
Neighbor Enhanced Graph Convolutional Networks for Node
Classification and Recommendation

Hao Chena, Zhong Huangc, Yue Xud, Zengde Denge, Feiran Huangf, Peng Heb,
Zhoujun Lia,∗

aState Key Laboratory of Software Development Environment, Beihang University, Beijing 100191,
China.

bWeChat, Tencent Inc., Shenzhen 518000, China
cSchool of Information and Mathematics, Yangtze University, Jingzhou 434023, China

dAlibaba Group, Hangzhou 310052, China
eCainiao Network, Hangzhou 311101, China

fCollege of Cyber Security, Jinan University, Guangzhou 510632, China.

Abstract

The recently proposed Graph Convolutional Networks (GCNs) have achieved signifi-

cantly superior performance on various graph-related tasks, such as node classification

and recommendation. However, currently researches on GCN models usually recursively

aggregate the information from all the neighbors or randomly sampled neighbor subsets,

without explicitly identifying whether the aggregated neighbors provide useful informa-

tion during the graph convolution. In this paper, we theoretically analyze the affection

of the neighbor quality over GCN models’ performance and propose the Neighbor En-

hanced Graph Convolutional Network (NEGCN) framework to boost the performance of

existing GCN models. Our contribution is three-fold. First, we at the first time propose

the concept of neighbor quality for both node classification and recommendation tasks

in a general theoretical framework. Specifically, for node classification, we propose three

propositions to theoretically analyze how the neighbor quality affects the node classifica-

tion performance of GCN models. Second, based on the three proposed propositions, we

introduce the graph refinement process including specially designed neighbor evaluation

methods to increase the neighbor quality so as to boost both the node classification and

recommendation tasks. Third, we conduct extensive node classification and recommen-

dation experiments on several benchmark datasets. The experimental results verify that

our proposed NEGCN framework can significantly enhance the performance for various

typical GCN models on both node classification and recommendation tasks.

1

ar
X

iv
:2

20
3.

16
09

7v
1

 [
cs

.L
G

]
 3

0
M

ar
 2

02
2

Keywords:

graph convolutional networks, neighbor quality, graph enhancement, node

classification, user-item recommendation

1. Introduction

Unlike traditional data mining systems, where the main purpose is to predict with the

characters of single instances, modern systems record the connections between instances

such as citations between papers or interactions between users and items to formulate

these records as graph-structure data. Consequently, the Graph Convolutional Networks

(GCNs), which can simultaneously tackle the graph topology and the node feature, have

soon been popular and achieved state-of-the-art performances on various graph-based

tasks such as node classifications [1, 2, 3, 4, 5, 6, 7] and recommendation [8, 9, 10, 11].

Generally, the core of GCN models is to recursively update the representation of

each node by aggregating the message passed from neighbors. To this end, GCN [1]

first proposes the concept of spectral graph convolution, which utilizes the whole graph

connections (i.e., adjacent matrix) to aggregate neighbors’ information. Following its up,

GAT models [2, 3] adapt the attention mechanism to dynamically adjust the aggregation

weights of each neighbor. MixHop and JK-Nets [7, 12] introduce mixed graph convolution

layers to simultaneously collect the information of the neighbors from different hops away.

Considering the large computational cost of the recursive graph convolution, SGC [13],

NRGCN [14], LightGCN [10] and Gunets [15] omit the transformation function and the

non-linear activation function to accelerate the graph convolutional process.

Meanwhile, another line of works implements the graph convolution in a spatial man-

ner, importing the sampling and clustering strategy to facilitate the graph convolutions

on large graphs. GraphSAGE [16] at the first time introduces the node-wise sampling and

aggregation pipeline of the spatial graph convolution. For each node, GraphSAGE re-

cursively samples and aggregates the 1-hop neighbors, 2-hop neighbors, and so on. Since

∗Corresponding author
Email addresses: chh@buaa.edu.cn (Hao Chen), mad_hz@163.com (Zhong Huang),

guyue.yuexu@alibaba-inc.com (Yue Xu), dengzengde@gmail.com (Zengde Deng), huangfr@jnu.edu.cn
(Feiran Huang), paulhe@tencent.com (Peng He), lizj@buaa.edu.cn (Zhoujun Li)

Preprint submitted to Journal of Knowledge-Based Systems March 31, 2022

the recursive sampling will inevitably involve exponentially increasing neighbors, Fast-

GCN [5] proposes layer-wise sampling to randomly drop the nodes of the whole graph,

avoiding the exponential growth. Besides, ASGCN combines node-wise and layer-wise

sampling. Cluster-GCN [17] and GraphSAINT [6] split the whole graph into several

subgraphs to tackle extremely large-scale graphs.

However, although existing GCN models have set new standards on many benchmark

tasks, they suffer from the following two main pitfalls.

Ambiguous Neighbor Quality Evaluation. As studied in Graph Adversarial Attack

researches [18, 19, 20], the quality of the neighbors will impact the performance of GCN

models intensively. Nonetheless, current models do not utilize explicit methods to evalu-

ate the quality of the neighbor. For example, GAT models [2, 21, 22, 3] use the attention

mechanism to assign different weights to different neighbors. However, attention mech-

anisms are proposed to focus on the informative nodes, which cannot exactly identify

the quality of neighbors. Besides, the attention mechanism will import a large num-

ber of additional operations, however, the attention weights cannot be used to enhance

the performance of other non-attention GCN models. Noticeably, the recent studies on

graph adversarial attacks indicate that GCN models (including GATs) are vulnerable to

adversarial attacks which debase the quality of neighbors by adding disturbing neighbors

or deleting informative neighbors. This motivates us to rethink how to explicitly evaluate

the neighbor quality, making most GCN models (including GATs) can benefit from the

neighbor quality evaluation and enhancement.

Potential Disturbing Neighbors. For node classification tasks, GCN models rely on

the homophily hypothesis [23], meaning that the connected nodes usually have similar

features or characters. However, in real datasets, there exist some nodes that do not

have enough similar neighbors while disturbing by much more dissimilar neighbors. The

potential disturbing neighbors will influence the performance of GCN models on node

classification tasks. Moreover, in the recommendation scenario, the potential disturbing

neighbors are more difficult to recognize, since the interactions between users and items

are implicit. Existing models usually employ intuitive methods to evaluate the similarity

between users and items, i.e., comparing the weights of the interactions. However, such

intuitive evaluation methods are susceptible to popular items while cannot provide the-

3

oretical guarantees. Considering both node classification and recommendation tasks, it

is necessary to develop a general theoretical framework to tackle the potential disturbing

neighbors for these two different but correlated tasks.

Our Work. In this paper, we consider the tasks of node classification and recommen-

dation. We propose the general framework Neighbor Enhanced Graph Convolutional

Networks(NEGCN) to refine the graph structure before the training of GCN models to

improve their learning performance. The main contributions are summarized as follows.

• This paper for the first time proposes a general theoretical framework for both node

classification and recommendation tasks. Specifically, for node classification tasks,

we propose three propositions to theoretically analyze how the neighbor quality

affects the performance of GCN models.

• Based on the three proposed propositions, we introduce the neighbor evaluation

measurement and present specially designed neighbor evaluation methods and graph

refinement policies to increase the neighbor quality so as to enhance the GCN mod-

els’ performance on the node classification and recommendation tasks. Specifically,

we propose an efficient edge classifier to predict whether a neighbor is a useful

neighbor. Then we modify the graph structure by filtering the useless 1-hop neigh-

bors and useful 2-hop neighbors as extra useful 1-hop neighbors.

• Extensive experiments results for both node classification and recommendation

tasks verify that our proposed NEGCN framework is generally powerful in boost-

ing various popular GCN models for node classification tasks, including spectral

GCN, SGC, and GAT and sampling-based GraphSAGE and ASGCN. Addition-

ally, experiments on recommendation datasets further verify the universality of

NEGCN.

This article extends the short proceeding paper [24] in theoretical support and applica-

tions. First, we employ mutual information to generally model and explain the neighbor

quality evaluation. Second, equipped with the theoretical guarantees, we generalize the

neighbor quality evaluation and the graph refinement onto the recommendation scenario.

Finally, extensive experiments and comparison that adapts NEGCN on recommendation

tasks are proposed to present the universality of our model.
4

The whole paper is organized as follows. In Section 2, we review the recent researches

in node classification and recommendation tasks. Section 3 and Section 4 propose the

neighbor quality evaluation concept and describe how to enhance GCN models for node

classification and recommendation. In Section 5, we present the experimental results on

the five benchmark datasets and analyze the results. Finally, we conclude our paper in

section 6.

2. Related Work

2.1. Node classification.

Existing GCN models for node classification can be divided into two main cate-

gories [25, 26, 27, 28]: 1) spectral (transductive) GCN models and 2) spatial (inductive)

GCN models. Spectral GCN models define graph convolutions based on the spectral

representation of a graph. The first spectral GCN model is proposed in [29], which de-

fines the graph convolution operation in the Fourier domain. Later, the localized filters

and Chebyshev expansion [30, 31, 32] are proposed to avoid the need for computing the

eigenvectors of the Laplacian matrix. Next, [1] simplifies the convolution operation via

a localized first-order approximation. Recently, to accelerate the convolution process,

SGC [13] removes the nonlinear transition function between consecutive GCN layers

while still reaching a comparable performance to the traditional GCN. JK-Nets and

MixHop[12, 7, 33] define multiple-hop graph convolution to directly access the neighbors

multi-hops away. However, most of the learned filters in spectral GCN models depend

on the whole graph structure, which is transductive and computationally inefficient.

The spatial (inductive) GCN models propose mini-batch training on graphs, which

operates on spatially connected neighbors [26, 16]. In particular, GraphSAGE [16] pro-

poses the sampling and aggregation framework. ASGCN [4] controls the sampling size

of the training for GCNs through adaptive sampling. [34, 5, 6, 17] further develop

graph sampling, graph clustering and implement multiple sampling in an inductive GCN

framework. However, none of the GCN models mentioned above explicitly evaluates the

quality of the neighboring nodes or investigates how to enhance the accuracy of GCN

models by refining the graph structure. Another line of studies generalizes the graph

convolution with the attention mechanism. Gat and Gaan[2, 3, 35] dynamically assign
5

the aggregation weights with the multi-head attention mechanism. However, the atten-

tion mechanism can not gain valuable information from other non-neighboring nodes.

Moreover, training the attention layers requires an extensive amount of extra computa-

tional overhead. Meanwhile, other GCN models with different architectures cannot take

advantage of the trained attention weights.

Besides the supervised methods, unsupervised learning methods can learn the graph

representation without using the label information. Early methods for graph represen-

tations learning are mainly based on matrix-factorization approaches [36, 37, 38, 39].

With the popularity of the word embedding approach [40], many methods combine the

random-walk and word embedding to generate the unsupervised embeddings [41, 42].

Recently, [43] utilize graph convolution methods to generate the node embeddings.

2.2. Recommendation

The mainstream of graph-based recommendation is constructing the user-item inter-

action graphs and then trying to learn the implicit relations between users and items. Tra-

ditionally, matrix factorization methods [44, 45, 46] propose the groundwork of embedding-

based recommendation which learns the embedding for each user and each item by re-

constructing the user-item interaction graphs. Motivated by this, network embedding

methods [41, 42, 47, 48, 49] perform several random-walk strategies to extract the rela-

tions between users and items and then utilize the skip-gram models [50] to turn them

into embeddings.

Since GCN models have presented impressive performances on various graph-related

tasks, there is a growing number of researchers studying how to generalize GCN mod-

els [9, 8, 51, 52, 53, 54] to tackle user-item recommendation problems. In particular,

IntentGC [9] accelerates neighborhood feature propagation by introducing the vector-

wise graph convolution to avert unnecessary interactions between features. KGAT [21]

expands the graph attention networks to compute the hidden states of heterogeneous

graphs. Dual Graph Attention Networks [55] instead utilize the multi-arm bandit to

explore the user interests with graph attention. MEIRec [8] leverages the long-short-

term-memory (LSTM) Networks to capture the sequential correlation between different

types of correlations.

6

Recent recommendation models also investigate several policies to evaluate the node

similarities to achieve better recommendation performance. Among these policies, one

widely used policy is the first-order interaction weights. In particular, many models con-

sider a user to be more correlated to an item if the user clicks or purchases the item more

frequently, related works including Dual Graph Attention Networks [55], MEIRec [8],

KGCNs [56, 57], etc. Another orientation of methods prefers the second-order interac-

tion weights, which measures the similarity of two nodes by comparing the occurrence

frequency of neighborhood structure [58]. IntentGC [9] infers neighbors’ similarity by

counting the commonly visited neighbors.

However, these works do not investigate explicit evaluation metrics to measure the

importance of a given neighbor but only provide empirical importance evaluation.

3. Preliminaries

3.1. Notations

Node Classification. We consider the node classification problem on a directed

graph G = (V,E) with N nodes and E edges. The edge between node u, v ∈ V is denoted

as (u, v) ∈ E. The binary adjacency matrix with self-loop edges is denoted as A ∈ RN×N .

Let X = {x1,x2, · · · ,xN} denotes the feature of the nodes and Y = {y1, y2, · · · , yN}

denotes the labels of all the nodes. Let Nv denote the set of all 1-hop neighbors of node

v and nv = |Nv| denote the number of 1-hop neighbors of node v.

Recommendation. We suppose the sets of users and items are U and I, respectively.

u ∈ U denotes the user index, i ∈ I denotes the item index. Index j denotes the index

that is not distinguished between user and item. The matrix R ∈ RN×M denotes the

observed user-item interactions, where N and M is the quantity of the users and the

items, respectively. Specifically, Rui = 1 if the interaction between user u and item i is

observed, while Rui = 0 denotes the unobserved interactions. Since in recommendation

situations, users and items do not have node features as in node classification scenarios.

Thus, multiple collaborative filtering (CF) embedding methods are utilized to train their

embeddings. Especially, xu denotes the CF embedding of user node u, and xi denotes

the CF embedding of item node i. Besides, we mathematically define the adjacent matrix

7

under the recommendation situation as

A =

 0 R

R> 0

 ∈ R(N+M)×(N+M). (1)

3.2. Graph Convolutional Networks

In this subsection, we review the two most popular branches of the graph convolu-

tional networks: the spectral graph convolutional networks and the spatial graph convo-

lutional networks.

Generally speaking, the spectral branch of methods [1, 34, 7, 2] utilizes the adjacent

multiplier to compute the graph convolution, while the spatial branch of methods [16, 5, 4]

propose the sampling and aggregation framework to pass the message from neighbors to

the central node step by step. The Graph Convolutional Network (GCN) proposed in [1]

is the first spectral graph model to adjust the convolutional layers in CNN into graph

structure data. The core structure of the GCN model is the first-order graph convolution

layer that is defined as,

H(l+1) = σ(ÂH(l)W(l)), (2)

where the convolutional multiplier Â = D−
1
2 AD−

1
2 denotes the normalized adjacency

matrix with D as the diagonal degree matrix. H(l) denotes the node embeddings after

l-times convolution, W(l) denotes the transforming mapping matrix of the l-th graph

convolutional layer, and σ(·) denotes the non-linearity activation function. The initial

node embedding at the first layer H(0) is initialized as the raw feature X. After K steps

of the first-order graph convolution, we have H(K) as the final embedding of a K-layer

GCN model.

Since original GCN models have to dynamically compute the intermediate embed-

dings before computing the final embeddings H(K), whereas causing severe computational

inefficiency for the repetitive convolution process. To mitigate the computational bur-

den, the Simplified Graph Convolutional Networks (SGCs) [13] simplify the complicated

graph convolutional layers by omitting the non-linearity including the non-linear activa-

tion function σ(·) as well as the transforming mapping matrix W(l). Interestingly, SGC

theoretically and experimentally proves that the skipping of the non-linearity does not

affect the predicting performance of the graph convolutional networks. As such, the final

8

embedding matrix given by a K-layer GCN can then be simplified as,

H(K) = Â
K

X. (3)

GraphSAGE [16] is the first spatial graph convolutional models, which proposes the

sampling and aggregation framework. Since spectral convolution has to get access to

the whole adjacent matrix to obtain the graph convolution these models cannot deal

with the inductive learning problem which requires the trained models to generalize to

unseen nodes with the newly observed subgraphs. To this end, GraphSAGE redefine the

graph convolution in the spatial domain to extract neighbors’ message with the following

formula,

h(l+1)
v = σ(MAPl(AGGREGATE(l)({h(l)

u , for u ∈ Nv})), (4)

where “MAP” refers to the linear transformation that works the same as the transforming

mapping matrix W(l). “AGGREGATE” denotes various neighbor aggregation methods

such as mean pooling, max pooling, summation, and other LSTM neural networks. Em-

pirically, GraphSAGE opts for mean pooling as the default aggregation function, then

the embedding of node v at the l + 1 layer of these models can be computed as,

h(l+1)
v = σ(FCθ(l)(

∑
u∈N∗v

w(l)
u,vh

(l)
u)), (5)

where FCθ(l) represents the fully-connect layer parameterized by θ(l); w
(l)
v,u denotes the

aggregation weight of the neighboring nodes u ∈ Nv. Especially, for GraphSAGE-mean-

pooling, N ∗v denotes the sampled subset of the original neighbors set Nv, and the aggre-

gation weights can be given by the mean pooling structure, where w
(l)
u,v = 1/|Nv|.

Another line of works focus on applying the attention mechanism in NLP process-

ing [59] to dynamically assign the above aggregation weights. Typically, the computa-

tion contains two steps: computing attention coefficients and normalizing the attention

weight. Graph Attention Networks (GAT) [2] perform self-attention between the central

node and its 1-hop neighbors as,

w(l)
u,v =

exp(σ(a> · [FCθ(l)(h
(l)
u) ‖ FCθ(l)(h

(l)
v)]∑

k∈Nv
exp(σ(a> · [FCθ(l)(h

(l)
k) ‖ FCθ(l)(h

(l)
v)]

, (6)

where a denotes the attention weight vector.

9

4. Neighbor Enhanced Graph Convolutional Networks

In this section, we first introduce the concept of neighbor quality. Then, we spec-

ify how to evaluate the neighbor quality on the node classification task by proposing

the positive ratio. Furthermore, we discuss the construction of the edge classifier to

evaluate the neighbor importance and analyze how the positive ratio impacts the node

classification performance. Especially, we present how to refine the homogeneous graphs

into neighbor enhanced graphs (NE-graphs) for better node classification performance

with the trained edge classifiers. Finally, we provide the approach to adapt the neighbor

quality evaluation to enhance the recommendation tasks.

4.1. Neighbor Quality Evaluation

As described in [60], the substantial enhancement of Graph Convolutional Networks

is to describe the node with its neighbors. Intuitively, it is possible to define the quality of

one neighbor by evaluating how well can we infer the node’s characters from this neighbor.

To stabilize the evaluation of the neighbor quality, we opt for mutual information to

quantitatively study how much information can a neighbor provide to infer the central

node.

Let v denote the central node. We randomly choose a neighbor u from the neighbor

set of v. Let the random variable u denote the feature of an arbitrary node in Nu, then

the distribution of the random variable u is Pu = P (u = xu), where xu is the outcome

feature of node u. Analogously, we assume the random variable v to describe the central

node v, then the distribution of v is Pv = P (v = xv), where xv is the outcome feature

of node v. After defining these notations, their mutual information I(u,v) is the KL-

divergence between the joint distribution Pu,v = P (u = xu,v = xv) and the product of

marginal distributions Pu ⊗ Pv:

I(u,v) = DKL(Pu,v ‖ Pu ⊗ Pv)

(a)

≥ sup
T∈T

{
Exu,xv∼Pu,v [T (xu,xv)]− Exu∼Pu,x′v∼Pv [eT (xu,xv′)−1]

}
,

(7)

where (a) follows from f -divergence representation based on KL-divergence [61]; random

variable v′ denotes the feature associate with an arbitrary node; T ∈ T is an arbitrary

function that maps a pair of features to a real value, which reflecting the correlation of
10

a) Original 1-hop Structure b) Filter Negative 1-hop Neighbors c) Add Positive 2-hop Neighbors d) Neighbor-Enhanced 1-hop Structure

Figure 1: Illustration of the neighbor-enhancing process for the node classification task. The red, yellow,

and blue nodes denote the central nodes, the 1-hop neighbors, and the 2-hop neighbors, respectively. The

circles denote the same-label (positive) neighbors, while the triangles denote the different-label (negative)

neighbors. (a) The original 1-hop neighbors of the central node. (b) The filtering process, i.e., deleting

the 1-hop neighbors from the central node, which have different labels. (c) The adding process, i.e.,

connecting the selected 2-hop neighbors to the central node, which has the same label. (d) The refined

1-hop neighbors of the central node in the node classification task (neighbor enhanced graph).

two features. After replacing the f -divergence in Eq. (7) with a GAN-like divergence,

Eq. (7) is written as follows,

IGAN(u,v) ≥ sup
T∈T
{EPu,v [logσ(T (xu,xv))]

+ EPu,Pv [log(1− σ(T (xu,xv′)))]},
(8)

where σ(·) is the sigmoid function. Specifically, in IGAN (u,v), the first term reflects the

correlation between the neighbor u and the central node v, meaning to what extend the

neighbor u describe the central node v. The second term evaluates the difference between

the sampling node and the other node, which estimates the particularity of the neighbor

u. In practice, we cannot go over the entire functional space to evaluate the exact value

of IGAN. As a trading-off, we only preserve the first item to reflect the importance of a

given neighbor. Thus the core of identifying the importance of a neighbor comes to be

the training of the mapping function T (·). In the following subsections, we respectively

describe that how to train powerful T (·) for node classification and recommendation

tasks, respectively.

4.2. Positive Ratio for Node Classification

Given a central node, we can classify its neighbors into the positive neighbors and

the negative neighbors, which are defined as follows.

11

Definition 4.1. Given the central node v, the positive neighbor set N+
v is defined as

the subset of neighbors that have the same label as yv. The negative neighbor set N−v is

defined as the subset of neighbors that have different labels from yv.

Based on the definition, we rewrite the update function of node v given in (5) as,

h(l+1)
v = σ(FCθ(l)(

∑
u∈N+

v

w(l)
v,uh

(l)
u +

∑
u∈N−v

w(l)
v,uh

(l)
u)). (9)

According to [13], the non-linearity between consecutive GCN layers are not necessary

for performing the graph convolution. Instead, by removing the non-linearity, SGC can

achieve comparable performance as GCN and 10 times faster than GCN. Thus, we drop

the non-linearity and rewrite the updating function of node as,

h(l)
v =

1

nv
(
∑
u∈N+

v

h(l−1)
u +

∑
u∈N−v

h(l−1)
u). (10)

Helped by the linear updating function, the embeddings after different times of convo-

lutions locates at the same hidden space. Analogous to the one-vs-all classification in

multi-class prediction, we turn the multi-class node classification problem to the binary

classification, where classifying the central node to its correct label as one class and clas-

sifying the central node to wrong labels as the other class. Formally, we make following

assumptions:

• Assuming the linear mapping F (·) that maps the hidden embedding after (l − 1)-

times graph convolution to a real number, i.e., F (h(l−1)
u), we classify the node u

into the positive class when F (h(l−1)
u) > τ , or negative class otherwise, where τ is

the threshold of the one-vs-all classification.

• We assume the mapping of F (·) to obey a Gaussian mixture distribution, where

F (h(l−1)
u) iid∼ Norm(µ+, σ2) for u ∈ N+

i and F (h(l−1)
u) iid∼ Norm(µ−, σ2) for u ∈ N−i .

Reasonably, we assume that µ+ is larger than τ , and µ− is smaller than τ .

Following above assumptions, F (h(l)
v) can be written as follows,

F (h(l)
v) =

1

nv
(
∑
u∈N+

v

F (h(l−1)
u) +

∑
u∈N−v

F (h(l−1)
u). (11)

12

We compute the expectation of the mapping results F (h(l)
v) as follows,

Eorigin =
1

nv
(n+v µ

+ + n−v µ
−) = rvµ

+ + (1− rv)µ−, (12)

where rv = n+v /(n
+
v +n−v) = n+v /nv denotes the positive ratio of node v. Observing from

the formula of expectation, we can enlarge the expectation of the correctly classifying

possibility by increasing the positive ratio rv for node v. This observation leads to the

following proposition.

Proposition 1. The probability of classifying the nodes v ∈ V into the correct class will

increase if we can enlarge the positive ratio of the neighbors of node v. Thus the total

node classification performance will increase when we enhance the whole graph to have

larger global positive ratio R = 1
N

∑
v∈V n+v /(

∑
v∈V nv).

4.3. Edge Classifier

According to Definition 4.1, in order to identify whether node u is a positive neighbor

of node v, when the labels of u and v are unknown, such as in the testing set. The most

straightforward way is to first predict the labels of node u and node v, and then identify

whether they are the same. However, this leads to a classification problem with C × C

classes, which is complicated and expensive to solve, especially when C is large. To this

end, we now build an edge classifier to convert the above classification problem into a

binary classification problem. Specifically, we define the edges between the same-label

nodes as positive edges and the edges between the node with different labels as negative

edges.

Given a pair of nodes (u, v), the edge classifier E is trained to return a continuous

value between 0 and 1 named ŷu,v that reflects the possibility that the labels of u and v

are the same. The edge classifier is trained through the adjacent matrix A, the feature

of the nodes X, and the label-information of the nodes in the train set Ytrain. The edge

classifier should be easily computed and satisfy the commutative property which means

exchanging the order of the edge will not influence the prediction (i.e., E(u, v) = E(v, u)).

In this paper, we adopt multi-layer perception (MLP) layers to build the edge predic-

tor. Given the input features of the two nodes as eu and ev, we pass the concatenation

of the absolute difference |eu − ev|, the summation eu + ev, and the Hadamard product

13

eu ◦ ev of the input features into the edge classifier. Moreover, in order to accelerate

the prediction process under high-dimensional features, we use a weighted matrix We

to project the input features into a space with lower dimensions (i.e., êu = euWe). As

such, the edge classifier can be written as

E(u, v) = MLP (|êu − êv| ‖ (êu + êv) ‖ (êu ◦ êv)) , (13)

where ‖ denotes concatenating two vectors and MLP denotes the multi-layer percep-

tion with non-linear activation. Using MLP layers in building the edge classifier is not

the only possible solution, here we opt for MLP for easy-computing and satisfying the

commutative property.

4.3.1. Graph Refinement for Node Classification Tasks.

The graph refinement for node classification tasks aims at using the edge classifier to

enhance the origin graph structure to achieve a better node classification performance.

Particularly, the modification process contains two parts: 1) the filtering process:

as presented in Figure 1(b), for every node in the dataset set, we use the trained edge

classifier to predict whether its 1-hop neighbors are positive neighbors, then we delete

all of its negative neighbors; 2) the adding process: as shown in Figure 1(c), for each

node in the dataset set, we use the trained edge classifier to predict whether its 2-hop

neighbors are positive neighbors, then we add edges between this node and its positive

2-hop neighbors, i.e., turning them into positive 1-hop neighbors, until the total number

of 1-hop neighbors reaches a preset maximum neighbor number nmax. Generally, if the

edge classifier is good enough, such graph refinement can increase the graph’s positive

ratio R.

4.4. Theoretical Analysis

In this subsection, we describe the minimum requirements for the edge classifier to

achieve a better performance by refining the original graph to NE-graph.

For the Filtering Process, we delete all the predicted negative edges (ŷu,v = 0)

between the central node v and its 1-hop neighbors. After finishing the filtering process,

we preserve the predicted positive neighbors containing the following two situations: 1)

the predicted positive neighbors that are indeed positive, i.e., yu,v = 1 and ŷu,v = 1; 2)
14

the predicted positive neighbors that are indeed negative, i.e., yu,v = 0 and ŷu,v = 1.

We suppose the number of positive (or negative) neighbors for node v before the filtering

process n+v (or n−v). Then, after the filtering process, the number of positive (or negative)

neighbors for node v turns to be p · n+v (or q · n−v) where p = P(ŷu,v = 1|yu,v = 1) and

q = P(ŷu,v = 1|yu,v = 0). As such, the expectation of the map function F (h(l)
v) is given

as

Efilter =
p · n+v µ+ + q · n−v µ−

p · n+v + q · n−v
. (14)

To make Efilter larger than Eorigin, the minimum requirement of the edge classifier

should obey this proposition.

Proposition 2. Given p = P(ŷu,v = 1|yu,v = 1) and q = P(ŷu,v = 1|yu,v = 0), the

neighbor-enhanced graph leads to a superior performance of the GCN models when the

edge classifier satisfies p > q.

For the Adding Process, for the nodes that do not have enough positive 1-hop neigh-

bors, we employ the trained edge classifier to connect the central node to its predicted-

positive 2-hop neighbors to increase the number of the positive 1-hop neighbors. Analo-

gously, before the adding process, we assume the number of positive (or negative) neigh-

bors to be n+v (or n−v), n′v denotes the number of the neighbors we should add to node v.

After enhancing node v by adding n′v predicted positive neighbors, the positive-neighbor

number of v is n+v + ppre · n′v, and its negative-neighbor number is n−v + (1− ppre) · n′v,

where ppre = P(yu,v = 1|ŷu,v = 1) and 1 − ppre = P(yu,v = 0|ŷu,v = 1). Thus, the

expectation of the mapping function F (h(l)
v) turns to be

Eadder =
(n+v + ppre · n′v)µ+ + (n−v + (1− ppre) · n′v)µ−

n+v + n−v + n′v
. (15)

To make Eadder larger than Eorigin, the minimum requirement of the edge classifier

should comply the following proposition.

Proposition 3. Given ppre = P(yu,v = 1|ŷu,v = 1), the neighbor-enhanced graph leads

to a superior performance of GCN models when the edge classifier satisfies ppre > rv.

4.4.1. Relationship with Existing GCN Models

The neighbor-enhanced graph has a higher positive ratio than the original graph, such

that the disturbance from negative neighbors can be reduced. Existing GCN models
15

can learn directly on the enhanced graph without changing their model architectures.

On the other hand, the proposed NEGCN is promising to generate better performance

than the attention mechanism in GAT (which is verified in Sec. 5) due to the following

reasons. First, the attention mechanism can only filter the aggregated information from

existing 1-hop neighbors, which may have little effect when the target node has very few

positive 1-hop neighbors. Comparatively, NEGCN can connect positive 2-hop neighbors

to the target node as added 1-hop neighbors to provide extra valuable information.

Second, due to the lack of an explicit criterion, it is hard for the attention mechanism to

accurately distinguish distracting neighbors and valuable neighbors, especially when the

quality of the original graph is low. Comparatively, the NEGCN is more robust since

it trains an edge classifier using the labels from the training set to explicitly split the

positive neighbors and the negative neighbors. Third, the attention mechanism is trained

together with the other convolution parameters using the full training set, which leads to

an expensive computational cost. In particular, the computational complexity of training

the attention layers is O(BHN2), where B is the number of the training batches, H is

the number of multi-head attention entities. On the contrary, NEGCN requires a much

lower computational cost. Besides, the graph refinement only needs to be done once,

where the complexity of the filtering process is O(E) and the complexity of the adding

process is O(N · e2), with e being the average degree of the original graph. However, it

is noteworthy that NEGCN can also boost the attention-based models (GAT) to reach

better performance, which is shown in Sec. 5.

4.5. Enhancing Recommendation Tasks

In node classification tasks, NEGCN can directly identify the positive and negative

neighbors by observing the labels of the connected nodes and thus train the edge classifier

to enhance the node classification graphs. By contrast, in the recommendation task,

there is no explicit metrics to directly evaluate whether a neighbor is a positive or a

negative one, meaning that we need to measure the similarity between two users (or

items) based on their indirect (implicit) relationships. Current researches commonly

model the similarity between two nodes based on intuitive policies, e.g., considering the

visiting times, or counting the shared viewed items [8, 56, 55, 57]. However, these metrics

will be affected by popular items or users. Besides, these metrics are unable to compare
16

the similarity with the different user-item pairs. Therefore, it is worth exploring the

definition of a metric to evaluate the neighbor quality for neighborhood aggregation in

recommendation tasks.

In IGAN (u,v), the first term reflects the correlation between the neighbor node u

and the central node v, meaning to what extend does the neighbor describe the central

node v. The second term evaluates the difference between the sampling node and the

whole user-item embeddings, which estimates the particularity of the node u. Since the

feature of nodes are learned collaborative filtering embeddings, we parameterize T (a,b)

by computing their inner product as T (a,b) = a> ·b. Besides, log(1−σ(·)) is a concave

function, we can further simplify the second term of Eq. (8) with Jensen’s inequality to

obtain the following neighbor information evaluation function,

C(u, v) = log σ(x>u · xv) + log(1− σ(x>u · x)), (16)

where x = 1/(N + M)
∑
u′∈U∪I xu′ denotes the average embedding of all the user-item

embeddings. Different from node classification tasks, where we add more informative

1-hop neighbors from 2-hop neighbor set, due to the nature of the heterogeneous graph

in recommendation tasks, the types of 1-hop neighbors are different from the types of

the 2-hop neighbors. Thus, with this neighbor information evaluation function Eq. (16)

defined for recommendation tasks, we select the most informative neighbors for each

user (item) node to construct the neighbor-enhanced heterogeneous user-item graph.

5. EXPERIMENT

5.1. Experimental Settings.

Dataset Description. We select four widely used datasets to demonstrate the power

of the NEGCN, i.e., Cora, Citeseer, Pubmed, and Reddit [16]. The size of the graphs

scales from O(103) to O(105). We present the details of the four datasets in Table 1.

Edge classifier. We train the edge classifier with the label-known nodes and edges from

the training set. As shown in Table 2, the number of positive edges is larger than that

of negative edges. We perform negative sampling by randomly selecting different-label

nodes. Especially, for feature prepossessing, we employ the parameter-free embedding

A2X [13] as the input X to train the edge classifier. For Cora, Citeseer and Pubmed, we
17

Table 1: The statistics of the datasets.

Dataset Nodes/Edges/Features SemiTrain/Train/Val/Test

Cora 2,708/5,429/1,433 140/1,208/500/1,000

Citeseer 3,327/4,732/3,703 120/1,812/500/1,000

Pubmed 19,717/44,338/500 60/18,217/500/1,000

Reddit 233.0K/11.6M/602 -/152K/24K/55K

Table 2: The statistics of the origin graphs and the neighbor enhanced graphs.

Dataset ori-Pos/ori-Neg/ori-Ratio NE-Pos/NE-Neg/NE-Ratio

Cora 18.4K/3.2K/85% 20.3K/2.2K/90%

Citeseer 6.8K/2.4K/74% 16.6K/3.7K/82%

Pubmed 71.1K/17.5K/80% 483.0K/20.4K/96%

Reddit 18.1M/5.1M/78% 18.0M/1.0M/95%

refine the graph using both the adding process and the filtering process. For the adding

process, we set the maximum number of 1-hop neighbors as 6 for both Cora and Citeseer,

and as 30 for Pubmed. The statistical positive (negative) numbers of the original graph

structure and the neighbor-enhanced graph structure are compared in Table 2.

Baseline models. We select five representative GCN models as competitive baselines.

The compared semi-supervised methods include the original GCN [1], GAT [2], and

SGC [13]. The compared supervised methods include GraphSAGE [16] and ASGCN [4].

The semi-supervised methods only use a small part of nodes in the training set (pre-

sented as Semi-Supervised in Table 1) to optimize their parameters; while the supervised

methods use all the nodes in the training set to optimize their parameters. For all the

compared models, we fix the random seeds and use the early stopping strategy (using a

window size of 30 as suggested in [1]) to generate the best performances. The presented

performances are averaged over multiple runs to give a fair comparison. To reduce the

performance fluctuation, we run these algorithms with 5 different random seeds and

present the average result.

5.2. Experimental Results

Table 2 presents the statistic information before and after the neighbor enhanced

process. The result shows that the graph refinement can improve the positive ratio
18

Table 3: Accuracy of the NE-GCNs against the origin-GCNs

Cora Citeseer Pubmed

Semi-Supervised Methods

origin-GCN 0.8180± 0.0065 0.7090± 0.0032 0.7850± 0.0049

NE-GCN 0.8330± 0.0057 0.7330± 0.0045 0.8780± 0.0045

origin-SGC 0.8210± 0.0005 0.7190± 0.0012 0.7890 ± 0.0007

NE-SGC 0.8380± 0.0005 0.7340 ± 0.0009 0.8770 ± 0.0006

origin-GAT 0.8300± 0.0075 0.7250 ± 0.0061 0.7900 ± 0.0032

NE-GAT 0.8350 ± 0.0067 0.7360± 0.0073 0.8690± 0.0033

Supervised Methods

origin-SAGE 0.8650 ± 0.0062 0.7850 ± 0.0081 0.8830 ± 0.0114

NE-SAGE 0.8840 ± 0.0048 0.8000 ± 0.0078 0.9070 ± 0.0098

origin-ASGCN 0.8740 ± 0.0034 0.7960 ± 0.0018 0.9060 ± 0.0016

NE-ASGCN 0.8880± 0.0037 0.8010± 0.0022 0.9170± 0.0015

Table 4: Accuracy comparison on Reddit

SGC NE-SGC ASGCN NE-ASGCN

Reddit 0.9488± 0.0005 0.9540± 0.0004 0.9627± 0.0032 0.9758± 0.0027

remarkably. Table 3 compares GCN models and their NE enhanced versions on the

Cora, Citeseer, and Pubmed. The results present that the proposed NEGCN can enhance

classification performance considerably. Moreover, the results in Table 2 and Table 3 can

verify Proposition 1.

We now take a deeper look at the experimental results. For the semi-supervised

methods, the result in Table 3 shows that the original GAT outperforms the original

GCN and the original SGC. Both the NE-SGC and the NE-GCN perform better than

the original GAT, which indicates that the NEGCN framework is more effective than

the attention mechanism. Meanwhile, the NE-GAT also outperforms the original GAT,

which indicates that NEGCN can complement the attention mechanism to reach a better

performance. It is also noteworthy that the NE-GCN, the NE-SGC, and the NE-GAT

outperform their original versions by almost 10 percent on the Pubmed dataset. For the
19

Table 5: Performance of the edge classifier.

Cora Citeseer Pubmed Reddit

p 85% 89% 92% 98%

q 36% 54% 31% 13%

p− q 49% 34% 61% 85%

ppre 93% 82% 93% 97%

Accuracy 86% 75% 87% 96%

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

 %

Cora

SGC
GCN
ASGCN

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

 %

Citeseer

SGC
GCN
ASGCN

origin-graph Filter-graph Add-graph NE-graph
0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

 %

Pubmed

SGC
GCN
ASGCN

origin-graph Filter-graph Add-graph NE-graphorigin-graph Filter-graph Add-graph NE-graph

Figure 2: The performance of the GCN models under different graphs. Filter-graphs are generated by

only using the filtering process; add-graphs are generated by only using the adding process; NE-graphs

are generated by using both the adding and the filtering process.

supervised methods, the NE-SAGE performs better than the original ASGCN. Moreover,

as shown in Table 4, we also evaluate the performance of NEGCN on the Reddit dataset.

The result shows that both NE-SGC and NE-ASGCN can achieve higher accuracy than

the original SGC and the original ASGCN.

-1.0 -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0
p q

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 %

Filter-graph

CITESEER
CORA
PUBMED

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ppre

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 %

Add-graph

CITESEER
CORA
PUBMED

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
p q

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 %

NE-graph

0.0
0.2
0.4

0.6
0.8
1.0

Figure 3: The performance of NE-SGC when varying the values of p−q and ppre. The results on the left

and the middle panel are generated with the filter-graph and the add-graph, respectively. The results

on the right panel are generated with the NE-graph.

5.3. Ablation Study

Performance of the edge classifier. For each experimental dataset, we separate

a validation set from the original training dataset. Then, we train the edge classifiers

using the remained training set and evaluate the predicting accuracy of the edge classifier

20

Table 6: Performance under low positive ratio.

Cora Citeseer Pubmed

origin-GCN(low) 0.3920 0.3820 0.5810

NE-GCN(low) 0.6690 0.6650 0.8780

origin-GAT(low) 0.4430 0.3580 0.6020

NE-GAT(low) 0.6850 0.6750 0.8850

using the separated validation set. The result in Table 5 shows that p−q and ppre have a

strong correlation with the evaluated predicting accuracy. Hence, one can select the best

edge classifier according to their prediction accuracy evaluated on the validation set.

Influence from the graph enhancing process. In Figure 2, we evaluate the influence

of the adding and filtering process by testing the neighbor enhanced GCN-models on

the original graph, the filter-graph, the add-graph, and the NE-graph, respectively. In

particular, the filter-graph only filters the negative edges; the add-graph only adds more

positive edges; the NE-graph both filters the negative edges and adds more positive edges.

The performance on the filter-graph and the add-graph show that both the filtering and

the adding process can enhance the performance of the GCN models. The superior

performance on the NE-graph shows that the filtering process and the adding process

can complement each other to reach the best performance.

Influence from the edge classifier. In Figure 3, we present the performance of

NE-SGC when varying the values of p , q and ppre. Specifically, the sub-figure on the

left panel shows that the performance of the NE-models is positively correlated to the

value of p − q. When p − q > 0, the accuracy of NE-SGC is higher than the original

SGC; otherwise, the accuracy of NE-SGC is lower than the original SGC, which verifies

Proposition 2. The sub-graph on the middle panel shows that the performance of NE-

models is positively correlated to the value of ppre. Specifically, the result shows that if

ppre > R, the accuracy of NE-SGC is higher than original SGC; otherwise, the accuracy

of NE-SGC is lower, which verifies Proposition 3. The sub-graph on the right panel

shows how the performance of NE-SGC varies with the values of p − q and ppre. Each

line corresponds to a specific value of ppre. The result shows that the lines corresponding

to different ppre values are almost in parallel, which indicates that the adding process

and the filtering process have little influence on each other.

21

Performance under low positive ratio. We add five different-label neighbors to each

node in Cora, Citeseer and Pubmed graphs so as to artificially decrease their positive

ratio from 85%, 74%, 80% to 30%, 24%, 34%, respectively, and test the performance of

GCN and GAT. We train the edge classifier (using the raw features) which can improve

the positive ratio back to 67%, 73%, 97%, respectively, and test the performance of

NE-GCN and NE-GAT. The results in Table 6 show that GCN and GAT generate a

worse performance when the graph has a lower positive ratio. This may due to that

the convolution and attention mechanism have limited effect when the nodes in a graph

have few positive neighbors. On the other hand, the superior performance of NE-GCN

and NE-GAT proves that the NEGCN can help existing GCNs to achieve much better

performance by refining the graph topology, especially when the graph has a low positive

ratio.

5.4. Experiments on Recommendation Tasks

Dataset Description. We adopt the publicly accessible recommendation dataset: Yelp

to demonstrate the power of NEGCN on recommendation tasks. Yelp2018 is adopted

from the 2018 edition of the Yelp challenge, where the items are specified as the local

businesses like restaurants and bars. We randomly select 65% of historical interactions

of each user to learn the node embeddings with the off-the-shelf embedding methods,

another 15% of historical interactions to train the relevance function, and the remain-

ing 20% are used to validate/test the recommendation performance. In order to avoid

the cold-starting problem, all users and items have at least one record in embedding

learning [10].

Evaluation Metrics. We adopt the popular all-ranking evaluation protocol, which

has been widely used in recent literature [11, 10]. For each user in the testing set, all

the non-interacted items are treated as the negative items. Specially, we rank all the

items in the dataset except the interacted items used in the training process, and then

truncate the ranked list at 20 to calculate precision (PRE@20), recall (REC@20), and

ndcg (NDCG@20) metrics. We calculate all the three metrics for each testing user and

reported the average PRE@20, REC@20, and NDCG@20 metric over all the testing

users.

22

Table 7: Comparison of sampling policies.

Embeddings Sampling Yelp(PRE) Yelp(REC) Yelp(NDCG)

Meta2Vec

Random 0.0376 0.0825 0.0705

Intuitive 0.0415 0.0908 0.0781

NEGCN 0.043 0.0932 0.0807

Improvement 3.61% 2.64% 3.33%

GRMF

Random 0.0325 0.071 0.059

Intuitive 0.033 0.0727 0.0602

NEGCN 0.0342 0.0753 0.0623

Improvement 3.64% 3.58% 3.49%

LightGCN

Random 0.0418 0.0892 0.0771

Intuitive 0.0421 0.0908 0.0785

NEGCN 0.045 0.0954 0.0818

Improvement 6.89% 5.07% 4.20%

Embedding Methods. We choose three representative embedding method to demon-

strate the general power of NEGCN:

• MetaPath2Vec [48] formalizes metapath-based random walks on heterogeneous

graphs as corpus and then leverages skip-gram [50] models to compute node em-

beddings.

• GRMF [46] generates the traditional matrix factorization [44] by adding the graph

Laplacian regularizer to restrict connected nodes to have similar embeddings. We

adjust the BPR loss [45] to enhance the recommendation performance for fair

comparison.

• LightGCN [10] linearly propagates user/item information on the user-item inter-

action graph with a four-layer graph convolution, and uses the weighted sum of

layer-wise embeddings as the final embeddings.

The embedding size is fixed to 64 for all models, and all the embedding methods are

implemented with the official codes.

23

Performance under different sampling strategies In Table 7, we compare three dif-

ferent neighbor sampling policies on the Yelp dataset: 1.Random: Random walk-based

sampling [62], which simulates random walks starting from each node and computes the

L1-normalized visit count of neighbors visited by the random walk. 2. Intuitive: First-

order proximity-based sampling [8, 56, 55, 57], which examines the neighborhood sim-

ilarity based on the edge weights (e.g., number of clicks). 3. NEGCN: Our proposed

neighbor enhancing policies. Overall, the random sampling method generates the worst

performance. Intuitive sampling outperforms random sampling since the edge weights

can represent the importance of an edge. As showed by the improvement percentage,

the NEGCN sampling method outperforms the best baselines by a significant margin,

where the main reason is that NEGCN selects the most important neighbors for the

recommendation task.

6. Conclusion

In this paper, we proposed the NEGCN framework, which at the first time emphasized

the concept of neighbor quality and demonstrated that increasing the neighbor quality

can enhance general GCN models for both node classification and recommendation tasks.

Specifically, we introduced an efficient edge classifier to explicitly identify the useful

neighbors and modify the graph structure to increase the neighbor quality. Extensive

experiments verified that increasing the neighbor quality helped in enhancing a wide

range of GCN models. This paper shed insights on emphasizing the neighbor quality

studies and thus provided a branch new research line of investigating how to boost the

GCN models by refining the graph structure.

Future researches can be further conducted on investigating better edge classifiers.

For example, researchers can develop more complicated edge classifiers by utilizing state-

of-the-art link prediction models. In addition, GCN models are making significant

progress in Nature Language Processing and Computer Vision domains. It is also sug-

gested to study how to define the neighbor quality in these domains and increase the

neighbor quality to enhance the GCN models.

24

References

[1] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: In-

ternational Conference on Learning Representations, 2017.

[2] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks,

in: International Conference on Learning Representations, 2018.

[3] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, D. Y. Yeung, Gaan: Gated attention networks for learning

on large and spatiotemporal graphs, in: 34th Conference on Uncertainty in Artificial Intelligence,

2018, pp. 339–349.

[4] W. Huang, T. Zhang, Y. Rong, J. Huang, Adaptive sampling towards fast graph representation

learning, in: Proceedings of the 32nd International Conference on Neural Information Processing

Systems, 2018, pp. 4563–4572.

[5] J. Chen, T. Ma, C. Xiao, Fastgcn: Fast learning with graph convolutional networks via importance

sampling, in: International Conference on Learning Representations, 2018.

[6] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, V. Prasanna, Graphsaint: Graph sampling based

inductive learning method, in: International Conference on Learning Representations, 2020.

[7] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyunyan, G. Ver Steeg,

A. Galstyan, Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood

mixing (2019) 21–29.

[8] S. Fan, J. Zhu, X. Han, C. Shi, L. Hu, B. Ma, Y. Li, Metapath-guided heterogeneous graph neural

network for intent recommendation, in: Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2019, pp. 2478–2486.

[9] J. Zhao, Z. Zhou, Z. Guan, W. Zhao, W. Ning, G. Qiu, X. He, IntentGC: a scalable graph con-

volution framework fusing heterogeneous information for recommendation, in: Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp.

2347–2357.

[10] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph

convolution network for recommendation, in: Proceedings of the 43rd International ACM SIGIR

Conference on Research and Development in Information Retrieval, 2020, pp. 639–648.

[11] X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neural graph collaborative filtering, in: Proceedings

of the 42nd international ACM SIGIR conference on Research and development in Information

Retrieval, 2019, pp. 165–174.

[12] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, S. Jegelka, Representation learning on

graphs with jumping knowledge networks, in: International Conference on Machine Learning,

PMLR, 2018, pp. 5453–5462.

[13] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, K. Weinberger, Simplifying graph convolutional

networks, in: International conference on machine learning, PMLR, 2019, pp. 6861–6871.

[14] H. Chen, Z. Deng, Y. Xu, Z. Li, Non-recursive graph convolutional networks, in: IEEE International

Conference on Acoustics, Speech and Signal Processing, IEEE, 2021, pp. 3205–3209.

25

[15] H. Chen, W. Huang, Y. Xu, F. Sun, Z. Li, Graph unfolding networks, in: Proceedings of the 29th

ACM International Conference on Information & Knowledge Management, 2020, pp. 1981–1984.

[16] W. L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, in: Pro-

ceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp.

1025–1035.

[17] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, C.-J. Hsieh, Cluster-gcn: An efficient algorithm for

training deep and large graph convolutional networks, in: Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, 2019, pp. 257–266.

[18] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, L. Song, Adversarial attack on graph structured

data, in: International conference on machine learning, PMLR, 2018, pp. 1115–1124.

[19] D. Zügner, A. Akbarnejad, S. Günnemann, Adversarial attacks on neural networks for graph data,

in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, 2018, pp. 2847–2856.

[20] D. Zügner, S. Günnemann, Adversarial attacks on graph neural networks via meta learning, in:

International Conference on Learning Representations, 2018.

[21] X. Wang, X. He, Y. Cao, M. Liu, T.-S. Chua, KGAT: Knowledge graph attention network for rec-

ommendation, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, 2019, pp. 950–958.

[22] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, P. S. Yu, Heterogeneous graph attention network,

in: The World Wide Web Conference, 2019, pp. 2022–2032.

[23] M. McPherson, L. Smith-Lovin, J. M. Cook, Birds of a feather: Homophily in social networks,

Annual Review of Sociology 27 (1) (2001) 415–444.

[24] H. Chen, Y. Xu, F. Huang, Z. Deng, W. Huang, S. Wang, P. He, Z. Li, Label-aware graph con-

volutional networks, in: Proceedings of the 29th ACM International Conference on Information &

Knowledge Management, 2020, pp. 1977–1980.

[25] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural message passing for quantum

chemistry, in: International Conference on Machine Learning, JMLR. org, 2017, pp. 1263–1272.

[26] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun, Graph neural networks:

A review of methods and applications, AI Open 1 (2020) 57–81.

[27] Z. Zhang, P. Cui, W. Zhu, Deep learning on graphs: A survey, IEEE Transactions on Knowledge

and Data Engineering 34(1) (2022) 249–270.

[28] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y. Philip, A comprehensive survey on graph neural

networks, IEEE transactions on neural networks and learning systems 32(1) (2021) 4–24.

[29] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and deep locally connected networks

on graphs, in: 2nd International Conference on Learning Representations, 2014.

[30] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-

Guzik, R. P. Adams, Convolutional networks on graphs for learning molecular fingerprints, in:

Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume

2, 2015, pp. 2224–2232.

26

[31] M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural networks for graphs, in: Inter-

national Conference on Machine Learning, PMLR, 2016, pp. 2014–2023.

[32] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast

localized spectral filtering, in: Proceedings of the 30th International Conference on Neural Infor-

mation Processing Systems, 2016, pp. 3844–3852.

[33] Y. Wu, Y. Song, H. Huang, F. Ye, X. Xie, H. Jin, Enhancing graph neural networks via auxiliary

training for semi-supervised node classification, Knowledge-Based Systems 220 (2021) 106884.

[34] J. Chen, J. Zhu, L. Song, Stochastic training of graph convolutional networks with variance reduc-

tion, in: International Conference on Machine Learning, PMLR, 2018, pp. 942–950.

[35] H. Zhang, M. Xu, Graph neural networks with multiple kernel ensemble attention, Knowledge-Based

Systems 229 (2021) 107299.

[36] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering,

in: Proceedings of the 14th International Conference on Neural Information Processing Systems:

Natural and Synthetic, 2001, pp. 585–591.

[37] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, A. J. Smola, Distributed large-scale

natural graph factorization, in: Proceedings of the 22nd international conference on World Wide

Web, 2013, pp. 37–48.

[38] S. Cao, W. Lu, Q. Xu, Grarep: Learning graph representations with global structural informa-

tion, in: Proceedings of the 24th ACM international on conference on information and knowledge

management, 2015, pp. 891–900.

[39] M. Ou, P. Cui, J. Pei, Z. Zhang, W. Zhu, Asymmetric transitivity preserving graph embedding, in:

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data

mining, 2016, pp. 1105–1114.

[40] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed representations of words

and phrases and their compositionality, Vol. 26, 2013, pp. 3111–3119.

[41] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in: Proceed-

ings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,

2014, pp. 701–710.

[42] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of the

22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 2016, pp.

855–864.

[43] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, R. D. Hjelm, Deep graph infomax, in:

International Conference on Learning Representations, 2018.

[44] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems, Computer

42 (8) (2009) 30–37.

[45] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, Bpr: Bayesian personalized ranking

from implicit feedback, in: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial

Intelligence, 2009, pp. 452–461.

[46] N. Rao, H.-F. Yu, P. Ravikumar, I. S. Dhillon, Collaborative filtering with graph information:

27

Consistency and scalable methods, in: Proceedings of the 29th International Conference on Neural

Information Processing Systems, Vol. 2, Citeseer, 2015, p. 7.

[47] H. Zhao, Q. Yao, J. Li, Y. Song, D. L. Lee, Meta-graph based recommendation fusion over hetero-

geneous information networks, in: Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, 2017, pp. 635–644.

[48] Y. Dong, N. V. Chawla, A. Swami, Metapath2vec: Scalable representation learning for heteroge-

neous networks, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, 2017, pp. 135–144.

[49] T.-y. Fu, W.-C. Lee, Z. Lei, Hin2vec: Explore meta-paths in heterogeneous information networks

for representation learning, in: Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management, 2017, pp. 1797–1806.

[50] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector

space, in: 1st International Conference on Learning Representations, 2013.

[51] B. Hu, C. Shi, W. X. Zhao, P. S. Yu, Leveraging meta-path based context for top-N recommen-

dation with a neural co-attention model, in: Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2018, pp. 1531–1540.

[52] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D. Yin, Graph neural networks for social rec-

ommendation, in: Proceedings of the 28th international conference on world wide web, 2019, pp.

417–426.

[53] R. Yin, K. Li, G. Zhang, J. Lu, A deeper graph neural network for recommender systems,

Knowledge-Based Systems 185 (2019) 105020.

[54] A. Salamat, X. Luo, A. Jafari, Heterographrec: A heterogeneous graph-based neural networks for

social recommendations, Knowledge-Based Systems 217 (2021) 106817.

[55] Q. Wu, H. Zhang, X. Gao, P. He, P. Weng, H. Gao, G. Chen, Dual graph attention networks for

deep latent representation of multifaceted social effects in recommender systems, in: Proceedings

of the 28th international conference on world wide web, 2019, p. 2091–2102.

[56] H. Wang, M. Zhao, X. Xie, W. Li, M. Guo, Knowledge graph convolutional networks for recom-

mender systems, in: Proceedings of the 28th international conference on world wide web, New York,

NY, USA, 2019, p. 3307–3313.

[57] H. Wang, F. Zhang, M. Zhang, J. Leskovec, M. Zhao, W. Li, Z. Wang, Knowledge-aware graph

neural networks with label smoothness regularization for recommender systems, in: Proceedings of

the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019,

pp. 968–977.

[58] P. Goyal, E. Ferrara, Graph embedding techniques, applications, and performance: A survey,

Knowledge-Based Systems 151 (2018) 78–94.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin,

Attention is all you need, in: Proceedings of the 31st International Conference on Neural Information

Processing Systems, 2017, pp. 6000–6010.

[60] Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks for semi-supervised

28

learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, 2018, pp.

3538–3545.

[61] I. B. Mohamed, B. Aristide, R. Sai, O. Sherjil, B. Yoshua, C. Aaron, H. Devon, Mutual information

neural estimation, in: International Conference on Machine Learning, 2018, pp. 530–539.

[62] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, J. Leskovec, Graph convolutional

neural networks for web-scale recommender systems, in: Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, 2018, pp. 974–983.

29

	1 Introduction
	2 Related Work
	2.1 Node classification.
	2.2 Recommendation

	3 Preliminaries
	3.1 Notations
	3.2 Graph Convolutional Networks

	4 Neighbor Enhanced Graph Convolutional Networks
	4.1 Neighbor Quality Evaluation
	4.2 Positive Ratio for Node Classification
	4.3 Edge Classifier
	4.3.1 Graph Refinement for Node Classification Tasks.

	4.4 Theoretical Analysis
	4.4.1 Relationship with Existing GCN Models

	4.5 Enhancing Recommendation Tasks

	5 EXPERIMENT
	5.1 Experimental Settings.
	5.2 Experimental Results
	5.3 Ablation Study
	5.4 Experiments on Recommendation Tasks

	6 Conclusion

