So, RpAlign
combines the self-training method with data augmentation
methods as described in Section 3.1, that adds newly com-
puted aligned entity pairs to original ones to generate more
triples for the next training iteration so that RpAlign can iter-
atively improve the quality of knowledge embedding. These
generated triples are add to help supplement some miss-
ing knowledge information that a single KG may miss, so
the model can learn knowledge embedding with much more
knowledge information. These triples are also utilized to
calibrate aligned entities’ embedding by making them share
the same relational structure information. Moreover, since
the relationship between the two knowledge bases is not
one-to-one, when the number of alignment entities is small,
there is a certain chance that the triples generated by the
alignment relations in the data augmentation module may be
wrong. The self-training learning mechanism can continu-
ously generate new shared alignment entity pairs, improving
the data augmentation modules’ accuracy of the new gener-
ated triples. It means that the self-training module can re-
duce the noise from the data augmentation module. In sum-
mary, our RpAlign’s self-training module can help the data
augmentation module generate more cross-KG triples. It can
also alleviate the noise problem caused by the few labeled
data and improves the data’s quality generated by the data
augmentation module.

4. Experiments

We used PyTorch as a deep learning framework to de-
velop RpAlign and conducted experiments on a computer
with a Tesla V100-PCIE-32GB GPU and 256 GB memory.

4.1. Datasets
In order to evaluate our proposed RpAlign and its

variant model on various entity alignment tasks, we use
the following two datasets DBP15K and DWY100K in
the experiments: DBP15K [31] is built by using multi-
lingual versions of the KG named DBPedia. DBP15K
includes three datasets: DBP𝑍𝐻−𝐸𝑁 (Chinese-English),
DBP𝐽𝐴−𝐸𝑁 (Japanese-English), and DBP𝐹𝑅−𝐸𝑁 (French-
English). Each dataset contains 15 thousand aligned entity
pairs, which are reference alignment links from entities of
the English version to the other three versions. DWY100K

[32] is created from three KGs: DBPedia, YAGO, and Wiki-
data. It includes two datasets DBP-WD, DBP-YG. The DBP-
WD contains 100 thousand aligned entity pairs that are ex-
tracted from reference alignment links from DBPedia to
Wiki. The DBP-YG includes 100 thousand aligned entities
pairs from reference alignment links between entities of DB-
Pedia and YAGO. Table 1 summarizes the statistics of the
experiments datasets.

4.2. Implementation and Parameter Settings
For all datasets, we set the dimension of knowledge em-

beddings as 500. We sample 32 negative triples for each
positive triple and set 𝛾 as 24 and 𝛼 as 1.0 for the knowledge
embedding module of RpAlign. We set the number of train-
ing steps in each training iteration for DBP15K as 250,000,
and 100,000 for DWY100K. The training batch size in each
step for DBP15K and DWY100K is 128 and 1024, respec-
tively. The training iteration number is 100 for two datasets.
We configure the learning rate as 1×10−4 during the first two
training iterations, 2 × 10−5 range from 3rd to 20th training
iteration, 4 × 10−6 from 21st to 100th iteration.

To leverage the self-training paradigm in our training
process. We choose top confident 𝑁% of the new aligned
entity pairs predicted from the previous training iteration to
retrain our model. In particular, 𝑁 is set to 0 during the first
three training iterations. From the 4th to the 12th training
phase, 𝑁 is set as {20, 30, 40, 50, 60, 70, 80, 90, 100}, re-
spectively, and from 13th to 100th training iteration, 𝑁 is
100. N’s value is set from small to large during the train-
ing iterations because the knowledge embedding is not good
enough at the beginning of the training process. So that
RpAlign can avoid introducing too much noise to the origi-
nal training data.

Following JAPE [31], we use Hits@1, Hits@10, Mean
Reciprocal Rank (MRR) as metrics for comparison. Hits@k
is the proportion of correct answers ranked in top-𝐾 , espe-
cially Hits@1 can be viewed as accuracy metric. MRR is the
average of the reciprocal ranks of results. The higher values
of the three metrics indicate better entity alignment perfor-
mance. As in the work of JAPE, we selected 30% reference
alignment links as the training data.
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Table 1

Statistics of the datasets.

DataSet
DBP𝑍𝐻−𝐸𝑁 DBP𝐽𝐴−𝐸𝑁 DBP𝐹𝑅−𝐸𝑁 DBP-WD DBP-YG
Chinese English Japanese English French English DBpedia Wikidata DBpedia YAGO

#Ent 66,469 98,125 65,744 95,680 66,858 105,889 100,000 100,000 100,000 100,000
#Rel 2,830 2,317 2,043 2,096 1,379 2,209 330 220 302 31
#Attr 8,113 7,173 5,882 6,066 4,547 6,422 351 729 334 23
#Rel.tri 153,929 237,674 164,373 233,319 192,191 278,590 463,294 448,774 428,952 451646
#Att.tri 379,684 56,755 354,619 497,230 528,665 576,543 381,166 789,815 451,646 118,376

For a ablation study to discover the impact about data
augmentation mthods that our model applied, we first de-
signed two variants of RpAlign, named wo/align-relation,
and wo/align-entity. wo/align-relation is an implementa-
tion of RpAlign that learns knowledge embeddings without
using externally generated triples from likely aligned rela-
tions described in 3.1.1. wo/align-entity is an implemen-
tation of RpAlign that learns knowledge embeddings with-
out using externally generated triples from aligned entities
described in 3.1.3. To discover the impact of self-training
described in 3.4, we designed variants named wo/self-

training that do not applied with the self-training mecha-
nism. For a ablation study to explore the impact of knowl-
edge embedding module, we also use the TransE, Dist-
mult, and ComplEx as the knowledge embedding mod-
ule of RpAlign named repl.TransE, repl.Distmult and
repl.ComplEx. Moreover, for a ablation study to discover
the impact of introduction of ‘anchor’ relation described in
3.1.2, we designed variants named repl.cos. repl.cos pre-
dicts new aligned entities by using the cosine similarity be-
tween entities instead of using relation prediction results be-
tween entities described in 3.1.2. We ran RpAlign and its
variants five times and reported the average as the results.

4.3. Baseline Methods
To evaluate our framework, we choose the current five

state-of-art methods as baselines, where the differences have
been discussed in Section 2. The functionality of the main
modules and their implementation details are following:

• MTransE [7] separately projects two KGs into two
vector spaces by TransE, and designs a map function
for translating entities and relations between two KGs.

• IPTransE [46] adds relational path information to the
knowledge embedding model. It is an iterative ap-
proach that also applies the parameter sharing method
on the newly predicted aligned entities.

• JAPE [31] combine two KGs to make a mix one by
the aligned entity pairs. It applies relational structure
information and attribute information to obtain a uni-
fied semantic embedding of the mixed KG for entity
alignment.

• BootEA [32] adopts the bootstrapping idea to itera-
tively labels likely aligned entity pairs to alleviate the
limited training data, and reuse these new predicted

aligned entity pairs to update alignment loss for more
accurate knowledge embedding.

• NAEA [47] utilizes neighborhood subgraph-level in-
formation of entities and uses attention mechanism to
get neighborhood-level features of entities. It adopts
the relational structure features and neighborhood-
level features to get a unified semantic embedding for
entity alignment.

• AliNet [33] introduces distant neighbors to expand the
overlap between its neighbor structures, and it uses an
attention mechanism to highlight useful distant neigh-
bors and reduce noise. And it proposes a relationship
loss function to learn the embedding of entities for the
entity alignment task.

• DAEA [29] proposed the relation-aware graph atten-
tion and hierarchical attention. The relation-aware
graph attention selectively aggregate and form multi-
hierarchy neighborhoods. The hierarchical attention
adaptively aggregates low and high hierarchy infor-
mation. It helps balance the neighborhood informa-
tion of corresponding entities and distinguish non-
corresponding entities with similar structures.

We directly refer to the results of baselines from their
papers, because we used the same datasets and we set the
same proportion of seed alignment entity in experiments.

4.4. Result Analysis
The results of entity alignment on DBP15K and

DWY100K are listed in Table 2. We observe that the
RpAlign outperforms all baselines on all five datasets.
Specifically, RpAlign significantly improves performance
on Hits@1. Compared to the best baseline NAEA [47],
the RpAlign improves Hits@1 by at least 8% on the three
datasets included by DBP15K and by 6% on the two datasets
belonging to DWY100K. Similarly, RpAlign could also get
higher performance than the baseline methods on the two
metrics, Hits@10 and MRR.

Besides, we observe that MTransE [7] gets the worst
entity alignment performance because MTrasnE separately
projects two KGs into two vector spaces, and it leads to infor-
mation loss when translating entities. Besides, MTRansE ig-
nores the knowledge differences of entities and relationships
in different knowledge bases compared with other models.
Moreover, its learned entity vector distribution of the em-
bedding representation space of the two learned knowledge
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Table 2

Comparison results on DBP15K and DWY100K.

Model
DBP𝑍𝐻−𝐸𝑁 DBP𝐽𝐴−𝐸𝑁 DBP𝐹𝑅−𝐸𝑁 DBP-WD DBP-YG

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 30.83 61.47 0.364 27.86 57.45 0.349 24.41 55.55 0.335 28.12 51.95 0.363 25.15 49.29 0.334
IPTranse 40.59 73.47 0.516 36.09 69.26 0.474 33.30 68.54 0.451 34.85 63.84 0.447 29.74 55.76 0.386
JAPE 41.18 74.46 0.490 36.25 68.50 0.476 32.39 66.68 0.430 31.84 58.88 0.411 23.57 48.41 0.320

BootEA 62.94 84.75 0.703 62.23 85.39 0.701 65.30 87.44 0.731 74.79 89.94 0.801 76.10 89.44 0.808
NAEA 65.01 86.73 0.720 64.14 87.27 0.718 67.32 89.43 0.752 76.70 91.79 0.817 77.86 91.25 0.821
AliNet 53.90 82.60 0.628 54.90 83.10 0.645 55.20 85.20 0.657 69.00 90.80 0.766 78.60 94.30 0.841
DAEA 56.76 88.30 0.677 57.59 89.23 0.683 58.04 91.16 0.695 - - - - - -

RpAlign 74.78 88.86 0.794 72.96 89.02 0.782 75.22 89.96 0.801 82.64 93.36 0.862 83.84 94.51 0.872

Gain 9.77 2.13 0.074 8.82 1.75 0.064 7.90 0.53 0.049 5.94 1.57 0.045 5.98 3.26 0.051

Table 3

Results of ablation experiment.

DBP(zh) DBP(ja) DBP(fr) DBP-WD DBP-YG
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

RpAlign 74.78 88.86 0.794 72.96 89.02 0.782 75.22 89.96 0.801 82.64 93.36 0.862 83.84 94.51 0.872
wo/align-relation 63.19 81.38 0.690 57.40 78.27 0.639 59.71 79.41 0.659 71.75 87.17 0.767 77.39 89.84 0.812
wo/align-entity 68.35 85.93 0.742 66.08 84.83 0.722 66.52 85.31 0.727 73.41 87.08 0.778 78.62 91.53 0.828
wo/self-training 54.74 80.09 0.636 54.60 80.13 0.634 55.05 83.00 0.646 65.61 85.30 0.724 68.26 88.81 0.753

repl.cos 64.29 81.57 0.697 69.02 86.31 0.748 70.29 88.24 0.763 79.28 92.40 0.837 81.60 94.84 0.816
repl.TransE 70.88 87.09 0.762 63.24 87.53 0.714 64.46 89.03 0.644 78.69 91.57 0.786 74.60 92.97 0.807

repl.Distmult 16.69 23.53 0.190 18.30 22.84 0.200 14.29 19.34 0.161 63.26 78.07 0.685 40.60 49.87 0.406
repl.ComplEx 20.06 28.90 0.229 27.88 31.30 0.291 18.58 23.70 0.205 62.30 75.94 0.668 36.28 52.07 0.413

bases is quite different. Therefore, it is difficult for the model
to learn a good translation function that can accurately trans-
form all entity vector spaces. Besides, few training triples is
available, and the learned knowledge vector is not accurate
enough, which also affects the model’s performance.

IPTransE [46] and JAPE [31] get better performance be-
cause they applies additional information for knowledge em-
bedding. IPTransE adds additional path information to learn
embedding of entities and performs parameter sharing oper-
ations on the entity to solve the difference of aligned entities
on two KGs. JAPE adds the attribute information of entity
to learn the embedding of entities for knowledge alignment.
The entity alignment model is a challenge that difference of
knowledge information of entities in different KGs. GNN-
based models such as AliNet [33] and DAEA [29] use graph
attention mechanisms to aggregate the entity’s neighbor in-

formation to solve the problem. For example, DAEA de-
signs a dual attention mechanism in which hierarchical atten-
tion adaptively aggregates low-hierarchy and high-hierarchy
information to balance the corresponding entity’s neighbor-
hood information. In addition to using parameter sharing
on entities to realize information sharing to solve the dif-
ference of entities on two KGs, BootEA and NAEA also
use a self-training learning mechanism to alleviate insuffi-
cient training data. For example, BootEA [32] adopts the
bootstrapping idea, and it iteratively adds new likely aligned
entities to compute entity alignment loss to help calibrate
the knowledge embedding of two KGs. So they outperform
AliNet and DAEA. NAEA [47] could achieve the highest
results except for RpAlign. Because it combines relation-
level and neighborhood-level information to obtain a better
knowledge embedding.
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Figure 2: Visualization of impacts of data augmentations and sensitivity study on DBP𝑍𝐻−𝐸𝑁
1. (a) is the the changes in numbers

of generated triples. (b) is the changes of performance.
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The reasons why our model outperforms the baseline
models are as follows: First, the data augmentation module
and the self-training learning module of our model supple-
ment external knowledge information for two KGs as much
as possible. It can alleviate the problem of insufficient la-
beled training data. Second, our data augmentation technol-
ogy also makes the information of the two knowledge spaces
consistent. Unlike other models only solve the differences
in the alignment entities in different knowledge bases. Our
model also considers the differences in the alignment rela-
tions in two KGs. Our model’s obtained entity embedding
in the two knowledge bases are more consistent and easier
to align. Third, different loss functions bring different learn-
ing goals for the model’s embedding parameter learning, and
the baselines must balance the two loss functions that would
train the model with different purposes. Our model only
has a knowledge representation loss function to learn, which
avoids performance loss caused by the incorrect setting of
hyper-parameters that balance different losses.

4.5. Ablation Study
4.5.1. Impacts of Data Augmentation

To explore the importance of the data augmentation
module of RpAlign, we conducted the following ablation ex-
periment. We removed the three data augmentation module
described in 3.1.1, 3.1.2 and 3.1.3 from RpAlign. The re-
sults of the experiment are shown in Table 3, and we have
following observations from it:

First, We can observe that RpAlign can obtain an average
of 18.98% on Hits@1 improvement compared to wo/align-
relation, and average 15.75% higher on MRR. The reason is
that the cross-KG triples generated by parameter sharing on
likely aligned relations can help calibrate embedding of two
KGs. First, the sharing operation on calculated alignment re-
lationship can make consistent for vector distribution of the
relations between two KGs. It can help calibrate the embed-
ding of relations on two KGs, which then can help calibrate
the embedding of entities. Second, these alignment relation
sharing operations can supplement missing knowledge infor-
mation for a single KG so that our model can get more ac-
curate knowledge embedding. Taking the DBP𝑍𝐻−𝐸𝑁 en-
tity alignment task as an example, the number of knowledge
triples that these relationships bring is about 89𝑘, and the
ratio of the original triples in the source KG is about 0.57.
This means that these alignment relations can greatly help
calibrate and overlap of two knowledge embedding spaces.

Second, RpAlign can achieve about 7.20% on Hits@1
improvement compared with repl.cos, and average 6.65% on
MRR. If the cosine similarity is used to find the source en-
tity’s alignment target entity, there are some noise entities
with a similar cosine distance to the target alignment entity.
These noise entities increase the model’s difficulty identify-
ing the correct target alignment entity from the source entity.
However, our model learns a special anchor relationship to
describe entity alignment, i.e., modeling the ’anchor’ rela-
tionship by introducing learnable triplet scoring functions.
This score function, driven by alignment loss, can estab-

lish nonlinear mappings for the aligned entities, which is
more robust and has stronger generalization performance.
Therefore, the alignment operation of our model can con-
sider more complicated alignment entity pair.

Third, RpAlign can achieve 10.42% on Hits@1 improve-
ment compared to wo/align-entity, average 8.32% higher
on MRR. This is because RpAlign model generates new
triples to ensure that the aligned entities have exactly the
same structural information, and these triples complement
the missing knowledge for a single knowledge base. Taking
the DBP𝑍𝐻−𝐸𝑁 entity alignment task as an example, at the
20th training iteration, the number of generated triples from
aligned entities is about 400𝑘. It is more than two times over
origin triples that two KGs originally contained.

4.5.2. Impacts of Improved Self-Training

To better understand the effects of our improved self-
training method, we conduct the ablation experiment and
show it on the table 3. We can have the following obser-
vations from the comparison results:

From the comparison result between the RpAlign and
wo/self-training, we can found that self-training can achieve
about 31.13% at Hits@1 , 9.25% at Hits@10 and 21.40% at
MRR. The reason is that self-training technology can help
RpAlign learn the embedding of the mixed KG from those
un-aligned entities’ knowledge triples. It indicates the im-
portance of the unknown information contained in the un-
aligned entity pairs. It shows that self-training is a useful
method for entity alignment task to deal with the problem of
few labeled training data.

The purpose of our model‘s self-training module in-
cludes improving three data augmentation methods. There-
fore, we studied how the self-training learning mechanism
affects the number of triples generated by the data enhance-
ment module. Figure 2a shows the changes in the numbers
of triples generated by the three data augmentation methods
combined with self-training method. Figure 2b shows the
changes in three metrics ranging from 1st to 100th training
iteration on DBP𝑍𝐻−𝐸𝑁 . It can be seen how self-training
module improve the effectiveness of the data augmentation
module through the following observation and analysis:

First, We can observe that the number of triples gener-
ated by the three data augmentation methods increases ex-
cept for alignment relations. The self-training module com-
bined with data augmentation technologies continuously
adds new aligned entity pairs to the original ones. So it can
continuously generate new triples from the third iterations.

Second, we can observe that the numbers of triples gen-
erated from alignment relations are decreasing . Because our
model continuously update the probability of alignment en-
tities and relations and selects alignment entities with a high
probability of adding to the training data in the self-training
phase. The number of new alignment entity pairs increases
in the self-training phase, so there are more conflicts in the

1Due to the limitation of space, we only present the visualization of im-
pacts of data augmentations on DBP𝑍𝐻−𝐸𝑁 , but same results are observed
in remaining datasets.
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Figure 3: The hyper-parameter study of embedding size on DBP𝑍𝐻−𝐸𝑁 , DBP𝐹𝑅−𝐸𝑁 and DBP-WD datasets. 2
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Figure 4: The hyper-parameter study of initial value of N on DBP𝑍𝐻−𝐸𝑁 , DBP𝐹𝑅−𝐸𝑁 and DBP-WD datasets 2.

alignment relation pairs. Our model eliminates all conflict
alignment relation pairs; resulting in a decrease in the num-
ber of triples generated form aligned relations. For the other
three data augmentation modules, the number of alignment
entity pairs added in the self-training phase increases, so the
number of triples generated from three data augmentation
module is also increasing.

Third, our model’s experimental performance would in-
crease with the increase of the total generated triple number,
and they are stabilized around almost the same iterations. It
means that the total triples generated by RpAlign are very ad-
equate to solve the issue of limited training data. The results
indicate the role and effect of three data augmentation tech-
niques combined with the improved self-training method in
boosting entity alignment performance.

4.5.3. Impacts of Knowledge embedding module

We make ablation study about how the knowledge em-
bedding module affect our model’s performance. We can
also find that using other KG embedding learning models is
not as competitive as using pRotatE. RpAlign can achieve at
average 7.20% on Hits@1, 2.94% on Hits@10, and 6.65% on
MRR improvement compared with it’s variant that choose
TransE model as knowledge embedding module. The rea-

2Due to the limitation of space, we only present the results of
DBP𝑍𝐻−𝐸𝑁 , DBP𝐹𝑅−𝐸𝑁 and 𝐷𝐵𝑃 −𝑊𝐷 datasets.

sons why we choose pRotatE are following:
First, pRotatE maps the entity of the hybrid KG to the

spherical space which are more easier to calibrate. Sec-
ond, pRotatE regards relations between the entities as the
rotation operation between the entities, and it can handle
three Kinds of relation patterns: symmetric/antisymmetric,
inversion,and composition, while other models cannot han-
dle all three relation patterns, so they are not capable of
learning the mixed KG embedding as pRotatE. From the sec-
tion 3.1.2, our proposed anchor relation is a kind of relation
with symmetric/antisymmetric, composition and inversion
relation patterns. However, DistMult uses a diagonal ma-
trix to represent the relations, so it cannot effectively han-
dle the inversion relation pattern. ComplEx introduces the
complex number extension of DistMult to better model the
asymmetric relation pattern, but it cannot effectively model
the composition relation pattern. TransE regards the rela-
tions to transform the relationship in space and it regards the
anchor relation as a zero vector.

4.6. Hyper-parameter Study
In this section, we discuss how the embedding

size and N’s initial value in the self-training mod-
ule affect our model’s performance. The embedding
size is ranged {125, 250, 375, 500, 625, 750} for hyper-
parameter study experiments, and N’s initial value is ranged
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Figure 5: Visualization of sensitivity study on DBP𝑍𝐻−𝐸𝑁 , DBP𝐹𝑅−𝐸𝑁 and DBP-WD datasets.

{10, 20, 30, 40, 50, 60} at the forth training iteration. The ex-
periments’ results are shown in the Fig 3 and Fig 4.

First, we can see from the results of the three data sets
that as the embedding size increases, our model’s perfor-
mance also increases. Because as the model’s embedding
dimension increases, our model’s ability to learn the mixed
KG’s embedding semantics increases.

Second, if N’s initial value is too large for the
DBP𝑍𝐻−𝐸𝑁 datasets, the performance of the model will
decrease instead. Because its number of triples is small,
which means the quality of the representation of the mixed
KG learned by our model is not enough good to avoid much
noisy false aligned entity pairs, and the new predicted false
aligned entity pairs introduced by the self-training module
would reduces the model’s performance. It is necessary to
reduce the N’s initial value to avoid introducing too much
noise for the DBP𝑍𝐻−𝐸𝑁 dataset. For the DBP-WD and
DBP𝐹𝑅−𝐸𝑁 dataset, the best value of parameter N is larger
than DBP𝑍𝐻−𝐸𝑁 dataset. Because the their initial number
of training triple is larger than the DBP𝑍𝐻−𝐸𝑁 datasets, and
their initial quality of the KG’s embedding learned by the
model is better. The larger the initial value of N, the more
new supervised training data can be introduced to improve
its final performance.

4.7. Sensitivity Study
To study the sensitivity of our model to the different

initial sizes of prior alignment, we conducted experiments
with different proportions, which ranges from 10% to 40%
with step 10%. Figure 5 shows the results in Hits@1 and
Hits@10 on the three datasets. It can be seen that the per-
formance rises with the increase of proportion, due to the
more prior alignment can provide more information. We
found that RpAlign could get promising results even only us-
ing 10% pre-aligned entities for training data, e.g., Hits@1
are at least 60%, which demonstrates the effectiveness and
practicability of RpAlign.

4.8. Case Study
To study the effect of triples from likely aligned re-

lations described in 3.1.1, we chose the unaligned entity
pair (Beatrice_Ask𝐹𝑅, Beatrice_Ask) in the DBP𝐹𝑅−𝐸𝑁

dataset which is predicted wrong by the wo/align-relation
model. Table 4 shows the top 5 prediction results for the
entity Beatrice_Ask𝐹𝑅 predicted by RpAlign and wo/align-
relation models. Table 5 shows the number of cross-KG
triples generated by RpAlign and wo/align-relation. First,
we found that the top 5 entities predicted from wo/align-
relation, and the true target entity Beatrice_Ask correspond
to Swedish politicians. It demonstrates that the wo/align-
relation model was disturbed by similar entities to make the
wrong prediction. Second, we found that RpAlign could
generate much more triples than wo/align-relation. More-
over, the experimental results demonstrate that these triples
can help improve the model’s performance. The generated
additional triples can supplement missing knowledge infor-
mation for the aligned entity pair, so RpAlign can learn more
accurate embedding for entities and relations. Besides, these
noise entities and the real aligned entity have similar original
knowledge triple sets, so their original learned entity vectors’
semantic information is very close. These additional triples
can distinguish the real aligned entity by widening the dif-
ference gap between the real and noisy ones.

To study where our model may succeed or fail, we make
a case study on some examples on the dataset DBP𝐹𝑅−𝐸𝑁 .
We compute the average triple numbers of the alignment en-
tity pairs in two KGs with our model’s different prediction
results (successful or fail at Hits@1) in the testing data. And
we display them in Table 6. It can be seen from the table that
the average triple number of the failure samples is much less
than those successful samples. It is consistent with common
sense that nodes with more neighbors are easier to align.
Take our model’s failure predicting alignment entity pair
(Reuss𝐹𝑅, Reuss_(river)) as the example. There is only one
triple for the entity Reuss_(river) in the target KG, and there
are seven triples for the entity Reuss𝐹𝑅 in the source kG.
The entity in the target KG predicted by our model is the
entity Alzette, similar to the true entity Reuss_(river) in the
target KG. We conclude that as for those alignment entity
pairs with fewer triple numbers in the source and target KG,
our model is susceptible to interference from similar noisy
entities and makes fail predictions.

We also conduct a case study to prove that our model
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Table 4

Top5 prediction with probability for entity Beatrice_Ask𝐹𝑅 in DBP𝐹𝑅−𝐸𝑁 .

Model 1 2 3 4 5
RpAlign Beatrice_Ask(0.99983) Karin_Enström(7e-05) Fredrik_Reinfeldt(4e-05) Tobias_Billström(1e-05) Carl_Bildt(1e-05)
wo/align-relation Karin_Enström(0.71535) Carl_Bildt(0.16774) Fredrik_Reinfeldt(0.02510) Tobias_Billström(0.01868) Cecilia_Malmström(0.01362)
repl.cos Carl_Bildt(0.10893) Karin_Enström(0.10819) Beatrice_Ask(0.10579) Tobias_Billström(0.10273) Fredrik_Reinfeldt(0.09677)
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Figure 6: Visualization of three examples on DBP𝐹𝑅−𝐸𝑁 for Alinet and RpAlign. The yellow and green nodes indicate entities in
the source and target KG, the number of nodes indicates the entity id in the original data. The solid line represents the correct
aligned entity pairs by RpAlign, and the dashed line represents the incorrect ones by AliNet.

Table 5

The external generated cross-KG triples about entity pair
(Beatrice_Ask𝐹𝑅, Beatrice_Ask).

Model Beatrice_Ask𝐹𝑅 Beatrice_Ask
RpAlign 35 31
wo/align-relation 3 9

Table 6

The statistics about the RpAlign’s and AliNet’s successful and
failure predicting alignment entity pairs on the DBP𝐹𝑅−𝐸𝑁 .

Model
RpAlign AliNet

successful Failure successful Failure
average triple numbers(source) 13.84 11.45 15.04 13.25
average triple numbers(target) 15.95 9.80 16.89 14.44

can make some successful predictions where other models,
like AliNet fail with fewer knowledge triples. First, we
also compute the average triple numbers of the alignment
entity pairs in two KGs with different prediction results in
the testing data from the AliNet. We also show it in Table
6. It can be observed that the average triple numbers from
our successful and failure predicting alignment entity pairs
are smaller than that of AliNet. So, our model is more
robust than AliNet when predicting alignment entity pairs
with fewer triple numbers. Second, we chose some cases
from the prediction results and give detailed analysis why
RpAlign is more robust than AliNet. We selected three
testing entities and their successful predicted alignment
entities by RpAlign and failure predicted alignment en-
tities by AliNet as case examples. Figure 6 shows their
embedding reduction(PCA for dimensionality reduction)
representations on two vector spaces learned by AliNet and

RpAlign. As shown in the figure, in the vector space of
AliNet, the vector distance between successfully predicted
entity pair by RpAlign are larger than the failure ones by
AliNet. It means that these entities are interfered with
by similar entities on AliNet’s learned entity embedding.
The reason is that the knowledge triple numbers for these
entity pairs is small. We take one of the entity pairs
(Rugby_Calvisano𝐹𝑅, Rugby_Calvisano) to analyse. Their
corresponding entity id is 25 and 10525. The AliNet’s
failure predicted result is (Rugby_Calvisano𝐹𝑅, Na-
tional_Championship_of_Excellence). The entity id of Na-
tional_Championship_of_Excellence is 19290. The knowl-
edge triple numbers for entity pair (Rugby_Calvisano𝐹𝑅,
Rugby_Calvisano) is 4 and 5. In addition, the interfering
entity National_Championship_of_Excellence and the
correct alignment entity both refer to entities in the field of
sports events. Therefore, its small amount of knowledge
information cannot ensure that similar entities will not
interfere with it. However, in the vector space of RpAlign,
the wrong alignment entity pairs predicted by AliNet has
a vector distance greater than the correct entity pairs. It
proves that RpAlign can alleviate the interference of similar
entities. The reason is that our data augmentation mecha-
nism and self-training mechanism can generate extra more
knowledge triples. For example, our model can generate ex-
tra 19 knowledge triples for the entity Rugby_Calvisano𝐹𝑅,
and 19 knowledge triples for the entity Rugby_Calvisano.
These extra triples help RpAlign learn more accurate
knowledge embedding for the entity pair to alleviate the
interference of similar entities. In conclusion, our model’s
generated external triples for these entities can effectively
alleviate the problem with fewer knowledge triples. So,
due to our model’s data augmentation and self-training
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mechanism, our model is more robust than other models
like AliNet when predicting alignment entity pairs with
fewer knowledge triple numbers.

Our main innovation is to predict the alignment entities
based on scores of two entities satisfying the ‘anchor’ re-
lation instead of their vector distance. We also conduct a
case study to prove its strength. We also show the top 5
prediction results of the repl.cos and RpAlign for the entity
Beatrice_Ask𝐹𝑅 in the source KG on Table 4. The repl.cos
is RpAlign’s variant that adopts the cosine distance to com-
pute the alignment entity pairs. It can be found that repl.cos
is more sensitive to interference from similar entities than
RpAlign. Because RpAlign predicts the alignment entities
based on the values of two entities satisfying the ‘anchor’ re-
lation, which can make full use of the entity vector semantic
information. So, the example indicates that our main inno-
vation can help reduce the interference of similar entities.

5. Conclusion

This paper presents a novel framework named RpAlign
for the entity alignment task. RpAlign defines a new specific
‘anchor’ relation 𝑟𝑎 for aligned entities. It projects two KGs
into a unified semantic vector space and uses the link predic-
tion results to predict new aligned entities. RpAlign utilizes
data augmentation and the improved self-training method
to solve the issue of limited training data. We evaluated
RpAlign on the two large real-world datasets, DBP15K and
DWY100K, and experimental results show that RpAlign sig-
nificantly outperforms all baselines. Besides, the analysis of
results indicates the effect of each module of RpAlign in im-
proving entity alignment performance. In our future work,
we will continue to improve our model. For example, we will
adopt a divide-and-conquer algorithm to reduce computing
time. We decided to use more entity and relation information
to improve our model’s conflict resolution mechanism. We
also decide to introduce the human-in-the-loop mechanism
to improve our model’s robustness and performance.
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