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Abstract

In addition to being extremely non-linear, modern problems require millions if not billions of parameters
to solve or at least to get a good approximation of the solution, and neural networks are known to assimi-
late that complexity by deepening and widening their topology in order to increase the level of non-linearity
needed for a better approximation. However, compact topologies are always preferred to deeper ones as they
offer the advantage of using less computational units and less parameters. This compacity comes at the price
of reduced non-linearity and thus, of limited solution search space. We propose the 1-Dimensional Polyno-
mial Neural Network (1DPNN) model that uses automatic polynomial kernel estimation for 1-Dimensional
Convolutional Neural Networks (1DCNNs) and that introduces a high degree of non-linearity from the first
layer which can compensate the need for deep and/or wide topologies. We show that this non-linearity
enables the model to yield better results with less computational and spatial complexity than a regular
1DCNN on various classification and regression problems related to audio signals, even though it introduces
more computational and spatial complexity on a neuronal level. The experiments were conducted on three
publicly available datasets and demonstrate that, on the problems that were tackled, the proposed model
can extract more relevant information from the data than a 1DCNN in less time and with less memory.

Keywords: Audio signal processing, convolutional neural networks, denoising, machine learning,
polynomial approximation, speech processing.

1. Introduction

The Artificial Neural Network (ANN) has nowadays become an extremely popular model for machine-
learning applications that involve classification or regression [1]. Due to its effectiveness on feature-based
problems, it has been extended with many variants such as Convolutional Neural Networks (CNNs) [2, 3]
or Recurrent Neural Networks (RNNs) [4, 5] that aim to solve a broader panel of problems involving signal
processing [6, 7] and/or time-series [8, 9] for example. However, as data is becoming more available to use
and exploit, problems are becoming richer and more complex, and deeper and bigger topologies [10, 11] of
neural networks are used to solve them. Moreover, the computational load to train such models is steadily
increasing - despite advances in high performance computing systems - and it may take up to several days
just to develop a trained model that generalizes well on a given problem. This aggravation is partially due
to the fact that complex problems involve highly non-linear solution spaces, and, to achieve a high level
of non-linearity, deeper topologies [12] are required since every network layer introduces a certain level of
non-linearity with an activation function.

A well known machine-learning trick to alleviate such a problem is to resort to a kernel transformation
[13, 14]. The basic idea is to apply a non-linear function (that has certain properties) to the input features
so that the search space becomes slightly non-linear and maybe (not always) more adequate to solve the
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given problem. However, such a trick highly depends on the choice of the so-called kernel, and may not be
successful due to the fact that the non-linearity of a problem can not always be expressed through usual
functions; e.g. polynomial, exponential, logarithmic or circular functions. Moreover, the search for an ad-
equate kernel involves experimenting with different functions and evaluating their individual performance
which is time consuming. One can also use the kernel trick with neural networks [15, 16] but the same
problem remains: What is an adequate kernel for the given problem?

To solve this problem, Ivakhnenko introduced the concept of polynomial networks [17] where he expanded
the definition of a Rosenblatt’s perceptron [18] by enabling it to take two inputs and estimate the weights
corresponding to their quadratic expansion in order to better approximate an output. This concept was
further generalized into polynomial neural networks (PNNs) introduced by Oh et al. [19] where each neuron
could use weights to estimate the polynomial expansion of any degree of any pair of inputs. By dynamically
interconnecting neurons into layers using a construction algorithm, they built a network that could approxi-
mate a scalar output using a full polynomial expansion of an input vector. However, the structure of a PNN
could not allow for weight sharing or densely connected neurons as each neuron could have access to only 2
components of an input vector. In contrast, the model that we propose creates a variant of 1-Dimensional
CNN (1DCNN) that can estimate kernels for each neuron using a polynomial approximation with a given
degree for each layer. This work aims to demonstrate that the non-linearity introduced by polynomial
approximation may help to reduce the depth (number of layers) or at least the width (number of neurons
per layer) of the conventional neural network architectures due to the fact that the kernels estimated are
dependent on the problems that are considered, and more specific than the well-known general kernels.

The contribution of this work is a novel variant of 1DCNN which we call 1-Dimensional Polynomial Neu-
ral Network (1DPNN) designed to create the adequate kernels for each neuron in an automated way, and
thus, better approximate the non-linearity of the solution space by increasing the complexity of the search
space. The 1DPNN model is fundamentally different from the PNN model in the sense that any neuron
can take any number of inputs (not just 2 as in the PNN model), a neuron’s input is a finite number of
1-dimensional vectors (not scalars), a neuron’s output is not necessarily a polynomial (it can be a non-linear
function applied to a polynomial), the weights of a neuron can be shared between the components of an input
via convolution, and the output of a 1DPNN is, in general, a finite number of 1-dimensional vectors (feature
maps). We present a formal definition of the 1DPNN model which includes forward and backward propaga-
tion, a new weight initialization method, and a detailed theoretical computational complexity analysis. Our
proposed 1DPNN is evaluated in terms of the number of parameters, the computational complexity, and the
estimation of performance with different activation functions for various audio signal applications involving
either classification or regression. Two classification problems were considered, musical note recognition on
a subset of the NSynth[20] datset and spoken digit recognition on the Free Spoken Digits dataset [21]. Only
one regression problem was considered for which a subset of the MUSDB18 [22] dataset was used, namely
audio signal denoising.

Although the problems that are tackled can be efficiently solved using much more powerful audio signal
representations such as time-frequency representations and much more complex models such as 2DCNNs
[23] and RNNs, our objective is to illustrate how the 1DPNN can introduce just enough non-linearity to the
1DCNN model to achieve better performance with less spatial complexity and computational complexity
thanks to the polynomial kernel estimation. Therefore, comparing our model to the 2DCNN model, for
example, can be problematic since the input of a 2DCNN is a 2-dimensional signal, and the input of a
1DPNN is a 1-dimensional signal which makes the information that both models have access to, completely
different. Furthermore, comparing our model to the RNN model would result in the same complication
since the internal definition of both models are fundamentally very different, although the information that
is accessed is the same. Hence, the model that shares the most common characteristics with our proposed
1DPNN is the 1DCNN since the 1DPNN extends it. As a result, our evaluation methodology is based on
comparing the performance, the computational complexity and the spatial complexity of the 1DPNN to
that of the 1DCNN under certain conditions, notably, the equality of the number of trainable parameters or
the equality of the performance evaluation. Therefore, we chose not to create very deep and wide networks
and to restrict our analysis to a fairly manageable number of parameters due to technical limitations.

The outline of our paper is as follows. Section 2 discusses the major contributions made regarding the
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introduction of additional non-linearities in neural networks. Section 3 formulates the model mathematically
by detailing how the forward propagation and the backward propagation are performed as well as providing
a new way to initialize the weights and a detailed theoretical computational analysis of the model while
Section 4 describes how it was implemented and tackles the computational analysis from an experimental
perspective. Section 5 describes in detail the experiments that were conducted in order to evaluate the
model, and shows its results, and finally, Section 6 addresses the strengths and the weaknesses of the model
and proposes different ways of extending and improving it.

2. Related Work

Many of the works that try to add a degree of non-linearity to the neural network model focuses either
on enriching pooling layers [24, 25], creating new layers such as dropout layers [26] and batch normalization
layers [27], or designing new activation functions [28, 29]. However, Campbell et al. [30] used Ivakhnenko’s
polynomial networks along with Hidden Markov Models (HMMs) for speech recognition. They have proposed
a novel training algorithm that can experimentally converge to allow a polynomial network to approximate
transition probabilities by which they demonstrated the efficiency of such networks and achieved a high
accuracy. However, they only used Ivakhnenko’s neurons which have a number of limitations (as described
in section 1), and they only obtained convergence for the cases they have tried without providing a formal
proof.

Livni et al. [31] have considered changing the way Ivakhnenko’s neurons behave by making them either
compute a linear combination of the input components or a weighted product of the input components.
By stacking layers and creating a deep network, the network is able to learn any polynomial of a degree
not exceeding the number of layers. Moreover, they provide an algorithm that can construct the network
progressively. While achieving relatively good results on various problems with a small topology and with
minimal human intervention, they only dealt with the perceptron model which can be inappropriate for
the problems they tackled which are computer vision problems. In fact, the perceptron model does not
take into account the spatial proximity of the pixels and only considers an image as a vector with no
specific spatial arrangement or relationship between neighboring pixels, which is why a convolutional model
is more appropriate for these kind of problems. Similarly, Hughes et al. [32] have considered introducing
the use of quadratic polynomials in RNN nodes because of their ability to approximate more functions than
affine functions can. By using this subtle tweak, they were able to outperform state-of-the-art models on
voice activity detection while using less number of parameters, which suggest that the non-linearity is well
captured by the quadratic nodes. The study is however limited to quadratic polynomials and no further
exploration of higher polynomial degrees is performed.

Wang et al. [33], on the contrary, considered the 2D convolutional model and changed the way a neuron
operates by applying a kernel function on its input which they call kervolution, thus, not changing the
number of parameters a network needs to train, but adding a level of non-linearity that can lead to better
results than regular CNNs. They used a sigmoidal, a gaussian and a polynomial kernel and studied their
influence on the accuracy measured on various datasets. Furthermore, they used well-known architectures
such as ResNet [34] and modified some layers to incorporate the kervolution operator. However, they show
that this operator can make the model become unstable when they introduce more complexity than what the
problem requires. Although they have achieved better accuracy than state-of-the-art models, they still need
to manually choose the kernel for each layer which can be inefficient due to the sheer number of possibilities
they can choose from and because it can be really difficult to estimate how much non-linearity a problem
needs.

Mairal [35] on the other hand, proposed a way to learn layer-wise kernels in a 2D convolutional neural
network by learning a linear subspace in a Reproducing Kernel Hilbert Space [36] at each layer from which
feature maps are built using kernel compositions. Although the method introduces new parameters that need
to be learned during the backpropagation, its main advantage is that it is able to overcome the main problem
of using kernels with machine learning namely, learning and data representation decoupling. The problems
that the author tackled are image classification and image super-resolution [37], and the results that were
obtained outperform approaches solely based on classical convolutional neural networks. Nevertheless, due
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to technical limitations, the kernel learning could not be tested on large networks and its main drawback is
that a pre-parametrized kernel function should be defined for each layer of the network.

However, Tran et al. [38] went even further by proposing a relaxation of the fundamental operations
used in the multilayer perceptron model called Generalized Operational Perceptron (GOP) which allows
changes to the summation in the linear combination between weights and inputs by any other operation
such as median, maximum or product, and they call it a pool operator. Moreover, they propose the concept
of nodal operators which basically applies a non-linear function on the product between the weights and the
inputs. They show that this configuration surpasses the regular multilayer perceptron model on well-known
classification problems, with the same number of parameters, but with a slight increase in the computational
complexity. However, as a pool operator, a nodal operator and an activation function have to be chosen
for every neuron in every layer, they have devised an algorithm to construct a network with the operators
that are meant to minimize the loss chosen for any given problem. Nevertheless, the main limitation of the
model is that such operators need to be created and specified manually as an initial step, and that choosing
an operator for every neuron is time-consuming. This compulsory preliminary step has to be performed in
order to be able to use the model and to train it.

Kiranyaz et al. [39] extended the notion of GOP to 2-dimensional signals such as images and created
the Operational Neural Network (ONN) model which generalizes the 2D convolutions to any non-linear
operation without adding any new parameter. They prove that ONN models can solve complex problems
like image transformation, image denoising and image synthesis with a minimal topology, where CNN models
fail to do so with the same topology and number of parameters. They also propose an algorithm that can
create homogeneous layers (all neurons inside the layer have the same pool operator, nodal operator and
activation function) and choose the operators that minimize any given loss, in a greedy fashion. However,
the aforementioned limitation still applies to the model since it is based on GOPs and the operator choosing
algorithm does not take into account the intra-layer dependency of the so-called operators. Therefore, they
proposed the concept of generative neurons in [40] to approximate nodal operators by adding learnable
parameters into the network. While achieving comparable results to the ONN model, they were unable to
overcome the need to manually choose the pool operator and the activation function.

Nevertheless, in works [31], [33], and [35], there is still a need to manually predetermine which kernel to
use on each layer, and in works [38] and [39, 40], there is a need to predetermine, for each neuron, the nodal
operator, the pool operator and the activation function to use in order to create the network. The main
gain of the proposed 1DPNN model is that there is no longer the need to search for a kernel that produces
good results, as the model itself approximates a problem-specific polynomial kernel for each neuron.

3. Theoretical Framework

In this section, the 1DPNN will be formally defined with its relevant hyperparameters, its trainable
parameters and the way to train the model with the gradient descent algorithm [2]. A theoretical analysis
of the computational complexity of the model is also made with respect to the complexity of the regular
convolutional model.

3.1. 1DPNN Model Definition

The aim is to create a network whose neurons can perform non-linear filtering using a Maclaurin series
decomposition. For 1-Dimensional signals, a regular neuron in 1DCNN performs a convolution between its
weight vector and its input vector whereas the neuron that needs to be modeled for 1DPNN should perform
convolutions not only with its input vector but also with its exponentiation. In the following, we designate
by L the number of layers of a 1DPNN. ∀l ∈ [[1, L]], Nl is the number of neurons in layer l, Dl is the degree

of the Taylor decomposition of the neurons in layer l and ∀i ∈ [[1, Nl]], y
(l)
i is the output vector of neuron i in

layer l considered as having 1 row and Ml columns representing the output samples indexed in [[0,Ml − 1]].
We consider the input layer as layer l = 0 with N0 inputs in general (for a single input network, N0 = 1).
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∀l ∈ [[0, L]], we construct the Nl by Ml matrix Yl such that:

Yl =


y
(l)
1
...

y
(l)
Nl

 .
∀l ∈ [[1, L]],∀(i, j, d) ∈ [[1, Nl]]×[[1, Nl−1]]×[[1, Dl]], w

(l)
ijd is the weight vector of neuron i in layer l corresponding

to the exponent d and to the output of neuron j in layer l − 1 considered as having 1 row and Kl columns

indexed in [[0,Kl − 1]]. ∀l ∈ [[1, L]],∀(i, d) ∈ [[1, Nl]]× [[1, Dl]], we construct the Nl−1 by Kl matrix W
(l)
id such

that:

W
(l)
id =


w

(l)
i1d
...

w
(l)
iNl−1d

 .
∀l ∈ [[1, L]],∀i ∈ [[1, Nl]], b

(l)
i is the bias of neuron i in layer l and f

(l)
i is a differentiable function called the

activation function of neuron i in layer l such that y
(l)
i = f

(l)
i

(
x
(l)
i

)
where x

(l)
i is the pre-activation output

of neuron i in layer l.

Definition 1. The output of a neuron in the 1DPNN is defined as such:

∀l ∈ [[1, L]],∀i ∈ [[1, Nl]], y
(l)
i = f

(l)
i

(
Dl∑
d=1

W
(l)
id ∗ Y

d
l−1 + b

(l)
i

)
= f

(l)
i

(
x
(l)
i

)
, (1)

where ∗ is the convolution operator, Y dl−1 = Yl−1 � · · · � Yl−1︸ ︷︷ ︸
d times

, and � is the Hadamard product.

Remark 1. As stated above, the whole focus of this work is to learn the best polynomial function in each

neuron for a given problem, which is entirely defined by the weights W
(l)
id associated with Yl−1 to the power

of d.

Remark 2. Since the 1DPNN neuron creates a polynomial function using the weights W
(l)
id , the activation

function f
(l)
i can seem unnecessary to define, and can be replaced by the identity function. However, in the

context of the 1DPNN model, the activation function plays the role of a bounding function, meaning that
it can be used to control the range of the values of the created polynomial function.

3.2. 1DPNN Model Training

In order to enable the weights of the model to be updated so that it learns, we need to define a loss
function that measures whether the output of the network is close or far from the output that is desired
since it is a supervised model. We denote by Y the desired output, by Ŷ the output that is produced by

the network, and by ε
(
Y, Ŷ

)
the loss between the desired output and the estimated output. ε needs to be

differentiable since the estimation of its derivative with respect to different variables is the key of learning
the weights due to the fact that gradient descent is used as a numeric optimization technique.

3.2.1. Gradient Descent Algorithm

Given a function φ : RN × RP → RM , where (M,N,P ) ∈ N∗3, the input is a tuple X = (X1, ..., XN ) ∈
RN , and the parameters are θ = (θ1, ..., θP ); we consider a desired output from X given φ called Y where
Y ∈ RM . The objective is to estimate θ so that ε (Y, φ (X, θ)) is minimum where ε : RM × RM → R+ is a
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differentiable loss function. Gradient descent [41] is an algorithm that iteratively estimates new values of θ

for T iterations or until a target loss εt is attained. ∀t ∈ [[0, T ]], θ̂(t) = (θ̂
(t)
1 , ..., θ̂

(t)
P ) is the estimated value of

θ at iteration t. Given an initial value θ̂(0), and a learning rate η ∈ (0, 1], the gradient descent estimations
are

∀t ∈ [[0, T − 1]], θ̂(t+1) = θ̂(t) − η∇θε
(
θ̂(t)
)
,

where ∇θε
(
θ̂(t)
)

is the gradient of ε with respect to θ applied on θ̂(t). In the case of the 1DPNN, the

parameters are the weights and the biases, so there is a need to estimate the weight gradients
∂ε

∂w
(l)
ijd

and

the bias derivatives
∂ε

∂b
(l)
i

, ∀l ∈ [[1, L]],∀(i, j, d) ∈ [[1, Nl]]× [[1, Nl−1]]× [[1, Dl]].

3.2.2. Weight Gradient Estimation

In order for the weights to be updated using the Gradient Descent algorithm, there is a need to estimate
the contribution of each weight of each neuron in the loss by means of calculating the gradient.

Proposition 1. The gradient of the loss with respect to the weights of a 1DPNN neuron can be estimated
using the following formula:

∀l ∈ [[1, L]],∀(i, j, d) ∈ [[1, Nl]]× [[1, Nl−1]]× [[1, Dl]],

∂ε

∂w
(l)
ijd

=

(
∂ε

∂y
(l)
i

� ∂y
(l)
i

∂x
(l)
i

)
∗
(
y
(l−1)
j

)d
=

∂ε

∂x
(l)
i

∗
(
y
(l−1)
j

)d
,

(2)

where

•
∂y

(l)
i

∂x
(l)
i

=
∂f

(l)
i

∂x
(l)
i

(
x
(l)
i

)
is the derivative of the activation function of neuron i in layer l with respect to

x
(l)
i ; and

•
∂ε

∂y
(l)
i

is the gradient of the loss with respect to the output of neuron i in layer l, that we call the

output gradient.

Proof of Proposition 1. To estimate the weight gradients, we use the chain-rule such that:

∀l ∈ [[1, L]],∀(i, j, k, d) ∈ [[1, Nl]]× [[1, Nl−1]]× [[0,Kl − 1]]× [[1, Dl]],

∂ε

∂w
(l)
ijd

(k) =

Ml−1∑
m=0

(
∂ε

∂y
(l)
i

� ∂y
(l)
i

∂x
(l)
i

)
(m).

∂x
(l)
i

∂w
(l)
ijd(k)

(m).
(3)

From Eq. (1), we can write:

∀l ∈ [[1, L]],∀(i,m, d) ∈ [[1, Nl]]× [[0,Ml − 1]]× [[1, Dl]],

x
(l)
i (m) =

Nl−1∑
j′=1

Dl∑
d′=1

Kl−1∑
k′=0

w
(l)
ij′d′(k

′)
(
y
(l−1)
j′

)d′
(m+ k′),
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from which we deduce:

∀l ∈ [[1, L]],∀(i, j,m, k, d) ∈ [[1, Nl]]× [[1, Nl−1]]× [[0,Ml − 1]]× [[0,Kl − 1]]× [[1, Dl]],

∂x
(l)
i

∂w
(l)
ijd(k)

(m) =
(
y
(l−1)
j

)d
(m+ k).

(4)

When injecting Eq. (4) in Eq. (3), we find that:

∀l ∈ [[1, L]],∀(i, j, k, d) ∈ [[1, Nl]]× [[1, Nl−1]]× [[0,Kl − 1]]× [[1, Dl]],

∂ε

∂w
(l)
ijd

(k) =

Ml−1∑
m=0

(
∂ε

∂y
(l)
i

� ∂y
(l)
i

∂x
(l)
i

)
(m).

(
y
(l−1)
j

)d
(m+ k),

which is equivalent to:

∀l ∈ [[1, L]],∀(i, j, d) ∈ [[1, Nl]]× [[1, Nl−1]]× [[1, Dl]],

∂ε

∂w
(l)
ijd

=

(
∂ε

∂y
(l)
i

� ∂y
(l)
i

∂x
(l)
i

)
∗
(
y
(l−1)
j

)d
=

∂ε

∂x
(l)
i

∗
(
y
(l−1)
j

)d
.

(5)

Remark 3. The weight gradient estimation of a 1DPNN neuron is equivalent to that of a 1DCNN neuron
when Dl = 1. This was to be expected as the former is only a mere extension of the latter.

Remark 4. The output gradient can easily be determined for the last layer since Ŷ = YL which makes the
loss directly dependent on YL. However, it can not be determined as easily for the other layers since the
loss is indirectly dependent on their outputs.

3.2.3. Output Gradient Estimation

As stated in Remark 4, there is a need to find a way to estimate the gradient of the loss with respect to
the inner layers’ outputs in order to estimate the weight gradients of their neurons as in Eq. (2).

Proposition 2. The output gradient of a neuron in an inner layer can be estimated using the following
formula:

∀l ∈ [[1, L− 1]], j ∈ [[1, Nl]],

∂ε

∂y
(l)
j

=

Dl∑
d=1

d

Nl+1∑
i=1

w̃
(l+1)
ijd ∗

◦
∂ε

∂x
(l+1)
i

� (y(l)j )d−1 , (6)

where

• ∀k ∈ [[0,Kl+1 − 1]], w̃
(l+1)
ijd (k) = w

(l+1)
ijd (Kl+1 − 1− k); and

• ∀m ∈ [[0,Ml − 1]],

◦
∂ε

∂x
(l+1)
i

(m) =


∂ε

∂x
(l+1)
i

(m−Kl+1) if m ∈ [[Kl+1,Ml+1 +Kl+1 − 1[[

0 else

.

Proof of Proposition 2. Since Yl+1 is directly computed from Yl,∀l ∈ [[1, L − 1]], we can assume that
ultimately, the last layer’s output YL is totally dependent on Yl+1 so that we can write:

∀l ∈ [[1, L− 1]], ε
(
Y, Ŷ

)
= ε (Y, ψl+1 (Yl+1)) , (7)
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where Y is a given desired output and ψl+1 is the application of Eq. (1) from layer l + 1 to layer L. From
Eq. (7) we can write the differential of ε as such:

∀l ∈ [[1, L− 1]], dε =

Nl+1∑
i=1

∂ε

∂y
(l+1)
i

� dy(l+1)
i . (8)

We can then derive the general expression of the output gradient of any neuron in layer l as such:

∀l ∈ [[1, L− 1]], j ∈ [[1, Nl]],
∂ε

∂y
(l)
j

=

Nl+1∑
i=1

∂ε

∂y
(l+1)
i

� ∂y
(l+1)
i

∂y
(l)
j

=

Nl+1∑
i=1

∂ε

∂y
(l+1)
i

� ∂y
(l+1)
i

∂x
(l+1)
i

� ∂x
(l+1)
i

∂y
(l)
j

.

This expression can be qualitatively interpreted as finding the contribution of each sample in y
(l)
j in the loss

by finding its contribution to every output vector in layer l+1. Considering a layer l ∈ [[1, L−1]], a neuron j

in layer l, and a neuron i in layer l+ 1, a sample m ∈ [[0,Ml−1]] in y
(l)
j contributes to x

(l+1)
i in the following

samples:

∀l ∈ [[1, L− 1]],∀(i,m, k, d) ∈ [[1, Nl+1]]× [[0,Ml − 1]]× [[klm, k
′
lm]]× [[1, Dl+1]],

x
(l+1)
i (m− k) =

Nl∑
j′=1

Dl+1∑
d=1

Kl+1−1∑
k′=0

w
(l+1)
ij′d (k′)

(
y
(l)
j′

)d
(m− k + k′),

where ∀l ∈ [[1, L − 1]], klm = max (0,m−Ml+1 + 1) and k′lm = min (m,Kl+1 − 1). We can then determine

the exact contributions of y
(l)
j (m) in x

(l+1)
i as such:

∀l ∈ [[1, L− 1]],∀(i, j,m, k, d) ∈ [[1, Nl+1]]× [[1, Nl]]× [[0,Ml − 1]]× [[klm, k
′
lm]]× [[1, Dl+1]],

∂x
(l+1)
i

∂y
(l)
j (m)

(m− k) =

Dl+1∑
d=1

d.w
(l+1)
ijd (k)

(
y
(l)
j

)d−1
(m).

(9)

Therefore, we can finally determine the full expression of the output gradient for each sample:

∀l ∈ [[1, L− 1]], (j,m) ∈ [[1, Nl]]× [[0,Ml − 1]],

∂ε

∂y
(l)
j

(m) =

Nl+1∑
i=1

k′lm∑
k=klm

Dl∑
d=1

d.

(
∂ε

∂y
(l+1)
i

� ∂y
(l+1)
i

∂x
(l+1)
i

)
(m− k)w

(l+1)
ijd (k)

(
y
(l)
j

)d−1
(m).

(10)

Eq. (10) can be decomposed as the sum along i and d of the product of
(
y
(l)
j

)d−1
with the correlation

between
∂ε

∂x
(l+1)
i

and w
(l+1)
ijd , the correlation being a rotated version of the convolution where the samples

of the weights are considered in an inverted order to that of the convolution. Therefore, a correlation can

be transformed into a convolution by considering the rotated weights w̃
(l+1)
ijd defined as such:

∀k ∈ [[0,Kl+1 − 1]], w̃
(l+1)
ijd (k) = w

(l+1)
ijd (Kl+1 − 1− k).

However, we can only perform a valid convolution when klm = 0 and k′lm = Kl+1 − 1. Thus, to obtain

a valid convolution otherwise, we consider the zero-padded version of
∂ε

∂x
(l+1)
i

designated by

◦
∂ε

∂x
(l+1)
i

and

defined as such:

∀m ∈ [[0,Ml − 1]],

◦
∂ε

∂x
(l+1)
i

(m) =


∂ε

∂x
(l+1)
i

(m−Kl+1) if m ∈ [[Kl+1,Ml+1 +Kl+1 − 1[[

0 else

.
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Finally, we can obtain the desired expression by considering the rotated version of the weights, and the

zero-padded version of the gradient of the error with respect to x
(l+1)
i in Eq. (10).

Remark 5. The main difference between the output gradient estimation of a 1DPNN inner layer’s neuron
and that of a 1DCNN inner layer’s neuron is that in the former, the gradient depends on the output values
of the considered layer and in the latter, it does not. By injecting Eq. (6) in Eq. (2), we notice that, unlike
a 1DCNN neuron, the weight gradient of a 1DPNN inner layer’s neuron carry the information of its output
values as well as its previous layer’s output values.

3.2.4. Bias Gradient Estimation

The bias is a parameter whose contribution to the loss needs to be estimated in order to properly train
the model.

Proposition 3. The bias gradient of a 1DPNN neuron can be estimated using the following formula:

∀l ∈ [[1, L]],∀i ∈ [[1, Nl]],
∂ε

b
(l)
i

=

Ml−1∑
m=0

(
∂ε

∂y
(l)
i

� ∂y
(l)
i

∂x
(l)
i

)
(m) =

Ml−1∑
m=0

∂ε

∂x
(l)
i

(m).

Proof of Proposition 3. Using the differential of ε, we can determine the gradient of the loss with respect
to the bias as such:

∀l ∈ [[1, L]],∀i ∈ [[1, Nl]],
∂ε

b
(l)
i

=

Ml−1∑
m=0

(
∂ε

∂y
(l)
i

� ∂y
(l)
i

∂x
(l)
i

� ∂x
(l)
i

∂b
(l)
i

)
(m).

And since from Eq. (1), we can notice that
∂x

(l)
i

∂b
(l)
i

(m) = 1,∀l ∈ [[1, L]],∀(i,m) ∈ [[1, Nl]] × [[0,Ml − 1]], we

obtain the desired expression.

Remark 6. The bias gradient formula of a 1DPNN neuron is the same as that of a 1DCNN neuron regardless
of the degree of the polynomial approximation.

3.2.5. Training Procedure

Given a tuple (X,Y ) representing an input and a desired output, we generate Ŷ using a defined ar-

chitecture of the 1DPNN, then calculate
∂ε

∂YL
directly from the loss expression, in order to determine the

weight gradients and the bias gradients for the output layer. Then using
∂ε

∂YL
and Eq. (6), calculate the

output gradients, the weight gradients and the bias gradients of the previous layer. Repeat the process until
reaching the first layer. After computing the gradients, we use gradient descent to update the weights as
such:

∀l ∈ [[1, L]],∀(i, j, d) ∈ [[1, Nl]]× [[1, Nl−1]]× [[1, Dl]],
(
w

(l)
ijd

)(t+1)

=
(
w

(l)
ijd

)(t)
− η ∂ε

∂w
(l)
ijd

, (11)

where η is the learning rate and t is the epoch. The same goes for the updating the biases:

∀l ∈ [[1, L]],∀i ∈ [[1, Nl]],
(
b
(l)
i

)(t+1)

=
(
b
(l)
i

)(t)
− η ∂ε

b
(l)
i

.
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3.3. 1DPNN Weight Initialization

Since the 1DPNN model uses polynomials to generate non-linear filtering, it is highly likely that, due to
the fact that every feature map of every layer is raised to a power higher than 1, the weight updates become
exponentially big (gradient explosion) or exponentially small (gradient vanishing), depending on the nature
of the activation functions that are used. To remedy that, the weights have to be initialized in a way that
the highest power of any feature map is associated with the lowest weight values.

Definition 2. Let R(αl), l ∈ [[1, L]] be a probability law with a parameter vector αl used to initialize the
weights of any layer l. The proposed weight initialization is defined as such:

∀l ∈ [[1, L]], (i, j, d) ∈ [[1, Nl]]× [[1, Nl−1]]× [[1, Dl]], w
(l)
ijd ∼

R(αl)

d!
.

Remark 7. This initialization offers the advantage of allowing the use of any known deep-learning initial-
ization scheme such as the Glorot Normalized Uniform Initialization [42] while adapting it to the weights
associated with any degree. However, this does not ensure that there will be no gradient explosion as it
only provides an initial insight on how the weights should evolve. Completely avoiding gradient explosion
can be achieved by either choosing activation functions bounded between -1 and 1, by performing weight or
gradient clipping or by using weight or activity regularization.

3.4. 1DPNN Theoretical Computational Complexity Analysis

The use of polynomial approximations in the 1DPNN model introduces a level of complexity that has
to be quantified in order to estimate the gain of using it against using the regular convolutional model.
Therefore, a thorough analysis is conducted with the aim to determine the complexity of the 1DPNN model
with respect to the complexity of the 1DCNN model for both the forward propagation and the learning
process (forward propagation + backpropagation).

Definition 3. Let γ be a mathematical expression that can be brought to a combination of summations and
products. We define C as a function that takes as input a mathematical expression such as γ and outputs
an integer designating the number of operations performed to calculate that expression so that C(γ) ∈ N.

Example 1. Let N ∈ N∗ and γ =
N∑
i=1

i3, then C (γ) = 2N + N − 1 = 3N − 1 because N − 1 summations

are performed, and 2 products are performed N times.

Example 2. ∀z ∈ C, 0 ≤ C(z) ≤ 2 because a complex number can be written as z = a+ ib, (a, b) ∈ R2.

Remark 8. C does not take into account any possible optimization such as the one for the exponentiation
in Example 1 which can have a complexity of O(log2m) where m is the exponent, nor does it take into

account any possible simplification of a mathematical expression such as
N∑
i=1

i3 =
N2(N + 1)2

4
. Therefore,

C provides an upper bound complexity that is independent of any implementation.

Since the smallest computational unit in both models is the neuron, the complexity is calculated at its
level for every operation performed during the forward propagation and the backpropagation. Moreover,
every 1DPNN operation’s complexity denoted by Cp is calculated as a function of the corresponding 1DCNN
operation’s complexity denoted by Cc since the aim is to compare both models with each other.
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3.4.1. Forward Propagation Complexity

The forward propagation complexity is a measure relevant to the estimation of how complex a trained
1DPNN neuron is and can provide an insight on how complex it is to use a trained model compared to using
a trained 1DCNN model.

Proposition 4. The computational complexity a 1DPNN neuron’s forward propagation with respect to
that of a 1DCNN neuron is given by the following formula:

∀l ∈ [[1, L]],∀i ∈ [[1, Nl]], Cp
(
y
(l)
i

)
= DlCc

(
y
(l)
i

)
+ (Dl − 1)

(
1

2
Ml−1Nl−1Dl − 2Ml

)
. (12)

Proof of Proposition 4. The 1DPNN forward propagation is fully defined by Eq. (1), which can also
be interpreted as the 1DCNN forward propagation if the degree of the polynomials is 1. Therefore, we
can determine the 1DPNN complexity as a function of the 1DCNN complexity by first determining the

complexity of x
(l)
i before adding the biases as such:

∀l ∈ [[1, L]],∀i ∈ [[1, Nl]],

Cp
(
x
(l)
i − b

(l)
i

)
=

Dl∑
d=1

(
Cc
(
x
(l)
i − b

(l)
i

)
+ (d− 1)Ml−1Nl−1

)
= DlCc

(
x
(l)
i − b

(l)
i

)
+

1

2
Dl(Dl − 1)Ml−1Nl−1.

(13)

Assuming that the activation functions are atomic meaning that their complexity is O(1), we have:

∀l ∈ [[1, L]],∀i ∈ [[1, Nl]],

Cc
(
x
(l)
i

)
= Cc

(
x
(l)
i − b

(l)
i

)
+Ml

Cc
(
y
(l)
i

)
= Cc

(
x
(l)
i

)
+Ml

and

Cp
(
x
(l)
i

)
= Cp

(
x
(l)
i − b

(l)
i

)
+Ml

Cp
(
y
(l)
i

)
= Cp

(
x
(l)
i

)
+Ml

.

(14)

By using the relationships in Eq. (14) in Eq. (13), we obtain the desired expression.

Remark 9. Eq. (12) shows that the forward propagation’s complexity of the 1DPNN does not scale lin-
early with the degrees of the polynomials, which means that a 1DPNN neuron with degree Dl is more
computationally complex than Dl 1DCNN neurons despite having less trainable parameters (same number
of weights but only 1 bias). However, this complexity can become linear since Y dl−1 can be calculated only
once, stored in memory and used for all neurons in layer l.

3.4.2. Learning Complexity

The learning complexity is a measure relevant to the estimation of how complex it is to train a 1DPNN
neuron and can provide an overall insight on how complex a model is to train compared to training a
1DCNN model. Since the learning process of the inner layers’ neurons is more complex than the output
layer’s neurons, which can learn faster by estimating the output gradient directly from the loss function, the
learning complexity will only be determined for the inner layers’ neurons.

Proposition 5. The computational complexity of the learning process of a 1DPNN inner layer’s neuron

denoted by L(l)
p is given by the following formula:

∀l ∈ [[1, L− 1]],L(l)
p = DlL(l)

c + (Dl − 1)

((
Ml−1Nl−1 +

1

2
Ml

)
Dl −Ml

)
, (15)

where L(l)
c is the learning complexity of a 1DCNN neuron in a layer l.
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Proof of Proposition 5. The difference between the two models in the backpropagation phase resides in
the weight gradient estimation and the output gradient estimation. In fact, the bias gradient estimation is
the same for both models so there is no need to quantify its complexity. Since the weight gradient estimation
is dependent on the output gradient estimation, the output gradient estimation will be quantified first. From
Eq.(6), we can quantify the output gradient estimation complexity for the 1DPNN model as :

∀l ∈ [[1, L− 1]], j ∈ [[1, Nl]],

Cp

(
∂ε

∂y
(l)
j

)
= Cc

(
∂ε

∂y
(l)
j

)
+

Dl∑
d=2

(
Cc

(
∂ε

∂y
(l)
j

)
+ 2Ml + (d− 2)Ml

)
= DlCc

(
∂ε

∂y
(l)
j

)
+

1

2
(Dl + 2)(Dl − 1)Ml.

Since the 1DPNN neuron introduces Dl times more weights than the 1DCNN neuron, the complexity of
calculating the weight gradients for a pair of neurons (i, j) as in Eq. (2) is the sum of their corresponding
weight gradients with respect to the degree, as:

∀l ∈ [[1, L]],∀(i, j) ∈ [[1, Nl]]× [[1, Nl−1]],

Cp

(
∂ε

∂w
(l)
ij

)
=

Dl∑
d=1

Cp

(
∂ε

∂w
(l)
ijd

)
=

Dl∑
d=1

(
Cc

(
∂ε

∂w
(l)
ij

)
+ (d− 1)Ml−1

)
= DlCc

(
∂ε

∂w
(l)
ij

)
+

1

2
Dl(Dl − 1)Ml−1.

Since one 1DPNN neuron in a layer l has Dl times more weights than a 1DCNN neuron, its weight update
complexity is Dl times that of the 1DCNN. Therefore, the complexity of Eq. (11) is:

∀l ∈ [[1, L]],∀(i, j) ∈ [[1, Nl]]× [[1, Nl−1]], Cp
((

w
(l)
ij

)(t+1)
)

= DlCc
((

w
(l)
ij

)(t+1)
)
.

From the above expressions, we can determine the learning complexity of any neuron which will be the sum
of the forward propagation complexity and the backward propagation complexity. Therefore, the learning

complexity denoted by L(l)
p,i of a 1DPNN inner layer’s neuron is:

∀l ∈ [[1, L− 1]], i ∈ [[1, Nl]],L(l)
p,i =Cp

(
y
(l)
i

)
+ Cp

(
∂ε

∂y
(l)
i

)
+

Nl−1∑
j=1

(
Cp

(
∂ε

∂w
(l)
ij

)
+ Cp

((
w

(l)
ij

)(t+1)
))

.

Since we suppose that the network is fully connected, L(l)
p,i does not depend on i, thus we can replace it by

L(l)
p . Therefore, by replacing each complexity in the above equation by their full expressions, we obtain the

desired expression where:

∀l ∈ [[1, L− 1]], i ∈ [[1, Nl]],L(l)
c =Cc

(
y
(l)
i

)
+ Cc

(
∂ε

∂y
(l)
i

)
+

Nl−1∑
j=1

(
Cc

(
∂ε

∂w
(l)
ij

)
+ Cc

((
w

(l)
ij

)(t+1)
))

.

4. Implementation

This section describes the application programming interface (API) used to implement the 1DPNN model
as well as an evaluation of the implementation in the form of an experimental computational complexity
analysis for the forward propagation and the learning process of a 1DPNN neuron.

4.1. Keras Tensorflow API Implementation

Tensorflow [43] is an API created by Google that is widely used for graphics processing unit (GPU)-based
symbolic computation and especially for neural networks. It allows the implementation of a wide range of
models and automatically takes into account the usual derivatives without the need to define them manually.
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However, Tensorflow is a low-level API that involves a lot of coding and memory management to define a
simple model. The 1DPNN model is mainly based on convolutions between inputs and filters, so it can
be considered as an extension of the basic 1DCNN with slight changes. Therefore, there is no need to use
such a low-level API like Tensorflow or CUDA [44] to define the 1DPNN, so the Keras API was used to
implement the model.

Keras [45] is a high level API built on top of Tensorflow that provides an abstraction of the internal
operations performed to compute gradients or anything related. Keras makes it possible to build a network
as a combination of layers whether they are stacked sequentially or not. It uses the concept of layers which is
the key element to perform any operation. This allows the definition of custom layers that can be jointly used
with predefined layers, thus, allowing the creation of a heterogeneous network composed of different types
of layers. In Keras, there is only the need to define the forward propagation of 1DPNN since convolutions
and exponents are considered basic operations, and the API takes care of storing the gradients and using
them to calculate the weight updates.

4.2. Experimental Computational Complexity Analysis

In order to evaluate the efficiency of the implementation, we compare the forward propagation complexity
and the learning process complexity of a 1DPNN neuron with respect to the theoretical upper bound
complexities determined in Section 3.4, as well as with a 1DCNN neuron’s complexity, and a 1DPNN-
equivalent neuron by varying the degrees of the polynomials in a given range. This experimental analysis is
designed to show that the theoretical complexity is indeed an upper bound and that, as stated in Section
3.4, a 1DPNN neuron with a degree D is actually more complex than D 1DCNN neurons, which is the
genesis of the idea of a 1DPNN-equivalent neuron.

4.2.1. 1DPNN-Equivalent Network

Theorem 1. Any 1DPNN with L ≥ 1 layers can be transformed into a 1DCNN with L+ 1 layers that has
the same number of parameters as the 1DPNN.

Proof of Theorem 1. Let L ∈ N∗ be the number of layers of a 1DPNN and ∀l ∈ [[1, L+ 1]], let N ′l be the
number of neurons in a 1DCNN layer. Given any inner 1DPNN layer, we can create a 1DCNN layer that
has the same number of parameters using the equality between the number of parameters of each model’s
layer as such:

∀l ∈ [[1, L− 1]], N ′lN
′
l−1Kl +N ′l = NlNl−1KlDl +Nl,

where N ′0=N0 since the input layer remains the same. We then determine N ′l from that equation as follows:

∀l ∈ [[1, L− 1]], N ′l =

⌊
Nl(Nl−1KlDl + 1)

N ′l−1Kl + 1
+

1

2

⌋
, (16)

where N ′l is rounded by adding 1/2 and applying the floor function since it should be an integer. If we
determine N ′L in the same manner as we determine the number of neurons in the inner layers, we will
change the number of neurons in the output layer of the 1DCNN, which is not a desired effect. To remedy
that problem, we add another 1DCNN layer with N ′L+1 = NL neurons having a filter size of 1 in the 1DCNN,
and we adjust the number of neurons in layer L so that the number of parameters in layer L and layer L+ 1
equals the number of parameters in the 1DPNN layer L using the following equality:

N ′LN
′
L−1KL +N ′L +NLN

′
L +NL = NLNL−1KLDL +NL.

By extracting N ′L from this expression and by rounding it, we end up with

N ′L =

⌊
NLNL−1KLDL

N ′L−1KL +NL + 1
+

1

2

⌋
. (17)
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Remark 10. We call any 1DCNN recurrently constructed using the aforementioned theorem and Eqs. (16)
and (17) a 1DPNN-equivalent network because it has the same number of parameters as the 1DPNN it was
constructed from. However, their respective search spaces and computational complexities are generally not
equivalent.

Remark 11. In a 1DPNN having only 1 layer (L = 1),

⌊
N ′L
NL

+
1

2

⌋
1DCNN neurons are considered equiva-

lent to only one 1DPNN neuron, and thus comes the concept of a 1DPNN-equivalent neuron. Comparing a
1DPNN neuron with its equivalent 1DCNN neuron is indeed helpful to determine the gain or loss of using
one over the other by providing an insight on how to estimate the balance between searching features in a
more complex search space and searching less complex features in less time.

4.2.2. Experimental Setup

Since the implementation is GPU-based, it is very difficult to estimate the actual execution time of
a mathematical operation since it can be split among parallel execution kernels and since the memory
bandwidth greatly impacts it. Nevertheless, for a given amount of data, we can roughly estimate how fast a
mathematical operation was performed by running it multiple times and averaging. However, that estimate
also includes accesses to the memory which are the slowest operations that can run on a GPU.

Despite this limitation, a rough estimate is used to determine the execution times of a 1DPNN neuron,
a 1DCNN neuron and a 1DPNN-equivalent neuron with different hyperparameters. Various networks with
2 layers serving as a basis for the complexity estimation are created with the hyperparameters defined in
Table 1 below. Recall that Nl is the number of neurons in layer l, Ml is the number of samples of the signals
created from the neurons of layer l, Kl is the kernel size of the neurons in layer l and Dl is the degree of the
polynomials that need to be estimated for each neuron in layer l. Since the output layer is a single 1DCNN

Table 1: Hyperparameters for each layer of the networks used for the complexity estimation.

Layer
Hyperparameter l = 0 l = 1 l = 2
Ml 100 76 52
Nl 2 10 1
Kl - 25 25
Dl - [[1, 100]] 1

neuron, its execution time can be estimated separately from the first layer. That time will then be deducted
from the overall execution time of the network. Subsequently, for each degree of polynomials in the previous
set of hyperparameters, a 1DPNN is created, as well as its equivalent 1DCNN counterpart. 1000 forward
propagations are first performed, then 1000 learning cycles (forward propagation and backpropagation) are
performed. The execution times for 1 neuron are then estimated by deducting the average execution times
of the last layer and then averaging over 1000 and dividing by N1.

The theoretical complexities determined in Eqs. (12) and (15) are expressed in terms of number of
operations and need to be expressed in seconds. Therefore, given the execution times of the 1DPNN with
D1 = 1, we can estimate how long it would theoretically take to perform the same operations with a different
polynomial degree. For instance, we can estimate the time T1 it takes to perform a forward propagation as
a function of the polynomial degree D1 using Eq. (12) as such:

∀D1 ∈ [[1, 100]], T1(D1) = D1T0 + (D1 − 1) (c1D1 − c2)T,

where

• T0 is the forward propagation execution time of a 1DCNN neuron,

• c1 =
1

2
M0N0,
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• c2 = 2M1, and

• T is an estimate of the time it takes to perform one addition or one multiplication.

T can only be estimated from the fact that T1 is an increasing function of D1 which means that

∀D1 ∈ [[1, 100]],
∂T1
∂D1

(D1) = T0 + (2c1D1 − (c1 + c2))T ≥ 0.

This is equivalent to:

∀D1 ∈ [[1, 100]], T ≥ T0
c1 + c2 − 2c1D1

.

Since c1 + c2 − 2c1D1 is a decreasing function of D1, the final estimation of T is

T =
T0

c1 + c2
.

The same can be done for the theoretical learning complexity defined in Eq. (15) by replacing c1, c2 and T0
accordingly.

4.2.3. Results

Figure 1 shows the evolution of the execution time of a neuron’s forward propagation with respect to the
degree of the polynomial for each of the 1DCNN neuron, 1DPNN neuron and 1DPNN-equivalent neuron.
Figure 1(a) also shows the evolution of the theoretical complexity with respect to the degree. This confirms
that Eq. (12) is indeed an upper bound complexity and that, with optimization, the forward propagation
of a 1DPNN neuron can run in quasi-linear time as shown in Figure 1(b). Moreover, with the chosen
hyperparameters, the 1DPNN neuron is, on average, 1.94 times slower than the 1DPNN-equivalent neuron,
which confirms the expectation that a 1DPNN neuron is more complex than a 1DPNN-equivalent neuron.

Figure 2 shows the evolution of the execution time of neuron’s learning process with respect to the

(a) With theoretical execution time. (b) Without theoretical execution time.

Figure 1: Forward propagation execution time for 1 neuron of each network.

degree of the polynomial for each of the 1DCNN neuron, 1DPNN neuron and 1DPNN-equivalent neuron.
Figure 2(a) showing the evolution of the theoretical complexity with respect to the degree confirms that Eq.
(15) is in fact an upper bound, and Figure 2(b) shows that the learning process of a 1DPNN neuron can
also run in quasi-linear time, as stated in Section 3.4. However, the 1DPNN neuron’s learning process is, on
average, 2.72 times slower than the 1DPNN-equivalent neuron, as it is to be expected from Eq. (15).
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(a) With theoretical execution time. (b) Without theoretical execution time.

Figure 2: Learning process execution time for 1 neuron of each network.

5. Experiments And Results

Since 1DPNN is basically an extension of 1DCNN, there is a need to compare our proposed model’s
performance with the 1DCNN model’s performance under certain conditions. In fact, the number of pa-
rameters in a 1DPNN differs from the number of parameters in a 1DCNN with the same topology, and the
computational complexity of a 1DPNN is higher than the computational complexity of a 1DPNN-equivalent
1DCNN. Hence, we devised 3 strategies that to compare the two models, 1DPNN and 1DCNN:

1. Topology-wise comparison which consists in comparing the performances of a 1DCNN and a 1DPNN
that have the same topology.

2. Parameter-wise comparison which consists in comparing the performances of a 1DCNN and a
1DPNN that have the same number of parameters. The 1DCNN is created according to the defi-
nition of the 1DPNN-equivalent network detailed in Section 4.2.

3. Performance-wise comparison which consists in comparing the spatial and the computational com-
plexities of a 1DCNN and a 1DPNN that achieve equal or nearly equal performance based on an
evaluation metric. A performance-wise network is constructed by gradually adding neurons to the
layers of a 1DPNN-equivalent network until reaching the same performance as the reference 1DPNN.

Both models were evaluated on the same problems consisting of 2 classification problems which are musical
note recognition on monophonic instrumental audio signals and spoken digit recognition; and 1 regression
problem, audio signal denoising at 0db Signal-to-Noise Ratio (SNR) with Additive White Gaussian Noise
(AWGN). Moreover, the spatio-temporal complexities of the 1DPNN and the 3 architectures of 1DCNN
were evaluated on each problem. The same learning rate (10−3) and the same gradient optimizer (ADAM
[46]) were used for all networks on any given problem. Furthermore, we also experimentally studied the
influence of the activation function on the performance and convergence of the 1DPNN since the presence of

the term
(
y
(l−1)
j

)d
in Eq. (2) and the term

(
y
(l)
j

)d−1
in Eq. (6) strongly suggests that a gradient explosion

is very likely to occur during training if the activation function is not bounded. As a result, we chose to
evaluate the influence of the following activation functions on the 1DPNN:

1. Tangent hyperbolic which is bounded between −1 and 1.

2. Softsign [47] which is also bounded between −1 and 1 but has a higher saturation limit than the
tangent hyperbolic.

3. Rectified Linear Unit (ReLU) [28] which produces a sparse representation of features due to its hard
saturation to zero for negative values and its linear output for positive values.

4. Swish [48] which circumvents the hard saturation of the ReLU to allow for more flexibility during
learning.

Since the audio signals are bounded between −1 and 1 and ReLU and Swish are highly likely to nullify a
negative input, the signals are normalized between 0 and 1 when these activation functions are used.
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All problems involve 1 dimensional audio signals sampled at a given sampling rate and with a specific
number of samples. However, the datasets used for the experiments contain either signals that have a
high number of samples, or signals that have different numbers of samples inside the same dataset. Due
to technical limitations, creating a network that takes a high number of samples as input or different
number of samples per signal is time-consuming and irrelevant because the main aim of the experiments
is to compare both models with each other, and not to produce state-of-the-art results on the considered
problems. Therefore, the sliding window technique described below has been adopted for both problems
as a preprocessing step. In the following experiments, PNNLayer(x, y, z, f) refers to a PNN layer having
x neurons, a mask size y, a polynomial degree z, and an activation function f . Conv1D(x, y, f) refers to
a convolutional layer having x neurons, a mask size y, and an activation function f . Finally, MLP (x, f)
refers to a multilayer perceptron layer with x neurons, and an activation function f .

5.1. Sliding Window Technique

The sliding window technique consists on applying a sliding observation window on a signal to extract
a certain number of consecutive samples with a certain overlap between two consecutive windows. Usually,
the samples that are contained in an observation window are multiplied by certain weights that constitute
a window function. The technique is useful when dealing with signals that have a high number of samples
and when studying a locally stationary signal property (such as the frequency of a tone which lasts for a
certain duration).

Definition 4. Let x = (x0, ..., xN−1) ∈ RN be a temporal signal. Let w ∈ [[1, N ]] be the size of the window.
Let α ∈ [0, 1[ be the overlap ratio between two consecutive windows. Let h = (h0, ..., hw−1) ∈ [0, 1]w be a
window function. We define Ww,α(h, x) as the set of all the observed windows for the signal x with respect
to the window function h, and we express it as such:

Ww,α(h, x) = {(h0xi, ..., hw−1xi+w−1)|i = bn(1− α)wc, n ∈ [[0,

⌊
N − w

(1− α)w

⌋
]]}.

Remark 12. The sliding window has the effect of widening the spectrum of the signal due to the Heisenberg-
Gabor uncertainty principle [49], thus, distorting it in a certain measure. Therefore, the size of the window
and the window function have to be chosen so that a given observation window of the signal can respectively
contain enough information to process it accordingly, and as less distortion as possible to preserve the
spectral integrity of the original signal. The window function used for all the problems is the Hamming
window [50].

5.2. Classification Problems

Since 1DPNN and 1DCNN are based on convolutions, they are basically used as regressors in the form of
feature extractors. Their objective is to extract temporal features that will be used to classify the signals. In
the case of this work, they are used to create a feature extractor block that will be linked to a classifier which
will classify the input signals based on the features extracted as described in Figure 3, where x is a temporal
signal, (f1, ..., fp) are p features extracted using either 1DPNN or 1DCNN, and (c1, ...cq) are probabilities
describing whether the signal x belongs to a certain class (there are q classes in general). The classifier will
be a multilayer perceptron (MLP) in both problems and the metric used to evaluate the performance of the
models is the classification accuracy. However, since the sliding window technique is used on all signals, the
classifier will only be able to classify one window at a time. Therefore, for a given signal x, a window size
w, an overlap ratio α and a window function h as defined in the previous subsection, we obtain |Ww,α(h, x)|
different classes for the same signal, where |Ww,α(h, x)| is the cardinal of Ww,α(h, x). Thus, we define the
class of the signal as the statistical mode of all the classes, estimated from every window extracted from the
signal. For instance, if we have 3 classes and a signal gets decomposed in 10 windows such that 5 windows
are classified as class 0, 2 windows as class 1, and 3 windows as class 2, the signal will be classified as class
0 since it is the class that occurs most frequently in the estimated classes. As a result, the performance of
each model is evaluated with respect to the per-window accuracy and the per-signal accuracy.
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Figure 3: Block diagram of the classification procedure.

5.2.1. Note Recognition on Monophonic Instrumental Audio Signals

The dataset used for this problem is NSynth [20] which is a large scale dataset of annotated musical notes
produced by various instruments. It contains more than 300,000 signals sampled at 16kHz, and lasting 4
seconds each. The usual musical range is composed of 88 different notes which represent our classes. Since
the dataset is huge, we only use 12,678 signals for training, and 4096 for testing. We also use a sliding
window with a window size w = 1600 (100ms) and an overlap of 0.5 which makes the training set composed
of 728,828 signals and the test set composed of 235,480 signals. We then use 10-fold cross validation [51] on
the training set so that we estimate the average performance for every topology used on the test set. Four
different networks were created:

1. A network composed of a 1DPNN feature extractor.

2. A network composed of a 1DCNN feature extractor with the same topology as the previous one.

3. A network composed of a 1DPNN-equivalent feature extractor with the same number of parameters
as the 1DPNN.

4. A network composed of a 1DCNN feature extractor that achieves the same accuracy as the 1DPNN.

Table 2 shows the hyperparameters of each layer of the 1DPNN, the 1DPNN-equivalent network, and the
performance-equivalent network. The 1DPNN is trained on the windows extracted from the signals with

Table 2: Networks’ topologies for note recognition.

1DPNN 1DPNN-equivalent network Performance-equivalent network
PNNLayer(12, 49, 1, tanh) Conv1D(12, 49, tanh) Conv1D(18, 49, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(12, 25, 1, tanh) Conv1D(12, 25, tanh) Conv1D(14, 25, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(12, 13, 2, tanh) Conv1D(24, 13, tanh) Conv1D(24, 13, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(12, 7, 3, tanh) Conv1D(26, 7, tanh) Conv1D(26, 7, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(12, 3, 5, tanh) Conv1D(12, 3, tanh) Conv1D(12, 3, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
Flatten Flatten Flatten
MLP(96, ReLU) MLP(96, ReLU) MLP(96, ReLU)
MLP(88, softmax) MLP(88, softmax) MLP(88, softmax)

the activation functions presented in Section 5 and the 10-fold statistics are reported in Table 3 below.
The results show that the 1DPNN with the tangent hyperbolic activation function achieves the highest
minimum, maximum and average accuracy overall and that the Swish activation function is indeed a better
alternative than ReLU due to its flexibility in processing negative values. However, during the experiments,
both ReLU and Swish exhibited unstable behavior in the first epochs of training which was expected due to
the fact that very high weight updates occur when the network begins learning. This reinforces the need for
a bounded activation function when using the 1DPNN. The networks in Table 2 use the tangent hyperbolic
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Table 3: Accuracy per window for each activation function for note recognition over 10 folds.

Activation function
Statistic (%) Tanh Softsign ReLU Swish
Minimum accuracy 84.73 84.39 82.34 83.62
Maximum accuracy 86.03 85.7 82.91 85.11
Average accuracy 85.11 85.02 82.42 84.2

function and are also trained on the windows extracted from the signals, and their minimum, maximum
and average accuracy over the 10-fold cross validation are reported in Table 4 below in percentages. We
can see that the average accuracy per window of the 1DPNN is slightly better than the other networks,
except the performance-equivalent one. Figure 4 also shows that 91% of the time, over 200 epochs, the

Table 4: Accuracy per window for each network for note recognition over 10 folds.

Network
Statistic (%) 1DPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Minimum accuracy 84.73 83.84 84.6 84.82
Maximum accuracy 86.03 84.91 85.17 86.07
Average accuracy 85.11 84.47 84.93 85.2

average accuracy of the 1DPNN is higher than the 1DPNN-equivalent network. Moreover, the evolution
of the average accuracy is very smooth and the 1DPNN shows a slightly faster convergence in the first 50
epochs.

The networks are evaluated on whether they can classify a window from a signal correctly, but they

Figure 4: Average accuracy for each epoch of all the networks trained on the note recognition dataset.

should be evaluated on whether they classify a complete signal since the dataset is originally composed of
4 second signals. In the case of this work, multiple windows are derived from a single signal that belongs
to a certain class. Therefore, the windows are also considered as belonging to the same class of the signal
that they are derived from. However, the models may give a different classification for each window, so to
determine the class of a signal given the classification of its windows, we use the statistical mode of the
different classifications. By performing this postprocessing step, we end up with the average accuracy per
signal for each network, as shown in Table 5. We notice that the per-signal accuracies are better than the
per-window accuracies for all networks, and that the 1DPNN is more accurate than the 1DPNN-equivalent
network by 0.22% and is only 0.02% better at classifying the signals than the performance-equivalent network
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which has the best per-window accuracy statistics. Nevertheless, the performance-equivalent network is 1.1
times slower than the 1DPNN and uses 1.05 times more parameters as shown in Table 6 in which the
number of parameters and the execution time of each network are reported. Therefore, the 1DPNN is able
to extract more information from the data in less space and less time for the note recognition problem.

Table 5: Accuracy per signal for each network for note recognition over 10 folds.

Network
Statistic (%) 1DPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Average accuracy 88.81 88.47 88.59 88.79

Table 6: Average spatio-temporal complexities for each network for note recognition.

Network
Complexity 1DPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Spatial 71,344 65,728 71,490 75,116
Temporal(µs) 78 73 76 86

5.2.2. Spoken Digit Recognition

The dataset used for this problem is the Free Spoken Digits Dataset [21] which contains 2000 audio
signals of different duration sampled at 8kHz consisting of people uttering digits from 0 to 9 which will
represent the classes of the signals. In this work, 1800 signals are considered for training and 200 signals
are considered for testing the networks. A closer look at the dataset shows that 83% of the signals last
less than 500ms and that the voiced sections of the remaining 27% are contained within the first 500ms,
leaving the rest of the durations filled with noise and/or silence. Since the dataset has signals of different
durations, we use a sliding window with a window size of w = 4000 (500ms) and an overlap of 0.9 to ensure
that one window contains enough information to classify the signal. This process yields a training set of
8333 signals and a test set of 796 signals. The sliding window only operates on the signals whose durations
exceed 500ms while the signals that last less than 500ms are padded with zeros. 10-fold cross validation is
also used to evaluate the four networks. Table 7 shows the hyperparameters of each layer of the 1DPNN,

Table 7: Networks’ topologies for spoken digit recognition.

1DPNN 1DPNN-equivalent network Performance-equivalent network
PNNLayer(8, 81, 1, tanh) Conv1D(8, 81, tanh) Conv1D(16, 81, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(8, 25, 2,tanh) Conv1D(8, 25, tanh) Conv1D(16, 25, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(8, 9, 2, tanh) Conv1D(8, 9, tanh) Conv1D(16, 9, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(8, 9, 3, tanh) Conv1D(24, 9, tanh) Conv1D(16, 9, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(8, 3, 6, tanh) Conv1D(24, 3, tanh) Conv1D(8, 3, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
Flatten Conv1D(8, 1, tanh) Flatten
MLP(64, ReLU) Flatten MLP(64, ReLU)
MLP(48, ReLU) MLP(64, ReLU) MLP(48, ReLU)
MLP(10, softmax) MLP(48, ReLU) MLP(10, softmax)
- MLP(10, softmax) -
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1DPNN-equivalent network and the performance-equivalent network.
The 1DPNN is trained on the windows extracted from the signals with the activation functions presented

in Section 5 and the 10-fold statistics are reported in Table 8 below. The results are highly similar to the
ones obtained on the note recognition problem where the tangent hyperbolic activation function outperforms
the other activation functions and the ReLU and Swish functions exhibit unstable behavior. The 10-fold

Table 8: Accuracy per window for each activation function for spoken digit recognition over 10 folds.

Activation function
Statistic (%) Tanh Softsign ReLU Swish
Minimum accuracy 93.59 93.13 91.06 92.98
Maximum accuracy 93.97 93.82 92.51 93.6
Average accuracy 93.71 93.56 91.24 93.15

accuracy statistics of each network is shown in Table 9 where the average accuracy of the 1DPNN is almost
1% better than the 1DPNN-equivalent network. Figure 5 shows that the average accuracies of all the
networks start to stagnate from epoch 50 and that their evolution becomes stochastic in nature. Since the
classification is performed window-wise, the average accuracy per signal can be estimated with the same
principle used in the note recognition problem. Table 10 shows that the average accuracy per signal of
the 1DPNN surpasses that of the 1DPNN-equivalent network by almost 3% and that of the performance-
equivalent by only 0.06% which is to be expected. However, Table 11 shows that the performance-equivalent
network has 1.11 times more parameters than the 1DPNN and runs 1.08 times slower than the 1DPNN.
Therefore, the 1DPNN can extract more information in less space and less time for the digit recognition
problem.

Table 9: Accuracy per window for each network for spoken digit recognition over 10 folds.

Network
Statistic (%) 1DPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Minimum accuracy 93.59 90.98 92.64 93.63
Maximum accuracy 93.97 91.27 92.91 94.07
Average accuracy 93.71 91.2 92.83 93.96

Figure 5: Average accuracy for each epoch of all the networks trained on the spoken digit recognition dataset.
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Table 10: Accuracy per signal for each network for spoken digit recognition over 10 folds.

Network
Statistic (%) 1DPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Average accuracy 94.23 91.31 93.11 94.17

Table 11: Average spatio-temporal complexities for each network for spoken digit recognition.

Network
Complexity 1DPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Spatial 68,746 67,210 69,274 76,338
Temporal(µs) 97 93 96 105

5.3. Regression Problem: Audio Signal Denoising

Both 1DPNN and 1DCNN models take as input a signal and output a signal that usually has a lower
temporal dimension due to border effects. However, in this regression problem, we need the output signal
to have the same temporal dimension as the input signal. Therefore, we use zero-padding to avoid border
effects. 4 different metrics are used to evaluate the performances of the models for this problem:

1. The Signal-to-Noise Ratio (SNR) measured in decibel (dB) defined as such:

SNR = 10log10

(
µs2

µn2

)
,

where µs2 is the mean square of the signal without noise, and µn2 is the mean square of the noise.

2. The Mean Squared Error (MSE) which is equivalent to µn2 .

3. The segmental SNR (SNRseg) [52] which is the average of the SNR values calculated on short segments
of the signal.

4. The perceptual evaluation of speech quality (PESQ) score [53] which is an objective evaluation of
subjective speech quality that takes into account a large range of signal distortions. The score ranges
from -0.5 for very bad speech quality, to 4.5 for excellent speech quality.

The dataset used for this problem is the MUSDB18 [22] dataset containing 150 high quality full length
stereo musical tracks (10 hours of recordings) with their isolated drums, bass, and vocal stems sampled
at 44.1kHz. It is mainly used for source separation, but can also be used for instrument tracking or for
noise reduction. The aim of this problem is to restore voice recordings that are drowned in AWGN making
their individual SNR around 0dB. However, since the dataset is huge and the experiments are restricted by
technical limitations, we take a small subset of the training set and the test set, downsample the voice tracks
to 16kHz, and extract windows of 100ms to obtain 40,000 short clips (80% for training, 20% for testing).

All networks are then trained to estimate a clean window from a noisy one. The trained networks are
then used as building blocks for an end-to-end denoising system which takes any noisy signal and outputs a
cleaner signal of the same length. Figure 6 shows how an input signal x is processed into an output signal y
where the “Model” block represents a denoising model, which in this case corresponds to any of the trained
networks. The “Sliding window” block takes a signal x and outputs n windows where each of which is
fed to the model that processes it into a denoised window. The n denoised windows are then divided by
the Hamming window function and reconstructed into a signal y. The end-to-end system is then evaluated
for each trained network using the 4 metrics described above on 700 singing clips of 10 seconds that are
drowned in AWGN. However, to estimate the generalization capability of the networks, the singing clips
are corrupted into -5dB clips, 0dB clips, 5dB clips, 10dB clips and 15dB clips. Therefore 20 measures are
reported per network.

The topologies used to solve the problem are detailed in Table 12 below. The 1DPNN is trained on the
windows extracted from the signals with the activation functions presented in Section 5. However, since

22



Figure 6: Block diagram of the end-to-end denoising system.

ReLU and Swish are unbounded and the output of the 1DPNN needs to have the same range as its input,
we use the sigmoid activation function in the last layer when using ReLU and Swish in the inner layers.
The 10-fold SNR statistics for each 1DPNN reported in Table 13 below show that although the tangent
hyperbolic function has the highest minimum accuracy and average accuracy overall, the softsign achieved
the highest maximum accuracy. Moreover, it shows that the Swish function is far more effective than the
ReLU and that it almost performs as well as the tangent hyperbolic and the softsign. However, contrary
to the classification experiments, the ReLU and the Swish activation functions did not exhibit any form of
instability. This may be due to the use of the sigmoid function in the last layer which highly restricts the
values of the gradients. The statistics of the SNR per window gathered using 10-fold cross validation are

Table 12: Networks’ topologies for audio signal denoising.

1DPNN 1DPNN-equivalent network Performance-equivalent network
PNNLayer(16, 21, 5, tanh) Conv1D(77, 21, tanh) Conv1D(128, 21, tanh)
MaxPooling1D(2) MaxPooling1D(2) MaxPooling1D(2)
PNNLayer(16, 7, 5, tanh) Conv1D(17, 7, tanh) Conv1D(64, 7, tanh)
UpSampling1D(2) UpSampling1D(2) UpSampling1D(2)
PNNLayer(1, 11, 5, tanh) Conv1D(5, 11, tanh) Conv1D(32, 11, tanh)
- Conv1D(1, 1, tanh) Conv1D(1, 1, tanh)

reported in Table 14 where we notice that the 1DPNN’s average SNR is 0.12dB better than the 1DPNN-
equivalent and very close to the performance-equivalent 1DCNN, which is to be expected. However, Figure
7 representing the evolution of the 10-fold average SNR per window over the epochs shows that the 1DPNN
has a highly faster convergence than the other networks. Table 15 shows the performance evaluation of the

Table 13: SNR per window for each activation function for audio signal denoising over 10 folds.

Activation function
Statistic (%) Tanh Softsign ReLU Swish
Minimum accuracy 9.25 9.18 8.3 9.11
Maximum accuracy 9.34 9.38 8.71 9.27
Average accuracy 9.28 9.25 8.44 9.2

Table 14: SNR statistics per window for each network for audio signal denoising over 10 folds.

Network
Statistic (dB) 1DPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Minimum SNR 9.25 8.63 9.11 9.2
Maximum SNR 9.34 8.94 9.23 9.35
Average SNR 9.28 8.88 9.16 9.3

end-to-end system built on top of the best of each network based on the 4 performance evaluation metrics
described above and for different noise levels ranging from -5dB to 15dB. The corrupted signals are also
evaluated with respect to the original ones in the “No network” column. The overall results show that, for
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Figure 7: Average SNR in dB per window for each epoch of all the networks trained on audio signal denoising.

all the networks, the SNRseg is always much higher than the SNR which may be due to the fact that the
networks perform better on voiced segments of the signal than on non-voiced segments (silence segments)
of the signal. However, the SNRseg of the corrupted signals is always very inferior to the SNR which can
be explained by the fact that the corruption of speech quality and intelligibility is far more severe than the
corruption of the overall signal when using AWGN. The results show that for all noise levels except -5dB,
the 1DPNN provides better results than all the other networks and shows a decent level of noise suppression
notably for 0dB noisy signals with a 9.44dB segmental SNR representing a 24dB improvement compared to
the corrupted signals and a 2.255 PESQ score which means that the restored speech is fairly intelligible.

Table 15: Performance evaluation of the end-to-end system with respect to the best trained networks, 5 different levels of noise
and 4 performance evaluation metrics. The “No network” column shows the corrupted signals evaluated with respect to the
original ones.

Network
SNR Metric No network 1DPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent

-5dB

MSE 0.0283 0.0039 0.0045 0.0041 0.0037
SNR (dB) -4.99 1.82 0.61 1.12 1.37
SNRseg (dB) -19.56 6.07 5.67 5.92 6.13
PESQ score 1.15 1.858 1.843 1.866 1.834

0dB

MSE 0.0136 0.0015 0.0017 0.0016 0.0015
SNR (dB) 5.23E-5 2.34 1.25 1.33 1.47
SNRseg (dB) -14.56 9.44 8.87 9.31 9.27
PESQ score 1.24 2.255 2.19 2.253 2.23

5dB

MSE 0.0089 0.0007 0.0009 0.0008 0.0008
SNR (dB) 4.99 4.81 3.51 2.33 1.23
SNRseg (dB) -9.56 11.87 10.85 11.76 11.49
PESQ score 1.42 2.74 2.65 2.73 2.73

10dB

MSE 0.0074 0.0004 0.0006 0.0005 0.0005
SNR (dB) 9.99 6.31 4.69 3.75 2.36
SNRseg (dB) -4.56 13.34 11.84 13.22 12.81
PESQ score 1.69 3.26 3.14 3.24 3.23

15dB

MSE 0.007 0.00039 0.0005 0.0004 0.0004
SNR (dB) 14.99 6.99 5.14 4.43 2.91
SNRseg (dB) 0.43 14.07 12.25 13.91 13.44
PESQ score 2.06 3.68 3.58 3.67 3.66

Figure 8 shows how the end-to-end system built on top of every best trained network improves the 4
performance metrics with respect to the corrupted signal for different levels of noise. The improvement of
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a metric is calculated by determining the difference between the metric estimated from a given network’s
output and the metric estimated from the corrupted signals (the opposite is calculated for the MSE) such
that an improvement in a metric is positive for a given network when that network enhances the corrupted
signal with respect to that same metric. The main observation that can be drawn is that the PESQ score
is the only metric that the networks improve better for higher SNR values whereas the improvements of
the other metrics decrease as the SNR of the corrupted signals increase (as the noise becomes less severe).
Furthermore, the only metric that all the networks fail to improve is the SNR for corrupted signals with
an SNR of 5dB or higher despite an improvement in all other metrics. This may be due to the fact
that the networks are better at enhancing the quality of the speech locally which explains the PESQ and
SNRseg improvements, and that this local enhancement compensates the degradation that occurs in the
non-voiced segments which leads to an improvement in the signal reconstruction and thus, the MSE. A
closer look at the results also shows that the 1DPNN-equivalent network actually performs better than the
performance-equivalent network on all noise levels greater or equal to 5dB. This may be due to the fact
that the performance-equivalent network has more parameters which enables it to focus more on severe
noise than on medium/low noise. Overall, the 1DPNN shows a better ability to generalize on different noise
levels. Moreover, the performance-equivalent network has 7.18 times more parameters than the 1DPNN
and runs 1.19 times slower than the 1DPNN as shown in Table 16 below. This means that the 1DPNN is
more efficient than the 1DCNN in audio signal denoising and can encapsulate more relevant information in
less space and less time.

(a) MSE improvement. (b) SNR improvement.

(c) SNRseg improvement. (d) PESQ improvement.

Figure 8: Performance metric improvements of the end-to-end system built on top of every best trained network with respect
to the corrupted signals for 5 different levels of noise (values between two noise levels are linearly interpolated).
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Table 16: Average spatio-temporal complexities for each network for audio signal denoising.

Network
Complexity 1DPNN 1DCNN same topology 1DPNN-equivalent Performance-equivalent
Spatial 11,553 2,337 11,820 83,009
Temporal(µs) 104 76 81 124

6. Conclusion

In this paper, we have formally introduced a novel 1-Dimensional Polynomial Neural Network (1DPNN)
model that induces a high degree of non-linearity starting from the initial layer in an effort to produce
compact topologies in the context of audio signal applications. Our experiments demonstrate that it has the
potential to produce more accurate feature extraction and better regression than the conventional 1DCNN
with less spatial and computational complexities. Furthermore, our model also shows faster convergence in
the audio signal denoising problem and shows a significant gap in the performance compared to the 1DCNN
which needs to use more space and time to produce the same results. We have also showed that the 1DPNN
model converges with no instability when we use activation functions bounded between -1 and 1 (like tanh)
or when all the degrees are set to 1 because it becomes equivalent to a 1DCNN.

Our experiments are not sufficient to claim that our proposed 1DPNN surpasses 1DCNN on all class
of complex classification and regression problems. In addition, there is still no mathematical proof that
the 1DPNN is a convergent model. Moreover, the choice of the degree of every layer of the networks
created for the experiments was specifically designed to evaluate the performances. Therefore, a method
that accurately estimates the appropriate degree for each layer needs to be created in order to replace the
manual hyperparameter search. Furthermore, the stability of the model is not ensured as stacked layers with
high degrees can lead to the model becoming unstable, thus, losing its generalization capability. Therefore,
there is also a need to estimate an upper bound limit for the degree of each layer so that the overall network
stably learns from the given data. Finally, due to computational limits, the model could not be tested with
deep topologies that are used to solve very complex classification and regression problems involving a huge
amount of data.

Future work may be done on demonstrating the conditions of the stability of the model as well as its
convergence. Furthermore, a method that automatically sets the degree of each 1DPNN layer depending on
the problem tackled may be developed as to provide further independence from manual search. Moreover,
the equations defining the 1DPNN model and its backpropagation can easily be extended to 2 dimensions and
to 3 dimensions, thus, providing new models to deal with image processing and video processing problems
for example. In addition, a more specific gradient descent optimization scheme may be developed to avoid
gradient explosion. Finally, deeper 1DPNN topologies can be created to compete with state-of-the-art
models on any 1 dimensional signal related problem, not only audio signals. More thorough experiments
and further mathematical analysis can help this model to thrive and find its place as a standard model in
the deep learning field.
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