
HAL Id: hal-03684205
https://hal.science/hal-03684205

Submitted on 1 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Negative Sampling and Rule Mining for Explainable
Link Prediction in Knowledge Graphs
Kamrul Islam, Sabeur Aridhi, Malika Smaïl-Tabbone

To cite this version:
Kamrul Islam, Sabeur Aridhi, Malika Smaïl-Tabbone. Negative Sampling and Rule Mining for Ex-
plainable Link Prediction in Knowledge Graphs. Knowledge-Based Systems, 2022, 250, pp.109083.
�10.1016/j.knosys.2022.109083�. �hal-03684205�

https://hal.science/hal-03684205
https://hal.archives-ouvertes.fr

Negative Sampling and Rule Mining for Explainable
Link Prediction in Knowledge Graphs

Md Kamrul Islam∗, Sabeur Aridhi, Malika Smail-Tabbone

Universite de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Abstract

Several KG embedding methods were proposed to learn low dimensional vector

representations of entities and relations of a KG. Such representations facili-

tate the link prediction task, in the service of inference and KG completion.

In this context, it is important to achieve both an efficient KG embedding

and explainable predictions. During learning of efficient embeddings, sampling

negative triples was highlighted as an important step as KGs only have ob-

served positive triples. We propose an efficient simple negative sampling (SNS)

method based on the assumption that the entities which are closer in the em-

bedding space to the corrupted entity are able to provide high-quality negative

triples. As for explainability, it actually constitutes a thriving research question

especially when it comes to analyse KGs with their rich semantics rooted in

description logics. Hence, we propose in this paper a new rule mining method

on the basis of learned embeddings. We extensively evaluate our proposals

through several experiments. We evaluate our SNS sampling method plugged

to several KG embedding models through link prediction task performances on

well-known datasets. Experimental results show that the SNS improves the

prediction performance of KG embedding models, and outperforms the existing

sampling methods. To assess the performance of our rule mining method with

and without SNS, we mine and evaluate rules on three popular datasets. The

∗Corresponding author
Email addresses: kamrul.islam@loria.fr (Md Kamrul Islam),

sabeur.aridhi@loria.fr (Sabeur Aridhi), malika.smail@loria.fr (Malika Smail-Tabbone)

Preprint submitted to Elsevier June 1, 2022

extracted rules are evaluated as knowledge nuggets extracted from the KG and

also as support for explainable link prediction. The overall results are good and

open the way to many improvements and new perspectives.

Keywords: knowledge graph embedding, link prediction, negative sampling,,

rule mining, explainability

1. Introduction

Today knowledge graphs are commonly adopted for knowledge representa-

tion. A knowledge graph (KG) is a graph-based representation of knowledge

which models real-world entities and their relations in various domains [1]. For-

mally, a KG is represented as a collection of RDF triples, (head, relation, tail)

where the head and the tail are two entities which are connected by a specific

relation. KGs form building blocks for many applications, ranging from ques-

tion answering to content-based recommendation. Large KGs contain millions

of entities and billions of triples (e.g., FreeBase, DBPedia, YAGO). Despite of

their huge size, KGs are often incomplete. For example, birth place of more

than 70% of person entities in Freebase is missing [2]. The incompleteness issue

of KGs motivates researchers to study how to add or infer new triples in KGs.

This task is known as link prediction in KGs.

In recent years, many embedding models have been proposed to learn vector

representations (or embeddings) of entities and relations in KGs. These models

perform the link prediction task based on the learned embeddings. The train-

ing of these models requires positive triples as well as negative (non-observed)

triples. However, only positive triples are available in KGs. Importantly, the

quality of negative triples does matter as it influences the overall results of the

models [3, 4]. This brings the importance of sampling negative triples. However,

this feature is not well covered in the literature. To the best of our knowledge,

there exist some negative sampling methods such as uniform-random [5], GAN-

based [3, 6, 7], NSCaching [4],Self-adversarial [8], and SANS [9]. All these

methods, except the first one, look for hard negatives for a positive triple. A

2

negative triple, which is hard to differentiate from positive triples, is consid-

ered a hard negative [7]. However, each of them has its own pros-cons and the

current state-of-art still lacks good negative sampling methods. We proposed a

simple but efficient method called SNS to sample high-quality negative triples

in KG [10] making a good balance between exploration and exploitation to im-

prove the quality of negative triples. We design SNS as a general sampling

method that can be plugged to any KG embedding model for link prediction.

We provide a thorough description of the method principles (Section 2.1).

Today, the major limitation of KG embedding-based link prediction methods

is their lack of explainability, which limits their ability to be deployed in many

real-world applications. This seems to be particularly absurd given the richness

of the initial graph. Hence we propose a new rule mining method that utilizes the

KG and its embedding and a strategy to use the rules to explain the embedding-

based link prediction (Section 3.1).

The rest of the paper is organized as follows. After introducing the SNS

sampling method and its related works in Section 2, we present our rule mining

method in Section 3. In Section 4, we present our experimental settings. In

Section 5, we present the obtained results of the conducted experiments to

evaluate our rule mining method in combination with the SNS sampling method.

The last section is devoted to the conclusions and the future directions.

2. The Simple Negative Sampling (SNS) method

In this section, we describe our SNS sampling method (Section 2.1) and

related works (Section 2.2). We summarize the notations in Table 1 which are

used throughout the paper.

2.1. The SNS method

For link prediction, KG embedding models are trained with positive and

negative triples to learn embeddings of entities and relations. A good trade-off

between exploration and exploitation is crucial in searching for a high-quality

3

Table 1: Summary of notations

Symbol Meaning Symbol Meaning

E Set of all entities Θ Set of all parameters an embedding method

R Set of all relations T Number of epochs

S Set of positive training triples k Number of sampled negative(s) for a positive

D Set of positive test triples f Scoring function of an embedding method

Q Set of positive triples G A bidirectional knowledge graph

d Embedding dimension size H Head/target relation of a rule

m Batch size Bi i-th body body relation of a rule

Sm A batch of positive triples ei Entity variable of a rule

Sm A batch of negative triples r−1 Inverse relation of a relation r

negative triples [11]. Exploration corresponds to the capacity of the sampling

method to select high-quality negative triples from unexplored areas whereas

exploitation favours the utilization of already known negative triples to sam-

ple other negatives. SNS is concerned with achieving a fair balance between

exploration and exploitation in the quest for good negatives. We first briefly

describe a classical KG embedding model, and then our proposed SNS negative

sampling method. The architecture of a classical KG embedding model is given

in Figure 1 which starts with initializing the embeddings of entities and rela-

tions randomly from uniform/Gaussian distributions [12]. For the training of

the model, a batch of positive train triples Sm is fetched and a negative sampling

method is then used to generate a batch of negative triples. In the architecture,

we inject our SNS method (shaded by yellowish color in Figure 1) to gener-

ate the batch of negative triples, S′m for the batch of positive triples,Sm. The

batches of positive and negative triples are then used to learn the embeddings.

In this paper, we consider the pairwise training which is able to work under

the ’open-world’ assumption [13]. In pairwise training, the model tries to assign

more plausibility score to a positive triple than its corresponding negative triple.

The training objective is to optimize the embeddings of entities and relations

4

Figure 1: Architecture of a classical KG embedding model with SNS sampling

for minimizing the total pairwise loss as designed in Equation 1.

min
Θ

∑
∀(h,r,t)∈Sm,(h′,r,t′)∈S′

m

L(f(h, r, t), f(h′, r, t′)) + λreg(Θ) (1)

Here, f is the scoring function of the embedding model, (h, r, t) ∈ Sm is a

positive triple and (h′, r, t′) ∈ S′m is the corresponding negative triple. The

pairwise loss for the positive and its negative triple is defined in Equation 2 [12].

L(f(h, r, t), f(h′, r, t′)) =
[
λ− f(h, r, t) + f(h′, r, t′)

]
+

(2)

Here, λ is the margin and [.]+ = max(0, .) is the hinge function. The embedding

updating process is repeated for all batches of positive triples (shaded by dark

gray color in Figure 1), and the whole training process (shaded by light gray

color in Figure 1) is repeated for T times (or epochs). The model training process

is similar to a traditional KG embedding model except we adapt our negative

sampling method. We refer to [12] for more details about the traditional KG

embedding.

In the following, we describe our method for negative sample generation.

Step 1. Triple perturbation: SNS, like other sampling methods, begins

with perturbing a positive triple to generate an initial negative triple set. In

triple perturbation, the head/tail of the positive triple is corrupted by replacing

head/tail with other entities in the entity set(E). At the same time, the negative

set is checked to make sure that it does not include any positive triple. To

illustrate, consider the positive triple q = (h, r, t) ∈ S. Corrupting the tail(t)

5

gives the initial negative set q′0(t) = {(h, r, t′) /∈ Q|t′ ∈ E}.

Step 2. Candidate set generation: Generally, the size of the set q′0(t) is

large as KG contains large number of entities. Zhang et al. [4] describe that only

some of initial negatives of the set are of good-quality. As we need few negatives

for each positive triple, we randomly sample N1 triples from q′0(t) to generate

candidate negative set q′1(t)(i.e. q
′
1(t) ⊆ q′0(t)) for user defined parameter N1.

As the training progresses, it is hoped that the quality of the negative(s) for

the following step would be better or comparable to that of the current step’s

negative(s). For this purpose, the sampled negatives from the current step are

kept in a small structure named least recently selected(LRS). LRS[q′h, q
′
t] stores

sampled negatives where q′t and q′h are the sampled negatives by head and tail

corruption respectively in the preceding step. The stored negatives are then

utilized to sample high-quality negatives in the following step. The candidate

negative set, q′1(t) is updated to include the LRS negative(s) as q′1(t) := q′1(t) ∪

LRS[q′t]. The use of LRS is intended to favour the exploitation behavior of

the proposed SNS method. It assures that the quality of the current step’s

negative(s) is better than, or at least comparable to, the quality of the preceding

step’s negative(s).

Step 3. Sampling probability computation: In this step, we compute

the sampling probability of each negative in the candidate negative set q′1(t).

Negatives having a higher probability are assumed to be of higher quality. The

probability is defined based on the distance of each negative. The distance for a

negative triple, (h, r, t′i) ∈ q′1(t) is computed as the Euclidean distance between

the corrupted(t) and the new entities(t′i) as Equation 3.

d(t, t′i) = ||t− t′i|| (3)

Here, t and t′i are embeddings of the entities t and t′i. The sampling probability

of each candidate negative, (h, r, t′i) ∈ q′1(t) is then computed using a softmax

6

function as Equation 4.

P (h, r, t′i) =
exp(1

d(t,t′i)
)∑N1

j=1 exp(
1

d(t,t′j)
)

(4)

For a candidate negative triple with a lower distance, the softmax function

returns a higher sampling probability.

Step 4. Negative triple sampling and LRS updating: The triples

from the candidate negative set,q′1(t) are ranked in decreasing order of their

probabilities and k negative(s) are sampled. A natural choice could be sam-

pling top-k (k=1 for pairwise training, k > 1 for maximum likelihood training)

negative(s). However, sampling the top-k ranked negative(s) may lead to two

issues. Firstly, because the current candidate negative set also includes the

least recently sampled (LRS) high-quality negatives, there is a high chance of

repeated sampling of the same negative(s) (even in several successive steps).

This issue affects the exploration potential of SNS sampling. Secondly, the

existence of false negative triples (that appear to be of high quality) cannot

be overlooked [12]. To tackle these issues, SNS randomly samples k negative

triples from N2 top ranked triples in q′t as q′t = {(h, r, t′)|rank(h,r,t′)≤N2
} for

user-defined parameter N2 where N2 > k.

SNS repeats the above described process (from initial negative set generation

to k negative(s) sampling) for head(h) corruption to sample k negative(s) as

q′h for the positive triple, q. The LRS[q′t, q
′
h] is updated with the sampled 2k

high-quality negative(s). Finally, we randomly sample k high-quality negative(s)

as q′h,r,t from 2k negatives in q′h ∪ q′t. The sampled k negative(s), q′ and the

corresponding positive, q are then used to train the KG embedding model.

2.2. Related works

During the training of KG embedding-based model, high-quality negative

triples, which are not readily available, have a significant contribution. One sim-

ple way to sample negative triples is based on ’closed-world’ assumption where

all non-observed triples are assumed to be false and can be used as negatives.

7

However, this assumption is not entirely true for KGs due to their incomplete-

ness [12]. Alternatively, most of the KG embedding models sample negatives

from non-observed triples under ’open-world’ assumption where a non-observed

triple may be positive or negative. Generally, candidate negative triple set is

generated by positive triple perturbation where head/tail entities are replaced

with other possible entities [12] and then negative triples are sampled from the

set. ’Uniform-random’ is the mostly used negative sampling method where neg-

ative triples are randomly sampled from a uniform distribution of candidate

negatives [4]. Though ’uniform-random’ is simple, a sampled negative triple

could be easily classified as negative. Consequently, ’uniform-random’ method

suffers from ’zero-loss’/’vanishing-gradient’ problem [3]. To avoid this problem,

the generative property of GAN frameworks was recently proposed to generate

high-quality negatives. The generator of GAN is trained to pick high-quality

negative triples whereas the discriminator part is trained to learn embeddings.

IGAN [7], KBGAN [3], KSGAN [6] are three GAN-based sampling methods

for KGs. Compared to ’uniform-random’ sampling, these methods improve the

quality of negative triples but they increase the number of model parameters

and take extra costs on training for parameter optimization [4]. In addition,

they suffer from instability and degeneracy problems because of adopting the

complex reinforcement learning to train the generator [4]. To avoid the exces-

sive training time of GAN-based methods, Zhang et al. [4] proposed a ’distilled’

version of GAN-based methods, namely NSCaching which stores negatives with

high scores in head and tail caches for each positive triple, and then samples

negatives directly from the caches. With NSCaching sampling, KG embedding

models show competitive link prediction performance. However, the memory

requirement increases exponentially with the size of KGs. Also, the regular up-

dating of caches increases the computational time. Thus, scalablity is a big issue

for NSCaching and it is not recommended for large KGs. Self-adversarial [8] is

another adversarial negative sampling method which computes high sampling

probability for high triple scoring negatives. However, negatives with high scores

may be positive though they are unobserved. This ’false-negative’ case is over-

8

(a) start@head-closed@tail/ closed path (b) Cycle

(c) start@head-closed@middle (d) start@middle-closed@tail

Figure 2: Different types of paths for defining length-2 rules

looked in self-adversarial sampling. Apart from the above-mentioned sampling

methods, the hard negative mining in contrastive learning motivates Ahrabian

et al. [9] to study the neighborhood information of entities to sample negatives.

They develop SANS method based on an assumption that neighbor entities

without direct relation are good candidates for generating negatives. However,

the one-time generation of negatives prior to the start of the embedding learning

process is expensive in terms of memory requirements, as it requires the whole

adjacency matrix of a KG in main memory.

3. The rule mining method

In this section, we start with describing our rule mining method which learns

rules from a knowledge graph and its embedding (Section 3.1) and the strategy

of using learned rules in explaining predictions (Section 3.2). Then we describe

related works (Section 3.3).

3.1. Rule Mining from a Knowledge Graph and its Embedding

To mine rules from a KG, we focus on different path types in a KG. Figure 2

illustrates four types of paths of length 2 in the ’Family’ KG. The existing

embedding-based rule mining methods only handle the first type i.e. ’closed-

path’ (Figure 2a) and the rest three types (Figures 2b,2c,2d) are not handled.

We focus on mining rules that consist of a head relation H and a sequence of

9

body relations B1, B2,, Bn in the following form

B1(e0, e1) ∧B2(e1, e2) ∧ ∧Bn(en−1, en)− > H(e0, en) (5)

where ei is an entity variable, H is the head/target relation from e0 to en and

B1, B2,, Bn are the sequence of body relations. In the rule body, Bi(ei−1, ei)

is either a relation (i.e. (ei−1, ri, ei)) or its inverse (i.e. (ei−1, r
−1
i , ei)).

We give more importance to shorter paths than longer ones. A path is a

sequence of triples in which one common entity appears in between two con-

secutive triples. We compute the score of a path, P as the average score over

all triples in a path, penalized by the path length. We define the path scoring

function as

Path score, PS(P) =
1

l1+α

l∑
i=1

f(hi, ri, ti) (6)

where f is the embedding scoring function, l is the length of the path, α is the

penalizing factor and 0 ≤ α ≤ 1. α = 0 means we consider all paths equally

whatever their length whereas larger values give more importance to shorter

paths.

In the following we describe the procedure for rule mining which starts with

graph generation, proceeds with triple sampling and ends with mining rules.

3.1.1. Bidirectional graph generation

To facilitate the search of the diverse paths to be used in in the rule bodies,

we generate a bidirectional graph, G. To do so, we first generate a graph from

KG training triples. For each triple (h, r, t) ∈ G, we add an inverse relation, i.e.

G← G ∪ (t, r−1, h) if there is no relation from t to h. In this way we make the

graph bidirectional so that for every triple the tail is accessible from head as

well as the head is accessible from tail. This transformation helps us to extract

diverse path types (examples in Figures 2b-2c).

For simplicity, we illustrate the procedure of mining rules for a specific relation,

r in Figure 3. We describe the process in the following sub-sections.

10

Figure 3: Rule mining for a target relation, r

3.1.2. Sampling triples

Real-world KGs contain millions of triples for a relation and it is intractable

to process such a huge number of triples for rule mining. We assume that mining

rules from a portion of the entire triple set well reflect the rules over the entire

triple set for a relation. To mine rules, we randomly select a portion of the triple

set from the whole triple set of a relation.

3.1.3. Initial rule set mining

The initial rule set mining procedure for a relation, r is illustrated in Figure 3.

In the following, we describe each step in details.

Step 1 (Fetch a triple): We consider the triples to arrive sequentially

from the sampled triple set. The procedure starts with fetching the arrived

triple (h,r,t). Note that only one triple is fetched at a time and the next triple

is fetched after complete processing of the current triple.

Step 2 (Extracting path chunk): After fetching the triple, the relation,

r from h to t and its inverse(r−1) (if it exists) are removed temporarily from the

graph. Then a set of simple paths up to a length, MaxL from h to t are extracted.

Here, MaxL is the predefined maximum body length, or simply maximum rule

length. A simple path is a directed path from h to t with no repeated entities.

After extracting the path set, the removed relations between h and t are added

11

again to make the graph in its original form.

Step 3 (Computing path scores and ranks): The scores of all extracted

paths are computed using the paths scoring function in Equation 6. Note that a

path may contain the inverse relation of the form (hi, r
−1
i , ti). In this case, the

triple score is computed as f(ti, ri, hi). This computation allows us to include

all the cases in Figure 2.

The paths are then ranked in decreasing order of their scores. Better ranking

of a path means better chance that the path will generate a good rule.

Step 4 (Defining rules from paths): In this step, a path is transformed

into a rule by replacing the entities of triples with variables. If the head and tail

of a triple (hi, ri, ti) are replaced with variables ei−1 and ei then the triple is

transformed into the body relation in the form ri(ei−1, ei). An inverse relation

(hi, r
−1
i , ti) is transformed in the form ri(ei, ei−1).

Step 5 (Update rule set): If a high-quality rule, ’Rule’ does not exist in

initial rule set, Rule set of a relation then its is added by initializing its structure

as follows

Rule.count = 1

Rule.energy = 1.0 + γ

The ’count’ variable of the rule represents the number of occurrences of the

rule and the energy variable takes the full energy and an additional decay rate

(γ) as initial energy. The rule is then added to the initial rule set, Rule set

i.e. Rule set ← Rule set ∪ Rule. In case the rule ’Rule’ already exists in the

Rule set, then its count and energy values are updated as

Rule set[Rule].count = Rule set[Rule].count+ 1

Rule set[Rule].energy = 1.0 + γ

We define the top-k ranked extracted rules as high-quality rules where k is an

user-defined parameter.

12

Step 6 (Identify and remove noisy rules): The rules which are not use-

ful in mining high-quality rules for a relation are identified as noisy and removed

immediately. This removal reduces unnecessary memory and computing time

consumption. In our method, a rule falls in one of three statutes. A ’potential’

rule has positive energy but count below 2. A ’stable’ rule has count above 1,

and a noisy rule has count below 2 and negative energy. A ’potential’ rule may

become ’stable’ or ’noisy’ later. Every time a triple is fetched from the sampled

triple set, the energy of each potential rule, ’Rule’ from the Rule set is decreased

by the decay rate γ as

Rule set[Rule].energy = Rule set[Rule].energy − γ (7)

Usually the decay rate is 0 < γ < 1. Small value of γ means potential rules will

be alive for longer period before dying if they don’t last for long time. Generally,

the number of paths between two entities is high in a dense KG and low in a

sparse KG. Hence, we argue that the possibility of the presence of noisy rules

for a relation is high in a dense KG and low in a sparse KG. We recommend

setting a high decay rate for a dense KG and a low decay rate for a sparse

KG. All potential rules with negative energies are identified as noisy rules and

immediately removed from memory.

3.1.4. Final rule set generation

The above rule mining processes (Section 3.1.3) is repeated until all triples

from the sampled triple set are processed. At the end of processing, the Rule set

contains ’stable’ rules and a few ’potential’ rules. The final rule set only contains

the ’stable’ ones.

Algorithm 1 describes the ranked path set extraction steps and Algorithm 2

describes the rule set mining steps based on the extracted path set.

1https://networkx.org/documentation/stable/reference/algorithms/generated/networkx

.algorithms.simple paths.all simple paths.html#networkx.algorithms.simple paths.all simple paths

13

Algorithm 1: Extract paths: Extracting paths for a given triple

Input: Bidirectional Knowledge graph(G), a triple (h,r,t), maximum

path length (MaxL)

Output: Paths, Ranks

1 G←G-{h,r,t} // temporarily remove the relation from h to t

2 Path Scores← ∅

3 Ranks← ∅

4 Paths=all simple paths(G, source=h, target=t, cutoff=MaxL) 1

/* extract all simple paths from h to t with maximum path

length, MaxL */

5 foreach P∈Paths do

6 Score P ← Score of the path, P // using equation 6

7 Path Scores ← Path Scores ∪ Score P

8 Ranks ← Ranks of paths based on Path Scores // in decreasing

order of path scores

9 G←G∪{h,r,t}

3.2. Abduction for Explainable Link Prediction

Once the rules are learned, they can be exploited to provide plausible ex-

planations to support certain predictions. We propose a procedure inspired by

abductive reasoning over the rules to infer the best explanation(s) for a predic-

tion. Indeed abductive reasoning using a body− >head rule allows us to infer

(or at least assume) that body is satisfied whenever head is observed. Hence

given a prediction as an observation, we look for rules whose head corresponds

to the prediction. Each rule instantiation (using the bidirectional graph paths)

constitutes then a plausible explanation for the prediction. Thus we have a way

to further rank the top-k predictions based on their explainability.

3.3. Related works

Inducing first-order logical rules from a logical program (knowledge base

containing facts and rules) in ILP (Inductive Logic programming) or multi-

14

Algorithm 2: Learn rule: Learning rules for a relation
Input: Target relation (r), Bidirectional Knowledge graph (G), Triple set (Tr) with r,

Decay rate (γ) , Sampling rate (β), Top-k

Output: Rule set

1 T ′
r ← Randomly sample (|Tr| ∗ β) triples from Tr

2 foreach (h,r,t)∈ T ′
r do

3 Paths, Ranks =Extract paths(G,(h,r,t),L) // Call Algorithm 1 to extract paths

/* If a path exists then update its info, otherwise add the path to

PathMetaInfo if it is ranked in top-k */

4 foreach P∈Paths do

5 Rule=Transform path to rule(P) // replace entities with literals

6 if Rule∈ Rule set then

7 Rule set[Rule].Count← Rule set[Rule].Count + 1 // increment counter

8 Rule set[Rule].Energy← 1 + γ // reset energy to full and additional γ

9 else

/* add a new rule */

10 if Ranks[Rule]≤top-k then

11 Rule.Count← 1

12 Rule.Energy← 1 + γ

13 Rule set[Rule]← Rule set ∪ Rule

/* Identify the noisy rules */

14 foreach Rule∈Rule set do

15 Rule.Energy←Rule.Energy - γ

16 if Rule.Energy ≤ 0 & Rule.Count≤ 1 then

17 Rule set=Rule set - Rule // remove the noisy rule

/* generate the final rule set by removing potential rules */

18 foreach Rule∈Rule set do

19 if Rule.Count≤ 1 then

20 Rule set=Rule set - Rule // remove the potential rule

relational learning constituted seminal and important works in symbolic AI [14,

15]. The main limitation of such methods is their lack of scalability on large

knowledge bases and their main strength is their high human-readability. In

parallel, pattern mining algorithms were designed to extract association rules

between frequent itemsets found in a binary data table [16, 17, 18]. In both

cases, the achieved rule set constitute a good synthetic description of the data.

Each rule can be evaluated using certain metrics and can also be exploited in

prediction (or classification) mode using a deductive reasoning schema (i.e., If

15

the left (body) part of a rule is true Then infer That the right (head) part of

the rule is true).

With the generalization of KGs and KG embeddings, two approaches aim at

mining rules from learned embeddings: (1) EmbedRule [19] and (2) RLvLR

(Rule Learning via Learning Representations) [20]. Our work differs from theirs

in several points. Firstly, both existing methods mine rules based on closed path

(CP) pattern, whereas our method considers more path patterns for mining

better rules. Secondly, our method is able to detect and remove noisy rules

early enough to reduce memory and computational time requirements. Finally,

the existing methods only consider relation embedding for mining rules, thus

losing the entity embedding information as the validity of a triple depends on

both entity and relation embeddings. In contrast, our method utilizes the triple

scoring function of an embedding method to define the path scoring function so

as to exploit both entity and relation embeddings in mining high-quality rules.

4. Experimental settings

4.1. Experimental configuration

To evaluate the efficiency of SNS sampling, we plug it to a KG embedding

model. The main focus of this paper is negative sampling for KGs. For evalua-

tion, we choose TransH [21] to represent translational models and DistMult [19]

to represent semantic matching models as they are popular baselines for link

prediction task in KGs [12]. For details about the models, we refer to the original

papers. The scoring functions of the models are given in Table 2. Each model

is evaluated for four existing sampling methods (i.e. uniform-random, GAN-

based, NSCaching, self-adversarial) and for the proposed SNS methods. We do

not include SANS in the experiment due to its excessive memory requirement.

For GAN-based method, we choose KBGAN as it is the only GAN-based sam-

pling which has publicly available implementation (to best of our knowledge).

We refer to the original articles for details about the sampling methods.

16

Table 2: Scoring functions of KG embedding models: wr is the normal vector of the hyperplane

for the relation r, diag(r) is the diagonal matrix for the relation r, and ||.||2 represents l2 norm.

Model Embeddings Scoring function,f(h, r, t)

TransH [21] hd, td, rd, wd
r ||(h− wT

r hwr) + r− (t− wT
r twr)||22

DistMult [19] hd, td, rd hTdiag(r)t

To evaluate our rule mining method, we used the embeddings learned by

DistMult with SNS and DistMult with random sampling. The source code of

this paper can be found in our public GitLab repository 2. In the repository,

we provide instructions to execute the whole pipeline on the KGs mentioned as

well as on a new KG.

4.2. Datasets

In the experiments, we use six widely used benchmark KG datasets, i.e.,

FB15K, FB15K-237, WN18, WN18RR, YAGO3-10, Family for link prediction

task [5, 3, 4]. WN18 is derived from the WordNet which is a large semantic

lexicon for the English language. FB15K is a subset of triples from Freebase KG

which is a large collaborative general knowledge base. WN18RR and FB15K-

237 datasets are derived from WN18 and FB15K respectively after removing the

inverse-duplicate relations. The YAGO3-10 dataset is extracted from the open

source YAGO knowledge base considering the entities with at least 10 relations.

The last KG is Family KG, where the relations are family relationships among

people [22, 23]. This KG is used to assess the rule mining method as the

relationships in Family are easily interpretable. The KG datasets come with

train/valid/test splits. Table 3 presents characteristics of the used datasets in

terms of number of entities, number of relations, number of facts and number

of triples in the training, test and validation sets.

2https://gitlab.inria.fr/kislam/kglp

17

Table 3: The experimental KG datasets

KG datasets #Entity #Relation #Facts #Training #Validation #Test

WN18RR 40,943 11 93,003 86,835 3,034 3,134

WN18 40,943 18 151,442 141,442 5,000 5,000

FB15K-237 14,541 237 310,116 272,115 17,535 20,466

FB15K 14,951 1,345 592,213 483,142 50,000 59,071

YAGO3-10 113,273 37 1,089,040 1,079,040 5,000 5,000

Family 3,007 12 28,356 25,517 1,410 1,429

4.3. Evaluation metrics

4.3.1. Evaluation metrics for the SNS method

To evaluate the performance of any sampling method, we plug it to a KG

embedding model for link prediction task. The performance is defined with two

widely used metrics: Hit@z, and mean reciprocal rank (MRR) [24]. The met-

rics are defined based on the rank of the positive test triple. Hit@z is defined

as the average number of times a positive test triple is among the z highest

ranked triples; whereas MRR is the average reciprocal rank of the positive test

triple [25]. The range of both scores is 0 to 1. The higher value of MRR demon-

strates the better ranking of positive test triples and better ranking provides

better prediction performance. Also, higher Hit@z score indicates better per-

formance. To illustrate, consider the positive test triple q = (h, r, t) ∈ D. A set

of negative triples q′t = {(h, r, t′) /∈ Q|t′ ∈ E} is generated by simple triple per-

turbation (replacing tail with other entities) [5, 26] confirming that no positive

triple exists in q′t. The triples in q ∪ q′t are then ranked in decreasing order of

their scores (computed by embedding-based scoring functions in Table 2). The

rank of the positive test triple q in q∪ q′t is defined as ranktq. Based on the rank

of each positive test triple q, the performance metrics are defined in Equations 8

and 9.

Hitt@z =
1

|D|
∑
q∈D

hittq, hittq =

1, if ranktq ≤ z

0, otherwise

(8)

18

MRRt =
1

|D|
∑
q∈D

1

ranktq
(9)

The whole evaluation process is also repeated by corrupting the head entity

of each positive triple as well and Hith@z, MRRh are computed. The final

Hit@z, MRR metrics are the average of head and tails metrics i.e. Hit@z =

(Hitt@z+Hith@z)/2 and MRR = (MRRt+MRRh)/2. We re-scale the Hit@z

score from the range 0-1 to 0-100 to facilitate the comparisons. As suggested by

the most of the literature for link prediction in KGs, we consider z ∈ {1, 3, 10}.

4.3.2. Evaluation metrics for the rule mining method

To assess the quality of learned rules, we rely on two common statistical

measures standard confidence (SC) and head coverage (HC) [20]. Both measures

are defined based on the support of a rule in the following form.

Rule : r1(e, e1) ∧ r2(e1, e2) ∧ ∧ rn(en−1, en) −→ r(e, en)

The support of a rule is defined as the number of triples instantiating the

rule [20].

Support(Rule) = #(e, en) : body(Rule) ∩ head(Rule) (10)

SC is defined as the ratio of support and the number of entity pairs instantiat-

ing the body. The HC is the ratio of support and the number of entity pairs

instantiating the head.

SC(Rule) =
Support(Rule)

#(e, e′) : body(Rule)
(11)

HC(Rule) =
Support(Rule)

#(e, e′) : head(Rule)
(12)

4.4. Configuration of rule-based explanation of predictions

As for explainable link prediction we need a metric to measure the potential

of explanation of the rule set. We consider a positive test triple with a hit@10

score of 1 as a correct prediction. We aim to explain such predictions that are

made by the embedding-based method. For each predicted triple, we identify

19

the rules which make the prediction true through abduction-based instantiation

(Section 3.2). The authors of the literature rule mining methods use precision

metric to assess prediction performance [19, 27]. Considering the incompleteness

of a KG, we argue that precision could be a misleading metric as an unobserved

triple is not necessarily false. Instead, we compute the recall score to evaluate

the performance of our rule mining method. We define a true positive prediction

as a test triple explained at least by one rule and the number of positives is the

number of triples in the test set.

5. Results and discussion

We describe the link prediction performance of embedding-based methods

with SNS sampling in Section 5.1 to assess the impact of SNS in improving

embedding quality. In Section 5.2, we describe the performance of our rule

mining method with its sensitivity to parameters. Finally, we explain a few

embedding-based predictions with the help of mined rules in Section 5.3.

5.1. Link prediction performance

The proposed SNS method is implemented in Python with the well-known

PyTorch and run on a ’NVIDIA A100-PCIE-40GB’ GPU. For all of the experi-

ments, we set the training epochs to 200, the embedding dimension to 100, the

learning rate to 0.0001, and the margin value to 4.0. For the embedding opti-

mization task, we use the popular Adam optimizer [28]. For all the datasets,

the link prediction performance of embedding models with SNS sampling is

computed and compared to other sampling methods. Then, for the WN18RR

dataset, we do further analyses including parameter sensitivity and performance

evolution with the number of epochs.

Prediction Performance: We train the KG embedding models from scratch

for each sampling method, Random-uniform, KBGAN, NSCaching, SNS, self-

adversarial (Self-Adv). For parameter setting, we follow the recommendations

from the original papers ([4] for NSCaching, [3] for KBGAN, [8] for Self-Adv).

20

Table 4 shows the prediction metrics. With respect to most of the prediction

metrics in most of the KG datasets, the proposed SNS clearly outperforms all

other negative sampling methods when they are plugged into the translational

model (TransH). When injected into the TransH, SNS improves hit@k scores by

2-5 percent compared to the second best sampling method in the WordNet KGs

(WN18RR, WN18). SNS sampling produces the best results for the FB15K,

Family datasets, with Hit@k scores improving by 5-8% when compared to the

second best sample methods. For the YAGO 3-10 dataset, SNS also remains

best or second best in almost all metrics. The most suitable reason for this

success could be a good balance between exploration and exploitation. When

the sampling methods are used with DistMult model, the hit@10 and hit@3

scores drop in all datasets. The metrics could be improved by training the

model for more epochs. However, we are comparing different sampling strate-

gies rather than different prediction models. SNS with the DistMult method

shows a similar trend of improved prediction performance.

In this section, we provide a visualization of the closeness of the original and

new entities in positives and their corresponding negatives in the second smallest

KG dataset, WN18RR. Different negative sampling methods with TransH are

used to learn embeddings. For the visualization, the negatives in the final epoch

(i.e. epoch number 200) are analyzed. In Figure 4, we show the distribution

of distances between the original and the new entities for different sampling

methods. The box for SNS sampling shows the minimum median distance.

Overall, the minimum median illustrates that the selected entities for negative

sample generation are closer to the original entities in SNS than other sampling

methods. The selection of close entities in SNS leads to the generation of hard

negative triples and improves the prediction performance in turn, as seen in

Table 4.

In the following, we describe further analyses of prediction by TransH with

different sampling methods in the second smallest KG dataset, WN18RR.

Change in prediction performance for different epoch numbers: We

present the MRR and Hit@10 scores of an embedding model in Figure 5 with

21

Table 4: Link prediction(LP) results: MRR, and Hit@z of different negative sampling(NS)

methods. The best and second best metrics are marked in bold and underline faces.

LP models NS methods
WN18RR WN18

MRR hit@10 hit@3 hit@1 MRR hit@10 hit@3 hit@1

TransH

Random 0.1520 32.27 23.72 0.11 0.3199 79.43 64.25 11.85

NSCaching 0.1713 40.68 31.43 0.93 0.4171 88.65 74.05 17.48

KBGAN 0.1708 40.08 29.35 0.10 0.4183 87.34 73.67 18.09

Self-Adv 0.1709 41.18 31.16 0.89 0.4191 89.48 75.84 7.08

SNS 0.1852 43.04 33.82 1.80 0.448 91.47 79.30 19.28

DistMult

Random 0.1918 32.16 23.88 14.22 0.3453 52.82 37.33 25.75

NSCaching 0.2262 37.37 29.11 17.84 0.3772 56.85 42.18 29.04

KBGAN 0.2285 33.42 27.23 17.34 0.3791 57.28 41.97 28.39

Self-Adv 0.2279 36.23 26.34 17.05 0.3940 58.43 41.31 31.29

SNS 0.2333 37.83 25.12 18.49 0.3931 56.46 42.13 31.38

FB15K237 FB15K

TransH

Random 0.1988 36.68 22.50 11.50 0.3115 52.88 36.68 19.58

NSCaching 0.2476 40.39 26.59 17.33 0.3926 61.22 44.99 25.50

KBGAN 0.2162 40.58 23.52 15.23 0.3228 53.67 38.34 20.52

Self-Adv 0.2350 41.01 26.49 14.73 0.3883 61.09 44.05 25.74

SNS 0.2514 42.90 29.44 15.18 0.4360 66.72 51.52 30.58

DistMult

Random 0.1918 31.82 20.71 12.96 0.2188 33.25 21.84 12.95

NSCaching 0.2205 34.87 25.69 15.72 0.2327 39.89 27.41 16.19

KBGAN 0.2282 36.23 27.23 13.02 0.2203 35.54 23.12 15.92

Self-Adv 0.2400 37.09 25.82 17.34 0.2493 39.80 28.38 18.53

SNS 0.2471 38.18 26.97 17.80 0.2937 45.62 32.66 20.79

YAGO3-10 Family

TransH

Random 0.0850 18.96 9.05 1.24 0.3164 88.77 48.67 3.43

NSCaching 0.1431 26.76 15.97 7.49 0.3434 90.34 55.04 4.65

KBGAN 0.1467 26.08 16.03 8.34 0.3742 90.21 57.12 8.63

Self-Adv 0.1443 26.46 17.34 9.92 0.3510 89.58 56.36 8.08

SNS 0.1488 26.72 16.23 8.87 0.4146 92.97 62.39 13.12

DistMult

Random 0.0533 10.59 5.44 2.35 0.5002 77.36 60.14 37.45

NSCaching 0.0875 14.22 8.86 5.64 0.5274 78.55 61.34 38.07

KBGAN 0.0712 13.98 7.79 3.19 0.5120 78.01 60.75 38.01

Self-Adv 0.0868 16.04 8.74 5.07 0.5122 78.59 60.95 38.33

SNS 0.0804 16.72 8.39 4.98 0.5190 79.32 61.02 37.98

different sampling methods from epoch 10 to 200 with a 10 epochs interval to

demonstrate how prediction performance varies as the number of training epochs

grows. SNS has a similar MRR score (approximately 0.02) to other sampling

methods at the start of epoch 10, with the exception of KBGAN, which has the

22

Figure 4: The distribution of distances between the original and the new entities in the

positives and their corresponding negative triples in the WN18RR dataset: The embeddings

of entities and relations are learned by TransH with different sampling methods.

highest MRR score (around 0.06).As the number of training epochs increases,

the quality of the embeddings improves, resulting in a rise in MRR scores for all

methods. The SNS method has a higher MRR improvement rate. SNS has the

highest MRR score at epoch 70. The MRR scores of the proposed SNS method

remain the highest among all sampling methods in the subsequent epochs, de-

spite the fact that the improvement rate is not constant. The ’uniform-random’

method has the lowest MRR because it does not manage to pick high-quality

negatives. These improvements in rank are reflected in Hit@10 scores curves

where SNS has the highest Hit@10 scores in later half of training epochs. These

improvements in performance prove that our sampling method is able to provide

better ranks of test triples than the state-of-art sampling methods.

Parameter sensitivity analysis: SNS sampling method has two param-

eters, N1 and N2. To describe the changes in performance for different values

of these parameters, we record Hit@10 and MRR scores for different values of

N1 with fixed N2 = 5 which are plotted in Figure 6. As the value of N1 in-

creases, more initial negative triples are explored and the SNS sampling gets

23

(a) Epoch number vs MRR (b) Epoch number vs Hit@10

Figure 5: Prediction scores of TransH with different samplings in different epochs

(a) N1 vs Hit@10 (b) N1 vs MRR

Figure 6: Sensitivity of SNS to N1, size of candidate negative set

better exploration. As a consequence, the prediction performance improves as

the value of N1 increases from 20 to upper values as seen from Figs. 6a, 6b. The

prediction performance is nearly stable for N1 = 50 and above. In the point

N1 = 50, SNS sampling has good exploration to sample sufficient number of

high-quality negatives. And this could be the cause of performance stability for

N1 ≥ 50.

Again, to describe the sensitivity to the parameter N2, we plot the perfor-

mance metrics by varying N2 among {1, 2, 3, 4, 5, 6, 7} with fixed N1=50 in

Figure 7. Figs. 7a and 7b show the change in Hit@10 and MRR for change in

N2. With setting N2=1, SNS samples the top-most ranked negative(s). In this

case, the chance of repeated sampling is high as SNS considers already known

high-quality LRS negative(s) in addition to other candidate negatives. In case

of high repeated sampling, SNS suffers from low exploration and high exploita-

24

(a) N2 vs Hit@10 (b) N2 vs MRR

Figure 7: Sensitivity of SNS to different N2 values

tion effect leading to drops in MRR and Hit@10 metrics. With N2=1, we see

lowest prediction performance for SNS. As the value of N2 increases, SNS gets

better exploration and the best balance between exploration and exploitation is

found for N2=5 where the highest prediction metrics are recorded. However as

the value of N2 increases, the chance of sampling of known high-quality triple

decreases (poor exploitation) and the chance of sampling less good-quality neg-

ative increases. As a result, the performance drops as seen in Figure 7 where

both hit@10 and MRR drop for N2 > 5.

Memory and computational efficiency Undoubtedly, random-uniform is

the simplest, fastest, most memory efficient sampling method as it does not learn

or store any parameter. GAN-based sampling makes the prediction model more

complex, increases the number of training parameters, and makes the model

harder to train due to use of reinforcement learning [4]. As a consequence,

KBGAN needs extra memory and computational cost to store and optimize

the parameters. Self-adversarial sampling is simpler and more memory efficient

than GAN-based sampling as it does not require to train a generator module

like GAN-based sampling. NSCaching stores set of high-quality negative triples

in each positive triple cache which makes it worst memory efficient. In addition,

the method takes additional time to update the cache periodically. The proposed

SNS sampling method does not increase the training parameter like GAN-based

method. It memorizes only the least recently sampled negative triple which takes

very small amount of memory. Thus, intuitively SNS sampling is more memory

25

efficient than GAN-based sampling and NSCaching. The method does not use

complex learning method like GAN-based method or does not take extra cache

updating time like NSCaching. It takes very small amount of time to update

the LRS structure. Considering the training time of each sampling method

with the TransH embedding model, we see that the training time increases as

the number of training samples increases, as expected. We also find 7-40% and

3-14% improvement in training time for SNS when it is compared to KBGAN

and NSCaching respectively.

Examples of negative triples: In this section, we tabulate the sampled

negative triples by different sampling methods with TransH for five randomly

selected positive triples from the WN18RR KG dataset. From Table 5, the

sampled negative triples by the ’random’ method are almost unrelated to the

positive triple. For example, the method generates (pakistan,has part,deposit)

which is totally unrelated to the positive triple (pakistan,has part,tirich mir) (at

least seen with an open eye). Compared to other methods, SNS samples more

semantically related negative triples, which is different from type relatedness.

For example, SNS replaces ’tirich mir’ with ’amazon’ which generates better

negative triple than replacing ’tirich mir’ with ’malevolence’ by NSCaching or

’tirich mir’ with ’chute’ by KBGAN, or ’tirich mir’ with ’deposit’ by the ’ran-

dom’ sampling method. The empirical results show an improvement in negative

triple quality. As we deliberately limit the strength of sampled negative triples

by N1, some unrelated negative triples may remain. A small number of weak

negative triples can even help the model’s training by introducing a penalty in

loss that reduces over-fitting.

Relation-wise performance in WN18RR dataset: To go beyond ag-

gregated performance values, we intend to see the prediction performance on

individual relation types in the WN18RR dataset. We choose TransH as the em-

bedding method because it is seen from Table 4 that TransH with SNS shows

better prediction performance (in terms of hit@10 and hit@3 than DistMult

with random sampling. We train TransH with different sampling methods and

record the MRR and Hit@10 metrics for each relation type for each sampling

26

Table 5: A few examples of sampled negative triples by different sampling methods in the

WN18RR dataset. The entity in boldface is the one resulting from entity corruption.

Positive triple Negative triples by SNS

(point,derivationally related form,clinch)

(carelessness,verb group,play)

(worry,hypernym,announce)

(akee,member meronym,tree)

(pakistan,has part,amazon)

Negative triples by NSCaching

1. (point,derivationally related form,arrow) (rio grande,derivationally related form,point)

2. (meet,verb group,play) (meet,verb group,wheeler peak)

3. (worry,hypernym,mind) (worry,hypernym,seal)

4. (forest,member meronym,tree) (disjoin,member meronym,tree)

5. (pakistan,has part,tirich mir) (pakistan,has part,malevolence)

Negative triples by KBGAN

(point,derivationally related form,wilt)

(frequency,verb group,play)

(worry,hypernym,traversal)

(pan,member meronym,tree)

(pakistan,has part,chute)

Negative triples by Uniform-random

(point,derivationally related form,colored)

(cranium,verb group,play)

(bladder fern,hypernym,mind)

(forest,member meronym,barrow)

(pakistan,has part,deposit)

Negative triples by Self-Adv

(roping,derivationally related form,arrow)

(meet,verb group,convenience food)

(worry,hypernym,behave)

(forest,member meronym,bryaceae)

(theism, has part, tirich mir)

method. The metrics of the 11 relations in the WN18RR dataset are shown

in Table 6. We see that two relations (hypernym, derivationally related form)

cover about 75% of the total facts in the training set. From the table, the

27

Table 6: Relation-wise performance in WN18RR dataset: MRR, MR and Hit@10 percentage.

Number beside a relation denotes the percentage of facts covered by the relation in the test

set. The best metrics for each relation are highlighted in bold face.

Relations SNS KBGAN NSCaching Random

MRR hit@10 MRR hit@10 MRR hit@10 MRR hit@10

hypernym(39.92%) 0.092 17.92 0.04 8.18 0.0701 14.26 0.0357 11.28

derivationally related form(34.27%) 0.3971 95.44 0.4051 94.41 0.3899 95.53 0.3755 73.69

instance hypernym(3.89%) 0.0718 15.57 0.0452 12.3 0.0439 9.84 0.0461 11.48

also see(1.79%) 0.0978 26.79 0.261 71.43 0.0903 21.43 0.0766 25.0

member meronym(8.07%) 0.023 6.32 0.0218 5.93 0.0134 3.56 0.012 4.74

synset domain topic of(3.64%) 0.0412 8.77 0.0465 14.04 0.0375 7.89 0.0374 7.02

has part(5.49%) 0.0336 8.14 0.0243 8.14 0.0197 4.65 0.019 3.49

member of domain usage(0.77%) 0.0021 0.00 0.0015 0 0.0029 0.00 0.0093 4.17

member of domain region(0.83%) 0.0046 0.00 0.004 0.00 0.0026 0.00 0.0034 0.0

verb group(1.24%) 0.1998 69.23 0.3571 97.44 0.1497 48.72 0.1888 61.54

similar to(0.09%) 0.0001 0.00 0.2407 66.67 0.0002 0.00 0.0008 0.00

prediction performance scores are higher for relations with a higher number of

facts. We see the best MRR and hit@10 scores for the SNS method in almost

70% and 50% of the relations, respectively, which means that our sampling

method ranks the triple better than other sampling methods. The performance

metrics are poor in most of the relations with a low number of facts (similar to,

member of domain usage, member of domain region). The embedding quality

of the relations suffers as a result of a lack of adequate triples, and the prediction

performance of the relations drops as a consequences. The performance scores

of other sampling methods are high in some particular relations. For example,

KBGAN shows remarkable performance in also see, similar to and verb group

relations while the performance is poor for the hypernym relation. NSCaching

is the second-best option in most cases.

5.2. Rule performance

The proposed rule mining method is implemented in Python with well-known

PyTorch and run on a Intel(R) Core(TM) i7-1.90GHz CPU machine. We use the

embeddings learned by an embedding method with SNS sampling strategy in

rule mining task. To learn embeddings, we choose DistMult embedding method

28

Figure 8: Identification of noisy rules for ”brother” relations in the Family KG

due to its simplicity. We compare the rule-set mined based on DistMult with

SNS and ’random’ sampling. We set the sampling rate to 0.5, count threshold to

1, decay rate to 0.1, top-k to 5, and maximum rule length to 3 for experiments.

We describe performance of our rule mining method in terms of prediction recall

and quality metrics.

5.2.1. Noisy rule identification:

While the existing embedding-based rule mining methods identify noisy rules

based on the quality metrics at the end of the mining process (depending on

thresholds on quality metrics), our method is able to identify them early. Fig-

ure 8 shows the amount of identified noisy rules with different amounts of pro-

cessed triples for ’brother’ relation in Family KG. The early identification of

noisy rules in our method reduces resource memory consumption as well as

processing time.

5.2.2. Mining out-of closed path rule:

While existing embedding-based rule mining methods mine rules based on

closed paths, our method is able to mine rules which do not follow closed path

property. Below the examples of two mined rules out-of closed paths for ’aunt’

29

relation in Family KG.

niece(A,B) ∧ niece(C,B) ∧ aunt(C,D)− > aunt(A,D)

nephew(B,A) ∧ brother(B,C)− > aunt(A,C)

5.2.3. Prediction performance:

We compute the prediction performance of our rule mining method based

on learned embeddings by our SNS and random sampling strategies. Table 7

tabulates the recall scores with their average, minimum and maximum numbers

for Family, WN18RR and FB15K-237 KGs. And Table 8 tabulates the quality

metrics scores with their average, minimum and maximum numbers for the

same datasets. Overall, our the proposed rule mining method mines more rules

when embeddings are learned DistMult with SNS than DistMult with random

sampling. But, we see no significant different between the performance scores

of mined rule sets. We see that the average number of mined rules per relation

is highest for the densest FB15K-237 and lowest for the sparest WN18RR KGs.

This is expected because the higher average node degree of a graph leads to

generating more paths between pair of nodes and thus more rules to describe

the relationship between the pair of nodes. The high number of rules for Family

and FB15K-237 KGs give high recall scores in these two KGs. Looking at the

minimum recall scores, we see the datasets except Family give a minimum scores

of 0.0. Investigating the relation-wise recall, we find that the quality of learned

rules for a relation with low number of training set is very low and even no

rule is generated for few such relations (e.g. similar to relation in WN18RR,

/baseball/.../baseball team stats/season in FB15K-237). This situation affects

the performance scores as well as the overall ruleset quality of a relation. In

Table 8, we see the worst rule quality metrics for WN18RR. The average node

degree of WN18RR is low which causes less number of paths between two entities

to generate rules. This is most possible reason is that our method mines low-

quality length-2 rules for WN18RR.

We try to investigate how the quality of embeddings affects the quality of

mined ruleset as well as the prediction performance in WN18RR datasets. We

30

Table 7: Rule performance metrics: #Rules represents the total number of mined length-2

rules. The recall metric is given in the format (minimum score, average score, maximum

score) which are computed over all relations in a KG. ’DistMult’ is trained with two different

sampling methods: SNS, random.

KGs Random SNS

#Rule Recall (min.,avg.max.) #Rules Recall (min.,avg.max.)

Family 235 (0.569, 0.908, 1.0) 242 (0.5862, 0.910, 1.0)

WN18RR 69 (0.0, 0.184, 0.487) 76 (0.0, 0.185, 0.487)

FB15K-237 8490 (0.0, 0.684, 1.0) 8559 (0.0, 0.689, 1.0)

Table 8: Rule quality scores: HC and SC denote the head coverage and standard confidence

metrics, respectively. The metrics are in given in the format (minimum score, average score,

maximum score) which are computed over all relations in a KG. ’DistMult’ is trained with

two different sampling methods: SNS, random.

KGs Random SNS

HC(min., avg., max.) SC(min., avg., max.) HC(min., avg., max.) SC(min., avg., max.)

Family (0.135, 0.208, 0.241) (0.325, 0.523, 0.674) (0.119, 0.205, 0.254) (0.285, 0.531, 0.695)

WN18RR (0.0, 0.0337, 0.098) (0.0, 0.0569, 0.179) (0.0, 0.0311, 0.0869) (0.0, 0.0689, 0.1433)

FB15K-237 (0.0, 0.176, 0.969) (0.0, 0.196, 0.905) (0.0, 0.175, 0.969) (0.0, 0.199, 0.905)

choose WN18RR datasets because the overall prediction metrics and rule quality

metrics in this dataset is lowest. We select the rules of length-2 mined based

on embedding learned by DistMult with SNS sampling. We see that the results

in Table 9 are nearly consistent with the prediction results by embedding-based

method in Table 6. We see that no rule is mined for the relation similar to

because the relation has insufficient number of triples in the training set (see

Table 9).

To see how the rule mining performance changes with different percentage

rules, we sample all, top-75%, top-50%, top-25%, and top-10% ranked length-3

rules for each relation in Family KG and illustrate them in Figure 9. The rules

for a relation are ranked in decreasing order of their support scores. As low-

ranked rules are not considered, triggering rules for a few triples will be missing.

As a result, it is seen in Figure 9a that the recall scores for both sampling

methods drop as the number of rules drops. In contrast, as low-quality rules

are removed, the average rule quality scores in Figure 9b improve.

31

Table 9: Relation-wise performance of mined length-2 rules in the WN18RR dataset: The

embeddings are learned by DistMult with SNS sampling. The parameters for rule mining

methods are set to default values except the maximum rule length is set to 2. Relations with

recall scores above the average(0.184) are marked in boldface.

Relations #Rule Recall HC SC

hypernym 9 0.089 0.045 0.009

derivationally related form 12 0.224 0.087 0.019

instance hypernym 5 0.197 0.017 0.028

also see 7 0.214 0.048 0.040

member meronym 6 0.099 0.013 0.016

synset domain topic of 15 0.447 0.143 0.032

has part 10 0.238 0.057 0.023

member of domain usage 2 0.042 0.131 0.043

member of domain region 2 0.00 0.142 0.015

verb group 8 0.487 0.006 0.087

similar to 0 0.000 0.00 0.00

(a) Prediction performance (b) Rule quality

Figure 9: Change in prediction performance and quality with different percentages of mined

rules of length-2 in the Family KG

In Table 10, we tabulate the top-5 ranked mined rules for the ’Father’ relation

in Family KG. Looking at the head coverage and standard confidence scores,

we find that our method is able to compute low/better ranks for high-quality

rules.

32

Table 10: Top-5 rules of length-3 for the ’father’ relationship: ranks are computed in decreasing

order of rule support values.

Rank Rules HC SC

1 husband(A,B) ∧mother(B,C)− > father(A,C) 0.765 0.882

2 father(A,B) ∧ brother(B,C)− > father(A,C) 0.599 0.407

3 father(A,B) ∧ son(B,C) ∧mother(C,D)− > father(A,D) 0.550 0.298

4 husband(A,B) ∧mother(B,C) ∧ brother(C,D)− > father(A,D) 0.546 0.386

5 father(A,B) ∧ sister(B,C)− > father(A,C) 0.524 0.420

Figure 10: Graph complexity vs. computational time in different KGs for mining length-

2 rules: The number on the horizontal axis in () denotes the average node degree. The

computational time in the vertical axis is the average computational time over all relations in

a KG.

5.2.4. Scalability:

To assess the behaviour of our rule mining method for different KGs with

different scales of connectivity, we illustrate the computational time for mining

length-2 rules for the Family, WN18RR and FB15K-237 KGs in Figure 10.

Among the three KGs, WN18RR is the most sparse (average node degree<5.0)

whereas the other two are denser. As expected, we see that the average rule

mining time grows as node degree increases because the number of paths between

a pair of nodes is usually higher in a dense graph.

5.2.5. Parameter sensitivity:

We assess parameter’s sensitivity of our rule mining method, we implement

the method on the WN18RR and Family KGs to learn length-3 rules. In learning

embedding, we choose our SNS sampling method. There are four parameters

33

in our rule mining method and they are sampling rate, top-k paths, decay rate,

and rule length.

Sampling rate: To assess how the rule mining method behaves, we illus-

trate computational time and performance metrics (recall, HC, SC) for different

sampling rates in Figure 11. As expected, the computational time increases with

increasing the sampling rate in Figure 11a for both datasets. The chance of gen-

erating more rules for a high sampling rate is high, and consequently the recall

score is improved in Figure 11c. The rule mining time grows faster for the

dense Family KG than the sparse WN18RR as the number of paths grows more

quickly for the denser Family KG. The recall scores for WN18RR improved as

we have more rules for higher sampling rate (Figure 11b). On the other hand,

the recall scores for Family KG remain nearly very close for different sampling

rate. The most suitable reason is that the high-quality embeddings help the

proposed rule mining method in extracting high-quality rules frequently, even

with low sampling rate. More rules including low-quality rules are mined for

higher sampling rate which causes the overall quality metrics to be dropped

for higher sampling rate. This situation is seen for both of the KGs. We see

the sampling rate has impact on computational time as well as prediction and

quality metrics. Undoubtedly, choosing a good sampling rate is a challenging

but important task.

Top-k: We evaluate the total number of mined rules and the recall, HC,

and SC of rules for different top-k values to describe the sensitivity of the ”top-

k” parameter in our rule mining method. Figure 12a shows that the number

of mined rules increases with increasing top-k for WN18RR and Family KGs.

Consideration of more paths between a pair of nodes, including high-quality

and low-quality paths, is the most possible reason behind this rising trend in

the number of rules. This assumption is further supported by the quality metrics

in Figure 12b where both HC and SC drop as the top-k increases for both KGs.

Decay rate: To assess the sensitivity of our rule mining method to the

”decay rate” parameter, we evaluate the total number of mined rules, recall,

and quality metrics of our rule mining method for different decay rates. As the

34

(a) Sampling rate vs time (b) Sampling rate vs #Rule

(c) Sampling rate vs metrics

Figure 11: Sensitivity to sampling rate in the WN18RR KG

(a) Top-k vs #Rule (b) Top-k vs metrics

Figure 12: Sensitivity to top-k: The default parameters setting are used (i.e. max. length=3,

decay rate=0.1, sampling rate=0.5) except top-k varies from 2 to 7 with an interval 1.

decay rate increases, the energy of an unobserved rule drops faster, and as a

result, it lives for a low period in the system. For this reason, we see that the

total number of mined rules in Figure 13a falls and consequently the recall scores

dropped for higher decay rate. In contrast, the rule quality scores increases for

35

(a) Decay rate vs #rule (b) Decay rate vs metrics

Figure 13: Sensitivity to decay rate: The default parameters setting are used (i.e. max. rule

length=3, sampling rate=0.5, top-k=5) except decay rates are from {0.02, 0.04, 0.07, 0.1,

0.13, 0.16, 0.2, 0.3}.

both KGs as only high-quality rules are extracted those happen very frequently

for higher decay rate.

Maximum rule-length: Finally, we assess the sensitivity of the proposed

rule mining method to ”maximum rule length” parameter in terms of compu-

tational time, total number of rules, recall and quality metrics. The number

of paths between a pair of nodes in a graph increases quickly as the maximum

allowable path length increases. This results in rising computational time expo-

nentially for mining rules as seen in Fig 14a. As the number of possible paths

between a pair of nodes increases with increasing path length, the total number

of rules also increases for higher rule length for both KGs in Fig 14b. As more

rules are mined, the recall increases and quality metrics drops in Figure 14c.

5.3. Illustration of Explainable link prediction in FB15K-237

In this section, we take advantage from mined rules to explain the link

prediction by embedding-based method. We consider the test triples which

have hit@10 score 1 as correctly predicted triples. For a correctly predicted

triple, we find the most suitable path that hits a rule from mined rule set. We

give preference to shorter paths in case of occurring multiple paths.

We illustrate the link prediction explanation based on the mined length-2

rules in FB15K-237 KG. Note that the entities in this KG come with Free-

36

(a) Length vs time (b) Length vs #rule

(c) Length vs metrics

Figure 14: Sensitivity to maximum rule length: The default parameters setting are used (i.e.

decay rate=0.1, sampling rate=0.5, top-k=5) except rule length varies from 2 to 5 with an

interval 1.

base identifier and Freebase KG is no more maintained. We map the Free-

base identifier to Wikidata identifier using Freebase data dump [29] and then

the description of the entities are extracted from Wikidata using the Wikidata

identifier. For illustration, we consider few triples with the ’/film/film/language’

relation from FB15K-237 KG which are correctly predicted by embedding-based

method. The heads of these triples are film names and the tails are languages of

films. For example, (Contact,../film/language, English) is interpreted as ”The

language of the film ’Contact’ is ’English’”. Fig 15 shows four such triples

with their corresponding paths in the KG and in identified rules. The exam-

ples explain which paths help the target triple to be true. For instance, the

prediction of the triple (Contact,../film/language,English) (in Fig 15a) could be

explained as ”’Jena Malone’ is awarded for the ’Contact’ film and the dubbing

language of ’Jena Malone’ is English.” These two facts trigger the target triple,

(Contact,../film/language, English) to be predicted as true.

37

(a) (Contact,../film/language,English) (b) (Salmon Fishing in the Yemen,

../film/language,English)

(c) (The Maltese Falcon, ../film/language,

English)

(d) (Space Cowboys, ../film/language,

English)

Figure 15: A few examples of correctly predicted triples in FB15K-237 KG by embedding-

based method with their triggered paths identified by mined rules. The relation in the KG is

longer in length, describing its hierarchy. Due to space constraints, we only include the lower

part of the hierarchy and replace the higher parts with dots in describing a relation.

6. Conclusion and Perspectives

In this paper, we propose a simple and efficient negative sampling method

for knowledge graph embedding. The method is general and can be plugged

to any knowledge graph embedding method. The method is able to generate

high-quality negative triples and takes low computational time and memory

while anticipating the ’vanishing-gradient’ problem. Experimentally, we evalu-

ate our method on six knowledge graph datasets for link prediction task and

also describe its parameter sensitivity. The results show that the proposed SNS

sampling brings consistent improvements in prediction performance. We also

propose a new embedding-based rule mining method that is memory efficient

and able to mine a diverse set of rule patterns. We take advantage of the rule

mining method to explain the link prediction in order to minimize the ’explain-

ability’ limitation of embedding-based link prediction methods to some extent.

To explain link prediction, the proposed rule mining method may be used in

conjunction with any knowledge graph embedding method.

The poor performance of the studied methods on YAGO3-10 leaves the future

work to explore other embedding models in the literature on this dataset. An-

other perspective of this study is to plug SNS to a recently published approach,

TransO, leveraging ontology information for learning better embeddings [30].

Such improved embeddings may also be helpful for learning better rules. As

38

SNS uses only entity embeddings for sampling negative examples, it should also

be usable in dynamic graph embedding approaches [31]. Implementing both our

methods in a distributed environment to improve computational efficiency is an-

other promising research direction. We also leave designing a good strategy for

sampling the triples for our proposed rule mining method to future exploration,

which can help to learn high quality rules with low sampling rate.

References

[1] H. Paulheim, Knowledge graph refinement: A survey of approaches and

evaluation methods, Semantic Web 8 (3) (2017) 489–508.

[2] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,

T. Strohmann, S. Sun, W. Zhang, Knowledge vault: A web-scale ap-

proach to probabilistic knowledge fusion, in: Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing, 2014, pp. 601–610.

[3] L. Cai, W. Y. Wang, KBGAN: Adversarial learning for knowledge graph

embeddings, in: Proceedings of the 2018 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers), 2018, pp. 1470–1480.

[4] Y. Zhang, Q. Yao, Y. Shao, L. Chen, Nscaching: simple and efficient nega-

tive sampling for knowledge graph embedding, in: 2019 IEEE 35th Interna-

tional Conference on Data Engineering (ICDE), IEEE, 2019, pp. 614–625.

[5] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, O. Yakhnenko, Trans-

lating embeddings for modeling multi-relational data, in: Proceedings

of the 26th International Conference on Neural Information Processing

Systems-Volume 2, 2013, pp. 2787–2795.

[6] K. Hu, H. Liu, T. Hao, A knowledge selective adversarial network for link

prediction in knowledge graph, in: CCF International Conference on Natu-

39

ral Language Processing and Chinese Computing, Springer, 2019, pp. 171–

183.

[7] P. Wang, S. Li, R. Pan, Incorporating GAN for negative sampling in knowl-

edge representation learning, in: Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 32, 2018.

[8] Z. Sun, Z.-H. Deng, J.-Y. Nie, J. Tang, Rotate: Knowledge graph embed-

ding by relational rotation in complex space, in: International Conference

on Learning Representations, 2018.

[9] K. Ahrabian, A. Feizi, Y. Salehi, W. L. Hamilton, A. J. Bose, Struc-

ture aware negative sampling in knowledge graphs, in: Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP), 2020, pp. 6093–6101.

[10] M. K. Islam, S. Aridhi, M. Smäıl-Tabbone, Simple negative sampling for

link prediction in knowledge graphs, in: International Conference on Com-

plex Networks and Their Applications, Springer, 2021, pp. 549–562.

[11] J. Chen, B. Xin, Z. Peng, L. Dou, J. Zhang, Optimal contraction theo-

rem for exploration–exploitation tradeoff in search and optimization, IEEE

Transactions on Systems, Man, and Cybernetics-Part A: Systems and Hu-

mans 39 (3) (2009) 680–691.

[12] Q. Wang, Z. Mao, B. Wang, L. Guo, Knowledge graph embedding: A

survey of approaches and applications, IEEE Transactions on Knowledge

and Data Engineering 29 (12) (2017) 2724–2743.

[13] M. Nickel, K. Murphy, V. Tresp, E. Gabrilovich, A review of relational

machine learning for knowledge graphs, Proceedings of the IEEE 104 (1)

(2015) 11–33.

[14] S. Muggleton, Inverse entailment and progol, New Generation Computing

13 (3) (1995) 245–286.

40

[15] L. Dehaspe, H. Toivonen, Discovery of frequent datalog patterns, Data

Mining and knowledge discovery 3 (1) (1999) 7–36.

[16] R. Srikant, R. Agrawal, Mining quantitative association rules in large re-

lational tables, in: Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, 1996, pp. 1–12.

[17] R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets

of items in large databases, in: Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data, 1993, pp. 207–216.

[18] R. T. Ng, L. V. Lakshmanan, J. Han, A. Pang, Exploratory mining

and pruning optimizations of constrained associations rules, ACM Sigmod

Record 27 (2) (1998) 13–24.

[19] B. Yang, S. W.-t. Yih, X. He, J. Gao, L. Deng, Embedding entities and

relations for learning and inference in knowledge bases, in: International

Conference on Learning Representations, 2015.

[20] P. G. Omran, K. Wang, Z. Wang, An embedding-based approach to rule

learning in knowledge graphs, IEEE Transactions on Knowledge and Data

Engineering 33 (4) (2021) 1348–1359.

[21] Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph embedding by

translating on hyperplanes, in: Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 28, 2014.

[22] S. Kok, P. Domingos, Statistical predicate invention, in: Proceedings of the

24th International Conference on Machine Learning, 2007, pp. 433–440.

[23] A. Sadeghian, M. Armandpour, P. Ding, D. Z. Wang, Drum: end-to-end

differentiable rule mining on knowledge graphs, in: Proceedings of the 33rd

International Conference on Neural Information Processing Systems, 2019,

pp. 15347–15357.

41

[24] M. Wang, L. Qiu, X. Wang, A survey on knowledge graph embeddings for

link prediction, Symmetry 13 (3) (2021) 485.

[25] A. Rossi, A. Matinata, Knowledge graph embeddings: Are relation-learning

models learning relations?, in: EDBT/ICDT Workshops, 2020.

[26] G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge graph embedding via

dynamic mapping matrix, in: Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (volume 1: Long papers),

2015, pp. 687–696.

[27] V. T. Ho, D. Stepanova, M. H. Gad-Elrab, E. Kharlamov, G. Weikum,

Rule learning from knowledge graphs guided by embedding models, in:

International Semantic Web Conference, Springer, 2018, pp. 72–90.

[28] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:

International Conference on Learning Representation, 2015.

[29] Google, Freebase data dumps, https://developers.google.com/freebase/

data (2022).

[30] Z. Li, X. Liu, X. Wang, P. Liu, Y. Shen, Transo: a knowledge-driven rep-

resentation learning method with ontology information constraints, World

Wide Web (2022) 1–23.

[31] G. Xue, M. Zhong, J. Li, J. Chen, C. Zhai, R. Kong, Dynamic network

embedding survey, Neurocomputing 472 (2022) 212–223.

42

https://developers.google.com/freebase/data
https://developers.google.com/freebase/data

	Introduction
	The Simple Negative Sampling (SNS) method
	The SNS method
	Related works

	The rule mining method
	Rule Mining from a Knowledge Graph and its Embedding
	Bidirectional graph generation
	Sampling triples
	Initial rule set mining
	Final rule set generation

	Abduction for Explainable Link Prediction
	Related works

	Experimental settings
	Experimental configuration
	Datasets
	Evaluation metrics
	Evaluation metrics for the SNS method
	Evaluation metrics for the rule mining method

	Configuration of rule-based explanation of predictions

	Results and discussion
	Link prediction performance
	Rule performance
	Noisy rule identification:
	Mining out-of closed path rule:
	Prediction performance:
	Scalability:
	Parameter sensitivity:

	Illustration of Explainable link prediction in FB15K-237

	Conclusion and Perspectives

