
Hybrid SOM based cross-modal retrieval exploiting Hebbian learning

Parminder Kaura,∗, Avleen Kaur Malhib,c, Husanbir Singh Pannua

aComputer Science and Engineering Department,
Thapar Institute of Engineering and Technology, Patiala, India
bDepartment of Computer Science, Aalto University, Finland

cDepartment of Computing and Informatics, Bournemouth University, UK

Abstract

Lately, cross-modal retrieval has attained plenty of attention due to enormous multi-modal data generation every day in the form
of audio, video, image, and text. One vital requirement of cross-modal retrieval is to reduce the heterogeneity gap among mis-
cellaneous modalities so that one modality’s results can be retrieved from the other in an efficient way. So, a novel unsupervised
cross-modal retrieval framework based on associative learning is proposed in this paper where two traditional SOMs are trained
separately for images and collateral text and then they are associated together using the Hebbian learning network to facilitate the
cross-modal retrieval process. Experimental outcomes on a popular Wikipedia dataset demonstrate that the presented technique
outshines various existing state-of-the-art techniques.
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1. Introduction

In reality, data is usually represented in diverse forms or is
composed of different domains. Hence, the data associated with
the same underlying event, content, or object may exist in the
form of different modalities and exhibit heterogeneous charac-
teristics. For instance, while visiting a new place, we record the
visit by recording a video, taking pictures, or posting a piece of
micro-blog. All these data forms are different, however, present
the same content. So, classic uni-modal (incorporating single
modality data) information retrieval approaches are of the least
use nowadays when a huge amount of multi-modal data is be-
ing produced every day. There is an immediate requirement
of effective multi-modal or cross-modal (incorporating infor-
mation from numerous modalities) data analysis and retrieval
techniques. Figure (1) shows few examples depicting the cross-
modal retrieval process where one form of data can be retrieved
using another form of data e.g. images and/or videos from the
text.

Humans familiarize themselves with the surroundings
through various sensory modes where each mode provides a
distinguishing impression of the environment [1]. Each sensory
modality works individually to interconnect with the surround-
ings and obtain information, however, the knowledge acquired
from all the modalities is fused inside the brain into a consid-
erable awareness concerning the environment [2] (As shown
in figure 2). For instance, if a person is unable to completely
understand the meaning of what another person is saying then
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Figure 1: Few examples demonstrating the process of cross-modal retrieval

he will consequently start noticing body or facial expressions.
Similarly, a single source of information is inadequate for a
complete understanding of an incident or an object. Thus, a
concept of information fusion comprising image and text is
studied in this work which is inspired by the working of the
brain. In the proposed cross-modal retrieval framework, two
Self Organizing Maps (SOM) are trained independently for im-
ages and collateral text and then fused using the Hebbian net-
work. The introduced algorithm can be applied to construct
systems that can learn to integrate diverse data modalities (im-
ages and text in our case). The framework includes three un-
supervised neural networks: (1) one SOM is trained to cluster
images; (2) another SOM learns the text; and (3) the third un-
supervised network (Hebbian network) links the highly active
nodes on image SOM with nodes on text SOM (figure 3). The
final system after merging both image and text SOM is known
as hybrid SOM (HSOM) or multi-net system.
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Figure 2: Simple illustration of information fusion inside brain

Figure 3: Flow diagram of the proposed cross-modal information retrieval sys-
tem

Contributions

The prominent contributions of the article are given below:

1. The proposed hybrid SOM method integrates the image
and text modalities and ensures an effective cross-modal
retrieval process.

2. Associative Hebbian learning technique has been utilized
to link two SOMs which are separately trained using image
and collateral text data.

3. The presented hybrid SOM framework is influenced by the
working of the brain as diverse data representations are
combined easily using an unsupervised Hebbian network.

The remaining article is organized as follows: Section 2
presents the existing related techniques for image-text cross-
modal retrieval, Section 3 describes the extracted image and
text features, Section 4 is devoted to the introduced cross-modal
method, experimental analysis is shown in Section 5 which

comprises of dataset, evaluation metrics, brief explanation of
comparison methods, parameter settings, model training, and
the results obtained, and Section 6 provides the conclusion of
the work.

2. Related Work

Numerous approaches have been introduced by the re-
searchers to deal with the cross-modal issue in which one data
form is retrieved from another data form. This section summa-
rizes state-of-the-art works carried out in the area.

2.1. Cross-modal retrieval techniques
The major issue in multi-modal retrieval is the heterogene-

ity gap among different modalities. For dealing with this is-
sue, most of the researchers have followed the approach of
representing heterogeneous data in a common shared subspace
where the modality gap can be reduced as much as possible.
Various works proposed recently which deals with the cross-
modal problem are summarized in this section.

2.1.1. Subspace learning based methods
Subspace learning methods have a crucial role in the area of

cross-modal retrieval. Canonical correlation analysis (CCA) is
one of the initial and popular subspace learning based approach
introduced by Hotelling [3]. It is an unsupervised technique
whose principal logic is to detect a pair of projections for dif-
ferent modalities so that the correlation between them is max-
imized [4]. In [5], authors have proposed CCA for correlation
analysis, semantic matching (SM) is done for representing the
image and textual data at a higher level of abstraction, and se-
mantic correlation matching (SCM) is also introduced which is
an amalgamation of both CCA and SM. Another work incorpo-
rating SM, correlation matching (CM), and SCM is presented in
[6] where CM is an unsupervised technique that models cross-
modal associations.

Various CCA variants have been applied recently in the
cross-modal retrieval task. An unsupervised kernel canonical
correlation analysis (KCCA) approach has been introduced in
[7] which analyzes the relation between image annotation by
humans and the respective significance of objects and their con-
tour in the scene. A multi-label KCCA technique is introduced
in [8] that augments KCCA with high-level semantic informa-
tion in multi-label annotations. To overcome the issues in tra-
ditional 2-view CCA, [9] has proposed an improved version
of that, dubbed, Improved CCA (ICCA). It has also expanded
2-view CCA to 4-view CCA and embed it into a progressive
framework for reducing overfitting. In [10], authors have uti-
lized the probabilistic interpretation of CCA. CCA is used for
projecting modalities’ features to a latent space and probabilis-
tic interpretation is employed for computing the representative
distribution of the latent variables for each class. [11] proposed
the deep canonical correlation analysis (DCCA) with progres-
sive and hypergraph learning. DCCA is utilized for image and
text pair mapping onto a shared latent space and the hypergraph
semantic embedding (HSE) approach is used for extracting la-
tent semantics from the text.
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2.1.2. Graph regularization methods
A graph model is constructed in the process of graph reg-

ularization that maintains affinity between the projected data
through the edges of the graph model. Graph regularization in-
creases semantic relevance and learns inter and intra-modality
similarity. Authors in [12] have proposed a graph regular-
ization and modality dependence (GRMD) approach for mak-
ing complete utilization of potential correlation among diverse
modalities for effective cross-modal retrieval. For individual
retrieval task, a separate projection matrix is learned consider-
ing semantic and feature correlation. Afterward, the internal
structure of the original feature space is used for constructing
an adjacent graph having semantic information constraints that
makes dissimilar heterogeneous data closer to the related se-
mantic information. An optimal solution for cross-modal re-
trieval is provided by [13] which combines the label predic-
tion and optimization of projection matrices into an integrated
framework. The method dubbed semantic consistency cross-
modal retrieval with semi-supervised graph regularization (SC-
CMR) makes use of the semantic information present in un-
annotated data. It utilizes graph embedding for considering the
nearest neighbors in a potential subspace of text and images and
text and images having the same semantics.

A combination subspace graph learning (CSGL) supervised
cross-modal retrieval approach is proposed in [14]. An ob-
jective function is incorporated with graph regularization for
original data structure-preserving in projective space. A col-
laborative learning strategy is utilized for eluding suboptimal
solutions while optimization. CSGL technique makes use of
semantic information and the original modality distribution.
A supervised graph regularization based cross-media retrieval
(SGRCR) approach is proposed in [15] that includes learning
of two couples of projections as per separate retrieval exer-
cises. Heterogeneous and isomorphic adjacent graphs are built
for preserving cross-media data correlations. A class center dis-
criminant analysis for cross-modal retrieval (CCDCR) method
has been introduced in [16] which is based on graph regulariza-
tion. For enhancing the discriminant capability of the method,
an inter-modality distance of class center samples is minimized
and intra-modality distance is maximized. In [17], authors have
proposed a joint graph regularization based modality depen-
dent cross-media retrieval (JGRMDCR) method which consid-
ers inter and intra-modality similarity and one-on-one corre-
spondence between diverse modality data pairs.

2.1.3. Generative adversarial networks
Recently, cross-modal retrieval task has progressed substan-

tially with the use of generative adversarial networks (GAN).
However, joint extraction and utilization of both modality-
shared and modality-specific features have not been considered
well. So, a modality-specific and shared generative adversar-
ial network (MS 2GAN) approach is proposed in [18] which
incorporates two separate sub-networks and a common sub-
network for learning modality-specific and modality-shared
features respectively. [19] has introduced a novel end-to-end
framework known as adversarial learning based semantic cor-
relation representation (ALSCOR) framework which combines

cross-modal representation learning, adversarial, and correla-
tion learning. Non-linear correlation is captured by integrating
the CCA model with TxtNet and VisNet representation mod-
els. Inspired by zero-shot learning, [20] has proposed a novel
ternary adversarial networks with self-supervision (TANSS)
technique. The method incorporates three parallel subnetworks:
(a) two semantic feature learning subnetworks for preserving
modality relationships using semantic features; and (b) a self-
supervised semantic subnetwork that supervises semantic fea-
ture learning. Adversarial learning is utilized for augmenting
the consistency and correlation of the semantic features.

A novel semantic consistent adversarial cross-modal retrieval
(SC-ACMR) approach is proposed in [21]. It learns semantic
consistent representation for diverse modals under an adversar-
ial learning framework by considering inter and intra-modality
semantic similarity. A multi-modal adversarial network (MAN)
is proposed in [22] which projects the data onto a shared space
where likeness among various modalities can be evaluated us-
ing same distance metric. MAN includes a discriminator, mul-
tiple modality-specific generators, and a multi-modal discrim-
inant analysis loss. Inspired from the fact that it is difficult
to collect large scale multi-modal data, so knowledge in large
scale uni-modal data should be fully exploited for enhancing
cross-modal retrieval, [23] has proposed a modal-adversarial
hybrid transfer network (MHTN). The transition of informa-
tion from a uni-modal source domain to the cross-modal tar-
get domain is realized and cross-modal mutual representation
is learned. MHTN comprises of modal-sharing knowledge
transfer subnetwork and modal-adversarial semantic learning
subnetwork. Former subnetwork jointly transfers information
from a huge uni-modal dataset in the source domain to various
modalities in the target domain and the latter constructs an ad-
versarial training system between modality discriminator and
common representation generator. An adversarial cross-modal
retrieval based on dictionary learning (DLA-CMR) framework
is introduced in [24]. Adversarial learning extracts the arith-
metic features of every modality and dictionary learning aids as
feature re-constructor for reconstructing discerning features.

2.1.4. Deep learning based methods
The widespread use and benefits of deep neural network

(DNN) in single modality retrieval cases have initialized its
rapid use in cross-modal retrieval tasks as well. A deep neu-
ral network based technique is proposed in [25] which learns
common representation for all considered modalities. The
technique is known as hybrid representation learning (HRL)
in which stacked restricted Boltzmann machines are used for
extracting modality-friendly representation and a multi-modal
deep belief network is exploited for extracting modality-mutual
representation. Shared semantic space with correlation align-
ment (S 3CA) is introduced in [26] for multi-modal data repre-
sentation. Non-linear correlations of multi-modal data distribu-
tions are aligned in deep neural networks constructed for dis-
similar data. In [27], a novel deep adversarial metric learning
(DAML) method has been proposed which nonlinearly maps la-
beled multi-modal data pairs into a common latent feature sub-
space. DAML augments the inter-class disparity and reduces
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the intra-class disparity and the variance of each multi-modal
data pair of the same class. [28] has presented a multi-modal
semantic autoencoder (MMSAE) method for cross-modal re-
trieval. It consists of a two-stage learning procedure in which
multi-modal mappings are learned for projecting multi-modal
data onto a low dimensional embedding to preserve feature and
semantic information.

In [29], authors have presented a novel cross-modal retrieval
with collective deep semantic learning (CR-CDSL) approach
which makes use of two complementing deep neural networks
and deep restricted Boltzmann machines are utilized for weight
initialization in the neural networks. A deep semi-supervised
cross-modal retrieval framework is proposed in [30] which can
effectually tackle both labeled and unlabeled multi-modal data.
A label prediction component is utilized in predicting labels for
unlabeled training data and a shared representation is learned
for the modalities. Various multi-modal datasets suffer from a
weak-pairing issue where one concept of data samples in one
mode corresponds to the same concept of data samples in an-
other mode rather than direct sample-to-sample correspondence
among modalities which introduces a challenge in cross-modal
retrieval. Authors in [31] have proposed a novel scalable hi-
erarchical learning framework dubbed deep dictionary learn-
ing (DDL) to handle this challenge which considers the cross-
modal representations without direct correspondence and min-
imal concept label supervision. For dealing with label supervi-
sion, a shared classifier is introduced across diverse modalities
and for modal invariant representation, a multi-modal low-rank
model is proposed.

2.1.5. Other cross-modal retrieval methods
A multi-modal multi-class boosting framework (MMBoost)

is proposed in [32] which can capture both inter-modal seman-
tic correlation and intra-modal semantic information simulta-
neously. Few researchers take cross-modal retrieval as a learn-
ing to rank task. New learning to rank with relational graph
and pointwise constraint (LR2GP) approach is proposed in [33]
which aims to optimize the ranking model. In [34], a cross-
media framework has been introduced that is based upon linear
discriminant analysis. In order to project low-level character-
istics into a common feature space by transformation matrices,
it incorporates the association between visual and textual fea-
tures to learn a pair of projection matrices. Hence, a discerning
attribute of one mode is transferred to the respective attribute
of the other mode using the correlation analysis procedure. A
semi-supervised modality dependent cross-modal retrieval ap-
proach is introduced in [35] that is based upon coupled feature
selection.

A task-dependent and query-dependent subspace learning
(TQSL) method has been proposed in [36]. Firstly, a task
and category-specific subspaces are learned together in an in-
tegrated cross-modal learning framework using an iterative op-
timization. A task category projection matrix is made based
on the previous step. Afterward, a semantic mapping function
between multi-modal documents and corresponding classes is
learned via a trained linear classifier. Motivated from Hil-
vert space theory, [37] has proposed a correlation-based cross-

modal subspace learning model using kernel dependence max-
imization (KDM). Subspace representation for a modality is
learned by increasing the kernel dependence rather than direct
maximization of feature correlations across multi-modal data.
A multi-class joint subspace learning (MJSL) approach is pre-
sented in [38] which distinguishes among diverse concepts and
utilizes the shared data related to semantic overlap. In [39],
authors have presented a semi-supervised modality-dependent
cross-media retrieval (SMDCR) method. SMDCR completely
utilizes the global data distribution property and semantic data
related to both labeled and unlabeled samples.

Thanks to the relentless effort performed by researchers,
great advances have been observed in the field of cross-modal
retrieval recently. However, most of them have utilized the
common subspace learning procedure and the modality fea-
tures available with the respective datasets. It is required to
extract the highly discriminative and non-overlapping modal-
ity features for representation which consequently affects the
overall efficiency of cross-modal retrieval task. Hence, Zernike
moments have been utilized for visual feature representation in
the proposed approach and associative learning has also been
incorporated in the form of Hebbian learning for integrating
two SOMs. Table (1) presents the characteristics of the tech-
niques which are considered for comparison with the proposed
technique.

2.2. Associative memory based techniques
This section presents a short summary of multi-modal re-

trieval methods that are primarily focused on the philosophies
of cognitively logical ways of constructing representations con-
sistent with the inherent re-constructive and associative essence
of human memory. So, these methods are different from the
algorithmic methods discussed in the previous sub-section as
they are inspired by the multi-modal sensory integration inside
the human brain. The work presented in this paper falls under
this category where an associative Hebbian network has been
utilized to integrate two SOMs (image SOM and test SOM)
so that the accuracy of cross-modal retrieval can be enhanced
by combining two diverse information sources representing the
same content.

In [40], authors have introduced the use of auto-associative
Hopfield network for the cross-modal retrieval process. Experi-
ments have been carried out on image-caption data and the sys-
tem is tested for various kinds of queries like caption only, im-
age only, and image+caption. The network’s retrieval robust-
ness for content-addressable multi-modal pattern retrieval has
been assured. Multi-modal associative learning has been intro-
duced in [41] with the use of a modified hypernetwork model or
layered hypernetwork. The model comprises two layers incor-
porating two modality-specific hypernetworks and one modal-
ity combining hypernetwork. Korean magazine articles have
been utilized for conducting experiments. Hypernetwork asso-
ciation model has also been used in [42] where a vertex denotes
a visual patch or a textual word ad hyperedge indicates a higher-
order multi-model linkage. Sequential Bayesian sampling has
also been exploited in the multi-modal hypernetwork based re-
trieval of images using text.
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Table 1: Characteristics of the compared methods. U = Unsupervised, S = Supervised and Se = Semi-supervised

Characteristics/Methods Type Subspace
learning

Graph reg-
ularization

Semantic
information

Inter-class and
intra-class correla-
tion/ similarity

Dictionary
learning

Adversarial learn-
ing

Deep learn-
ing based

CCA [5] U X

SM [5] S X

SCM [5] S X X

DDL [31] - X X X X

DLA-CMR [24] - X X X X

DAML [27] S X X X X

SCCMR [13] Se X X X X

CSGL [14] S X X X

SGRCR [15] S X X X

CCDCR [16] S X X X

CR-CDSL [29] S X X X

TQSL [36] S X X X X

KDM [37] S X X X

MJSL [38] S X X

SMDCR [39] Se X X

A multiSOM approach has been proposed in [43]. The work-
ing of the traditional SOM has been extended for handling dif-
ferent modalities and developing bidirectional associations be-
tween them. Heterogeneous data from diverse modalities are
associated using the available semantic data as a medium. The
multi-modal data considered for experimentation includes im-
ages, the human voice of Chinese characters, and their mean-
ings as semantic information. It is ensured that the model learns
the bidirectional associative relationship. In [44], authors have
proposed an associative self-organizing framework to integrate
multi-modal inputs of vision, language and motor programs for
producing complex robot behaviors.

In [45], a novel approach has been presented for constructing
multi-modal representations by learning a language-to-vision
mapping and its result has been used to create multi-modal em-
beddings. Authors guarantee that the proposed method acts in
an associative and re-constructive way close to human mem-
ory. Motivated by the associative and reconstructive nature of
human memory, a new associative multichannel autoencoder
(AMA) approach has been proposed in [46]. The issue of learn-
ing multi-modal word representations by linking visual, audi-
tory, and textual inputs has been considered.

3. Modalities’ feature vector creation

Feature vectors have been extracted from each image and text
in the dataset as described in the following subsections. The
goal is to utilize the prevalent image analysis method for cre-
ating vectors that can define the diverse and significant prop-
erties of an image such as color, texture, and edges. Zernike
moments have been considered here for image vector creation
because of their efficacy in extracting prominent image features
[47, 48, 49]. Latent Dirichlet Allocation (LDA) [50] model is
utilized for extracting text features due to its prominence in text
analytic area [51, 52].

3.1. Image features
Image features capture shape, color, and texture values based

upon the given dimension (details) and discontinuities in the
image. In this study, Zernike moments (ZM) have been ex-
tracted from images as their features to represent them and they
are briefly defined in the following paragraph. Figure (4) shows
the steps followed by each image for ZM extraction which can
distinguish it from other images in the data. Each image is pre-
processed before calculation of ZM which includes image re-
sizing to 1000 × 1000 size, RGB to grayscale conversion (if
it is not grayscale), and image normalization. These steps are
followed in a similar way as described in [53].

Figure 4: Process followed by each image for ZM extraction

Zernike Moments (ZM): Image moments represent the
weighted average of the intensity values of image pixels to ob-
tain the scalar quantities for image interpretation. ZM are a
type of continuous orthogonal moments. The benefits of utiliz-
ing the orthogonal moments are that they capture the features
which are robust to noise, least overlapped or redundant, rota-
tion, scale, and translation invariant [54]. Moments of differ-
ent order provide varying information about the image, such as
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the center of mass, area, intensity, and orientation. Compara-
tive to other existing orthogonal moments, ZM are chosen as
they provide valuable results in image representation and need
lower computational precision for this task. ZM are devised
from complex Zernike polynomials which were introduced by
an optical physicist named Frits Zernike [55]. These are a se-
ries of polynomials defined within a unit circle over the space
of polar coordinates. Fundamentally, ZM are the projections
of an image function along real and imaginary axes (x- and y-
axis) which is convolved by an orthogonal function. Hence,
they represent images in different frequency components such
as orders (along radial direction) and repetitions (along angular
direction). In ZM, an image is mapped onto a unit circular disk
such that the center of the image is transformed into the cen-
ter of the disk. This mapping can be performed in two ways:
(1) inner circle mapping (figure 5); and (2) outer circle map-
ping (figure 6) [56]. In the former, corner image pixels are ex-
cluded while computing moments which results in information
loss and is a drawback especially when corners are informa-
tive. Therefore, a perfect square to circular domain mapping
cannot be obtained and the circular boundary is approximated
in a zig-zag pattern (figure 5(b)). However, the complete image
is mapped onto the disk in outer circle mapping avoiding any
information loss. Due to this advantage, outer circle mapping
has been utilized while computing ZM in this study.

According to [57], if f (r, µ) depicts an image function, then
the two dimensional ZM with order s and repetition t can be
defined in Polar coordinate system as:

Zst =
s + 1
π

∫ 2π

0

∫ 1

0
f (r, µ)V∗pq(r, µ)rdrdµ (1)

here V∗pq(r, µ) represents the complex conjugate of zernike
polynomials depicted as Vst and is defined as:

Vst(r, µ) = Rst(r)eitµ (2)

which satisfies s ≥ 0, 0 ≤| t |≤ s, s− | t | = even, i =
√
−1

and µ = arctan(y/x). (r, µ) are radius and angle of pixel from
origin, which means polar coordinate of a pixel at (x,y).

Radial Polynomials are given as:

Rst(r) =

(s−|t|)/2∑
k=0

(−1)k ×
(s − k)!

k!( s+|t|
2 − k)!( s−|t|

2 − k)!
rs−2k (3)

Rotation and scale invariance can be obtained in ZM by nor-
malizing the image via Cartesian moments before ZM calcula-
tion. Translation invariance can be obtained if image’s centre of
mass is shifted to origin [58]. The obtained number of moments
(NoM) according to given order s can be evaluated as:

NoM =


1
4 (s + 1)(s + 3), s = odd

1
4 (s + 2)2, s = even

(4)

3.2. Text features

The dataset chosen for experimentation comprises image-
text pairs such that for each image there is a corresponding
textual paragraph(s) explaining it. It is necessary to choose
the most important words from that text which can uniquely
identify it. Text usually contains words like “a”, “an” and
“the” (known as stop words) in the highest numbers which
are inessential for distinguishing a document from other doc-
uments. So, the text is pre-processed before the actual calcu-
lation of features. Latent Dirichlet Allocation (LDA) is one
of the famous techniques for topic modeling which has been
utilized here to extract the text features. Figure (7) shows the
process of text feature matrix creation from a set of XML files.
Firstly, the collateral text is extracted from each XML file and
added into a string array. The collected strings in the array are
pre-processed by decoding the HTML entities and removing
tags, URLs, and numbers. Afterward, strings are converted
into tokens and tokenized documents are created. These doc-
uments are pre-processed again which includes lemmatization
of tokens, removal of punctuation marks, stop words and words
having length 1 or 2. Then a bag of words is created from these
cleaned documents which is further utilized to extract the LDA
features.

Latent Dirichlet Allocation (LDA): Topic Modeling is a
prominent technique in text mining and detecting relations
among textual documents [59]. There are various methods for
topic modeling, however, LDA is highly popular. It is a three-
level hierarchical Bayesian model where documents are mod-
eled as random finite mixtures over latent topics and each topic,
in turn, is characterized as a word distribution [50]. A word can
be described as a basic unit of discrete data and an element from
vocabulary, a document refers to a series of R words designated
by w = (w1,w2, ...,wR) where wr is rth word in the sequence,
and a group of Q documents indicated by C = (w1,w2, ...,wQ)
is known as a corpus. Figure (8) represents LDA as a three-level
probabilistic graphical model where the inner plate signifies the
repetitive choice of topics and words in a document, however,
outer plate denotes documents. γ and δ are parameters at the
corpus level that are supposed to be sampled one time during
generation procedure of the corpus. The η symbol represents
variables at the document level that are sampled once in a doc-
ument, however, z and w signify variables at the word level that
are sampled once in a document for a single word.

The generative procedure followed for each document w in a
corpus C in LDA is given below [50]:

1. Choose R ∼ Poisson(ξ).

2. Choose η ∼ Dir(γ).

3. For each word wr in a document, choose:

(a) a topic zr ∼Multinomial(η).

(b) a word wr from p(wr |zr, δ), a multinomial probability
conditioned on zr topic.

Few assumptions which are made in the LDA basic model are:
(1) dimensionality of Dirichlet distribution is well known and
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Figure 5: Inner circle mapping technique. (a) image mapping onto unit disk; (b) inscribed disk approximated by square grids

Figure 6: Outer circle mapping technique where complete image is mapped
inside the disk

stable; (2) R is independent of other data creating variables such
as η and z; and (3) the word probabilities are parameterized by
δ matrix where δi j = p(w j = 1|zi = 1), which is treated as a
stable quantity that is to be evaluated.

A k-dimensional Dirichlet random variable η can have values
in (k − 1)-simplex (a k-vector η lies in the (k − 1)-simplex if
ηi ≥ 0 and

∑k
i=1 ηi = 1) and has the below probability density

on this simplex:

p(η|γ) =
Γ(

∑k
i=1 γi)∏k

i=1 Γ(γi)
η
γ1−1
1 ...η

γk−1
k (5)

where γ represents a k-vector with γi > 0 and Γ(x) denotes
Gamma function.

Given the parameters γ and δ, the joint distribution of a topic
mixture η, a set of R topics z, and a set of R words w can be
defined as:

p(η, z,w|γ, δ) = p(η|γ)
R∏

r=1

p(zr |η)p(wr |zr, δ) (6)

here p(zr |η) is ηi for unique i such that zi
r = 1. Integrating over

η and summing over z, the marginal distribution of a document
can be evaluated as follows:

p(w|γ, δ) =

∫
p(η|γ)

 R∏
r=1

∑
zr

p(zr |η)p(wr |zr, δ)

 dη (7)

Finally, the probability of a corpus can be obtained by taking
the product of the marginal probabilities of single documents:

p(C|γ, δ) =

Q∏
c=1

∫
p(ηc|γ)

 Rc∏
r=1

∑
zcr

p(zcr |ηc)p(wcr |zcr, δ)

 dηc

(8)

4. Proposed Technique

4.1. Problem formulation
The issue of effective cross-modal retrieval considering im-

age and text has been addressed which involves reduction in
semantic gap between text and image modality and to make a
strong connection among highly related images and texts. We
have a collection of images and the corresponding text in the
form of paragraphs. Each image has a single text file related
to it. The objective of the proposed technique is to retrieve
the related texts or images given an image or text instance re-
spectively. Let D = (I j,T j, L j)N

j=1 be an image-text dataset,
where I j ∈ RdI and T j ∈ RdT depicts the image and text fea-
tures respectively. There are total N pairs of instances. (I j,T j)
depicts an image-text pair with same semantic label L j ∈ Rc,
where c is the number of classes of semantic concepts present
in the data. As the proposed method is of unsupervised na-
ture, so the labels are not utilized in the model training, in-
stead they are only utilized while evaluation of performance
metric for the model. Suppose Dtrain = (Ik,Tk)N1

k=1 is the train-
ing data, where Ik ∈ RdI and Tk ∈ RdT are respective fea-
tures of image and text and N1 represents the number of in-
stances used in model training. Image training set is defined as
Itrain = [I1, I2, ..., IN1−1, IN1 ] ∈ RdI×N1 and similarly, text training
set as Ttrain = [T1,T2, ...,TN1−1,TN1 ] ∈ RdT×N1 , dT and dI are
the dimensions of text and image features respectively, where
dI , dT . Similar to Dtrain, Dtest = (Ik,Tk)N2

k=1 denotes the test
data, where N1 + N2 = N.

4.2. Proposed hybrid-SOM based cross-modal retrieval
method

4.2.1. Traditional SOM
It is also popular as Kohonen map after the name of its inven-

tor Teuvo Kohonen who proposed it in 1982 [60]. The funda-
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Figure 7: Process flow for text feature matrix creation

Figure 8: Graphical model representation of LDA

mental idea behind SOM is that the systems can be constructed
to imitate the joint collaboration of the brain neurons. It is a
kind of artificial neural network that follows an unsupervised
machine learning approach. SOM maps the multi-dimensional
input vectors (xi) to (usually) a two-dimensional grid of nodes
or neurons also known as a map. More similar inputs are linked
with nodes which are closer in the grid, however, the less simi-
lar ones are associated gradually farther away [61]. The crux of
traditional SOM is that each input vector is linked to that node
that best matches it or the node that wins the input (also alluded
as Best Matching Unit or BMU) and the subset of its spatial
neighbors in the map will also get modified for better match-
ing. One node of the map can also win over multiple inputs.
SOM helps to recognize the high-dimensional data by mapping
it into a 2-D map and cluster alike data in conjunction. A tradi-
tional SOM comprises of two layers in which first incorporates
nodes in input space and second constitutes the nodes in out-
put space [62]. Figure (9) shows a representation of traditional
SOM where an input vector from multi-dimensional space is
mapped to all the neurons of the output layer of SOM but only
one neuron has won over that input based upon the weight of
the connection link and that neuron is also known as BMU [63].
Based upon the BMU, the weights of the neighboring neurons
are also modified.

Figure 9: Representation of traditional SOM [63]

Table 2: Notations used in SOM learning algorithm

Notation Definition

i random input vector index

j random weight vector index

xi input vector

w j weight vector of a SOM node

c BMU index

wc BMU weight vector

t index of time

α(t) learning weight factor

nc j(t) neighboring function

Nc(t) neighborhood

8



Table (2) presents the variable notations and definitions
which are being utilized in SOM learning algorithm. The pro-
cedure followed in traditional SOM learning is as follows [62]:

1. Initialization: Start with the initial values of weight vec-
tors. Initially, each value of w j can be picked randomly or
linearly and later they will keep on adjusting with network
learning process.

2. Sampling: Randomly select an input vector xi from the
training high-dimensional input space.

3. Finding BMU: Deduce the best matching unit (BMU). Af-
ter comparing xi with all the weight vectors of SOM nodes,
a BMU is found lying at index c which is closest to xi as
per the Euclidean distance.

‖xi − wc‖ = min
k
‖xi − wk‖ (9)

4. Updation: Update the BMU and its neighboring nodes.
Winning node weight vector and weight vectors of its
neighbors are updated as per the following equation.

w j(t + 1) = w j(t) + ∆w j(t) (10)

where t = 0, 1, 2, ... depicts an index of time. The value of
∆w j(t) is evaluated as per the following equation.

∆w j(t) = α(t)nc j(t)(xi(t) − w j(t)) (11)

where α(t) ∈ [0, 1] denotes the learning rate factor and will
be decreasing monotonically while SOM learning phase.
nc j(t) represents the neighboring function and finds the dis-
tance between nodes at indices j and c in the output layer
grid. An extensively utilized neighborhood kernel is de-
fined in terms of Gaussian function as:

nc j(t) = exp

−
∥∥∥rc − r j

∥∥∥2

2σ2(t)

 , (12)

here r j and rc denotes the position vectors of nodes at in-
dex j and c. The parameter σ(t) expresses the width of
the kernel which corresponds to the neighborhood Nc(t)
radius. Nc(t) corresponds to the neighborhood set of array
points around BMU (figure 9). The neighborhood function
nc j(t) value reduces while learning, from an initial value
often equivalent to the dimension of the output grid to a
value equal to one.
Steps from 2 to 4 are repeated for a number of consecutive
iterations during SOM learning until the weight vectors in
the output layer of map represent the input patterns of high
dimensional space which are closer to the map nodes, as
much as possible. After initialization step, SOM learn-
ing can happen in a batch or sequential way. Both are
almost similar with one difference that in sequential train-
ing, one data vector is send to the map at a time for weight
adjustment rather than sending all data vectors simultane-
ously. After SOM training completion, each input vector is
mapped to one neuron of the grid. The map size is chosen
as per application. Bigger map size exposes information
in detail, however, smaller map size is chosen to assure
the generalization capability.

4.2.2. Hybrid SOM (HSOM)
In the hybrid method, two SOMs have been introduced. One

SOM is dedicated to the clustering of images and another SOM
is for clustering of collateral text. Each of the SOM recog-
nizes the patterns present in the respective modalities. These
two SOMs are connected to each other using a third network
known as the Hebbian network which connects each node in
image SOM with every node in the text SOM. Hebbian net-
work works on the principle of Hebb’s learning rule [64]. This
rule is inspired by biological systems and it says that the con-
nection between two neurons might be strengthened if they fire
together. The rule states that how much the weight of a linkage
between two units should be increased or decreased in propor-
tion to the product of their activation (eq. 13).

∆wi j = α × xi × y j (13)

where wi j is the weight of the link between ith source unit and
jth destination unit, x and y represents the activities of the units.
The new weight can be evaluated as (eq. 14):

wi j(n) = wi j(n − 1) + ∆wi j (14)

Nodes in the two SOMs that are concurrently most active
while training are associated via the Hebbian network. The
purpose of utilizing the Hebbian network is to boost the connec-
tions between the two SOMs when the corresponding neurons
in them activate in response to an input image and its collat-
eral text respectively. The strength of the connection between
the winning node in image SOM and between all nodes in text
SOM is weighted by the activation of the connecting Hebbian
node. Figure (10) presents the two SOMs associated with each
other using the Hebbian network. If the size of image SOM
is m × n and text SOM is p × q, then the size of the Hebbian
network would be m × n × p × q.

Figure 10: Architecture of two SOMs (image and text) connected using Heb-
bian network

For the implementation of the proposed technique, features
are extracted from the available images and corresponding text
as mentioned in section (3). Two separate SOMs netI and netT
of dimension 4× 4 are trained for images and texts respectively
and the node numbers are also retrieved corresponding to each
instance which are saved in classesI and classesT matrices cor-
respondingly. The trained SOM node weights nodeWeightsI

and nodeWeightsT for both image and text SOM are fetched
for further experiments. The matrices winnersMatrixI and
winnersMatrixT represent the weight vector of the winner node
corresponding to each image and text input instance. After-
ward, Euclidean distance is calculated between each input in-
stance vector and the corresponding winner node weight vec-
tor, and the results are saved in whebbI and whebbT which are
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one-dimensional matrices. Now the Hebbian network is trained
using equation (15) and the Hebbian link weights (depicted by
hebbLink matrix) keep on updating for each input instance dur-
ing the training process. The Hebbian network is associating
each netI node with the netT node but the strength of the bond is
determined by the link weight. The size of the matrix hebbLink
is 16 × 16.

hebbLink(classesI(i), classesT (i))+ = LR∗whebbI(i)∗whebbT (i)
(15)

where 1 ≤ i ≤ length(classesI) as the hebbian network is
trained for the total number of inputs [65]. Here, LR signifies
learning rate whose value is 0.1. After the creation of the Heb-
bian network, two vectors AnetI and AnetT of size 16 are cre-
ated such that AnetI will have the node numbers of netT having
the highest Hebbian link weight where each index of the AnetI

vector represent the node number in netI . Similarly, AnetT has
the node numbers of netI . For testing the model with new im-
age and text instances after training, the test instance is clus-
tered in the appropriate respective SOM node. Then the corre-
sponding linked node in the other SOM is found and the results
from both the nodes are retrieved. Thus, both image and text
modality results can be retrieved using a query of any modal-
ity (image or text). The procedure of handling a test query can
be easily visualized in figure (12) in which the dark portion is
depicting a testing instance using an image query. The pro-
cess followed in case of textual query is also similar to this one.
Although, HSOM is a supervised approach individually as the
trained SOM nodes are acting as labels for the input instances
for hybrid model training. However, we are calling the overall
algorithm as unsupervised as there is no requirement of class
information for each of the inputs in the beginning. The algo-
rithms (1,2) present all the steps followed for the implementa-
tion of the proposed technique. Figure (11) demonstrates the
abstract process flow of the proposed HSOM cross-modal re-
trieval system starting from the raw image and text data till the
final trained system.

5. Experimental analysis

5.1. Dataset
The proposed approach has been tested on Wikipedia1 [5]

dataset which includes a document corpus consisting of linked
image and text pairs. It has been composed of Wikipedia’s
“featured articles” which accompanied by one or more images
from Wikipedia Commons, giving a pair of appropriate variety.
Articles are categorized into 29 categories by Wikipedia with
an individual categorization of image and text elements. Only
the top 10 bulky categories are considered by most of the re-
searchers for experimentation as the remaining categories have
scarce data. The final data corpus classified into 10 semantic
categories contain 2,866 documents in total. It has been arbi-
trarily bifurcated into a training and testing set comprising of
2,173 and 693 documents respectively. Division of each class’
documents in the train and test set is presented in table (3).

1http://www.svcl.ucsd.edu/projects/crossmodal/

Figure 11: Process flow of image and text training for the proposed hybrid
cross-modal retrieval system

Figure 12: Handling of a test query. The dark portion of the figure depicts
the procedure followed by an image query. Both image and text modalities are
retrieved in the end.

5.2. Evaluation metrics

The commonly used metric for detecting the efficiency of
a cross-modal retrieval method is Mean Average Precision
(MAP). It tests whether the obtained outcome belongs to the
same category as query (relevant) or not (irrelevant) [66]. It
is the mean of the measured average precision (AP) across all
the queries. Provided a query (a text or an image) and a set of
respective retrieved outcomes Y , AP can be evaluated as:

AP =
1
R

Y∑
y=1

P(y)rel(y) (16)

where R represents the ground truth positives or the number
of relevant results in the retrieved results [67], P(y) depicts the
precision of top y retrieved results, and the value of Y is differ-
ent for each of the test (image/text) instances because the num-
ber of retrieved outcomes are different for each test query. If
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Algorithm 1 Algorithm of proposed technique for cross-modal retrieval
INPUT: Dtrain and Dtest

OUTPUT: Trained netI and netT SOMs, retrieval of matched images and text corresponding to text and images in Dtest

1: procedure Image feature extraction
2: Input all images
3: Resize the images to 1000 × 1000
4: Convert each RGB image to gray scale
5: Normalize the images
6: Extract the Zernike moments at order 5
7: end procedure
8: procedure Text feature extraction
9: Input all XML text files

10: Extract the text part from each XML file
11: Decode HTML entities, remove tags, URLs and numbers from each text
12: cleanedDocuments← tokenizedDocument(text) . Create tokenized documents from the text
13: Perform lemmatization
14: Remove punctuation marks, stop words and words with length ≤ 2
15: cleanedBag← bagO f Words(cleanedDocuments) . Create a bag-of-words from cleaned documents
16: Find appropriate no. of topics for LDA using perplexity analysis
17: Extract the LDA features.
18: end procedure
19: procedure HSOM based cross-modal retrieval
20: Load Dtrain and Dtest

21: dimension1← 4, dimension2← 4 . Dimensions of both image and text SOM
22: netI ← sel f orgmap([dimension1dimension2], 200) . Configure image SOM
23: netT ← sel f orgmap([dimension1dimension2], 200) . Configure text SOM
24: netI ← train(netI , Itrain), netT ← train(netT ,Ttrain) . Training of maps
25: classesI ← vec2ind(netI(Itrain)), classesT ← vec2ind(netT (Ttrain)) . Retrieving node number for each input instance
26: for i← 1 to length(classesI) do . Winner node weight matrix corresponding to image input instances
27: winnerI ← classesI(i)
28: winnersMatrixI(:, i)← nodeWeightsI(winnerI , :)′

29: end for
30: for i← 1 to length(classesT ) do . Winner node weight matrix corresponding to text input instances
31: winnerT ← classesT (i)
32: winnersMatrixT (:, i)← nodeWeightsT (winnerT , :)′

33: end for
34: for i← 1 to length(classesI) do . Euclindean distance calculation
35: for j← 1 to imageVectorDimension do
36: whebbI(i)← whebbI(i) + (winnersMatrixI( j, i) − inputI( j, i))2

37: end for
38: for j← 1 to textVectorDimension do
39: whebbT (i)← whebbT (i) + (winnersMatrixT ( j, i) − inputT ( j, i))2

40: end for
41: whebbI(i)← sqrt(whebbI(i))
42: whebbT (i)← sqrt(whebbT (i))
43: end for
44: for i← 1 to length(classesI) do
45: Train the Hebbian network using equation (15)
46: end for
47: Follow algorithm (2) for creation of AnetI and AnetT
48: Cluster Ik ∈ netI and Tk ∈ netT where (Ik,Tk) ∈ Dtest and k ∈ [1,N2]
49: Refer AnetI and AnetT to find the corresponding Hebbian link node
50: Retrieve results from the found node
51: end procedure
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Algorithm 2 Algorithm for creation of AnetI and AnetT vectors
INPUT: Trained Hebbian Network
OUTPUT: Two 1-D vectors AnetI and AnetT of size 16 each

1: procedure Creation of AnetI

2: netIS ize, netT S ize← dimension1 × dimension2 . Size of image and text net (netI , netT ) in Hebbian network
3: for i← 1 to netIS ize do
4: maxtemp← 0, maxindex← −1 . Initializing the temporary variables
5: for j← 1 to netT S ize do
6: if hebbLink(i, j) > maxtemp then . Checking for the maximum hebbLink weight
7: maxtemp = hebbLink(i, j)
8: maxindex = j
9: end if

10: end for
11: AnetI(i) = maxindex
12: end for
13: end procedure
14: procedure Creation of AnetT
15: for i← 1 to netT S ize do
16: maxtemp← 0, maxindex← −1 . Initializing the temporary variables
17: for j← 1 to netIS ize do
18: if hebbLink( j, i) > maxtemp then . Checking for the maximum hebbLink weight
19: maxtemp = hebbLink( j, i)
20: maxindex = j
21: end if
22: end for
23: AnetT (i) = maxindex
24: end for
25: end procedure

Table 3: Train and test split of Wikipedia classes

Class Train Test Total

History 248 85 333

Art & architecture 138 34 172

Media 178 58 236

Biology 272 88 360

Royalty & nobility 144 41 185

Geography & places 244 96 340

Warfare 347 104 451

Literature & theatre 202 65 267

Music 186 51 237

Sport & recreation 214 71 285

the yth retrieved result is relevant then rel(y) = 1 and otherwise
0. Now, MAP can be calculated as:

MAP =
1
N

N∑
n=1

AP (17)

where N represents number of queries. The more is the MAP

Figure 13: Perplexity and time analysis for choosing an appropriate number of
topics for the LDA model

score value, the better the algorithm is.

5.3. Comparison methods

1. CCA [5] is a fundamental subspace learning based method.
It finds the pair of projections for different modes so that
the relation between them is augmented.
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(a) Trained image SOM

(b) Trained text SOM

Figure 14: Input train data distribution after individual SOM training

2. SM [5] represents the multi-modal data at an upper level
of abstraction such that there is a natural correspondence
between diverse modality spaces. Moreover, it utilizes
multi-concept logistic regression for the classification of
both text and image modalities.

3. SCM [5] is the amalgamation of CCA and SM. Firstly, it
uses CCA for attaining feature representations and then
utilize these representations in building a semantic space.

4. DDL [31] is a scalable hierarchical learning framework
that deals with weakly paired diversified data. In the
learned representation space for using label knowledge, a
shared classifier is applied across diverse modalities. A
modal invariant representation is achieved by enforcing
low-rank constraint across modalities.

(a) Image SOM

(b) Text SOM

Figure 15: Neighbor Distances among respective SOM nodes. Darker shade
denotes larger distance.

5. DLA-CMR [24] is an adversarial cross-modal retrieval
method that is based upon dictionary learning. Adversar-
ial learning extracts each modality’s numerical attributes,
whereas dictionary learning functions as a feature re-
constructor to reconstruct distinguishing features.

Adversarial learning extracts the statistical attributes of
each modality whereas dictionary learning act as a feature
re-constructor for reconstructing discriminative features.

6. DAML [27] maps classified multi-modal data pairs onto a
shared latent feature subspace in a nonlinear fashion. This
augments the inter-class variation and reduces the intra-
class variation and the divergence of each data pair ob-
tained from two modes of the same concept. An additional
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(a) Image SOM

(b) Text SOM

Figure 16: Location of data points and weight vectors

Figure 17: Average MAP scores at different values of learning rate for training
Hebbian network

regularization is added by the introduction of adversarial
learning.

7. SCCMR [13] combines the label prediction and projection
matrices’ optimization into an integrated framework for
achieving a globally optimum result. Graph embedding
is utilized in this for considering nearby neighbors in the
potential subspace of paired text and images and text and
images with identical semantics.

8. CSGL [14]makes use of semantic information and learns
the projection matrix in integration rather than separately
for each modality for more discriminative projection. It
considers the consistency among diverse modalities by in-
corporating graph regularization for conserving the orga-
nization of original data in the projective space. A collab-
orative learning scheme is utilized for avoiding subopti-
mal solution and integration of diverse modalities for bet-
ter projection.

9. SGRCR [15] learns two couple of projections as per di-
verse retrieval tasks. It projects the diverse modal data
onto an isomorphic common subspace and heterogeneous
adjacent graphs are built for conserving the correlation
among different modalities. It considers the inter and intra
class similarity of modalities in an integrated framework.
Feature selection is performed by L2 norm.

10. CCDCR [16] minimizes the inter-modality distance and
maximizes the intra-modality distance of class center sam-
ples for reinforcing the discriminative capability of the
model. In order to further enhance semantic similarity be-
tween different modalities, a multi-modal graph consisting
of an inter-modality similarity graph, class center inter-
modality graph, and intra-modality graph is fused into the
technique. This approach considers both local as well as
global structural information of data.

11. CR-CDSL [29] exploits the latent semantics of untagged
multi-modal information with joint deep semantic learning
for increasing the discerning ability of supervised retrieval
model. For mutually projecting image and text samples
into a common semantic representation, two correspond-
ing neural networks are trained. Weak semantic labels of
both unlabeled text and images are produced consequently
based on them. They are mutually exploited with cate-
gorized training samples for retraining the model which
eventually finds a more semantically meaningful subspace
for better cross-modal retrieval.

12. TQSL [36] is a subspace learning approach which is de-
pendent on task as well as query. It is an integrated
cross-modal framework where class and task-specified
subspaces are learned together using an effective iterative
optimization and a task-category-projection mapping ta-
ble is created based on it. A semantic mapping function is
learned between multi-modal documents and correspond-
ing classes by a trained linear classifier.

13. KDM [37] is a cross-modal subspace learning frame-
work which is based upon correlation. Unlike most other
methods that directly maximize feature correlations across
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Figure 18: Performance analysis based on MAP scores

multi-modal data, it learns subspace representation for
each modality by augmenting the kernel dependency. This
approach maps the modalities into diverse Hilbert spaces
with the same dimension separately. Afterward, the ker-
nel matrix is calculated in each Hilbert space and the cor-
relations are measured across modalities on the basis of
kernels.

14. MJSL [38] mines the latent common knowledge of seman-
tic overlap to the maximum degree possible. It selects the
high-level semantics, keeps the pair-wise closeness, and
selects the appropriate features for attaining the most dis-
criminative subspace for each modality.

15. SMDCR [39] is a semi-supervised cross-modal technique
which is modality-dependent and uses both labeled and
unlabeled samples for getting two couple of projection ma-
trices. It utilizes the feature distance for representing the
semantic knowledge of unlabeled samples in the optimiza-
tion process for getting full use of data structural infor-
mation. It fully utilizes the semantic knowledge of whole
multi-modal data and data distribution property.

5.4. Parameter settings

The values of certain parameters in the implementation have
been chosen such that the overall performance is increased. ZM
features are extracted at order 5, so the total retrieved features
are 12 for each image instance. These features have the least re-
dundancy due to the orthogonal characteristics of moments. For
setting the appropriate value of the total number of topics in the
LDA model for text feature extraction, perplexity and time anal-
ysis has been performed. Perplexity is the statistical measure of
how well a sample is predicted by a probability model. The aim
is to choose the number of topics that minimize the perplexity
value. Moreover, with an increase in the number of topics, the
LDA model may take more time to converge. So to handle this

trade-off, both the values have been plotted simultaneously for
the different number of topics as shown in figure (13). It can
be concluded from the figure that 14 is a good choice for the
total number of topics. So, it has been chosen in the final LDA
model.

5.5. Model training

Figure (14) illustrates the train data distribution after individ-
ual image and text SOM training. The data is evenly distributed
among the SOM nodes. These results are obtained with 12-
d ZM visual features and 14-d LDA linguistic features. Fig-
ure (15) demonstrates the distances between the neighboring
nodes for the respective image and text SOM. Nodes are rep-
resented by blue hexagons which are connected to their neigh-
bors using red lines. The colors in the red line sections depict
the distance between nodes. The darker the color, the more is
the distance. A band of dark sections traverses from the bot-
tom centre region to the middle right region making a reversed
’L’ shape in the image SOM (figure 15a). It appears that the
clusters of images have been divided into two sets such as the
clusters in the lower right corner and the rest of the SOM clus-
ters. However, the third node at the bottom of the text SOM
(figure 15b) is lying at a huge distance from all the other nodes
and it seems to be acting as an outlier. In the corresponding
trained SOM figure (14b), the same node has the least num-
ber of instances in comparison to all other SOM nodes. The
positions of weight vectors and data points are displayed in fig-
ure (16). The appropriate learning rate for Hebbian network
training is chosen after analyzing the average image-text query
MAP score by training multiple times at diverse values such as
[0.001, 0.005, 0.01, 0.05, 0.1, 1]. From figure (17), it is notice-
able that the 0.1 learning rate value is suitable for the experi-
mental analysis.
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(a) I2T operation

(b) T2I operation

Figure 19: Curves depicting the sorted precision values for test queries (693 in
our case)

5.6. Results
Table (4) demonstrates the comparison of various state-of-

the-art methods with the proposed technique on the basis of
MAP score where I2T means retrieving collateral text using an
image query and T2I means retrieving matched images using
a textual query. Average denotes the average MAP score for
I2T and T2I experiments. The column Feature type depicts
the type of image and text features utilized in that particular
method where H designates handcrafted features (128-d visual
SIFT representation for images, 10-d LDA representation for
text) and D stands for Deep features (4096-d CNN for images,
100-d LDA for text).

The handcrafted features are utilized by authors in [6] for
representing images and collateral text. These features are
freely provided by the authors on the link2 along with the
Wikipedia dataset. The base representation for both images and
text is Bag-of-Words (BOW). Firstly, a bag of SIFT features is

2http://www.svcl.ucsd.edu/projects/crossmodal/

Table 4: MAP comparison of prominent recent methods with proposed ap-
proach on Wikipedia dataset. H means handcrafted features and D represents
deep features.

Method
MAP Score

Feature type
I2T T2I Average

CCA [5] 0.249 0.196 0.223 H

SM [5] 0.225 0.223 0.224 H

SCM [5] 0.277 0.226 0.252 H

DDL [31]
0.2832 0.2615 0.2724 H

0.3812 0.3501 0.3657 D

DLA-CMR [24]
0.369 0.261 0.315 H

0.539 0.453 0.496 D

DAML [27]
0.356 0.267 0.322 H

0.559 0.481 0.52 D

SCCMR [13] 0.431 0.403 0.417 D

CSGL [14] 0.3996 0.3904 0.395 H

SGRCR [15]
0.284 0.227 0.2555 H

0.4365 0.406 0.421 D

CCDCR [16] 0.2849 0.2253 0.2551 H

CR-CDSL [29]
0.348 0.249 0.299 H

0.508 0.442 0.475 D

TQSL [36] 0.463 0.415 0.439 D

KDM [37] 0.4562 0.4785 0.4674 D

MJSL [38] 0.4432 0.3832 0.4132 D

SMDCR [39]
0.284 0.232 0.258 H

0.43 0.428 0.429 D

Proposed1 0.5872 0.4744 0.5308 H

Proposed2 0.6461 0.5228 0.5844 -

Table 5: Category-wise MAP scores based on proposed technique

Categories I2T T2I Average

Art 0.5867 0.515 0.5509

Biology 0.6244 0.6314 0.6279

Geography 0.5923 0.423 0.5077

History 0.6606 0.4885 0.5746

Literature 0.592 0.5524 0.5722

Media 0.5706 0.5078 0.5392

Music 0.7012 0.5571 0.6292

Royalty 0.549 0.5243 0.5367

Sport 0.5156 0.498 0.5068

Warfare 0.606 0.4893 0.5477

extracted per training image3 and a visual word codebook is
learned using K-means clustering. Afterward, SIFT descrip-
tors are vector quantized with the codebook to create a visual
word counts vector. Text words that are obtained by stemming
the text with the Python Natural Language Toolkit4, are fit by
LDA model [50] by utilizing the implementation of [68]. Al-
most all the researchers who have tested their respective cross-
modal methods on the Wikipedia dataset have compared the
MAP score results by utilizing these features as well. Hence,

3https://lear.inrialpes.fr/people/dorko/downloads.html
4http://www.nltk.org/
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Figure 20: Retrieved image and text results using an image query

Figure 21: Performance chart based on MAP scores for each class

they have been considered in this study also for comparative
analysis.

In the table, Proposed1 represents the results obtained us-
ing handcrafted features, and Proposed2 depicts the results
achieved using 12-d ZM for images and 14-d LDA for text.
It is evident from the table that the Proposed2 approach is bet-
ter than the other methods and so the MAP scores are high-
lighted. Figure (18) shows the performance chart of all the
methods based on their MAP scores and figure (21) presents
the class-wise performance of the proposed technique. Table
(5) shows the I2T, T2I and their average MAP score values for
respective dataset categories. Figure (19) demonstrates a curve
depicting the precision values obtained for each test query (im-
age in case of I2T and text in case of T2I operation) in a sorted
manner and the change in precision values as per the queries
can be visualized. Figure (20) illustrates a few matched im-
ages and text results retrieved using an image query on trained
Proposed2 model.

5.6.1. SOM vs HSOM
This section demonstrates the comparison of results obtained

using traditional SOM and HSOM. In the traditional SOM im-
plementation, all the required parameter values, visual and tex-
tual feature vectors are the same as considered for HSOM im-
plementation. The MAP score is evaluated for retrieval of re-

lated images using an image query (I2I) and retrieval of related
text using a textual query (T2T). Table (6) shows the compar-
ison of MAP score values obtained in the tasks I2I, T2T, I2T,
and T2I using diverse visual and textual features as explained
in the above sections. It is evident from the table that the cross-
modal retrieval has high MAP score than uni-modal retrieval
and hence information from multiple sources (such as image
and text together) always results in better performance than a
single source (such as only text or image). Figure (22) is similar
to figure (19) but in case of uni-modal retrieval task using tradi-
tional SOM implementation. Sorted precision values’ curve for
the retrieval of matched images using an image query by uti-
lizing 12-D ZM and 128-D SIFT features is presented in figure
(22a), however, figure (22b) correspondingly demonstrates the
similar curve for the retrieval of matched text using a textual
query by utilizing 14-D LDA and 10-D LDA features.

Table 6: Comparison of MAP scores obtained using traditional SOM and
HSOM

Methodology Task Features MAP Score

Traditional SOM

I2I
128-d SIFT 0.4028

12-d ZM 0.367

T2T
10-d LDA 0.3347

14-d LDA 0.3716

Hybrid SOM

I2T
128-d SIFT, 10-d LDA 0.5872

12-d ZM, 14-d LDA 0.6461

T2I
128-d SIFT, 10-d LDA 0.4744

12-d ZM, 14-d LDA 0.5228

5.6.2. Discussion
The proposed approach shows better performance than all

the compared methods including baselines and other state-of-
the-art methods because of the following reasons:

1. ZM have been utilized for visual feature representation
which are least redundant, noise resilient, and rotation,
scale, and translation invariant. They capture the global
image features and also effectively describe the shape
characteristics of an object in an image [49].
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(a) I2I operation

(b) T2T operation

Figure 22: Curves demonstrating the sorted precision values for test queries in
case of uni-modal retrieval

2. LDA features that are used for text representation provide
well-defined inference procedures for even unseen docu-
ments [50]. They reveal the inter and intra document sta-
tistical structure. An appropriate value for the number of
topics in LDA model implementation has been decided
based upon the perplexity analysis.

3. SOM provides potent clustering of images and text as it
emulates the working of neurons inside the human brain
[60]. Moreover, SOM has shown its effectiveness recently
in various application areas such as speech recognition
[69], mental stress detection [70], coronary heart disease
diagnosis [71], and for extracting features as an add-on for
better network intrusion detection [72].

4. SOM helps in easy interpretation and understanding of
data [60]. Similarities in data can be easily observed and
visualized using SOM. It has the ability to cluster even
large or complex datasets [61].

5. The Hebbian network which is used for integration of
image and text SOM to make coordination between the
modalities works on the principle of Hebb’s rule which
is also inspired by biological systems [64]. The goal of
the proposed technique is to construct a system which, on
giving an image query, can find the matched images and
provides a suitable annotation to it like humans.

The proposed technique outperforms the compared deep
learning based methods due to the following reasons:

1. As per [73], numerous processes in deep convolutional
neural network are nowhere near to the ones that happen
inside brain. For instance, the training process in deep
neural network is based on backpropagation and stochas-
tic gradient descent optimization, however, neuroscience
suggests that biological brain does not have these kind of
processes. Instead, learning approaches which are based
on Hebb’s learning rule or Spike-timing-dependent plas-
ticity appear to be more reasonable.

2. A huge dataset (sometimes in millions) is required for
deep learning techniques to work well [74] which is not
present in this study, otherwise it may result in overfitting
during model training and thus may not perform well on
the test data [75].

3. Typically, a deep learning method (such as CNN) cannot
directly perform better than the machine learning methods.
Its performance highly depends on the design which in-
cludes input window size, layer depth, and training strate-
gies [76].

4. Training the pre-trained model again from scratch might
not be feasible as it requires the understanding of a large
number of model parameters and the modifications in lay-
ers which is again computationally expensive as well [77].

5. The selection of appropriate feature extractors for the
modalities also comprises a considerable part of the whole
algorithm. Representation of the modalities must be done
suitably to enhance the overall system performance [78].
That is why Zernike moments and Latent Dirichlet alloca-
tion features have been utilized with appropriate parameter
values so that the modalities can be represented in the best
possible way.

6. Conclusion and future scope

This paper introduced new ways of intelligently training neu-
ral computing systems and querying them using images or text
to retrieve matched texts or images respectively. The visual
features extracted from images are Zernike moments that have
almost no redundancy. LDA features are considered as the lin-
guistic features for the text. Two unsupervised traditional self-
organizing feature maps are trained simultaneously but sep-
arately for images and collateral text respectively. A Heb-
bian link is set up between the most active nodes in the two

18



SOMs. This is the basis of our claim that we use multi-modal
features for training neural networks and also establish cross-
modal links between the two maps using an unsupervised Heb-
bian network while the training process. In reality, getting a
labeled data is quite difficult, so the proposed framework will
work effectively in that case as it is of unsupervised nature and
thus does not require any data labeling. Experimentation and
results prove the efficacy of the proposed technique in the field
of cross-modal retrieval.

Image and text SOM grid size is a parameter for subjective
tuning. Although, the results obtained using the proposed ap-
proach are promising, however, image semantics are required to
be considered more carefully for better performance. In the fu-
ture, diverse image and textual noise removal techniques should
be considered for further improvement in the MAP scores. The
presented framework can be utilized in the medical field by uti-
lizing suitable feature extractors based on the images. Different
associative learning techniques such as the Hopfield network
and Bi-directional auto-associative memory network can also
be incorporated into this study.
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