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A Deep Reinforcement Learning Approach for the Meal Delivery Problem

Hadi Jahanshahi, Aysun Bozanta, Mucahit Cevik, Eray Mert Kavuk, Ayşe Tosun,
Sibel B. Sonuc, Bilgin Kosucu, Ayşe Başar

• Our MDP model for the courier assignment task characterizes on-demand meal
delivery service.

• We tailor deep reinforcement learning algorithms to address the problem in a
dynamic environment.

• We incorporate the notion of order rejection to reduce the number of late orders.

• We investigate the importance of intelligent repositioning of the couriers during
their idle times.

ar
X

iv
:2

10
4.

12
00

0v
2 

 [
cs

.L
G

] 
 2

3 
Fe

b 
20

22



A Deep Reinforcement Learning Approach for the Meal
Delivery Problem

Hadi Jahanshahia,∗, Aysun Bozantaa, Mucahit Cevika, Eray Mert Kavukb,c, Ayşe
Tosunb, Sibel B. Sonucc, Bilgin Kosucuc, Ayşe Başara

aData Science Lab, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
bFaculty of Computer and Informatics Engineering, Istanbul Technical University, Istanbul,

34467, Turkey
cGetir Perakende Lojistik A.S., Istanbul, 34337, Turkey

Abstract

We consider a meal delivery service fulfilling dynamic customer requests given a set
of couriers over the course of a day. A courier’s duty is to pick up an order from
a restaurant and deliver it to a customer. We model this service as a Markov de-
cision process and use deep reinforcement learning as the solution approach. We
experiment with the resulting policies on synthetic and real-world datasets and com-
pare those with the baseline policies. We also examine the courier utilization for
different numbers of couriers. In our analysis, we specifically focus on the impact
of the limited available resources in the meal delivery problem. Furthermore, we
investigate the effect of intelligent order rejection and re-positioning of the couriers.
Our numerical experiments show that, by incorporating the geographical locations
of the restaurants, customers, and the depot, our model significantly improves the
overall service quality as characterized by the expected total reward and the delivery
times. Our results present valuable insights on both the courier assignment process
and the optimal number of couriers for different order frequencies on a given day.
The proposed model also shows a robust performance under a variety of scenarios
for real-world implementation.
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1. Introduction

Meal delivery is a rapidly growing business area and globally projected to reach
$200 billion in terms of gross revenue by 2025 [17]. Especially in urban areas, many
people may not find time to cook for a variety of reasons, including long working
hours and heavy traffic, making them order takeout frequently. With the increase
of such demand, meal delivery service, which started as facilitating orders from each
restaurant’s own web page, has led to the emergence of services such as UberEats,
Doordash, and Grubhub that bring orders from restaurants to the customers. In-
creasing demand over the years has enabled this market to thrive. The revenue
growth of the platform-to-customer food delivery market has increased 27% from
2019 to 2020 [17]. The number of users is expected to amount to 965.8 million all
around the world by 2024 in the platform-to-consumer delivery segment [17].

In addition to the challenges due to increasing demand, meal delivery services
also pose significant operational difficulties. Most delivery platforms guarantee their
customers’ short delivery times with the objective of serving fresh foods. Providing a
reliable and fast service enables the company to attract more users, leading to revenue
and market share growth. However, especially in the peak hours of the day, i.e.,
at noon or in the evening, timely delivery becomes a challenging task. Accordingly,
courier shifts and order assignments should be defined based on the expected number
of orders and the couriers’ working hours. Another concern is the increasing number
of couriers, which can be a prohibitive operational cost item while operating such
a company. Accordingly, it is important to determine the ideal number of couriers
that should be ready for each hour of the day to fulfill the customers’ demands while
minimizing the cost at the same time.

These operational challenges and increasing market growth have lead research
communities to explore possible solutions for the meal delivery problem and its vari-
ants. In recent studies, different approaches have been presented for the meal delivery
problem [11, 14, 15, 23, 27]. In our study, we consider a limited number of available
couriers fulfilling customer demands by picking up the meals from requested restau-
rants and delivering them to the customers as fast as possible. Our overall objective
for the meal delivery problem is to maximize total profit by minimizing the expected
delays, postponing or declining orders with low/negative rewards, and assigning the
orders to the most appropriate couriers. We apply various deep reinforcement al-
gorithms to solve our model, many of which have not been considered for the meal
delivery and courier routing problems. We conduct detailed numerical analysis with
a varying number of couriers in the system to determine the ideal number for the
working hours of the day.

The main characteristics and novelty of our work can be summarized as follows.
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• The primary contribution of our study is to propose a novel MDP model for
the meal delivery problem and showing its use in practical settings through our
numerical analysis with the datasets obtained from the day-to-day operations
of a meal delivery company.

• Our model enables examining system improvements that can contribute to
profitability and service quality. For instance, in a typical setting, when a
courier delivers an order, if there is no new order in the system, then the courier
directly returns to the depot. In our proposed model, couriers may head to
the restaurants instead of going back to the depot. By doing this, we aim to
make the couriers learn the restaurants with a higher probability of having a
new order so that the delivery times are shortened. In addition, we include a
reject action in the action space, which corresponds to choosing not to deliver
an order that is deemed to be far away from the current courier locations.
This action allows trading immediate rewards with future rewards and helps
us achieving higher expected total rewards. Furthermore, our model allows
assigning multiple orders to the couriers provided that the long run return of
that assignment is higher than other options. This model specification has only
been considered in a few other studies in the literature [15, 18, 27].

• We conduct numerical experiments with different numbers of couriers to deter-
mine the ideal number of couriers at each hour of a given day for the purpose
of meeting the customer demands while minimizing the costs. We also present
the courier utilizations to explore the rate at which each courier is assigned
a new order, which helps to observe workload distribution among couriers.
This consideration has important practical implications and, to the best of our
knowledge, has not been examined in previous studies on the meal-delivery
problems.

• Our detailed numerical study helps exploring the performances of eight deep
Q-Networks (DQN) algorithms for the meal delivery problem. We conduct
our experiments using both synthetic and real-world datasets to better assess
the generalizability of our results. We also perform hyperparameter tuning to
identify the ideal parameters for our proposed model and provide a detailed
discussion of these parameters. Accordingly, our observations contribute to
future studies that apply DQN and its variants to other problems.

The outline of the rest of the paper is as follows. In Section 2, we present the
related literature. We define our problem and solution methodology in Section 3.
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Subsequently, the results are presented in Section 4. The paper concludes with a
summary, limitations, and future research suggestions in Section 5.

2. Literature review

We primarily review the recent studies on the meal delivery problem and its
variants. We first discuss courier routing/ assignment literature and then other
delivery tasks (e.g., delivery robots) that share similar characteristics. Afterwards, we
discuss the methodologies used for these problems, specifically reinforcement learning
and approximate dynamic programming.

2.1. Courier routing and assignment
There is a vast literature on courier routing and assignment. Reyes et al. [15]

studied the meal-delivery routing problem (MDRP) and proposed a rolling-horizon
repeated matching approach to solving large-scale MDRPs. They observed that
the uncertainty of meal preparation time has a significant impact on the system
reliability. Yildiz and Savelsbergh [27] assumed perfect information about the order-
arrival in their meal delivery problem. They considered different objectives, including
cost minimization, click-to-door minimization, and the combination of both, and
solved their model using a combination of row and column generation. They noted
that their model takes five minutes to assign a courier, making it difficult to be
implemented for real-time decision-making settings.

Chen et al. [4] considered the problem of maximizing the revenue from the served
orders given a limited number of couriers and a specific schedule. They formulated
a Markov decision process (MDP) model for their problem and used multi-agent
reinforcement learning to solve their models. They assessed the generalizability of
their approach under different circumstances, e.g., zone distribution variations, dif-
ferent grid sizes, and various order distributions. They also applied their methods
to the pickup-service platform of Alibaba to show the model scalability in practice.
Steever et al. [18] studied the virtual food court delivery problem (VFCDP) in which
a customer can order from multiple restaurants at a time. They used a mixed-integer
linear programming formulation in a simulation environment for their problem. They
evaluated the model performance in terms of earliness, freshness, waiting time, and
couriers’ miles traveled using the datasets for Auburn and Buffalo cities.

Mao et al. [11] investigated the effect of delivery time on the future demands of
the customers. They incorporated the couriers’ knowledge and experience in their
model. Based on their analysis of a Chinese online delivery platform in Hangzhou,
they found that late deliveries can severely affect the customers’ future demands. On
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the other hand, faster deliveries provide a positive impact on the number of upcoming
orders but not as significant as the negative effect of the late orders. Ulmer et al.
[23] defined the restaurant meal delivery problem (RMDP) as a fleet of couriers that
serve dynamic orders with known locations and unknown food preparation time,
where the objective is to minimize order delays. They formulated an MDP model
for the problem in which the orders can be postponed and bundled.

2.2. Autonomous delivery
Autonomous electrical vehicles and drones have started to be considered as alter-

natives for couriers for same-day deliveries as well as long-distance deliveries. The
concept of using these vehicles for deliveries lead to many studies. Jennings and
Figliozzi [9] investigated three research questions about Sidewalk Automated (or
Autonomous) Delivery Robots (SADRs); namely, what are the existing regulations
in the US?, what are the technical capabilities of the SADRs?, and do SADRs save
time and cost compared to other alternatives? Their results showed that SADRs lead
to cost and time savings in some circumstances. Chen et al. [3] studied an assign-
ment problem in which they aimed to find an optimal decision of whether to assign
a new order to a drone or vehicles. Drones are faster than vehicles, but they have
limited capacity, whereas the former has more capacity but may be stuck in urban
traffic. They used a deep Q-learning approach, and their obtained policies outper-
formed considered benchmark policies. Another research topic on the use of electric
vehicles and drones is when to recharge these vehicles [1]. Pinto et al. [14] considered
a problem in which drones perform meal delivery operations. They investigated how
the strategic location of the charging stations affects the overall performance of the
system, where the maximum time the customers are willing to wait is limited.

2.3. Reinforcement learning approaches
Mnih et al. [12] proposed deep Q-networks, which laid the foundations for many

deep RL methodologies that followed. Several studies investigated strategies to over-
come the slow convergence (or divergence) issues associated with DQNs. These
strategies include Double DQNs [7], which focus on action value overestimation in
DQNs, prioritized experience replay [16], which aim to address low sampling effi-
ciency by strategically choosing the samples in DQN training, dueling network archi-
tectures [26], and noisy DQN [5] among others. Hessel et al. [8] provided an empirical
analysis that compare the performance of various combinations of these strategies.

The reinforcement learning (RL) approaches have been used for fleet management
problems with both same-day delivery and long-distance delivery, as well as variants
of vehicle routing problems. Chen et al. [3] proposed a deep Q-learning approach to
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solve a same-day delivery problem to determine whether a drone or a vehicle should
deliver an upcoming order. Zhou et al. [28] used an extension of Double DQN with
a soft update to solve a large-scale order dispatching problem. In their formulation,
all agents work independently with the guidance of a shared policy. They compared
their algorithm to a variant of Double DQN, nearest-distance order dispatching,
decentralized multi-agent deep reinforcement learning, and centralized combinatorial
optimization for three cities under different traffic conditions. Their numerical study
showed that their approach outperformed others with respect to accumulated driver
income and order response rate. Lin et al. [10] proposed two new contextual multi-
agent reinforcement algorithms, namely contextual DQN and contextual actor-critic
algorithm. In addition, they compared their proposed approaches with the rule-based
algorithms, Q-learning, SARSA, DQN, and actor-critic algorithms. They noted that
their methods are superior to the existing RL and rule-based methods.

The RL approach is also frequently used for vehicle routing problems, which
shares many similarities to the courier routing and assignment. Vera and Abad [25]
proposed an actor-critic network algorithm and compared it with various benchmark
algorithms, including Clarke-Wright savings heuristic and sweep heuristic. They ran
their experiments for a varying number of customers and vehicle capacities. They
further showed that a policy generated by their algorithm works better for the routing
problem involving a fleet of vehicles with heterogeneous capacities. Peng et al. [13]
presented a dynamic attention neural network model with dynamic encoder-decoder
architecture for a vehicle routing problem and compared it with a non-dynamic
attention model for different configurations. Their results highlighted the improved
performance of the dynamic attention over its non-dynamic version.

2.4. Approximate dynamic programming approaches
Approximate Dynamic Programming (ADP) has been considered for many prob-

lems, including ride-sharing, vehicle-routing, and courier assignment tasks, which
share many similarities by their nature. Al-Kanj et al. [1] defined a ride-hailing sys-
tem in which their objective is to assign the proper vehicle to a given trip, decide on
the re-charging time, and re-position the vehicle when it is idle. Their formulation
is comprehensive in that they also determined the trip price and the fleet size for
the system. They used ADP techniques to solve their MDP model and suggested
that using hierarchical aggregation leads to high-quality results and fast convergence.
Moreover, their dynamic pricing solution increased the revenue by 13%.

Ulmer et al. [21] proposed an offline ADP approach by incorporating online service
request predictions into their methodology, where the stochasticity of the requests
contributes to the uncertainties in the decisions. They showed that temporal and
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spatial anticipation of service requests outperforms the baseline policies. In another
study, Ulmer et al. [24] used ADP to improve the performance of the same-day
delivery system. They showed that a preemptive depot return, i.e., returning to the
depot when some packages are currently on-board to address additional new requests
that are received during the same day, increases the number of delivered orders per
day.

Ulmer and Thomas [22] studied the capacitated customer acceptance problem
with stochastic requests (CAPSR), in which a dispatcher receives an order with a
specific address, required capacity, and the revenue. The task is to maximize the
revenue through instant acceptance or rejection of the orders. They used meso-
parametric value function approximation that incorporates features of both routing
and knapsack formulation. They showed that their approach is superior to the bench-
marks for the CAPSR.

2.5. Most related work
Table 1 shows the relative positioning of our work with respect to the previous

studies in the literature. We specifically provide the research objectives, proposed
solution approaches, and model specifications in this table. In terms of the modeling
objectives, our main consideration is to solve the meal delivery problem, which is
similar to the order dispatching problem and closely associated with the vehicle
routing problem (VRP). The main purpose of the vehicle routing problem is to
determine the optimal routes for the vehicles visiting more than one location in
terms of time or distance. In order-dispatching problems, the couriers pick up orders
from a centralized location (i.e., warehouse/depot) or different stores and deliver
them to target customers. In this regard, it can be considered as a special case of
the vehicle routing problem. While the meal delivery problem is similar to those
for finding the optimal routes and delivering orders to target customers, it differs
in certain aspects. For instance, in the case of meal delivery, the origin of the
order (i.e., a restaurant) is determined explicitly by the customer. In addition, meal
delivery problem has a more dynamic nature than VRP, and inherent stochasticity
(e.g., frequent order arrivals and uncertainty in food preparation/delivery times)
necessitates a framework that enables real-time decision making. Furthermore, unlike
generic VRP, a courier typically does not visit multiple locations during the delivery
as strict delivery time restrictions that should also consider the food preparation
time constitute an important dimension of the problem.

In terms of the solution methodology, integer programming has been the most
commonly used technique for the meal delivery problems [15, 18, 27], and ADP has
gained significant attention in recent years [23]. Although (deep) RL approaches have
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Table 1: Summary of the most relevant studies in the literature

Objective Solution Approach Model Specification

Reference VR OD MD IP RL DRL ADP
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Al-Kanj et al. [1] 3 3 3 3 3 3

Chen et al. [3] 3 3 3 3 3 3

Chen et al. [4] 3 3 3

Lin et al. [10] 3 3 3

Peng et al. [13] 3 3

Reyes et al. [15] 3 3 3 3 3 3 3

Steever et al. [18] 3 3 3 3 3 3

Ulmer et al. [23] 3 3 3 3

Ulmer and Thomas [22] 3 3 3 3

Ulmer et al. [21] 3 3 3 3

Ulmer et al. [24] 3 3 3

Yildiz and Savelsbergh [27] 3 3 3 3 3

Zhou et al. [28] 3 3 3

Our Study 3 3 3 3 3 3 3

VR: Vehicle Routing, OD: Order Dispatching, MD: Meal Delivery, IP: Integer Programming
RL: Reinforcement Learning, DRL: Deep RL, ADP: Approximate Dynamic Programming

been used for the vehicle routing and order dispatching problems [3, 4, 10, 13, 25, 28],
to the best of our knowledge, various deep RL extensions (e.g., DDQN, dueling
DDQN, and DDQN with prioritized experience replay) have not been considered
for the meal delivery problem. In this study, we investigate a comprehensive list of
DQN extensions together with the different hyperparameter settings that were not
considered in previous studies.

In the “Model Specification” grouping of Table 1, “Deadlines” implies the spec-
ified time window by which the order should be delivered. It is one of the most
commonly used model specifications in meal delivery problems. It is an important
consideration because meals should be delivered in a limited time to keep them fresh.
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“Timing” indicates if the delivery time affects any specific component of the model,
especially reward. In general, the shorter the delivery time is, the higher reward
the system will receive. “Prepositioning” is defined as anticipating the next order
origin and positioning the courier or vehicle accordingly before the order arrives in
the system. We assume that if there is no new order and the courier is idle, they
may move towards a restaurant rather than returning to the depot. It allows couri-
ers to learn popular restaurants with a higher number of orders so that the overall
delivery time is shortened. “Rejection” is the flexibility of not delivering an order.
Our model aims to learn rejecting the current order if its delivery is infeasible or
the upcoming order is expected to come from a more convenient location. Hence,
this consideration enables not to lose time in delivering an unprofitable order. Ac-
cordingly, while other approaches fulfill both profitable and unprofitable orders, our
model can fulfill more orders in the same time window. Furthermore, having the
reject option might be particularly impactful when the number of available couriers
is low. Lastly, “Assignment+” corresponds to assigning more than one task/order to
a courier at a time. Our model has the flexibility to assign a new order to a courier
who is currently delivering an order.

By incorporating the model specifications listed in Table 1, our model can better
mimic the real-life settings and take proactive and smart decisions. In meal delivery
practice, companies commit to delivering foods within a specified time window. We
handle this important consideration with the deadline specification. Through the
reward definition in our formulation, which links higher rewards to speedy deliveries,
we also aim to ensure the freshness of the food. Moreover, our model aims to learn the
next order origin and position the couriers based on this information, which enables
shortening the delivery times. In addition, we incorporate smart order rejection
based on the delivery time of the orders at hand and the features of the upcoming
orders. Finally, our model can assign more than one task at a time to a courier.
As such, all these specifications enhance customer satisfaction by decreasing delivery
times and improving the overall quality of the system.

3. Methodology

In this section, we first present our MDP model for on-demand food delivery
service along with the modeling assumptions. We then summarize different deep RL
algorithms used to solve our model.

3.1. Assumptions
We consider a set of couriers c ∈ C, who are assigned an order, o, move to a

restaurant, e, to pick it up, and deliver it to a customer, u, over a region represented
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by m× n grid. The objective is to find a courier assignment policy that maximizes
the total reward collected over time. The main assumptions of the problem are as
follows.

• We convert the real-world maps to the grids consisting of cells of size 500 meters×
500 meters and assume that moving from one grid cell to the adjacent one ap-
proximately takes one minute.

• Orders may come from each grid cell with a certain probability value.

• The restaurants’ locations in the grid are fixed, and the number of orders from
each restaurant varies.

• The preparation time of food for order o is assumed to be between 5 to 15
minutes (i.e., πo ∈ [5, 15]).

• We assume that the company aims to deliver orders within 25 minutes; however,
they still accept orders that take up to 45 minutes.

• The time unit in the system is “minute”, and the system status and the collected
rewards are updated every minute.

• If we assign an order to a courier that is returning to the depot, or moving
towards a popular restaurant, then the courier can start their mission without
returning to the depot or the restaurant. In other words, whenever a courier
is idle, we assume he is immediately available for the new orders.

• The time between two consecutive orders has an exponential distribution with
the rate of λt, where t represents the time of the day. That is, order arrivals
might change hourly and reflect rush hours and idle times.

• If a customer places an order from multiple restaurants in a single order, we
break that order into multiple orders and handle them separately. For instance,
when a customer orders from two different restaurants, we register them as
two distinct orders with different origins and the same destination. The model
might assign them to a single courier or multiple couriers based on couriers’
and restaurants’ locations.
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3.2. Problem formulation
In our problem setting, the order cycle starts with receiving an order, and then the

company either accepts or rejects the order based on the time to deliver it. Ideally,
the company aims to accept all orders with the caveat that some orders might lead to
excessive delivery times. The company rejects orders only if the customer does not
accept the longer waiting time. As an order is placed, the corresponding restaurant
is notified, and a courier is dispatched from the depot to the restaurant to deliver
the order. When the food is delivered, the courier returns to the depot. A typical
order in the system is shown in Figure 1 on a 6 × 6 grid for three different order,
customer and courier placements. We use this reference figure to explain the states,
actions, and rewards in the system under different conditions.

(a) First scenario (b) Second scenario (c) Third scenario
Figure 1: Typical orders in a system with two couriers.

3.2.1. States
The states in our model are defined based on the couriers’ distances to the order

origin, destination, and depot location. Adopting such state definition leads to sub-
stantially fewer states in the state space when compared to defining states using the
exact locations of the couriers, order origin, and destination. We characterize the
state space for our problem as follows.

S = {(δoc , µc, ηec), ∀c, o, e}

Specifically, the state space, S, is composed of the following elements:

• Expected delivery time (δoc) of the order o for courier c takes into account
the distance between the restaurant (which is known for each order) and the
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customer (do), the preparation time of the order (πo), and time to deliver the
previous order(s) (τc). If no order is assigned to courier c, time to deliver the
previous assigned order(s) is equal to zero (i.e., τc = 0). Accordingly, expected
delivery time can be obtained as

δoc = do + max {πo,
(
τc + d̃(c,o)

)
} (1)

where d̃(c,o) is the distance between the restaurant and the courier’s “location
of availability”. The location of availability is either the current location of a
courier if he/she is idle or the location of the final customer if the courier has
active order(s) at hand.

In Figure 1a, we have two couriers, c1 and c2. Courier c1 is delivering the previ-
ous assigned order and is in the path between the restaurant e1 and customer u1.
The time to deliver the previous order for that courier is equal to τ1 = 2. If the
new order o2 has the preparation time of 6, and we decide to assign it to courier
c1, then the expected delivery time δo2c1 is equal to 10 (= 4 + max{6, (2 + 3)}),
including two minutes to finish the current order, three minutes to go to restau-
rant e2, an extra minute waiting time for the food to be prepared, and then 4
minutes to deliver it to the customer u2. Similarly, the expected delivery time
for the other courier is computed as δo2c2 = 4 + max{6, (0 + 7)} = 11.

• Distance to depot (µc) indicates the Manhattan distance between a courier
c and the company’s local depot. This variable is activated only when the
courier is idle, and the action prescribes returning to depot. In Figure 1b, the
distance to the depot is only feasible for courier c1 as he delivered the order a
moment ago and became idle in the system; therefore, µc1 is equal to 5 based
on the Manhattan distance.

• Distance to restaurants (ηec) is the Manhattan distance between courier c
and restaurant e. This state component becomes active when the courier is
idle, and the action prescribes moving towards restaurant e. In Figure 1b, the
model only computes the distance to restaurants for courier c1 who becomes
idle in the system; therefore, the set ηc1 includes ηe1c1 = 2 and ηe2c1 = 4. The
model considers the distance to each restaurant and, more importantly, learns
the popularity of each restaurant and its expected long-run return. Hence, the
best action is likely to be the one that provides the highest gain through an
intelligent repositioning of the couriers.
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3.2.2. Actions
We have both reject (x̄) and accept (x) decisions when a new order comes to the

system. We also define an action to take into account the case that when couriers
finish their task, they should not necessarily come back to a depot; instead, they can
go to popular restaurants to be ready for possible upcoming orders. Therefore, when
a courier becomes idle, they can choose from the actions of returning to a depot (∇)
or moving towards restaurants (∆). Accordingly, action set for a given courier c is
defined as

A = {xoc, x̄o,∆e
c,∇c}. (2)

where xoc and x̄o denotes assigning and rejecting order o, respectively, ∆e
c corresponds

to courier c moving towards restaurant e, and ∇c corresponds to courier c moving
towards the depot.

At any time t, the list of feasible actions, at ∈ A, is limited. Therefore, we
define a triggering mechanism that filters the proper set of actions. For instance,
when we have a new order, we cannot select the action of return to depot (∇), or
when a courier becomes idle, we cannot choose the action of reject (x̄). That is, our
problem has an event-based environment. We can define the proper set of actions
through regular monitoring of the system for new event occurrences. For instance, in
Figure 1a, the possible action set is {x̄o2 , xo2c1 , x

o2
c2
}; in Figure 1b, the possible action

set for courier c1 is {∇c1 ,∆
o1
c1
,∆o1

c2
}; in Figure 1c, the possible action set, given the

new order 3 and having two available couriers, is {x̄o3 , xo3c1 , x
o3
c2
}.

3.2.3. Rewards
The immediate reward, r(s, a), in our system for taking an action a ∈ A at a

given state s ∈ S is computed as follows.

r(s, a) =


+45− δoc if a = xoc
−15, if a = x̄o

−µc/10 if a = ∇c

−ηec/10 if a = ∆e
c

(3)

We assume that the company has a delivery time limit of 45 minutes for accepting
the orders. Therefore, a positive reward is incurred for a new assigned order if its
delivery time is less than 45 minutes. Accordingly, shorter the delivery time is, higher
the reward received. For instance, if the time to deliver order o1 for courier c3 is 20
minutes (δ13 = 20), then assigning o1 to c3 will result in a reward of 25 (= 45− 20).
Additionally, we assume a fixed negative reward for rejecting orders. The penalty
of −15 for rejection indicates that the system may still prefer to accept late orders
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if their delivery times do not exceed one hour. In other words, if order o1 takes 61
minutes to be delivered by courier c4, the total reward will be -16 (= 45− 61), and
the system prefer rejecting such order or assigning it to another courier rather than
courier c4. Finally, we assign a small negative reward for moving to a depot or a
restaurant in order to decrease the likelihood of unnecessary movements while the
couriers are idle. That is, a courier being idle does not incur any negative rewards,
while inessential relocation when no order is assigned leads to a negative reward.
Given the concrete example in Figure 1a, if we assign the order o2 to courier c1,
then the immediate reward is +45− δo2c1 = +45− 10 = +35. On the other hand, in
Figure 1b, where it is possible to choose between the actions of going to the depot
or a restaurant, if we dispatch courier c1 to the restaurant e2, a penalty of −4

10
is

incurred.
We note that the delivery time implicitly incorporates various relevant factors

such as distance and traffic. Accordingly, adding a negative reward for rejected
orders (i.e., for those taking more than 45 minutes) inherently takes into account
the delivery distance as well. If an order takes a longer duration than the threshold
based on its origin, destination, preparation time, and couriers’ locations, the model
tends to decline it. Additionally, grid-based representation of the geographic regions
in our problem relates the time and distance since we assume that moving from one
grid to another takes approximately one minute and one movement in the system.

3.3. Reinforcement learning algorithms
Reinforcement Learning (RL) has three main components: agent, environment,

and the interaction in between. The agent exists in a dynamic environment in which
he/she gains knowledge through trial-and-error interactions. The agent selects an
action, A ∈ A based on the current state, S ∈ S, at each iteration. The action
might change the environment and typically result in a scalar reward, R ∈ R. The
agent’s objective, on each step, is to choose the specific action that increases the
total expected reward in the long run. For our meal delivery problem, we leverage
the ability of reinforcement learning to explore the environment and determine a
policy that optimizes long-run expected total rewards.

3.3.1. Deep Q-Networks
One of the most commonly used RL algorithms is Q-learning, which updates Q-

values greedily while it only considers the maximum Q-value in the following state,
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that is,

Qnew(S,A) = Qold(S,A) + αY

Y = R + γ arg max
a

Q(S ′, a)−Qold(S,A) (4)

where R is the immediate reward, γ is the discount factor, and Q is an approximation
of state-action value pairs [6].

When the state space is large, Q-learning typically requires an excessively large
number of iterations to fully explore the environment and, therefore, causes underfit-
ting. Mnih et al. [12] introduced Deep Q-Networks (DQN) as an effective algorithm
for dealing with large state spaces. A multi-layer neural network estimates a vec-
tor of action values, Q(S,A; θ), where θ are the parameters of the network. They
further improved DQN by augmenting experience replay memory and creating a sep-
arate target network. The former plays the role of memory storage with a predefined
length from which we sample randomly during the training phase, whereas the latter
postpones updating the weights of the neural network. These improvements remove
the correlation between consecutive samples and also allow the neural network up-
dates to use each step multiple times; hence, it addresses the fundamental instability
problem in RL [2].

3.3.2. DQN Extensions
Hasselt et al. [7] showed that DQN induces an upward bias in certain cases.

To alleviate this issue, they proposed Double Deep Q-Network (DDQN). DDQN
decomposes the max operation in the target into action selection and evaluation.
Therefore, an online network evaluates the greedy policy, and a target network es-
timates its value. DDQN replaces the update term (Y ) in Equation 4 with Y DDQN,
which can be obtained as

Y DDQN = R + γQ(S ′, arg max
a

Q(S ′, a; θ); θ−)

where the network’s parameters, θ−, are updated every C iterations with the assign-
ment of θ− ← θ. This modification leads to improved stability and better Q-value
estimates [6].

Schaul et al. [16] suggested that instead of uniformly sampling from the expe-
rience replay memory, the RL algorithm needs to prioritize significant past events.
They proposed that the experiences with a higher temporal-difference (TD) error
should be replayed more frequently. Let pi = 1

rank(i)
be the priority of transition i.

Prioritized Experience Replay (PER) defines the probability of sampling transition
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i and importance-sampling (IS) weights, w, as

P (i) =
pαi∑
k p

α
k

; wi =
( 1

M · P (i)

)β
where exponent α determines the extent of prioritization, with α = 0 being a uniform
distribution, i.e., no prioritization. Given the current experience replay size of M
with the maximum value ofM, the exponent β supervises how much prioritization to
apply. As the training is initially unstable,M starts with a small number (e.g., chosen
as 0.4 in our case), and finally converges to one when importance sampling corrections
matter towards the end. Accordingly, the weighted IS corrects the possible bias of
PER.

Wang et al. [26] proposed Dueling Double Deep Q-networks (D3QN) with the
notion that estimating the value of all action choices is not necessary for all the
states. Therefore, they separated the network based on two different estimators: one
for the state-value function and the other for the state-dependent actions.

Regarding updating the weights of a network, there are two common approaches:
hard and soft update [7]. While the target network parameters are updated and are
prone to divergence in the hard update, soft update slowly changes the weights of
the target network through the formula θ′ ← τθ + (1 − τ)θ′, where τ specifies the
soft update rate. In this work, we explore DQN, DDQN, and their variants. Table 2
shows the default parameter values for these algorithms.

Table 2: Default parameters used in the training phase

Default parameters

Discount factor γ = 0.9

Deep Network The size of hidden units: {64, 128, 128, 64}

Variations of DQN
PER: α = 0.6, β = 0.4

Soft update: τ = 0.5 , batch size: B = 128

Max. experience replay memory size: M = 20, 000

3.4. Benchmark policies
We consider two baseline policies in our analysis for benchmarking purposes.

• Baseline policy 1 : In a typical meal delivery service, if there is no other order
in the system, the courier returns to the depot after delivering an order. That
is, there is no policy of moving towards any restaurant. In addition, in this
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policy, orders having delivery times of more than 45 minutes are rejected, which
is compliant with the adopted practice in many meal delivery companies. We
adopt these rules as our first baseline policy, which we denote as P45.

• Baseline policy 2 : This policy is similar to the previous baseline with an im-
portant difference in the delivery time threshold. This policy, named P60,
automatically rejects orders having an expected delivery time greater than 60
minutes.

We denote the policies generated by the RL algorithms as PRL in the rest of the
paper, with “RL” specifying the particular algorithm used to obtain the policy.

3.5. Dataset
We use two types of datasets for our meal delivery problem. Specifically, we

consider a synthetic dataset to compare DQN extensions and to determine the best
performing RL algorithm for our model. In addition, we use datasets obtained from
Getir, an online food and grocery delivery company that originated in Turkey and
recently expanded its operations to the United Kingdom. Getir dataset includes
meal delivery information from three regions of Istanbul, Turkey.

3.5.1. Synthetic dataset
We create a synthetic region consisting of 10× 10 grid. In this region, there are

seven grid cells having restaurants, and the depot is placed in the middle cell (i.e.,
cell [5, 5]). The number of orders that each restaurant receives per day differs from
one restaurant to another. However, customers may be located in any cell with a
uniform probability distribution.

3.5.2. Getir dataset
We analyze meal delivery data from three different regions of Istanbul, namely,

Bomonti, Uskudar, and Hisarustu, between October 2019 and April 2020. Each re-
gion has a different size and order density. We consider Hisarustu as a low-density,
Uskudar as a moderate density, and Bomonti as a high-density region. We con-
vert each region’s real map to the corresponding grids consisting of cells of size
500 meters × 500 meters. Table 3 shows the characteristics of each region. The
number of active cells in the table includes the parts of the map for which we have
at least one past order, either from a customer or a restaurant partner. Figure 2
shows the spatial distribution of restaurants across the region; however, note that
the popularity of each restaurant — the number of received orders for a given time
— may differ over time.
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Table 3: Characteristics of the regions

Side Size
# of active

restaurants’

grid cells

# of active

customers’

grid cells

Depot

location

Hisarustu European 27× 37 87 239 [21, 19]

Uskudar Anatolian 34× 33 94 405 [13, 18]

Bomonti European 34× 32 153 373 [17, 13]

(a) Hisarustu (b) Uskudar (c) Bomonti
Figure 2: Restaurants’ locations. Blue dots present the restaurants whose orders are deliv-
ered at least one time by Getir’s couriers. The legend is intentionally removed to mask the
number of orders per the company’s request.

Figure 3 presents the order distribution of each region as a heatmap to show the
order frequency in each cell. In the Hisarustu region, customers are mainly located in
the middle of the region. In the Bomonti region, order density is very high compared
to the Hisarustu and Uskudar regions. Customers are clustered in one area in the
middle of the region. In the Uskudar region, customer density is lower; however,
they are distributed to a larger area.

Figure 4 shows the percentage of the orders received by the company for three
different regions. The values in the x-axis specify the start time for counting orders;
for instance, 11 p.m. includes all orders between 11 p.m. and midnight. For each
region, ordering behavior follows a similar pattern. There are two peaks during the
day. The first one starts at noon and ends at 3 p.m., and the second one is from 5
p.m. to 9 p.m. The order frequency in the second peak between 5 p.m. and 9 p.m
is higher compared to the first peak. In the Uskudar region, the duration of the first
peak is shorter (between noon to 1 p.m.), and unlike other regions, there is one more
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(a) Hisarustu (b) Uskudar (c) Bomonti
Figure 3: The spatial distribution of orders (based on customers’ locations) in each region.
The black dot represents the depot’s location.
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Figure 4: Hourly distribution of the orders during an arbitrary day

4. Results

In our numerical study, we first experiment with eight DQN extensions using our
synthetic dataset to determine the best performing algorithm for our MDP model for
the meal delivery model. We compare these extensions with respect to cumulative
collected reward, the number of rejected orders, and the statistics regarding the deliv-
ery times. We also perform hyperparameter tuning to identify the best configuration
for the identified deep RL algorithm. Note we also conducted preliminary analysis
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with standard RL methods such as Q-learning and SARSA, however, these methods
did not perform well for our model, and hence omitted from the numerical study.
Next, we provide results with Getir dataset for three different regions using the best
performing model. We examine the cumulative collected reward, the number of re-
jected orders, and the statistics of delivery times for different numbers of available
couriers. Lastly, we present sensitivity analysis results for various parameters in our
models and discuss the algorithmic complexity and convergence. We implement all
algorithms in Python and perform numerical experiments on a PC with an i7-8700
CPU and 32 GB RAM.

4.1. Comparison of DQN extensions
We compare eight DQN extensions, namely, DQN, DDQN, DDQN-PER, and

Dueling DDQN-PER, considering both hard and soft updates for each algorithm. We
set the training period as 500 days and test each algorithm for 100 days to prevent
possible bias due to randomness in the dataset. The average number of orders for one
day is 163. Note that the policy used by Getir in practice resembles the P45 policy,
which is considered as a baseline in this work. Table 4 presents training times of the
algorithms, the average cumulative rewards, the percentage of the delivered orders,
and the descriptive statistics for the delivery times that are obtained via simulation
over 100 days.

For this experiment, we consider two approaches for training and testing. First, a
single courier policy is learned via the single courier version of our MDP model, and
the corresponding policy is used for each courier in the testing phase in the multiple
courier cases. Second, training is done over the multiple courier version to learn the
multi-courier policy, which is then used in the testing phase for the corresponding
multiple courier cases. We employ five couriers for delivering the orders. Table 4
shows that the average cumulative reward for the policy generated by DDQN+

H is
higher than others for both single courier and multi-courier versions. When we have
5 couriers for 163 average daily orders, multi-courier policies generated by each deep
learning algorithm do not lead to any rejected orders. On the other hand, DDQN+

H

outperforms others thanks to better policies (e.g., by assigning the orders to more
suitable couriers). Overall, all deep learning algorithms outperform the rule-based
baselines in terms of the accumulated reward, which shows that a more intelligent
system accepts only the orders that contribute the most to the reward (e.g., by
minimizing travel distances for the couriers). Also, they assign orders to the most
appropriate couriers such that the delivery times are reduced, thus increasing the
cumulative reward.

The descriptive statistics for the delivery times in Table 4 show that P60 incurs
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Table 4: Summary results of algorithm performances on 10 × 10 synthetic data with five
couriers.

Algorithm
Policy

type

Avg. cum.

reward

% of Rej.

orders

Delivery times Order distribution (%)

Min Max Mean Med. Std. ≤ 25 25-45 45-60

P45 — 4249.2 0.2 6 45 18.9 18 6.4 87 13 0
P60 — 4229.6 0.0 6 48 19.1 18 6.7 87 12 1

DQNH Single 4445.8 4.6 6 29 16.5 16 4.2 99 1 0
DQNS Single 4488.1 3.2 6 27 16.6 17 4.2 99 1 0
DDQNH Single 4449.9 4.5 6 28 16.5 16 4.2 99 1 0
DDQNS Single 4201.5 12.1 6 27 15.7 16 3.8 100 0 0
DDQN+

H Single 4514.9 2.0 6 29 16.8 17 4.4 98 2 0
DDQN+

S Single 4322.7 8.5 6 28 16.1 16 4.0 99 1 0
D3QN+

H Single 4457.0 3.0 6 29 16.9 17 4.3 99 1 0
D3QN+

S Single 4462.5 3.1 6 29 16.8 17 4.3 98 2 0

DQNH Multi 4528.7 0.0 6 35 17.3 17 4.7 95 5 0
DQNS Multi 4533.8 0.0 6 35 17.2 17 4.7 95 5 0
DDQNH Multi 4555.3 0.0 6 35 17.1 17 4.7 95 5 0
DDQNS Multi 4556.2 0.0 6 35 17.1 17 4.8 95 5 0
DDQN+

H Multi 4556.2 0.0 6 35 17.1 17 4.8 95 5 0
DDQN+

S Multi 4555.9 0.0 6 35 17.1 17 4.7 95 5 0
D3QN+

H Multi 4532.7 0.0 6 35 17.2 17 4.7 95 5 0
D3QN+

S Multi 4525.3 0.0 6 33 17.3 17 4.8 95 5 0

Order distributions are reported in minutes; H: Hard Update; S: Soft Update; +: with PER;

the most delays in the system by over-assigning a few couriers. We observe few
overdue orders in P60, i.e., delivered after 45 minutes, resulting in a negative penalty.
A more cautious policy, P45, accepts all orders whose delivery time is below the

threshold of 45 minutes; however, it leads to the highest number of last-minute order
deliveries, with 13 percent of them being delivered after exceeding the 25 minutes
mark. On the other hand, deep learning algorithms, learning that there will be new
orders with shorter delivery times in the system in the near future, reject any order
that may keep the courier busy for an extended amount of times while resulting in a
negligible reward. Specifically, DDQN with PER and hard update (DDQN+

H), which
has the best cumulative reward in both types, assign the orders to the couriers such
that in the long run, the delivery time decreases while the rejection ratio remains
small. Overall, based on our analysis with the synthetic dataset, DDQN+

H is the best
performing algorithm for our problem, considering both the cumulative reward and
the delivery time statistics. Accordingly, we proceed with only DDQN+

H throughout
our remaining numerical study.
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We note that having a single courier in model training as an alternative to using
multiple couriers leads to an approximation mechanism for the multiple courier cases.
In the multi-courier approach, the number of couriers in the training and testing
phase should be equal. On the other hand, in the single courier approach, we can
train our model for a single courier, and, in the testing phase, we can use the resulting
policy for all couriers in the system as a shared policy. We provide summary statistics
on the performances of single courier and multi-courier policies in Table 5, which
presents the collected reward, the percentage of rejected orders, and the descriptive
statistics of the delivery times (min, max, mean, median, and std.) obtained from
each policy for different grid and order sizes. For 10 × 10 grids with 163 average
daily orders, the collected reward of the single courier policy is greater than that
of the multi-courier policy for two, three, and four courier cases. This can be due
to the smaller state space of the single courier case that enhances the learning.
That is, considering the same number of days for training (500 days), the single
courier approach can better explore and learn its smaller state space. We verified
our premise by increasing the training epochs for the multi-courier approach and,
consequently, bridging the gap between the collected rewards. Furthermore, due
to a higher number of rejections, delivery times for the single courier approach are
shorter than those of the multi-courier ones. We note a trade-off between the full
exploration of the state space and information loss related to courier interactions.
We also find that, after three couriers, the multi-courier policy becomes superior in
terms of various delivery statistics for 10×10 grids with 163 average daily orders. The
single-courier policy fails to capture the importance of couriers’ interaction, leading
to a higher cumulative reward for the multi-courier policy despite its larger state
space. Our analysis with a larger area (15 × 15 grid) and higher number of orders
(203 daily orders on average) provide similar insights regarding the performance of
single courier and multi courier approaches. We find that single courier policies are
superior to those of the multi courier model in terms of collected rewards and various
delivery statistics for a varying number of couriers in the system. We observe that
a larger grid size leads to a substantial increase in the number of states, rendering
learning higher-quality policies more difficult for the multi courier model.

We observe that the training times of the single courier approach are significantly
shorter (e.g., 4 hours and 12 minutes for 10 × 10 grid) than those of the multi-
courier case (approximately from 6 to 10 hours for the same grid size). Moreover,
in the multi-courier case, the training needs to be performed whenever the number
of couriers changes. In other words, we cannot directly use the policy generated
for two couriers and test it for three couriers due to incompatibility in their state
spaces. Thus, the single courier approach can be beneficial in terms of generating
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Table 5: DDQN+
H results for single and multi courier models for different data instances

Training

approach

# of couriers

in the testing

phase

Time

(hrs.)

# of

orders

Grid

size
Reward

% Rej.

orders

Delivery times

Min Max Mean Median Std.

Single

Courier

2 couriers 4.2 163 10× 10 2,830 21.6 8 40 22.9 23 6.7
3 couriers –"– 163 10× 10 3,870 8.1 6 33 19.2 19 5.3
4 couriers –"– 163 10× 10 4,307 3.7 6 31 17.6 18 4.7
5 couriers –"– 163 10× 10 4,515 2.0 6 29 16.8 17 4.4
6 couriers –"– 163 10× 10 4,590 1.6 6 27 16.4 16 4.3

Multi

Courier

2 couriers 5.2 163 10× 10 1,770 18.2 8 52 31.7 32 10.8
3 couriers 6.3 163 10× 10 3,359 2.6 6 48 23.9 22 9.3
4 couriers 6.9 163 10× 10 4,234 0.0 6 48 19.1 18 6.8
5 couriers 7.6 163 10× 10 4,556 0.0 6 35 17.1 17 4.8
6 couriers 8.3 163 10× 10 4,610 0.0 6 32 16.8 17 4.5

Single

Courier

2 couriers 7.7 203 15× 15 2,239 46.6 8 43 24.4 24 6.1
3 couriers –"– 203 15× 15 3,238 30.7 7 43 22.0 22 5.2
4 couriers –"– 203 15× 15 3,879 21.9 7 34 20.6 21 4.8
5 couriers –"– 203 15× 15 4,330 15.8 6 30 19.7 20 4.6
6 couriers –"– 203 15× 15 4,590 13.5 6 29 18.9 19 4.5

Multi

Courier

2 couriers 9.3 203 15× 15 1,372 43.3 8 50 33.1 33 8.9
3 couriers 11.3 203 15× 15 1,791 24.7 8 50 33.3 35 9.5
4 couriers 12.6 203 15× 15 2,352 11.2 7 55 32.0 32 10.8
5 couriers 13.8 203 15× 15 3,263 3.7 7 64 28.3 25 11.9
6 couriers 15.1 203 15× 15 4,218 0.4 7 60 24.2 22 9.0

the policies faster without a substantial compromise in rewards. It also facilitates
handling a varying number of couriers throughout a day for the company without
the need for retraining. As such, we proceed with the single courier approach in the
rest of the experiments, noting that it is an approximation and provides a theoretical
lower-bound for the reward obtained by the multi-courier approach.

4.2. Hyperparameter tuning
We originally trained all DQN extensions on the synthetic data with the default

hyperparameters (see Table 2). We next provide our observations from the hyper-
parameter tuning experiments with DDQN+

H . We consider tuning the following hy-
perparameters: experience replay memory (M), discounting factor (γ), batch size in
the network (B), and the number of steps after which the target network is updated
(U). Experience replay memory is a variable that stores the agent’s experiences (i.e.,
state, action, reward, and next state) at each time step. The discount factor affects
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the weight given to the future rewards in the subsequent states relative to maximiz-
ing the immediate rewards. The batch size corresponds to the number of samples
propagated through the network. Lastly, the target network weights are constrained
to change slowly, thus improving the stability of the learning and convergence re-
sults. Parameter U control the update frequency for the target network. If the soft
update is used as an update strategy, the degree of the weights coming from the
target network is τ = 0.5. For each hyperparameter, we chose two values; therefore,
we have 16 different configurations in total. Table 6 presents the hyperparameter
configurations along with their cumulative reward, number of rejected orders, and
delivery times statistics. Training times for different hyperparameter configurations
are very similar; therefore, we did not report them.

Table 6: Hyperparameter tuning results for DDQN+
H using synthetic 10× 10 grid.

Hyperparameters % Rej.

Orders

Delivery Times

M γ B U Reward Min Max Mean Median Std. Dev.

20,000 0.9 128 100 2795.7 21 7 31 19.9 20 4.7
20,000 0.9 128 200 2780.4 18 7 38 21.4 21 5.7
20,000 0.9 64 100 2783.9 20 7 37 20.6 21 5.3
20,000 0.9 64 200 2780.1 19 7 41 21.1 21 5.4
30,000 0.9 128 100 2741.2 18 7 37 21.8 22 5.8
30,000 0.9 128 200 2778.5 20 7 36 20.5 21 5.0
30,000 0.9 64 100 2775.4 19 7 41 20.9 21 5.4
30,000 0.9 64 200 2779.0 21 7 30 19.5 20 4.5

20,000 0.1 128 100 1001.2 12 7 60 36.8 39 15.5
20,000 0.1 128 200 998.4 12 7 60 36.8 39 15.6
20,000 0.1 64 100 980.3 12 7 60 37.0 40 15.6
20,000 0.1 64 200 1005.2 12 7 60 36.7 39 15.5
30,000 0.1 128 100 998.6 12 7 60 36.8 39 15.6
30,000 0.1 128 200 1013.5 12 7 60 36.7 39 15.5
30,000 0.1 64 100 974.8 12 7 60 37.0 39 15.7
30,000 0.1 64 200 1084.1 12 7 59 36.1 38 15.1

M: Experience replay memory size
γ: Discount factor in Bellman Equation
B: Batch size in neural network
U : The number of steps after which the target network is updated
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We chose 20,000 and 30,000 for the experience replay memory size in order to
observe whether increasing the memory size also leads to an increase in the perfor-
mance. However, we did not observe any general relation in terms of the change in
memory size. We used 0.9 and 0.1 as the discount factor. A discount factor close to
zero means that the immediate reward is much more important than the next states’
reward. If it is close to one, then it means that the algorithm weighs the future
rewards more. We noted a significant effect of using a higher discount factor in our
case. While its impact on the rewards is evident (i.e., lower γ leads to lower rewards),
we observed a substantial effect on other outcomes such as % rejected orders and
delivery times. Furthermore, we chose 128 and 64 for the batch size parameter. We
did not observe any significant trend for the batch size value on its own; however,
its effect should be investigated together with other parameters. Lastly, we set the
step size in which the target network is updated to 100 and 200. Again, the step
size by itself did not seem to contribute to the higher reward, and its value becomes
more important when considered with other hyperparameters. For instance, if the
memory size is 30,000, we may obtain higher rewards if we update the target network
every 200 steps.

We determined that the hyperparameter values ofM = 20, 000, γ = 0.9, B = 128,
and U = 100 collected the highest reward (2795.7) among all other configurations.
The hyperparameter values 30,000, 0.9, 64, and 200 for M, γ, B, and U , respec-
tively, attained the shortest delivery times among all other configurations. However,
the delivery time statistics of the first configuration are almost identical to this con-
figuration. Therefore, we use the first hyperparameter configuration to assess the
performance of DDQN+

H on the Getir dataset.

4.3. Model outcomes for the Getir dataset
We trained the DDQN+

H algorithm for 1000 days using the Getir dataset involving
three regions of Istanbul, namely, Bomonti, Uskudar, and Hisarustu. We compared
the policy generated by the DDQN+

H algorithm (PDDQN+
H
) with the baseline policies

(P45 and P60) based on the cumulative reward and the number of rejected orders (see
Table 7).

The results reported in Table 7 obtained by evaluating the policies for a given
number of couriers over a test dataset for 100 days. Note that each region has
different daily order frequencies. Specifically, we tested each policy on average daily
order amounts of 141, 172, and 220 for the Hisarustu, Uskudar, and Bomonti regions,
respectively.

We observe that the policy generated by DDQN+
H generates higher rewards than

baseline policies for each region. As the number of couriers increases, we observe
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Table 7: Performance comparison of the RL and baseline policies for the regions with
different number of couriers

Bomonti Uskudar Hisarustu

PDDQN+
H

P45 P60 PDDQN+
H

P45 P60 PDDQN+
H

P45 P60

Cum.

reward

3 couriers 3144.8 887.8 -957.6 2215.2 958.6 -422.0 2557.9 1794.8 830.7
4 couriers 3860.1 2145.9 280.2 2702.6 1918.1 726.0 2945.1 2551.6 2135.1
5 couriers 4309.1 3279.2 1911.0 3063.9 2739.1 1990.5 3113.1 2988.0 2909.5
6 couriers 4631.6 4187.6 3473.4 3238.4 3104.2 2693.5 3286.5 3210.9 3191.1
7 couriers 4864.7 4724.2 4502.6 3348.5 3315.1 3193.9 3326.1 3316.6 3322.3

Rej.

orders

3 couriers 71.0 63.5 61.3 46.6 45.8 42.6 31.0 20.1 15.7
4 couriers 46.0 35.8 33.1 29.5 25.4 19.7 20.1 7.5 3.6
5 couriers 31.9 22.1 14.4 19.5 13.3 7.6 16.3 3.2 0.7
6 couriers 20.5 7.8 4.0 15.8 7.9 2.4 14.7 1.9 0
7 couriers 14.3 3.3 0.7 13.0 5.2 0.3 13.7 1.0 0

a plateau effect in the collected reward. For all the regions, after five couriers,
the marginal gain of adding one more courier to the system considerably decreases.
Considering the employment costs of the couriers, we can observe that adding an
extra courier might result in more losses than earnings. For instance, in Hisarustu,
if we use seven couriers, they would dispatch only one more order compared to six
couriers, and the increase in the collected reward is less than 2%. Consequently,
finding the ideal number of couriers is still an open question in such problems.

We present delivery times of the orders in Figure 5 for each region. In the case
of fewer couriers, such as three or four, we observe that the differences between the
median delivery times are significant among the policies. For instance, in Bomonti,
when there are three couriers in the system, the median delivery times are 23, 32,
and 44 for DDQN+

H , P45, and P60, respectively. Especially for the regions having
a higher number of daily orders, this result is more noticeable. However, when we
have six or seven couriers in the system, even the median values get closer to each
other, noting that it is not justifiable to use these many couriers because they cause
an increase in the overall cost.

We also investigate the number of delivered orders in each hour of a day by
changing the number of couriers (see Figure 6). We note that the system does not
use all couriers at each hour. For instance, when the maximum hourly number of
couriers is seven, it does not assign orders to all of them between 8 a.m. and 11 a.m.
Even when there are at most three couriers in the system, it only uses one of them
to dispatch the orders when the number of orders is small. Hence, these findings
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Figure 5: Delivery times of the orders in minutes for different numbers of couriers per
policy.

may help decision-makers to decide on the optimal number of couriers in each hour.
Another issue is the maximum number of delivered orders for one day for different
numbers of couriers. When the number of couriers is six or seven in the system,
the maximum number of delivered orders in one hour does not change significantly,
which means that after five couriers, hiring a new courier cannot increase the number
of delivered orders in one hour. In other words, the maximum orders received in an

27



hour can be delivered with fewer couriers.
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(e) 7 Couriers
Figure 6: The hourly number of delivered orders in Bomonti region

Figure 7 presents the utilization of each courier in one of the regions (Bomonti)
when the company adopts the policies generated by DDQN+

H . When we have up
to four couriers in the system, the minimum utilization is more than 70%, which is
the utilization threshold for the company. However, the average utilization decreases
dramatically for a higher number of couriers. Besides, we observe an imbalanced
distribution of orders among couriers, which implies that some couriers cannot be
used efficiently and are not on duty for a significant amount of time, leading to lower
overall utilization rates. Note that we also examined whether using the multi courier
version of the model would lead to a noticeable difference in courier utilizations. Our
preliminary analysis showed that the mean and standard deviation values for the
work hours of the couriers are largely the same for both models.

4.4. Sensitivity analysis
We perform a sensitivity analysis to assess the robustness of our model with

respect to the order arrival rate and reward function parameters. Specifically, the
orders are generated using a Poisson distribution with parameter λh for each hour h,
which are predetermined as in synthetic dataset or obtained from the Getir dataset
(see Figure 4). Let N be the daily order count, and Λh percentage of daily orders at
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Figure 7: Courier utilization in Bomonti region

hour h. Then, the hourly arrival rate can be obtained as

λh = bΛh ×Nc.

We consider varying daily order counts as N ∈ {120, 170, 220} in our sensitivity
analysis. Note that distribution of randomly generated orders mimic the behavior of
actual orders and follow the same peak times and low density hours.

In our reward function (see Equation 3), the main component is defined as
+45− δoc if a = xoc. That is, if the order is assigned to a courier, then the col-
lected reward is 45 minutes (target upper bound for delivery time) minus the actual
delivery time. We experiment with three different values, i.e., 30, 45 and 60, for the
target delivery times. Note that if we use the target delivery time of 30 minutes for
the reward function parameter, RP , instead of 45 minutes, the reward of the orders
having a delivery time of more than 30 minutes will be negative. Similarly, if we take
this parameter as 60 minutes, then the orders having a delivery time of more than
60 minutes will be penalized.

We conduct a two-way sensitivity analysis with these parameters. We train
DDQN+

H by using each configuration of these parameters. We compare resulting
policies according to the cumulative reward, the number of rejected orders, and the
descriptive statistics of the delivery times, as shown in Table 8 for the representative
region, Bomonti.
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Table 8: Sensitivity analysis results

Avg. cum.

reward

Avg. % of

rej. orders

Delivery Times

RP N Min Max Mean Median Std.

30 120 2577.0 15 8 34 20.4 20 5.1
30 170 3178.2 32 7 27 19.7 20 4.3
30 220 3956.7 37 8 31 20.6 21 4.5

45 120 2578.8 10 8 35 21.4 21 5.9
45 170 3270.3 16 8 35 22.2 22 5.7
45 220 3885.4 29 8 32 22.5 23 5.2

60 120 2497.1 8 8 38 22.6 22 6.5
60 170 3162.3 13 8 38 23.8 23 6.5
60 220 3886.7 29 8 37 22.5 23 5.4

RP : Reward function parameter
Settings: Four couriers, Bomonti region, DDQN+

H model, Batch size: 128.

We observe a significant correlation between the changes in the maximum ac-
ceptable delivery time and the percentage of the rejected orders. The models with
lower RP values learn to reject more orders to maintain shorter delivery times. On
the other hand, in a day with an average number of orders in the system, RP = 30
is too conservative in accepting orders. In that case, the threshold of 45 performs
better.

In general, we observe that if the target delivery time is relaxed, e.g., to 60 min-
utes, the accumulated returns diminish. At the same time, it increases the average
delivery times and loses the capability of smart rejection. We observe that increased
daily order counts (N) lead to increased rejection rates, which is expected. Intu-
itively, we expect the reward to improve with N for a fixed target delivery time
because there is a higher amount of orders to deliver (and collect rewards for). On
the other hand, rejecting orders has associated penalties as well. To find the optimal
threshold, the company (or delivery service) may consider the trade-off between the
number of declined orders and the expected reward. Although being too strict in
accepting the orders leads to higher returns, it may reduce customer satisfaction due
to unserved orders. Therefore, we consider RP = 45 as a good compromise as it has
an acceptable rejection rate and cumulative rewards.
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4.5. Discussion on algorithmic complexity and convergence
Based on our MDP model formulation, in an n × n grid with r restaurants, c

couriers, and a single depot, given the maximum f simultaneous order assignments,
the number of possibilities for different cases in the state-action space can be obtained
as follows:

(s = new order, a = accept)→ f × (n+ n− 2)× c (5a)
(s = new order, a = reject)→ f × (n+ n− 2)× c (5b)

(s = delivered order, a = return to the depot)→ (n+ n− 2)× c (5c)
(s = delivered order, a = go to a restaurant)→ r × (n+ n− 2)× c (5d)

These calculations can be explained as follows. The maximum distance between
two points in an n× n grid is n+ n− 2. If a courier has at most f orders and all of
them are from one corner to another, f× (n+n−2) is their maximum trip length. If
we have c couriers in the system, whether a new order is rejected or assigned to each
courier, we will have f × (n+n− 2)× c state-action pairs. On the other hand, when
a courier delivers the order, they may either return to the depot or move towards
one of the restaurants in the grid. Accordingly, Equations (5c) and (5d) show the
number of state-action pairs for these cases.

Tabular model-free RL methods such as Q-learning and SARSA have convergence
guarantees under certain conditions, whereas there is no theoretical convergence guar-
antee for deep RL methods [19]. On the other hand, these tabular methods might
also have slow convergence issues even for very small problem instances depending
on the problem setting (e.g., Q-learning is shown to suffer from maximization bias,
which is mitigated by double Q-learning [19]). As such, we started by training the
standard RL algorithms (e.g., Q-learning and SARSA) for our MDP formulation for
a large number of episodes, however, we observed that many state-action pairs were
neither visited nor updated. Thus, the long-term reward of many state-action pairs
could not be determined, and, in the testing phase, those algorithms demonstrate
a performance even worse than the rule-based baselines. Accordingly, we substi-
tute these traditional RL algorithms with deep RL algorithms. We note that many
deep RL applications in different domains compared DQN variants against tabular
methods, and empirically showed the superiority of the DQNs [10? ].

Previous studies consider the convergence of Q-values as an indicator for the
convergence of the DQNs and the variants [20]. Accordingly, we define the conver-
gence as a mean-squared error (MSE) between the Q-value estimates and the ground
truth. Additionally, we monitor the average loss of the model in the training phase.
Figure 8 shows the cumulative daily reward and the average daily loss of the deep
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learning model for different numbers of couriers and grid sizes with or without du-
eling and prioritized experience replay in the DQN architectures. We set the same
daily order distribution (120 orders), same restaurant and depot distribution, and
identical algorithm settings (e.g., batch size). We observe that DDQN+

H shows rea-
sonable convergence performance. That is, in the first few days when the couriers
start exploring, the model demonstrates a lower performance. However, the collected
reward increases and stabilizes after almost 15 days (roughly 2,300 episodes). Simi-
larly, the model fluctuates around the same loss values after a few days of training.
As expected, when the problem size gets larger (i.e., having either more couriers or
greater grid size), we observe more fluctuation in the loss and reward values. We
do not observe a significant difference in the convergence behaviour while using pri-
oritized experience (with PER). Regarding the average daily reward, having more
couriers results in higher rewards as they deliver more orders and have fewer re-
ject decisions, which impact the convergence plots. In some cases, we observe more
fluctuations in the reward and loss values during the training phase, especially for
DQNH (as can be seen by comparing Figures 8c and 8f). Regarding the run times,
we find that dueling and PER increase the training time by almost 66%.

5. Conclusion

In this paper, we have modeled a meal delivery problem in which a set of couriers
deliver orders from restaurants to customers in a timely manner. Our objective is
to increase the cumulative reward in a given time interval and decrease the overall
delivery times. We note that this problem involves sequential decision-making un-
der uncertainty, which requires decision making in real-time (e.g., via pre-computed
policies). Moreover, we do not have access to full characterisation of the underlying
stochastic process in our meal delivery problem, hence we resorted to model-free
reinforcement learning methods such as deep reinforcement learning algorithms to
solve the problem. We compared eight DQN extensions on the synthetic data to
find the best performing algorithm for this model. We observed that DDQN with
a prioritized experience replay with hard updates (DDQN+

H) performed better than
other algorithms with respect to both collected reward and the delivery times. Fur-
thermore, we applied hyperparameter tuning to identify the ideal hyperparameters
for this algorithm, which was then used in the subsequent experiments.

We trained this algorithm on order data of three regions of Istanbul. We compared
the resulting policy with two baseline policies according to the collected reward and
order delivery times for a different number of couriers. The policies generated by
DDQN+

H outperform two baseline policies in terms of collected rewards and delivery
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(a) DDQN+
H , 2 couriers, 5× 5 (b) DDQN+

H , 2 couriers, 10× 10 (c) DDQN+
H , 2 couriers, 20× 20

(d) DQNH , 2 couriers, 5× 5 (e) DQNH , 2 couriers, 10× 10 (f) DQNH , 2 couriers, 20× 20

(g) DDQN+
H , 5 couriers, 5× 5 (h) DDQN+

H , 5 couriers, 10× 10 (i) DDQN+
H , 5 couriers, 20× 20

(j) DQNH , 5 couriers, 5× 5 (k) DQNH , 5 couriers, 10× 10 (l) DQNH , 5 couriers, 20× 20

Figure 8: Model convergence under different settings (i.e., different numbers of couriers
and grid sizes with or without dueling and prioritized experience replay). Note that y-axis
ranges may differ.

times for a varying number of couriers. We also investigated the number of delivered
orders in each hour of the day and the courier utilization for a different number
of couriers. As we increase the number of couriers in the system, the collected
reward increases, and the delivery time decreases. However, after a certain number
of couriers, the return of adding one more courier to the system decreases. In other
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words, considering the order arrival rates and the costs associated with hiring each
courier, we recommend the practitioners balance the number of couriers and the order
rate, as confirmed by our analysis. Moreover, we observe that the courier utilization
decreases with an increasing number of couriers in the system, emphasizing the
importance of finding the ideal number of couriers.

Although we concur that there is no best algorithm for all circumstances, we
chose the one that performs the best under different conditions using a synthetic
dataset. Moreover, in terms of bias in the experiment design, we repeat the process
multiple times and report the average performance of the models. We repeat the
process for different synthetic grid sizes and different geographic regions to ensure
the generalizability of the model. We also explore different order rates in the system
to mimic both busy and slow days. Regarding the delivery fees, they might differ from
one location to another in a real-world scenario. Additionally, instead of rejecting
the orders from distant locations (i.e., based on the delivery time estimates), the
customers can be charged extra to fulfill the order. However, our model assumes the
feasibility of the orders to be based on their distance to the available couriers. We
acknowledge this limitation and leave it for future research where dynamic delivery
fees could be incorporated into the model. Another noteworthy caveat in our analysis
is that we exclude different characteristics of the couriers. For instance, one courier
can be faster and more diligent in delivering orders than others, or there might be
some irresponsible couriers in the system who take detours in their delivery. However,
we assume that the delivery times for different couriers to be the same if they are
assigned to an identical order. Given the paucity of current information on the
delivery time, we used the grid approach and Manhattan distance for the shortest
path calculations. Based on the spatial configuration of Istanbul and its network
pattern, we considered it as a proper approximation of the real-world situation.

To the best of our knowledge, no other previous studies investigated the same
problem settings for the meal delivery problems, making it nontrivial to directly com-
pare our model against others’. In future work, we aim to investigate ADP-based
formulations for similar meal delivery problems as they provide another suitable
modeling mechanism for such problems. Accordingly, we can perform a compara-
tive analysis between ADP and deep RL-based approaches. Another relevant venue
for future research would be to augment environmental mediators such as couriers’
fatigue, break times, fuel cost, and couriers’ shifts and possible overtime. Another
consideration that merits further investigation is path updates after we assign a busy
courier multiple orders. In the current system, although we can assign more than one
order to couriers, we assume that they deliver the new order after finishing the current
one(s). However, an important consideration in actual scenarios would be updating
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the path accordingly while assigning a new order. Future research efforts should also
focus on the fair distribution of orders among couriers. That is, what we denote
as “courier utilization” in this paper requires more attention in courier assignment
tasks to address the equity and fairness considerations in workload management.
Lastly, similar to other reinforcement learning approaches, we ensure satisfying vari-
ous meal delivery problem constraints through our reward mechanisms. Accordingly,
the proposed model treats these constraints as soft constraints, which is the com-
mon strategy to handle constraints in large scale problems via reinforcement learning
techniques. We note that this constitutes a limitation of the proposed method when
hard constraints exist in the problem setting, and constrained reinforcement learning
methods (e.g., constrained MDPs) can be developed to handle the hard constraints
(e.g., strict delivery duration targets) in the meal delivery problem.
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