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Abstract
In this paper, a novel unsupervised low-rank rep-
resentation model, i.e., Auto-weighted Low-Rank
Representation (ALRR), is proposed to construct a
more favorable similarity graph (SG) for clustering.
In particular, ALRR enhances the discriminabil-
ity of SG by capturing the multi-subspace struc-
ture and extracting the salient features simultane-
ously. Specifically, an auto-weighted penalty is in-
troduced to learn a similarity graph by highlighting
the effective features, and meanwhile, overshadow-
ing the disturbed features. Consequently, ALRR
obtains a similarity graph that can preserve the in-
trinsic geometrical structures within the data by en-
forcing a smaller similarity on two dissimilar sam-
ples. Moreover, we employ a block-diagonal reg-
ularizer to guarantee the learned graph contains k
diagonal blocks. This can facilitate a more dis-
criminative representation learning for clustering
tasks. Extensive experimental results on synthetic
and real databases demonstrate the superiority of
ALRR over other state-of-the-art methods with a
margin of 1.8%∼10.8%.

1 Introduction
Clustering is a key technique of data mining, which targets at
grouping the given database automatically without any label
information. Many clustering methods have been proposed
in past decades, e.g.,[Shah and Koltun, 2017; Zhang et al.,
2018a; Zhang et al., 2018b; Zhang et al., 2019; Wen et al.,
2021]. Due to the good performance and strong theory ba-
sis, graph-based clustering, which is a critical branch of clus-
tering methods, has become an attractive research area. In
general, most graph-based clustering methods can be sum-
marized as two steps. First, a similarity graph (SG) should be
constructed to depict the pairwise relations among samples.
Then, this graph is divided into k sub-graphs according to a
strategy, where k is the number of clusters. Therefore, the
performance of the graph-based clustering strongly depends
on the quality of the SG. However, constructing a discrimina-
tive SG is difficult for high-dimensional data because many
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metric methods become worse as the dimension increases.
Recently, self-representation theories have pointed out that

a given high-dimensional samples can be regarded as sampled
from k independent low-dimensional subspaces, and each
sample can be linearly represented by the other samples in
the same subspace [Liu et al., 2012]. Based on this assump-
tion, many self-representation methods have been proposed to
construct the SG by learning the subspace structure of sam-
ples, e.g., low-rank representation (LRR) [Liu et al., 2013]
and FLLRR [Song and Wu, 2018].

LRR is an important branch of self-representation models
and has a strong theory basis. It tries to capture the subspace
structure with a global low-rank constraint. However, LRR
can learn the global structure but ignore the local geometry
information [Fei et al., 2017]. To overcome this problem, a
non-negative low-rank learning method [He et al., 2011] is
proposed to capture the local structure by introducing a L1-
norm constraint which can ensure the representation using the
nearby samples as much as possible. Futhermore, this method
also enhance the physical meaning of SG by ensuring that the
SG is nonnegative. Motivated by manifold learning [Belkin
and Niyogi, 2008], Laplacian regularized LRR [Yin et al.,
2016] is proposed to learn more local structure by adopting
a Laplacian regularization which ensures that the samples
similar in the original space are also similar in representa-
tion space. Moreover, RSEC [Tao et al., 2019] is proposed
to improve the clustering results of by adopting a clustering
constraint to enhance the discriminability of the learned SG.

All the LRR methods mentioned above usually base on
an assumption that the importance of each feature is equal.
However, the importance of features is different in real appli-
cations [Wang et al., 2020]. Moreover, in the clustering task,
there has no prior information to previously set reasonable
weights to features. To alleviate these problems, we propose a
auto-weighted low-rank representation (ALRR) method, and
our main contributions are summarized as follows.

1. We develop ALRR: an Auto-weighted Low-Rank Rep-
resentation, to improve the discrimination of SG for
clustering tasks.

2. To learn a similarity graph that can preserve the intrinsic
geometrical structures within the data, an auto-weighted
penalty is introduced by highlighting the effective fea-
tures and overshadowing the disturbed features.

3. We employ a block-diagonal regularizer to guarantee the
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learned graph contains k diagonal blocks, thus facilating
a more discriminative representation learning.

4. An iterative algorithm is developed to solve ALRR. The
advantages of our method have been proved by experi-
mental results on synthetic and real databases.

2 Notations and Preliminary
2.1 Notations
In this paper, xi and xj are the ith column and ith row of
the X , respectively. xi,j denotes the element which is on the
ith row and jth column of X . ‖xi‖2 is the l2-norm of the
vector xi. XT is the transpose of X . X−1 is the inverse
of X . rank(X) is the rank of X . tr(X) is the trace of X .
‖X‖1, ‖X‖F and ‖X‖∗ denote L1-norm, Frobenius norm
and nuclear norm of X respectively. 1 is the vector in which
elements are 1. I is the identity matrix.

2.2 Block Diagonal Constraint
Suppose a ideal databaseX0 which is strictly sampled from k
independent subspaces without any noise. LRR can learn a k
block-diagonal SG as Z0 = V0V

T
0 , where V0 is obtained by

singular value decomposition X0 = U0Σ0V
T
0 . Since there

is always noise in the data, a k-block diagonal regularizer is
proposed to ensure that the matrix contains k diagonal blocks
[Lu et al., 2019].
Definition 1 (k-Block Diagonal Regularizer) For a given SG
matrix B ∈ Rn×n, k-block diagonal regularizer is defined as

‖B‖
k

=

n∑
i=n−k+1

λi (LB) (1)

where LB denotes the Laplacian matrix of B and λi(LB) is
the i-th smallest eigenvalue of LB .

3 The Proposed Method
3.1 ALRR: The Objective Function
For a given database X = [x1, x2, ..., xn] ∈ Rd×n which
contains n d-dimensional samples, we suppose it contains k
clusters sampled from k independent subspaces. As analyzed
before, LRR can explore the global low-rank structure but
ignores the geometrical structure and the difference in impor-
tance of the features. Motivated by this, an auto-weighted
matrix is introduced to learn the importance of different fea-
tures by assigning different weights to the features adaptively.
Based on this weighted features, the auto-weighted penalty is
employed to preserve the geometrical structure as

min
A,Z,E

∑
i,j

‖Axi −Axj‖22zi,j︸ ︷︷ ︸
Auto-weighted penalty

+λ1‖Z‖∗ + λ2‖E‖1,

s.t.X = XZ + E,Z ≥ 0, zi,i = 0, Z1 = 1,

A = diag(a), a ≥ 0, a1 = 1

(2)

where a ∈ Rd is the auto-weighted vector, A ∈ Rd×d is
the auto-weighted matrix which is a diagonal matrix whose
mainly diagonal vector is a. Z is the SG and E is the re-
covering error. λ1, λ2 are two parameters to balance the ef-
fect of the three terms. Axi is the auto-weighted features of

xi, and the auto-weighted matrix A can enhance the origi-
nal features by assigning large weights to the useful features
and assigning small weights to the useless features. There-
fore, the weighted features are more discriminative. Based
on the auto-weighted features, the auto-weighted penalty can
enlarge learned similarity between two samples if the auto-
weighted features of them are similar. Thus, this term can
also preserve more geometry structure, leading to a more dis-
criminative SG. a ≥ 0 and a1 = 1 can ensure that the auto-
weighted matrix is nonnegative and avoid the trivial solution,
i.e., A = 0.

As the database is sampled from k independent subspaces,
LRR theory has shown that an ideal SG obtained by LRR is
a symmetric k block-diagnoal matrix, but this structure usu-
ally be destroyed by the noise [Feng et al., 2014]. Since most
graph-based clustering methods require symmetric SGs, the
learned SGs are usually handled as W = (|Z| + |Z|T )/2
[Yang et al., 2020]. Hence, to improve the clustering perfor-
mance, we further introduce a block diagonal constraint to
ensure that W have k diagonal blocks as

min
A,Z,E

∑
i,j

‖Axi −Axj‖22zi,j︸ ︷︷ ︸
Auto-weighted penalty

+λ1‖Z‖∗ + λ2‖E‖1+

λ3‖
Z + ZT

2
‖
k︸ ︷︷ ︸

Block constraint

, s.t.X = XZ + E,Z ≥ 0,

zi,i = 0, Z1 = 1, A = diag(a), a ≥ 0, a1 = 1

(3)

Utilizing the block diagonal constraint, the (Z + ZT )/2 will
contain k blocks, which is more suitable for the graph-based
clustering methods.

3.2 ALRR: Optimization
In this section, we use the ADMM to solve our model. First,
two variables, i.e., S andU , are introduced, then the Lagrange
function of the problem (3) can be obtained as

min
A,Z,E,S,U,C1,C2,C3

∑
i,j

‖Axi −Axj‖22si,j + λ1‖U‖∗+

λ2‖E‖1 + λ3‖
S + ST

2
‖k +

µ

2
(‖X −XZ − E+

C1

µ
‖2F + ‖Z − S +

C2

µ
‖2F + ‖Z − U +

C3

µ
‖2F )

(4)

where C1, C2 and C3 are Lagrange multipliers, and µ > 0
is a non-negative penalty. This problem can be divided into
several subproblems as follows.

1) Update Z withA,E, U and S fixed. Z can be obtained
by minimizing the following problem

min
Z

µ

2
(‖XZ −M1‖2F + ‖Z −M2‖2F + ‖Z −M3‖2F ) (5)

where M1 = X−E+ C1

µ ,M2 = S− C2

µ and M3 = U − C3

µ .
By setting the derivative of this formulation to 0, Z can be
calculated by a closed form solution as

Z = (XTX + 2I)−1(XTM1 +M2 +M3) (6)



2) Update E with A, Z, U and S fixed. E can be updated
by

min
E

λ2‖E‖1 +
µ

2
‖X −XZ − E +

C1

µ
‖2F (7)

According to [Lin et al., 2011], this problem can solved by

E = Ωλ2
µ

(X −XZ +
C1

µ
) (8)

where Ω is the shrinkage operator [Liu et al., 2010].
3) Update U with A, Z, E and S fixed. By fixing the

other variables, U can be obtained by optimizing the follow-
ing subproblem as

min
U

λ1‖U‖∗ +
µ

2
‖Z − U +

C3

µ
‖2F (9)

This problem has a closed form solution as

U = Θλ1
µ

(Z +
C3

µ
) (10)

where Θ is the singular value thresholding (SVT) shrinkage
operation [Liu et al., 2013].

4) Update S withA, Z, U andE fixed. S can be obtained
by solving the following subproblem

min
S

∑
i,j

‖Axi −Axj‖22si,j + λ3‖
S + ST

2
‖k+

µ

2
‖Z − S +

C2

µ
‖2F , s.t.S ≥ 0, si,i = 0, S1 = 1

(11)

Since the definition of the block diagonal regularizer is shown
as Eq.(1), then we have

min
Z,Y
‖S + ST

2
‖k = min

Z
〈LS , Y 〉,

s.t.0 � Y � I, rank(Y ) = k

(12)

where LS is the Laplacian matrix of S, which is defined as
Diag((S1 + ST1)/2) − (S + ST )/2. Thus, updating S can
be divided into two steps.

First, fix S and update Y by

min
Y
〈LS , Y 〉, s.t.0 � Y � I, rank(Y ) = k (13)

where Y can be updated by Y = FFT , and F ∈ Rn×k con-
sists of k eigenvectors associated with the smallest k eigen-
values of LS .

Second, fix Y and update S by

min
S

∑
i,j

‖Axi −Axj‖22si,j + λ3〈LS , Y 〉+
µ

2
‖Z−

S +
C2

µ
‖2F , s.t.S ≥ 0, si,i = 0, S1 = 1

(14)

This problem is equivalent to

min
S

tr(DT
AS) +

µ

2
‖Z − S +

C2

µ
+
λ3
2µ

(DY +

DT
Y )‖2F , s.t.S ≥ 0, si,i = 0, S1 = 1

(15)

where dAi,j = ‖Axi − Axj‖22 and DY = diag(Y )1T − Y .
We can learn a latent variable S̄ without constraint by

S̄ =
2µZ + 2C2 + λ3(DY +DT

Y )− 2DA

2µ
(16)

then S can be obtained by

si = max(σi1̂i + s̄i, 0) (17)

where 1̂i is a vector that the i-th element is 0 and the other el-
ements are 1. σ is the Lagrangian multiplier which is defined
as

σi =
(
1 + s̄i1

)
/(n− 1) (18)

5) Update A with E, Z, U and S fixed. A is the auto-
weighted matrix which can be obtained by

min
A

∑
i,j

‖Axi −Axj‖22si,j ,

s.t.A = diag(a), a ≥ 0, a1 = 1

(19)

A can be obtained directly by

ai =
1

wi
∑d
i=1

1
wi

(20)

where wi = xiLSx
T
i .

6) Update the other variables.

C1 = C1 + µ(X −XZ − E),

C2 = C2 + µ(Z − S),

C3 = C3 + µ(Z − U),

µ = min(µmax, ρµ).

(21)

where µmax and ρ are two constants. For convenience, our
algorithm is summarized as Algorithm 1.

Algorithm 1: Solving ALRR
Input: Data matrix X and parameters λ1, λ2, λ3

Output: Z, A, Y , E
1 Initialization: Initializing Z by constructing the k-nearest

neighbor graph, S = Z, U = Z, E = 0, C1 = 0, C2 = 0,
C3 = 0, µ = 0.01, ρ = 1.1, µmax = 108;

2 while not converged do
3 Update Z by Eq.(6);
4 Update E by Eq.(8);
5 Update U by Eq.(10);
6 Update Y by Eq.(13);
7 Update S by Eq.(17);
8 Update A by Eq.(20);
9 Update µ, C1, C2, C3 by Eq.(21).

3.3 Computational Complexity and Convergence
Study

In this subsection, the computational complexity is anal-
ysed firstly. As shown in Algorithm 1, solving the proposed
method contains six main steps, i.e., step 3 to step 8. Here,
the computational complexity of each step is analysed respec-
tively. Step 3 is updated as Eq.(6) in which (XTX + 2I)−1



(a) Original (b) LRR (c) NSLLRR (d) AWLRR (e) LRRAGR (f) RSEC (g) LapNR (h) ALRR

Figure 1: Experimental results on the spiral database.

(a) LRR (b) NSLLRR (c) AWNLRR (d) LRRAGR (e) RSEC (f) LapNR (g) ALRR

Figure 2: Visual comparison of the SGs of LRR, NSLLRR, AWNLRR, RSEC, LapNR, HWLRR and our ALLR.

costs the most computational complexity, and its computa-
tional complexity is O(n3). However, this term can be pre-
calculated to reduce the computational complexity. Steps
4 and 5 use singular value thresholding (SVT) and eigen-
decomposition respectively, thus the computational complex-
ity of them are O(n3) and O(cn2), where c is the number of
learned rank. The computational complexity of step 7 and 6 is
O(n2). Since the computational complexities of basic matrix
operations are much lower, these computational complexities
are not taken into account. Finally, the computational com-
plexity of the proposed method is O(τ(n3 + (c + 2)n2)),
where τ is the number of iteration.

(a) Cars (b) Control

Figure 3: Convergence curve of our ALRR on Cars and Control, in
which all classes of each database are selected.

The proposed method is solved by ADMM-style method
with six blocks. The strongly convex of two-block ADMM
method has been proved in [Lin et al., 2015]. However, it is
still hard to prove that a six-block ADMM method is convex.
Hence, we prove the convergence of ALRR by experiments
in the following. As shown in Fig.3, the value of the objective
function, i.e., Obj = (

∑
i,j ‖Axi − Axj‖22zi,j + λ1‖Z‖∗ +

λ2‖E‖1+λ3〈LZ , Y 〉)/‖X‖F , will monotonically decreasing
and finally arriving the local optimum, which can show the
convergence of ALRR.

4 Experiments
In this section, some experiments are conduceted to show
the effectiveness of our ALRR method. Here, some self-

representation methods, i.e., LRR, NSLLRR [Yin et al.,
2016], AWNLRR [Wen et al., 2018b], LRRAGR [Wen et
al., 2018a], RSEC [Tao et al., 2019] and LapNR [Zhao et
al., 2020] are chosen as the comparison algorithms. To
make it fair, the parameters of each method are varied in
a wide range to obtain the optimum performance. More-
over, the SGs obtained by these methods are symmetrized by
W = (|Z|+ |Z|T )/2 andW is handled by Ncut [Shi and Ma-
lik, 2000] to obtain the clustering result. In the experiments,
a synthetic database and some benchmark real databases are
used to evaluate the performance of all the methods and the
details of these databases are shown in Table 1.

Table 1: Description of the databases

Type Database Samples Dim Classes

Synthetic Spiral 393 2 3

UCI

Cars 392 8 3
Contral 600 60 6
Isolet 1560 617 2
Solar 323 12 6
Yeast 1484 1470 10

Handwritten
Dig 1797 64 10

USPS 1000 256 10

Face
Jaffe 213 676 10
Yale 165 1024 15
EYB 2414 1024 38

EYB denotes Extended Yale B.

4.1 Clustering on synthetic database
A spiral database [Chang and Yeung, 2008] shown in Fig.1(a)
is used to evaluate the performance of ALRR and the com-
parison methods. This database contains three clusters, and
many samples with different label are close in this synthetic
database. Thus, using this database can show the ability of
clustering methods handling the nearby samples with differ-
ent labels. As shown in Fig.2(g), ALRR can correctly di-
vide the samples into three clusters against the misleading



Table 2: Clustering results on real databases

Database Metric Cars Control Isolet Solar Yeast Dig USPS Jaffe Yale EYB

Ncut

ACC

48.72 51.50 55.58 51.7 32.28 76.85 49.50 89.20 20.00 19.72
LRR 62.76 48.17 55.96 51.39 30.26 79.13 53.30 99.53 46.06 67.44
NSLLRR 63.52 65.00 59.36 54.80 39.22 67.78 54.20 99.53 54.55 38.48
AWNLRR 66.33 53.17 58.40 55.11 10.71 79.86 55.00 98.59 41.84 88.07
LRRAGR 62.76 56.83 54.00 45.51 30.39 59.32 40.90 98.59 56.36 87.04
RSEC 63.01 54.33 62.95 56.04 38.01 79.19 53.80 100 55.15 88.53
LapNR 57.14 37.83 58.65 52.63 39.22 76.02 57.20 98.12 55.15 48.76
ALRR 68.11 74.50 61.47 59.75 44.54 82.80 59.40 100 61.21 99.13
Ncut

Fscore

48.60 58.35 50.62 43.03 38.47 67.71 36.96 82.45 14.43 12.79
LRR 63.17 57.25 50.65 44.82 35.93 72.85 43.82 99.05 28.25 46.18
NSLLRR 63.67 62.11 51.75 45.87 29.39 63.23 42.35 99.03 36.79 13.12
AWNLRR 66.04 53.47 51.53 46.65 28.96 76.90 46.81 97.11 38.57 85.14
LRRAGR 59.25 69.10 51.00 37.84 35.94 45.25 38.90 97.10 38.68 78.63
RSEC 58.92 57.61 53.43 47.81 31.75 72.32 44.33 100 35.07 80.82
LapNR 50.54 54.28 52.24 45.62 29.39 71.70 47.24 96.32 35.40 25.95
ALRR 67.47 75.17 53.98 50.65 32.84 75.19 48.39 100 44.76 98.26

of the nearby samples with different labels, and the other
methods have assigned wrong labels to some sample. To
further show the discrimination of the learned SGs, the SGs
obtained by all the self-representation is shown by visualiza-
tion. Here, all the SGs obtained have been symmetrized by
W = (|Z|+ |Z|T )/2. From Fig.2, we can find that LRRAGR
can learn a SG with three parts, which performs much better
than the other comparison methods. However, the SG learned
by LRRAGR contains some similarities among samples with
different labels are greater than 0, which can mislead the clus-
tering method and leads to a worse performance. Due to the
learned sparse SG with exactly three diagonal blocks, ALRR
can achieve the best clustering result.

4.2 Clustering on real databases
In this subsection, some benchmark real databases are used to
evaluate the performance of the proposed method and com-
parision methods. Two most used metrices, i.e., ACC and
Fscore, are utilized to compare the performance of the final
clustering results.

The experimental results on these real databases are given
in Table 2, and we can find some conclusions as follows.

• Overall, the proposed ALRR outperforms the compari-
son methods on most databases and can obtain compet-
itive results on the other databases, which can prove the
effectiveness of ALRR. Specifically, for the databases
with more dimensions, e.g., EYB and Yale, ALRR per-
forms much better than the other methods which prove
that the proposed method is more effective on the high-
dimensional database. This is because high-dimensional
data contains more redundant features, and the auto-
weighted matrix can enlarge the effect of the discrimi-
native features.

• Compared with LRR, NSLLRR, LRRAGR, AWNLRR,

HWLRR and ALRR perform better in the most cases.
Since LRR just uses a global low-rank constraint to
capture the global, NSLLRR, AWNLRR, HWLRR and
ALRR improve the LRR by preserving more local struc-
ture. Thus, it is obvious that learning the local structure
is effective for clustering task.

• From the comparison among AWNLRR, LRRAGR and
ALRR, we can find that ALRR obtains higher accu-
racy. These three methods use the distance penalty to
learn more geometric structure, but ALRR uses an auto-
weighted penalty to enlarge the effect of the discimina-
tive features, which leads to a better SG.

• LRRAGR and ALRR both take use of the class infor-
mation. LRRAGR utilizes the class information by a
rank constraint, and ALRR ensures that the learned SG
contains k diagonal blocks. Hence, this can prove that
the block constraint is more effective than the rank con-
straint for clustering.

From these analyses, the effectiveness of the auto-weighted
penalty and the block constraint have been proved. With the
integration of above factors, the proposed ALRR performs
better than the other methods.

4.3 Effectiveness of the auto-weighted matrix
To further show the effectiveness of the auto-weighted matrix,
some learned auto-weighted matrix are shown in Fig.4. It can
seen that the weights of different features are different, and
the weights are adaptively assigned as 1) if the database just
contains a few discriminitive features (e.g., Cars and Yeast),
the auto-weighted matrix will just select the most important
features and remove the useless features; 2) for the database
with all the features useful (e.g., Control and PD), the auto-
weighted matrix can assign more reasonable weights to en-
hance the features. Furthermore, we show the contribution of



(a) Cars (b) Control (c) Ecoli

(d) Solar (e) Yeast (f) PD

Figure 4: The learned weights of the databases.

Table 3: Clustering results on original and weighted features

Cars Control Isolet Solar Yeast Dig USPS Jaffe Yale EYB

Original 66.82 59.00 59.32 56.54 41.58 78.50 53.80 98.59 57.58 80.36
Weighted 68.11 74.50 61.47 59.75 44.54 82.80 59.40 100 61.21 99.13

the auto-weighted matrix in our method by setting the auto-
weighted matrix A = I in ALRR. As shown in Table 3, the
clustering results on the weighted features are better than that
on the original features, which shows the effectiveness of the
auto-weighted penalty.

4.4 Parameter sensitivity and selection

(a) λ1 (b) λ2 and λ3

Figure 5: Parameter sensitivity analysis of ALRR on the Jaffe, where
(a) fix λ2 and λ3 to tune λ1; (b) fix λ1 to tune λ2 and λ3.

As shown in model (3), there are three parameters, i.e., λ1,
λ2 and λ3 in the ALRR. They are used to balance the effect of
low-rank constraint, error and block constraint, respectively.
In this section, the sensitivity of each parameter is tested
by performing the proposed method with different combina-

tions of three parameters, and each parameter is varied in a
wide range [5−5, 5−4, ..., 54, 55]. First, we fix λ2 = 5−2 and
λ3 = 5−2 to tune λ1, and thus the sensitivity of λ1 is shown
as Fig.5(a). It is obvious that ALRR can deliver good results
with λ1 ≤ 5−1. Then, λ1 is fixed as 5−2, and the influence of
λ2 and λ3 is showed by performing the proposed method with
different combinations of λ2 and λ3 on the Jaffe database. As
shown in Fig.5(b), we can find that ALRR performs well with
λ2 ≤ 5−2 and λ3 ≤ 5−2. Since finding a suitable combina-
tion of parameters is still an open problem, and we just con-
firm that the most suitable parameters in our method can be
found in a small range, i.e., [5−5, 5−4, 5−3, 5−2].

5 Conclusion

In this paper, a novel and unsupervised self-representation
learning method, i.e., Auto-weighted Low-Rank Representa-
tion (ALRR), is proposed. Our ALRR can learn a discrimi-
native SG which contains k diagonal blocks which is a clear
clustering structure. With the guidness of this term, the auto-
weighted penalty can adaptively assign different weights to
the features which can enlarge the effect of the useful features
and reduce the impact of the useless features. Moreover, this
penalty can preserve more local structure with the weighted
features. The effectiveness of our ALRR for clustering has
been examined on both synthetic and real databases.



References
[Belkin and Niyogi, 2008] Mikhail Belkin and Partha

Niyogi. Towards a theoretical foundation for laplacian-
based manifold methods. J. Comput. Syst. Sci.,
74(8):1289–1308, 2008.

[Chang and Yeung, 2008] Hong Chang and Dit-Yan Yeung.
Robust path-based spectral clustering. Pattern Recognit.,
41(1):191–203, 2008.

[Fei et al., 2017] Lunke Fei, Yong Xu, Xiaozhao Fang, and
Jian Yang. Low rank representation with adaptive distance
penalty for semi-supervised subspace classification. Pat-
tern Recognit., 67:252–262, 2017.

[Feng et al., 2014] Jiashi Feng, Zhouchen Lin, Huan Xu,
and Shuicheng Yan. Robust subspace segmentation with
block-diagonal prior. In IEEE CVPR, pages 3818–3825,
2014.

[He et al., 2011] Ran He, Wei-Shi Zheng, Bao-Gang Hu, and
Xiangwei Kong. Nonnegative sparse coding for discrim-
inative semi-supervised learning. In IEEE CVPR, pages
2849–2856, 2011.

[Lin et al., 2011] Zhouchen Lin, Risheng Liu, and Zhixun
Su. Linearized alternating direction method with adaptive
penalty for low-rank representation. In NeurIPS, pages
612–620, 2011.

[Lin et al., 2015] Zhouchen Lin, Risheng Liu, and Huan Li.
Linearized alternating direction method with parallel split-
ting and adaptive penalty for separable convex programs in
machine learning. Mach. Learn., 99(2):287–325, 2015.

[Liu et al., 2010] Guangcan Liu, Zhouchen Lin, and Yong
Yu. Robust subspace segmentation by low-rank represen-
tation. In ICML, pages 663–670, 2010.

[Liu et al., 2012] Guangcan Liu, Huan Xu, and Shuicheng
Yan. Exact subspace segmentation and outlier detection
by low-rank representation. In AISTATS, volume 22, pages
703–711, 2012.

[Liu et al., 2013] Guangcan Liu, Zhouchen Lin, Shuicheng
Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery of sub-
space structures by low-rank representation. IEEE TPAMI,
35(1):171–184, 2013.

[Lu et al., 2019] Canyi Lu, Jiashi Feng, Zhouchen Lin, Tao
Mei, and Shuicheng Yan. Subspace clustering by block
diagonal representation. IEEE TPAMI, 41(2):487–501,
2019.

[Shah and Koltun, 2017] Sohil Atul Shah and Vladlen
Koltun. Robust continuous clustering. Proc. Natl. Acad.
Sci. USA, 114(37):9814–9819, 2017.

[Shi and Malik, 2000] Jianbo Shi and Jitendra Malik. Nor-
malized cuts and image segmentation. IEEE TPAMI,
22(8):888–905, 2000.

[Song and Wu, 2018] Yu Song and Yiquan Wu. Sub-
space clustering based on latent low rank representa-
tion with frobenius norm minimization. Neurocomputing,
275:2479–2489, 2018.

[Tao et al., 2019] Zhiqiang Tao, Hongfu Liu, Sheng Li,
Zhengming Ding, and Yun Fu. Robust spectral ensemble
clustering via rank minimization. ACM TKDD, 13(1):1–
25, 2019.

[Wang et al., 2020] Rong Wang, Haojie Hu, Fang He, Feip-
ing Nie, Shubin Cai, and Zhong Ming. Self-weighted col-
laborative representation for hyperspectral anomaly detec-
tion. Signal Process., 177:107718, 2020.

[Wen et al., 2018a] Jie Wen, Xiaozhao Fang, Yong Xu,
Chunwei Tian, and Lunke Fei. Low-rank representa-
tion with adaptive graph regularization. Neural Networks,
108:83–96, 2018.

[Wen et al., 2018b] Jie Wen, Bob Zhang, Yong Xu, Jian
Yang, and Na Han. Adaptive weighted nonnegative low-
rank representation. Pattern Recognit., 81:326–340, 2018.

[Wen et al., 2021] Jie Wen, Zheng Zhang, Zhao Zhang, Lei
Zhu, Lunke Fei, Bob Zhang, and Yong Xu. Unified embed-
ding alignment with missing views inferring for incom-
plete multi-view clustering. In AAAI, page early access,
2021.

[Yang et al., 2020] Jufeng Yang, Jie Liang, Kai Wang,
Paul L. Rosin, and Ming-Hsuan Yang. Subspace cluster-
ing via good neighbors. IEEE TPAMI, 42(6):1537–1544,
2020.

[Yin et al., 2016] Ming Yin, Junbin Gao, and Zhouchen Lin.
Laplacian regularized low-rank representation and its ap-
plications. IEEE TPAMI, 38(3):504–517, 2016.

[Zhang et al., 2018a] Xingxing Zhang, Zhenfeng Zhu, Yao
Zhao, and Dongxia Chang. Learning a general assignment
model for video analytics. IEEE TCSVT, 28(10):3066–
3076, 2018.

[Zhang et al., 2018b] Xingxing Zhang, Zhenfeng Zhu, Yao
Zhao, and Deqiang Kong. Self-supervised deep low-rank
assignment model for prototype selection. In IJCAI, pages
3141–3147, 2018.

[Zhang et al., 2019] Xingxing Zhang, Zhenfeng Zhu, Yao
Zhao, Dongxia Chang, and Ji Liu. Seeing all from a few:
`1-norm-induced discriminative prototype selection. IEEE
TNNLS, 30(7):1954–1966, 2019.

[Zhao et al., 2020] Y. Zhao, L. Chen, and C. L. P. Chen.
Laplacian regularized nonnegative representation for clus-
tering and dimensionality reduction. IEEE TCSVT, early
access, 2020.


	1 Introduction
	2 Notations and Preliminary
	2.1 Notations
	2.2 Block Diagonal Constraint

	3 The Proposed Method
	3.1 ALRR: The Objective Function
	3.2 ALRR: Optimization
	3.3 Computational Complexity and Convergence Study

	4 Experiments
	4.1 Clustering on synthetic database
	4.2 Clustering on real databases
	4.3 Effectiveness of the auto-weighted matrix
	4.4 Parameter sensitivity and selection

	5 Conclusion

