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Abstract

Traditional recommendation algorithms develop techniques that can help people to choose
desirable items. However, in many real-world applications, along with a set of recommen-
dations, it is also essential to quantify each recommendation’s (un)certainty. The conformal
recommender system uses the experience of a user to output a set of recommendations, each
associated with a precise confidence value. Given a significance level ε, it provides a bound ε
on the probability of making a wrong recommendation. The conformal framework uses a key
concept called nonconformity measure that measures the strangeness of an item concern-
ing other items. One of the significant design challenges of any conformal recommendation
framework is integrating nonconformity measures with the recommendation algorithm. This
paper introduces an inductive variant of a conformal recommender system. We propose and
analyze different nonconformity measures in the inductive setting. We also provide theo-
retical proofs on the error-bound and the time complexity. Extensive empirical analysis on
ten benchmark datasets demonstrates that the inductive variant substantially improves the
performance in computation time while preserving the accuracy.

Keywords: Recommender System, Inductive Conformal Prediction, Conformal Recom-
mender System

1. Introduction

Recommending quality services to improve customer satisfaction is of prime concern for
the overall success of any online community. In this context, an automatic recommenda-
tion has become even more indispensable. Recommender systems are software tools that
use past behaviour (usage information) of individuals to provide personalized recommen-
dations for a large variety of available products such as movies, books, music, etc. There
have been numerous research proposals on recommendation problem focusing on improving
recommendation accuracy [1, 2, 3]. With the upcoming importance on accountability and
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explainability of AI techniques, deployment of a plain recommendation whatsoever accu-
rate it may be on a testing platform will not be satisfactory without value additions such
as explanations, confidence, or sensitivity. Among the desirable features of the future of
recommender systems, providing a confidence measure (or, equivalently, a probable error
bound) on recommendation is essential. Most of the existing recommender systems do not
offer any such measure to indicate the level of confidence till very recently when the present
authors propose Conformal Recommender Systems (CRS) [4]. Though some of the earlier
systems endeavour to provide confidence [5, 6, 7], the confidence values so provided are
not related to or bound to the error values. On the other hand, Conformal Recommender
Systems (CRS) satisfies a validity property that ensures that the error value does not ex-
ceed a predetermined significance level ε. In other words, the correctness-confidence of a
recommendation is 1-ε. It is observed that though CRS is an advancement in research in
the area of Recommender Systems, the underlying process is computationally intensive and
expensive. Having established the point that a valid quantitative measure of confidence can
be computed using the principles of conformal prediction, the need arises to provide a com-
putationally efficient method of accomplishing this task. The objective of the present work
is to investigate efficient alternative techniques retaining the strength of CRS. This paper
proposes an inductive variant of a conformal recommender system that is computationally
efficient and retains the validity property of CRS.

For a set of training examples S = {z1, . . . , zn}, where zi is a pair (xi, yi) with xi ∈ Rd is a
vector of ith example and yi is the corresponding class label, any common predictor predicts
a class label yn+i for unclassified objects xn+i, i ≥ 1. In contrast, conformal predictors give
a set of class labels as prediction regions and corresponding probability-bounds of error. A
(1-ε) confidence prediction region is defined by the probability that the correct label is not in
the prediction region does not exceed ε. To predict the class label of an unclassified object,
say xn+1 to one of the class labels, say yc, based on the available information in terms of S,
conformal predictors define suitable numeric measure to compute a nonconformity measure
for each pair of training example and class-label. Intuitively, it is a measure of how well an
unknown data xn+1 conforms to any training example xi when xn+1 is assigned class label
yc. This is done by measuring the change in predicting behaviour of S when zi is replaced by
zn+1. The predicting behaviour is observed by applying any of the conventional predictors.
The nonconformity measures for all such pairs are analysed to compute p-values and then
to determine (1-ε) region subsequently.

Two important observations can be made from the foregoing discussion. First, the pro-
cess is hinged on the definition of suitable nonconformity measure. We observe that de-
pending on the context, it is sometimes easier to use a conformity measure instead of a
nonconformity measure, though both processes are equivalent intuitively. For the sake of
notational convenience, we use the term nonconformity measure to refer to both situations.
Second, the measure is required to be computed for all pairs of xi and yc in order to de-
termine the p-values. In order to show the relevance and applicability of the principle of
conformal prediction, a nonconformity measure is introduced by Kagita et al. [4] in the
context of recommender systems using precedence information. Based on the rating data of
a set of users on a set of items, a nonconformity measure is calculated for all possible rec-
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ommendations by examining how well the tentative recommendation conforms to all other
known recommendations and earlier ratings for any user. The underlying algorithm uses
precedence mining as proposed in [8]. A different nonconformity measure is defined in [9],
wherein the matrix factorization is used as the underlying algorithm.

The main contributions of the present work are as follows. First, we analyze different
possibilities of defining nonconformity measures in the context of inductive CRS by using
the precedence relations among items. As stated earlier, defining a conformity measure
is observed to be more relevant than a nonconformity measure in some situations. We
adopt different probability measures using pairwise precedence statistics characterized by
Parameswaran et al. [8] for defining suitable (non)conformity measures. Second, we in-
troduce the concept of inductive conformal recommendation, which is a computationally
efficient alternative to the CRS framework. Further, we theoretically and empirically estab-
lish the crucial properties of the conformal framework, i.e., validity and efficiency. To verify
its efficacy, we conducted extensive experiments on seven bench-mark datasets using various
standard evaluation metrics. We show that the proposed inductive conformal recommender
system improves the computational time while retaining a similar level of accuracy.

The rest of the paper is structured as follows. In Section 2, we briefly discuss the
related work. Section 3 describes the key concepts required to build the proposed system.
Section 3.1 presents the background on conformal prediction framework. In Section 3.2,
we discuss the underlying precedence mining based recommender systems. We discuss the
existing conformal recommender system in Section 4. We introduce the proposed inductive
conformal recommender system in Section 5. We report experimental results in Section 6.
Finally, Section 7 concludes and indicates several issues for future work.

2. Related Work: Confidence Measure in Recommender System

Recommender systems are generally employed to provide tailor-made suggestions that
can assist the user in decision making [10, 11]. These systems exploit the user’s consumption
experience collected via implicit or explicit feedback data to infer their preferences [12, 13,
14]. However, most of these systems are less transparent because of the unavailability of
confidence with which an item is recommended [9, 15]. Despite the enormous application of
recommender systems, a limited number of methods are available that associate confidence
value with the recommendations. In this section, a brief review of the earlier work concerning
confidence measures in the recommender system is presented. Readers’ familiarity with
recommender system is assumed here.

To measure the effect of confidence and uncertainty measures, McNee et al. [16] involved
an elementary confidence computation in existing collaborative filtering algorithms and have
shown that a confidence display increases user satisfaction. In [7], the authors have con-
sidered the previously collected user’s rating as noisy evidence of the user’s actual rating
and proposed a Belief Distribution algorithm that explicitly outputs the uncertainty in each
predicted rating along with the predicted rating value. Adomavicius et al. [17] proposed
a rating variance-based confidence measure to refine the prediction generated by any tra-
ditional recommendation algorithm. Symeonidis et al. [18] constructed a feature profile of
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each user, and then the prediction is justified by considering the correlation between users
and features. Shani et al. [19] suggested measuring the significance level of recommenda-
tion by running a significance test between the results of different recommender algorithms.
OrdRec [20] provides a richer expressive power by producing a full probability distribution
of the expected item ratings. Mazurowski [5] compared the concept of confidence in col-
laborative filtering with similar concepts in other fields within machine learning. Bayesian
confidence intervals-based evaluation method has been proposed to measure recommenda-
tion algorithms’ performance. The author also proposed three different resampling-based
methods to estimate the confidence of individual predictions [5]. In [6], for a target user,
the confidence in prediction for an item is defined based on k -nearest neighbors of the user.
In [15], a content-based fuzzy recommendation model is proposed that utilize similarity and
dissimilarity score between user and item for the rating prediction task. For every unknown
(user, item)-pair, the prediction confidence is computed based on the difference between the
actual ratings given by that user and their corresponding predictions by the fuzzy model. A
recommendation model is proposed in [21] to integrate the trust and certainty information
for confidence modeling. Mesas et al. [22] explored the prediction confidence from the per-
spective of the system. The idea is to embed awareness into the recommendation models that
help in deciding the more reliable suggestions rather than all potential recommendations. A
Course Recommender system is proposed in [23], where a course-specific regression model is
trained over the course contents and students’ academic interests for the grade predictions.
To complement the model predicted grades, the authors have employed an Inductive Confi-
dence Machine (ICM) [24] to construct prediction intervals attune with each student. In [9],
two variants of conformal framework, namely transductive and inductive, are proposed in
the matrix factorization (MF) setting that associate a confidence score to each predicted
rating. The method proposed in [9] can be seen as a two-stage procedure. At first, a MF-
based model is applied over the partially filled rating matrix to get the rating prediction for
each (user, item)-pair. These predictions are then used to calculate the confidence score for
individual predicted ratings. A confidence-aware MF model is proposed in [25], which can
be seen as a comprehensive framework that optimizes the accuracy of rating prediction and
estimates the confidence over predicted rating simultaneously. Costa et al. [26] proposed an
ensemble-based co-training approach for the rating prediction problem. In the co-training
phase, two or more recommender algorithms are trained to predict the rating for all un-
observed user-item pairs. The training set for the next iteration of the co-training is then
augmented with the M most confident predictions. The confidence is calculated based on
the deviation from the baseline estimate and the rating predicted by the recommendation al-
gorithm. However, none of these works provide confidence to the recommendation set. They
focus on providing confidence to the individual rating prediction, and it is non-trivial and
cumbersome to obtain the confidence of recommendation from confidence regions of point
predictions.

In this work, we focus on providing confidence to the recommendation, not for rating
prediction. The only work that focuses on providing confidence to the recommendation is
our previous work on conformal recommender system [4], wherein a conformal framework is
introduced for the recommender systems, and a new nonconformity measure is proposed for
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the conformal recommender system. It is also shown that the proposed nonconformity sat-
isfies the desirable properties of conformal prediction, such as exchangeability, validity, and
efficiency. Nonetheless, the framework proposed in [4] suffers from similar shortcomings of
traditional conformal predictions and requires high computation times. We briefly describe
the approach in the following section.

3. Foundational Concepts

In this section, we first introduce the basic concepts related to conformal prediction, the
main framework we use to build our proposed confidence-based recommender system. We
then give a brief description of precedence mining, a collaborative filtering model, on which we
apply our conformal prediction framework for producing confidence-based recommendations.

3.1. Conformal Prediction

In this section, a brief account of the principle of conformal prediction is reported in order
to provide the relevant background. We start with a training example zi as a pair (xi, yi) with
xi ∈ Rd is a feature vector of ith example and yi is the corresponding class label. Given the
training set S = {z1, . . . , zn}, a prediction or classification task is to predict a class label yn+i
for unclassified objects xn+i, i ≥ 1. A conformal predictor provides a subset of class labels
for each unclassified object xn+i and the error that the correct label is not in this set does not
exceed ε. Let us consider one unclassified object xn+1 and the task is to examine whether
a class label yc is a member of (1 − ε)−prediction region. Let zcn+1 = (xn+1, yc), where yc
is tentatively assigned to xn+1. The nonconformity measure for an example zi ∈ {S ∪ zcn+1}
is a measure of how well zi conforms to {S ∪ zcn+1} \ zi, ∀i ∈ [1, n+ 1]. From another point
of view, it can be seen as a measure of how well zcn+1 conforms to zi ∈ S. This is done
by measuring the change in predicting behaviour of S when zi is replaced by zcn+1. The
p-value is the proportion of zi ∈ S having nonconformity score worse than that of zcn+1 for
all possible values of yc (all class labels). The set of labels whose p-value higher than ε forms
(1− ε)−prediction region. Intuitively, the predicting behaviour is observed by applying any
of the conventional predictors which uses S as the training set. The conformal prediction
algorithm makes (n+1)×nc×C calls to the underlying prediction algorithm, where nc is the
number of candidate items, and C is the number of class labels. The conformal prediction
framework has been well-studied from different perspectives in recent years [27, 28, 29, 30].

On the other hand, the inductive conformal framework avoids the computational over-
head [27] of initial proposal of conformal prediction. In an inductive setting the training set
S = {z1, . . . , zn} is divided into two sets, namely proper training set St = {z1, z2, . . . , zm}
and calibration set Sc = {zm+1, . . . , zm+l}, n = m + l. The former is used to learn the
prediction model and the latter is used for computation of p-values. The system uses an
underlying conventional prediction algorithm to learn a model using proper training set St.
The same model is then used to determine (non)conformity measures and p-value for every
example in Sc and zn+1 with respect to St. As a result, the framework learns the underlying
model only once, leading to a significant reduction in computation time and effort.
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Example 1. Consider a problem of classifying samples as cancerous (+ve) or noncancer-
ous (−ve) based on the tumor size and other pathological features. Let xi be the feature
vector describing an ith instance, and yi ∈ {+ve,−ve} is the corresponding label. Let
S = {(x1, y1), (x2, y2), . . . , (x10, y10)} be the training set containing observations of ten dif-
ferent individuals. Given the new instance, say x11, the task is to classify it as either +ve
or −ve. Assume, Support Vector Machine (SVM) is the underlying classifier that also as-
signs a nonconformity value as the deviation between the actual and the predicted class label.
The conformal prediction framework labels the new instance with all possible classes and
sees which conforms more to the existing ones. At first, it considers z+ve11 = (x11,+ve) and
adds it to the training set. After that the the SVM classifier is trained for each ith instance
with the training set {S ∪ z+ve11 } \ zi,∀i ∈ [1, 11] and measures the removed example’s non-
conformity (αi). Finally, it calculates the p-value concerning the label C (let’s say P+ve),

P+ve = |i|1≤i≤11,αi≥α11|
11

. The conformal predictor repeats the same procedure concerning an-
other label NC, i.e., for (x11,−ve) and determines the corresponding p-value (P−ve). The
prediction region includes the labels with a p-value greater than the significance level ε. We
can also observe that for the given example, the conformal predictor requires training of 22(
11 × 2 = (n + 1) × C

)
SVMs for one candidate item and hence, for nc candidate items it

would be (n+ 1)× C × nc SVMs.
On the other hand, the Inductive Conformal Predictor divides the dataset into two sets,

namely proper training set St and calibration set Sc. It then trains the underlying model with
St and uses the same to evaluate the nonconformity of Sc and new instance x11. Hence, only
one SVM classifier is learnt using the set St and called for |Sc|+C times. For nc candidates
it is nc × (|Sc| + C), which is a drastic improvement over conformal predictor in terms of
computation time.

3.2. Precedence Mining based Recommender Systems [8]

The precedence mining model [8] is a Collaborative Filtering (CF) based model that
maintains precedence statistics, i.e., the temporal count of all the pairs of items. The
precedence mining model estimates the probability of future consumption based on past be-
haviour. For example, a person who has seen Godfather I is more likely to watch Godfather
II in the future. In most of the traditional CF techniques, the aim is to find users having
similar profiles as the active user u, and then restrict its search to items consumed by this
subset of users and not consumed by u. Thus, certain consumption patterns of items exhib-
ited by the whole set of users are not captured as the search is restricted. The precedence
mining model overcomes these shortcomings and attempts to capture pairwise precedence
relations frequently occurring among all users. It calculates a recommendation score for
each item based on the precedence statistics, and then the set of items having scores greater
than the threshold are recommended.

Example 2. Figure 1 shows the difference between traditional collaborative filtering and
precedence mining. The leftmost table in the figure is a toy example in which we provide the
profiles of different users. Let ua denote the active user ua. Each row in the table can be
interpreted as a sequence of movies that the user has watched. For instance, ua has watched
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movies m1, m2, and m3 in the given order. The figure in the middle demonstrates the
working of collaborative filtering. Here, we assume that the set of users who have at least
two movies in common with the active user are in its neighbours. The most popular movie
among the neighbours are then recommended to the active user. A careful observation of
Figure 1 reveals that the movie m5 is popular among the neighbours u1 and u2 and therefore
collaborative filtering recommends movie m5 to the user ua. It is to be noted that the search
of items in collaborative filtering is limited to the neighbours space. In contrast, precedence
mining looks for patterns in which one item follows the other in the whole user space. The
rightmost image in the Figure 1 demonstrates the idea of precedence mining. We highlight
the patterns that occur at least thrice using different colors, for instance, m1 and m7.

Figure 1: Comparison of collaborative filtering (middle) and precedence mining (right) approaches for a toy
example (left).

Recommender systems based on precedence relations is concerned with mining prece-
dence relations among items consumed by users and thereafter recommends new items hav-
ing high relevance score computed using precedence statistics. The nicety and novelty of
this approach is the use of pairwise precedence relations between items. We describe the
score computation formally as follows.

Let O = {o1, o2, . . . , omobject} be the set of items and U = {u1, u2, . . . , umuser} be the set
of users. profile(uj) is a sequence of items known to have been consumed by user uj. Let Oj

be the set of items consumed by uj. A recommender system is concerned with recommending
items to a user based on profiles of different users. A recommender system aims at selecting
items for recommendation such that these items are absent in profile(u) and are expectedly
preferred to other items by the user for whom it is recommended. Let Support(oi) be the
number of users that have consumed item oi and PrecedenceCount(oi, oh) be the number
of users having consumed item oi preceding oh. The precedence probability for item oi
preceding oh is denoted as PP (oi|oh). We define PP (oi|oh), and Score(oi, uj) as follows.

PP (oi|oh) =
PrecedenceCount(oi, oh)

Support(oh)
, (1)

Score(oi, uj) =
Support(oi)

muser
×
∏
ol∈Oj

PP (ol|oi). (2)
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The objects with high score are recommended. If the score for a given unutilized item is
low, it is highly unlikely to be of interest to the user. We now consider an example which
illustrates the working of the preceding precedence mining based recommender system.

Example 3. Consider the following PrecedenceCount and Support statistics calculated
based on the preferences given by thirty users U = {u1, u2, . . . , u30} over ten items O =
{o1, o2, . . . , o10}.

PrecedenceCount =



0 9 8 11 7 8 6 7 7 3
8 0 10 11 9 7 7 6 8 4
8 8 0 5 7 6 5 6 4 3
5 11 12 0 6 8 6 6 3 2
7 9 7 13 0 8 7 6 9 4
5 9 6 8 6 0 5 6 4 1
4 6 5 7 5 5 0 4 4 1
4 8 6 10 8 6 5 0 7 2
7 11 10 16 7 7 6 5 0 3
2 1 0 2 1 2 1 3 1 0


Support =

[
20 25 21 25 22 18 15 18 20 6

]
.

Let u1 be the target user and O1 = {o1, o3, o5, o7, o9} be set of items consumed by u1. For
u1, the candidate items for recommendation are O \ O1 = {o2, o4, o6, o8, o10}. The score of
an item o2 which not consumed by user u1 is then calculated as

Score(o2, u1) =
Support(o2)

30
× PP (o1 | o2)× PP (o3 | o2)× PP (o5 | o2)× PP (o7 | o2)× PP (o9 | o2)

=
25

30
× 9

25
× 8

25
× 9

25
× 6

25
× 11

25
= 0.0036.

Similarly, Score(o4, u1) = 0.0068, Score(o6, u1) = 0.0043, Score(o8, u1) = 0.0016, and
Score(o10, u1) = 0.0028. Hence, it ranks the items in the order of o4, o6, o2, o10, and
o8.

The problem with this approach is even if one of the precedence probabilities (PPs)
is zero, the whole score becomes zero. To avoid this problem, Parameswaran et al. [8]
proposed to consider only top-I precedence probabilities in the product term, where I is a
hyper-parameter to tune. In our experiments, we have fine tune the value I to be 1.

4. Conformal Recommender System

The principle of conformal prediction is applied to recommender system in [4]. Here, we
briefly report the proposal of CRS. The readers are requested to refer [4] for details. Let O
be the set of items, ni = |O| be the total number of items, nu be the number of users and
Oj = {o1, o2, . . . , on} be the set of items consumed by a user uj. Given O, uj, Oj, and the
significance level ε, the problem is to recommend a set of items Γ ε with (1− ε) confidence.
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For a given user uj, Oj is split into two sets based on the precedence of usage of the items.
The first set Otrain

j = {o1, o2, . . . , on} is used as the training set. The set Ocandidates
j =

{c1, c2, . . . , ck}, of candidate items that are consumed by uj after use of items in Otrain
j and

are not part of the training set. The conformal recommendation process is to determine the
confidence measure of recommending a new object on+1 for user uj. The first step of CRS
is to see how well the object on+1 and the training set Otrain

j conform to each other. Let

Otrain+
j = {Otrain

j

⋃
on+1} be the appended set. Nonconformity measure is computed for

each oh ∈ Otrain+
j by ignoring oh in Otrain+

j and examining the recommendability of ci when

the profile is Oh
j , where

Oh
j = Otrain+

j \ {oh} = {o1, o2, . . . , oh−1, oh+1, . . . , on+1}. (3)

With precedence mining [31, 32, 33] as the underlying algorithm, the measure of recom-
mendability of ci is a numerical value, Score(ci, uj) and higher value of Score implies greater
chance of being recommended. The Score is calculated with reference to each of h and for
each tentative profile Oh

j , Scoreh is defined as

αh = Scoreh(ci, uj) =
Sup(ci)

muser

×
∏
ol∈Oh

j

PP (ol|ci).

Definition 1. (CRS nonconformity measure [4]). Given a subset Otrain
j of user uj profile; a

set of objects Ocandidates
j = {c1, c2, . . . , ck}, that are consumed by uj after use of items in Otrain

j

and are not part of the training set; and a new object on+1 ∈ Oj, the nonconformity measure
A(o1, o2, . . . , on+1) w.r.t. ci ∈ Ocandidates

j is (α1, α2, . . . , αn+1), where αh = Scoreh(ci, uj).

The computed nonconformity scores αh, h ∈ [1, n+1] are used to compute the p-value as
the proportion of examples with αh ≥ αn+1, h ∈ [1, n + 1]. A p-value is computed for each
ci ∈ Ocandidates

j and then we employ two different aggregation techniques to select the final
p-value from several p-values. If the selected p-value is greater than ε, then on+1 is included
in the (1− ε) confidence recommendation region. The procedure is repeated for every new
item on+i, i ≥ 1 to get (1− ε) confidence recommendation set.

Example 4. We consider the precedence statistics given in Example 3 for this example also.
Let Otrain

1 = {o1, o3, o5} ⊂ O1 and Ocandidates
1 = {o7, o9}. Let o2 be the candidate item for

recommendation. We append o2 with Otrain
1 as Otrain+

1 = {o1, o3, o5, o2}. Nonconformity of
an item oh ∈ Otrain+

1 is measured by the recommendability of a candidate item c ∈ Ocandidates
1

using the profile Otrain+
1 \ {oh}. For example, nonconformity of an item o1 concerning the

recommendability of o7 is computed as

α1 = Score1(o7, u1) =
Support(o7)

30
× PP (o3 | o7)× PP (o5 | o7)× PP (o2 | o7)

=
15

30
× 5

15
× 7

15
× 7

15
= 0.036.
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Nonconformity score of o3 is

α3 = Score3(o7, u1) =
Support(o7)

30
× PP (o1 | o7)× PP (o5 | o7)× PP (o2 | o7) == 0.043.

Similarly, Nonconformity score of o5 is α5 = Score5(o7, u1) = 0.031 and nonconformity score
of o2 is α2 = Score2(o7, u1) = 0.031. The p-value of o2 concerning the recommendability of
o7 is computed as follows.

p(o2, o7) =

∣∣∣{oh∣∣oh ∈ Otrain+
1 , Scoreh(o7, u1) ≥ Score2(o7, u1)

}∣∣∣
|Otrain+

1 |
=

4

4
= 1,

Similarly, we compute the p-value of o2 concerning the recommendability of o9 that is p(o2, o9) =
0.75. In order to get the final p-value from p(o2, o7) and p(o2, o9), CRS-max [4] employs a
maximum strategy and CRS-med [4] employs a median strategy. Therefore, the final p-value
according to CRS-max and CRS-med are 1 and 0.875 respectively. Similarly, we compute
the p-value for all the candidate items for recommendation and recommend the items whose
p-value is greater than ε with the confidence of (1− ε).

5. Inductive Conformal Recommender System

This section presents the proposed inductive conformal recommender system (ICRS) to
gauge the confidence of recommendations. The proposed conformal approach determines
a recommendation set Γ ε with (1 − ε) confidence for a given significance level ε. A piv-
otal component of the conformal framework is the nonconformity measure quantifying the
reliability in prediction. We use precedence relations among the items to determine the non-
conformity score. Precedence relations capture the temporal patterns in user transactions.
Besides, precedence relations based recommender systems do not require rating information,
which is indeed challenging to obtain in a real-time scenario. Furthermore, these systems are
ranking systems and thus allow us to define confidence for recommendation instead of a rat-
ing prediction. These are the various reasons for choosing precedence relations to represent
nonconformity measures.

The brief idea of the proposed approach is as follows. We split Oj into proper training
set Ot

j = {o1, o2, . . . , om} and calibration set Oc
j = {om+1, om+2, . . . , om+l}, wherein Oc

j is
the set of items known to be consumed after Ot

j and n = m + l. The idea is to compute
the (non)conformity measure for every item in the calibration set along with a new item
on+1 and determine on+1’s p-value: the proportion of items having (non)conformity score
better than or equal to that of a new item. Subsequently, we include item on+1 in the Γ ε

recommendation region if the p-value of on+1 exceeds ε.
The following subsections elaborate on the notions of (non)conformity measures and the

p-value and describe the complete procedure. Subsection 5.1 defines the various
(non)conformity measures to determine the conformity or strangeness of an object con-
cerning the training set. Subsection 5.2 defines p-value, which quantifies the conformity
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score of a new item concerning the training set of items and defines the recommendation set
Γ ε with (1 − ε) confidence. Subsection 5.3 gives the flowchart of the proposed system and
describes the proposed algorithm. In Subsection 5.4, we describe the two important mea-
sures of any conformal prediction framework, validity and efficiency, in the recommender
systems setting. Finally, we proffer theoretical time complexity analysis of the proposed
approach against the existing methods in Subsection 5.5.

5.1. Nonconformity Measures

Nonconformity measure is a measurable function A that determines a new object’s rela-
tion with the proper training set in terms of a scalar value. There are several ways traditional
algorithms can construct nonconformity measures; each of these measures defines a unique
ICRS. It is worth mentioning that a particular (non)conformity measure only affects the
ICRS model’s efficiency, and the validity of the results remains unaffected. We propose
different conformity/nonconformity measures in this section and analyze the efficiency. We
use precedence count PC(oi, oh) and precedence probability PP (oi|oh) that determines the
precedence relation among items to define various (non)conformity measures. When we
compute these quantities for each item in the user profile, we get multiple values. We use
different aggregation techniques as a design choice to calculate the (non)conformity value
using multiple precedence statistics. For the simplicity of notations, we refer to conformity
measure as CM and nonconformity measure as NCM in the subsequent discussion.

We adapt the score function proposed by Parameswaran et al. [8] that estimates the
relevance of an item to the user profile to establish the first conformity measure. We define
the conformity score of an item oh for a user uj profile as follows.

CM1(oh) = Sup(oh)
nu

×
∏(I)

ol∈Ot
j

PP (ol|oh),

where
∏(I) denotes the multiplication of top-I quantities in the product term. We validate

the algorithm for different I values and take I as 1 in the experiments. The score is high when
it conforms more to the training set. Note that every measure that we define here is with
respect to a target user uj. Furthermore, we determine an object’s conformity in terms of
the precedence count of an item with the set of items consumed by the user. The precedence
count (PC(oi, oh)) defined previously represents the number of times an item oh appeared
after oi in user profiles. The higher the number, the more likely it is that oh appears after
oi. Hence, we use precedence count to determine a conformity measure. We compute the
precedence count of an item oh to every item oi in the proper training set Ot

j of user uj and
then aggregate them to get a numerical score. Using the different aggregation strategies such
as minimum, median, mean and maximum, we arrive at the following conformity measures:
CM2, CM3, CM4, and CM5, respectively. The detailed formulation of these measures is
given in Annexure 1. We also use the precedence probability of an object with respect to the
user profile to determine the conformity score of an object. Precedence probability PP (oh |
oi) of an item oh with respect to an item oi indicates how likely an item oh follows an item oi.
Hence, we use precedence probabilities of an item oh with respect to individual items in the
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user profile to define the conformity measures. We again use different aggregation strategies
to summarize the precedence probability scores of oh with respect to multiple items in the
user profile. The process resulted in four different conformity scores, CM6 (minimum), CM7
(median), CM8(mean), and CM9(maximum) with the corresponding aggregation operator
mentioned in the brackets. The detailed formulation is given in Annexure 1. We then employ
probability of oh given that oi is present in the target user profile without preceding oh to
determine the conformity score of an item oh concerning the training data. We compute
this score with respect to each and every item in the training data and employ different
aggregation strategies resulting in four different conformity scores, CM10 (minimum), CM11
(median), CM12(mean), and CM13(maximum). Finally, we consider the probability that

an item oi appears in the profile without succeeding an item oh (Sup(oi)−PC(oi,oh)
nu

) as the
potential nonconformity measure for an item oh. Since there are multiple oi’s in the user
profile/training set, we use different aggregation strategies and define the nonconformity
measures NCM14, NCM15, NCM16, and NCM17 as given in Annexure 1.

Lemma 1. (Non)conformity of items {om+1, . . . , on+1} is invariant of permutation, i.e., for
any permutation π of {m+1, . . . , n+1} i.e., A(om+1, om+2, . . . , on+1) = (αm+1, αm+2, . . . , αn+1)
⇒ A(oπ(m+1), oπ(m+2), . . . , oπ(n+1)) = (απ(m+1), . . . , απ(n+1)).

Proof. It is easy to see that the nonconformity scores are invariant of permutation π of
{om+1, . . . , on+1}. All the proposed conformity/nonconformity measures are independent of
the calibration set {om+1, . . . , on+1} and only makes use of the proper training set. Hence
changing the permutation of a calibration set does not effect the nonconformity scores and
remains the same. Therefore the proposed (non)conformity scores are invariant of permu-
tation of {om+1, . . . , on+1}.

Algorithm 1: Inductive Conformal Recommender Systems.

Input: O, target user uj, Oj, ε
Output: Recommendation set (Γ ε)
split Oj into two sets Ot

j and Oc
j ;

Γ ε ← ∅ ;
for each oh in Oc

j do
Compute αh using any of the (non)conformity measures;

end
for each o ∈ O \Oj do

Compute (non)conformity score of an item o;
Compute p(o) using Equation 4 or 5;
if p(o) > ε then Γ ε ← Γ ε ∪ {o} ;

end
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5.2. p-value and Recommendation Set

Let αh be the conformity or nonconformity value of an item oh. For nonconformity
measures, the proportion of examples having a nonconformity value greater than the new
example defines the p-value,

p(on+1) =

∣∣∣{h∣∣m+ 1 ≤ h ≤ n+ 1, αh ≥ αn+1

}∣∣∣
l + 1

. (4)

In the case of conformity measure, we define it as the proportion of examples having con-
formity value less than the new example,

p(on+1) =

∣∣∣{h∣∣m+ 1 ≤ h ≤ n+ 1, αh ≤ αn+1

}∣∣∣
l + 1

. (5)

For a target user uj, the recommendation set is then constructed by computing the p-
value for every unused item. All the items whose p-value is greater than the predetermined
significance level ε will form a recommendation region Γ ε.

Γ ε = {o | p(o) > ε}.

5.3. Algorithm

In this section, we describe the algorithm by using the concepts defined in the previous
sections. Algorithm 1 outlines the main flow of the proposed method. At first, we divide
the dataset into a proper training set and calibration set. Next, we compute every item’s
nonconformity value in the calibration set and for every candidate item. We then compute
the p-value for every candidate item and determine the recommendation set. The flowchart
of the proposed algorithm is shown in Figure 2.

Figure 2: Inductive Conformal Recommender System.

Example 5. We consider the precedence statistics given in Example 3. We divide the target
user u1 profile into Ot

1 = {o1, o3, o5} and Oc
1 = {o7, o9}. Let us compute the nonconformity
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values, and p-value with respect to o2 and the conformity measure CM1. The procedure is
similar for other (non)conformity measures also.

CM1(o7) =
Support(o7)

30
× top1

(
PP (o1 | o7), PP (o3 | o7), PP (o5 | o7)

)
=

15

30
× 7

15
= 0.23.

Similarly, CM1(o9) = 0.3 and CM1(o2) = 0.3. Hence,

p(o2) =

∣∣{oh | oh ∈ {Oc
1 ∪ {o2}

}
∧ CM1(oh) ≤ CM1(o2)}

∣∣
|Oc

1 ∪ {o2}|
=

3

3
= 1.

We can compute the p-value for all the other candidate items and include those items whose
p-value is greater than ε in the recommendation set.

5.4. Validity and Efficiency

We have already shown that the (non)conformity measures defined above satisfy the
invariant property in Lemma 1. Hence, following the line of argument given by Vovk et
al. [34], it is easy to see that our proposed method ICRS satisfies the validity property.

Lemma 2. If objects om+1, om+2, . . . , on+1 are independently and identically distributed (i.i.d.)
in terms of their precedence relations with individual items in the history, then the probability
of error that on+1 /∈ Γ ε(o1, o2, . . . , om) will not exceed ε ∈ [0, 1] i.e., P (P (on+1) ≤ ε) ≤ ε.

Proof. An error occurs when P (on+1) ≤ ε. That is, when αn+1 is among the bε(l+1)c largest
elements of the set {αm+1, αm+2, . . . , αn+1}. When all the objects are in i.i.d in terms of
precedence relations with the set of items consumed by an user, all permutations of the set
{αm+1, . . . , αn+1} are equiprobable. Thus, the probability that αn+1 is among the bε(l+ 1)c
largest elements does not exceed ε, which is therefore the probability of error.

In addition to satisfying the validity property, it is desirable to have an efficient recom-
mendation set. In the conformal framework setting, a narrow set with higher confidence is
more efficient. We empirically analyze the validity and efficiency properties in Section 6.

5.5. Time Complexity Analysis

In this section, we analyze the time complexity of the proposed method against trans-
ductive conformal recommender systems [4] and the underlying precedence mining based
algorithm [8]. For simplicity, we assume that the calibration set size is the same as that
of candidate-set (|Ocandidates

j |) in the Conformal Recommender System [4]. We know that
m is the size of the proper training set, and l is the calibration set size. Let nc be the
number of candidate items i.e., nc = ni − n. Since the complexity of measuring noncon-
formity scores varies from measure to measure, we assume it to be O(t). With O(t) as the
complexity of nonconformity measure, the inductive conformal predictor takes O((l + nc)t)
time complexity to determine all the required p-values and make recommendations. On the
other hand, transductive conformal recommender systems take O(nclmt) complexity with
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O(t) as the nonconformity measure’s complexity. Kagita et al. [4] reduce it to O(nclm)
using the relation between the score and precedence probability, but it is higher than the
inductive conformal recommender system. The complexity of the precedence mining based
recommender system is O(ncn).

Table 1: Summary of experimental datasets.

Dataset Users Items Records

Personality-2018 1820 35196 1,028,752

Flixsters 20,618 28,331 1,048,575

MovieLens 10M 71,567 10,681 10,000,054

MovieLens 20M 138,494 26,745 20,000,262

MovieLens 25M 162,000 62,000 25,000,096

MovieLens-Latest-V1 229,061 26,780 21,063,128

MovieLens-Latest-V2 280,000 58,000 27,753, 445

6. Empirical Study

In this section, we empirically evaluate the efficacy of proposed Inductive Conformal
Recommender System (ICRS). We provide an in-depth quantitative evaluation with regard
to the prediction accuracy and running time on seven real-world datasets of varying size. The
characteristics of these datasets are reported in Table 1. In all our experiments, we converted
the multi-class (different ratings) datasets into one class by setting a threshold to 0. The
prediction accuracy of the comparing algorithms are evaluated based on the ranking-based
performance metrics that is Average Precision (AP), Area Under Curve (AUC), Normalized
Discounted Cumulative Gain (NDCG) and Reverse Reciprocal (RR). We also evaluated the
performance based on top-K recommendation metrics that is Precion@K, Recall@K and
F1@K [35]. We compared our proposed method ICRS with the underlying Precedence
Mining Model [8] and the Conformal Recommender Systems (CRS-max and CRS-med) [4].
In ICRS, to fine-tune the values of parameters n and k, we experimented with different
combinations and selected n to be 30% of the profile and k to be 30% and the remaining
40% is the test data. All the results reported here are the average of 500 randomly selected
instances. We use a notation ICRS < x > to denote an inductive conformal recommender
system that uses (non)conformity measure x. For example, ICRS1 uses conformity measure
1 (CM1).

The remainder of the section is structured as follows. In Section 6.1, we report the exper-
imental evaluation of the validity and efficiency of the proposed methods. Section 6.2 report
comparative experimental results in terms of ranking-based metrics, top-k recommendation
metrics and execution time.
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6.1. Validity and Efficiency

This subsection empirically evaluates the validity and efficiency of the proposed approach.
We adapt the definitions of validity and efficiency given by Kagita et al. [4]. Figure 3 and
Figure 4 shows the validity and efficiency of the proposed approach respectively, over seven
different datasets. We report the validity and efficiency related to ICRS1, ICRS3, ICRS7,
ICRS11 and ICRS15 1. It can be seen from Figure 3 that the error is proportional to ε and
in the relative bound of ε. Figure 4 reports the error related to efficiency. It can be seen
from the figures that even for smaller values of ε, most of the irrelevant items are filtered
out hence, resulting in a small error. We also observed that, for higher values of ε, the
recommendation set is more informative for all the strategies.

(a) Personality-2018 (b) Flixsters (c) MovieLens 10M (d) MovieLens 20M

(e) MovieLens 25M (f) MovieLens-latest-V1 (g) MovieLens-latest-V2

Figure 3: Evaluation of recommendation validity for different datasets

6.2. Comparative Analysis

In this section, we carried out experiments to demonstrate that the proposed methods
achieve comparable results with significantly reduced execution times. Table 3 gives the
findings related to ranking-based evaluation measures over seven datasets. Each result is
composed of mean and rank. The rank reflects relative performance of an algorithm over
a dataset for a given evaluation measure. In the case of ties, we have assigned the average
rank. Furthermore, the entries in boldface highlight best results among all the algorithms
being compared.

To carry out comparative analysis in more well-founded ways, we employed Friedman
test which is widely-accepted as the favorable statistical test for comparing more than two

1ICRS3, ICRS7, ICRS11, and ICRS15 use the median strategy. Similar results have been observed for
other strategies also.
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(a) Personality-2018 (b) Flixsters (c) MovieLens 10M (d) MovieLens 20M

(e) MovieLens 25M (f) MovieLens-latest-V1 (g) MovieLens-latest-V2

Figure 4: Efficiency of recommendation for different datasets

algorithms over multiple data sets [36]. For each evaluation criterion, Friedman statistics
FF and the corresponding critical value are reported in Table 2. It can be observed that at
significance level α = 0.05, Friedman test rejects the null hypothesis of “equal” performance
for each evaluation metric. This leads to the use of post-hoc tests to assess the pairwise
differences between two algorithms within a multiple comparison test. We use the Nemenyi
test to check whether the proposed methods achieves a competitive performance against the
algorithms being compared [36]. The performance of two algorithms is significantly different

if the corresponding average ranks differ by at least the critical difference CD = qα

√
K(K+1)

6N ,

where the value qα is based on the Studentized range statistic divided by
√

2. For Nemenyi
test with K = 20, we have qα = 3.5438 at significance level α = 0.05 and thus CD =
11.2065 [36].

Table 2: Summary of the Friedman Statistics FF (K = 20,N = 7) and the Critical Value in Terms of Each
Evaluation Metric (K: # Comparing Algorithms; N : # Data Sets).

Metric FF Critical Value (α = 0.05)

AP 10.1378

1.6785
AUC 11.1020

NDCG 11.3810

RR 15.2027

Figure 5 gives the CD diagrams [36] for each evaluation criterion, where the average rank
of each comparing algorithm is marked along the axis (lower ranks to the left). It can be seen
from the Figure 5 that the proposed methods achieve better performance than CRS-Med
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Table 3: Experimental results of each comparing algorithm in terms of AP, AUC, NDCG, and RR.

Comparing
AP

algorithm Personality-2018 Flixsters MovLens 10M MovieLens 20M MovieLens 25M MovieLens-Latest MovieLens-Latest-V2
Precedence Mining 0.19 12 0.15 14 0.06 20 0.03 20 0.10 20 0.01 20 0.08 20
CRS-Med 0.13 19 0.16 9 0.15 16 0.15 16 0.14 13 0.15 15 0.17 19
CRS-Max 0.15 14 0.20 1 0.18 7.5 0.18 5 0.16 4.5 0.18 4 0.21 6
ICRS1 0.23 8 0.19 2.5 0.15 16 0.15 16 0.13 16 0.15 15 0.19 16
ICRS2 0.14 16.5 0.08 18.5 0.16 12.5 0.16 12 0.14 13 0.15 15 0.20 12
ICRS3 0.26 1.5 0.18 4.5 0.18 7.5 0.18 5 0.16 4.5 0.17 9 0.21 6
ICRS4 0.26 1.5 0.18 4.5 0.19 2.5 0.18 5 0.16 4.5 0.18 4 0.21 6
ICRS5 0.22 10.5 0.19 2.5 0.15 16 0.15 16 0.13 16 0.15 15 0.20 12
ICRS6 0.16 13 0.08 18.5 0.15 16 0.16 12 0.13 16 0.15 15 0.19 16
ICRS7 0.24 5 0.16 9 0.19 2.5 0.18 5 0.16 4.5 0.18 4 0.21 6
ICRS8 0.24 5 0.15 14 0.19 2.5 0.19 1 0.16 4.5 0.18 4 0.20 12
ICRS9 0.14 16.5 0.15 14 0.17 11 0.16 12 0.15 10 0.16 11 0.20 12
ICRS10 0.14 16.5 0.09 17 0.15 16 0.15 16 0.14 13 0.15 15 0.20 12
ICRS11 0.22 10.5 0.16 9 0.18 7.5 0.18 5 0.16 4.5 0.18 4 0.22 1.5
ICRS12 0.23 8 0.15 14 0.18 7.5 0.18 5 0.16 4.5 0.18 4 0.21 6
ICRS13 0.14 16.5 0.15 14 0.18 7.5 0.17 9.5 0.16 4.5 0.17 9 0.22 1.5
ICRS14 0.07 20 0.05 20 0.14 19 0.14 19 0.11 19 0.13 19 0.19 16
ICRS15 0.24 5 0.16 9 0.18 7.5 0.17 9.5 0.15 10 0.17 9 0.21 6
ICRS16 0.23 8 0.16 9 0.19 2.5 0.18 5 0.15 10 0.18 4 0.21 6
ICRS17 0.25 3 0.17 6 0.16 12.5 0.15 16 0.12 18 0.15 15 0.18 18

Comparing
AUC

algorithm Personality-2018 Flixsters MovLens 10M MovieLens 20M MovieLens 25M MovieLens-Latest MovieLens-Latest-V2
Precedence Mining 0.92 2 0.96 1 0.64 20 0.90 14 0.98 1 0.65 20 0.92 1
CRS-Med 0.62 16 0.87 7.5 0.72 19 0.75 20 0.77 20 0.75 19 0.67 20
CRS-Max 0.57 18 0.83 13.5 0.84 14 0.86 16 0.88 16 0.87 15 0.80 18
ICRS1 0.93 1 0.91 2.5 0.90 3 0.92 5.5 0.93 6 0.93 4.5 0.86 6
ICRS2 0.67 15 0.60 17 0.83 15 0.87 15 0.89 15 0.88 14 0.84 14.5
ICRS3 0.91 4 0.88 5.5 0.90 3 0.92 5.5 0.94 2 0.92 11 0.86 6
ICRS4 0.91 4 0.89 4 0.90 3 0.92 5.5 0.92 11.5 0.93 4.5 0.85 11
ICRS5 0.91 4 0.91 2.5 0.89 9.5 0.92 5.5 0.93 6 0.92 11 0.85 11
ICRS6 0.59 17 0.52 18 0.81 16 0.84 17 0.86 17 0.86 16 0.81 16
ICRS7 0.90 6 0.86 10 0.90 3 0.92 5.5 0.92 11.5 0.93 4.5 0.86 6
ICRS8 0.88 8.5 0.79 15 0.89 9.5 0.92 5.5 0.92 11.5 0.92 11 0.84 14.5
ICRS9 0.87 11 0.87 7.5 0.89 9.5 0.92 5.5 0.93 6 0.93 4.5 0.85 11
ICRS10 0.53 19 0.47 19 0.78 17 0.82 18.5 0.84 18 0.84 17 0.80 18
ICRS11 0.87 11 0.84 12 0.89 9.5 0.91 12 0.93 6 0.93 4.5 0.87 2.5
ICRS12 0.85 14 0.75 16 0.89 9.5 0.91 12 0.91 14 0.92 11 0.85 11
ICRS13 0.86 13 0.86 10 0.90 3 0.92 5.5 0.93 6 0.93 4.5 0.87 2.5
ICRS14 0.51 20 0.45 20 0.74 18 0.82 18.5 0.83 19 0.83 18 0.80 18
ICRS15 0.88 8.5 0.83 13.5 0.89 9.5 0.92 5.5 0.92 11.5 0.92 11 0.85 11
ICRS16 0.87 11 0.86 10 0.89 9.5 0.92 5.5 0.93 6 0.93 4.5 0.86 6
ICRS17 0.89 7 0.88 5.5 0.89 9.5 0.91 12 0.93 6 0.93 4.5 0.86 6

Comparing
NDCG

algorithm Personality-2018 Flixsters MovLens 10M MovieLens 20M MovieLens 25M MovieLens-Latest MovieLens-Latest-V2
Precedence Mining 0.66 12 0.53 13.5 0.16 20 0.37 20 0.48 19.5 0.27 20 0.41 20
CRS-Med 0.58 18 0.55 7 0.54 17.5 0.53 18 0.52 15.5 0.53 17.5 0.48 19
CRS-Max 0.59 16.5 0.61 1 0.59 4 0.58 3.5 0.56 2.5 0.58 1 0.54 7
ICRS1 0.70 5.5 0.57 3 0.56 13.5 0.55 13.5 0.53 12.5 0.55 12 0.52 14.5
ICRS2 0.59 16.5 0.44 17 0.55 15.5 0.55 13.5 0.52 15.5 0.53 17.5 0.53 12
ICRS3 0.72 1.5 0.56 5 0.59 4 0.57 8 0.55 7.5 0.57 5.5 0.54 7
ICRS4 0.72 1.5 0.57 3 0.59 4 0.58 3.5 0.55 7.5 0.57 5.5 0.54 7
ICRS5 0.69 9.5 0.57 3 0.56 13.5 0.55 13.5 0.53 12.5 0.54 14.5 0.53 12
ICRS6 0.60 15 0.43 18.5 0.55 15.5 0.55 13.5 0.51 18 0.54 14.5 0.51 17
ICRS7 0.70 5.5 0.55 7 0.59 4 0.58 3.5 0.55 7.5 0.57 5.5 0.54 7
ICRS8 0.70 5.5 0.52 15.5 0.59 4 0.58 3.5 0.55 7.5 0.57 5.5 0.53 12
ICRS9 0.62 13.5 0.54 10.5 0.58 9.5 0.55 13.5 0.55 7.5 0.56 10.5 0.54 7
ICRS10 0.57 19 0.43 18.5 0.54 17.5 0.54 17 0.52 15.5 0.54 14.5 0.52 14.5
ICRS11 0.69 9.5 0.54 10.5 0.59 4 0.58 3.5 0.56 2.5 0.57 5.5 0.56 1
ICRS12 0.68 11 0.52 15.5 0.59 4 0.58 3.5 0.56 2.5 0.57 5.5 0.54 7
ICRS13 0.62 13.5 0.53 13.5 0.58 9.5 0.57 8 0.56 2.5 0.57 5.5 0.55 2.5
ICRS14 0.50 20 0.38 20 0.51 19 0.51 19 0.48 19.5 0.50 19 0.51 17
ICRS15 0.70 5.5 0.54 10.5 0.58 9.5 0.56 10 0.54 11 0.56 10.5 0.54 7
ICRS16 0.70 5.5 0.54 10.5 0.58 9.5 0.57 8 0.55 7.5 0.57 5.5 0.55 2.5
ICRS17 0.70 5.5 0.55 7 0.57 12 0.55 13.5 0.52 15.5 0.54 14.5 0.51 17

Comparing
RR

algorithm Personality-2018 Flixsters MovLens 10M MovieLens 20M MovieLens 25M MovieLens-Latest MovieLens-Latest-V2
Precedence Mining 0.82 12 0.19 20 0.31 20 0.24 20 0.34 20 0.22 20 0.25 20
CRS-Med 0.78 14 0.60 2 0.59 14.5 0.64 9 0.59 5.5 0.62 6.5 0.55 18.5
CRS-Max 0.97 1 0.92 1 0.76 1 0.76 1 0.71 1 0.75 1 0.72 1
ICRS1 0.85 10.5 0.51 4.5 0.60 12.5 0.60 14 0.56 12 0.59 12 0.60 13
ICRS2 0.51 19 0.37 16 0.53 18 0.57 16.5 0.49 17.5 0.51 18 0.58 15.5
ICRS3 0.91 2.5 0.47 7.5 0.65 4 0.65 6.5 0.59 5.5 0.62 6.5 0.63 5.5
ICRS4 0.91 2.5 0.47 7.5 0.64 6.5 0.66 4 0.61 3 0.62 6.5 0.62 7.5
ICRS5 0.85 10.5 0.52 3 0.59 14.5 0.60 14 0.57 10 0.59 12 0.61 10.5
ICRS6 0.62 17 0.32 18 0.54 17 0.60 14 0.49 17.5 0.53 17 0.56 17
ICRS7 0.86 7.5 0.45 10.5 0.63 8.5 0.67 2.5 0.56 12 0.61 9.5 0.61 10.5
ICRS8 0.86 7.5 0.42 15 0.65 4 0.65 6.5 0.59 5.5 0.62 6.5 0.62 7.5
ICRS9 0.69 15 0.48 6 0.60 12.5 0.56 18 0.54 16 0.56 16 0.61 10.5
ICRS10 0.57 18 0.36 17 0.56 16 0.57 16.5 0.55 14.5 0.57 14.5 0.58 15.5
ICRS11 0.86 7.5 0.44 12.5 0.64 6.5 0.67 2.5 0.58 8.5 0.63 3 0.67 2
ICRS12 0.79 13 0.43 14 0.63 8.5 0.65 6.5 0.63 2 0.61 9.5 0.61 10.5
ICRS13 0.65 16 0.44 12.5 0.65 4 0.62 10.5 0.59 5.5 0.63 3 0.63 5.5
ICRS14 0.40 20 0.29 19 0.47 19 0.50 19 0.43 19 0.46 19 0.55 18.5
ICRS15 0.88 5 0.46 9 0.61 10.5 0.61 12 0.56 12 0.59 12 0.64 3.5
ICRS16 0.89 4 0.45 10.5 0.67 2 0.65 6.5 0.58 8.5 0.63 3 0.64 3.5
ICRS17 0.86 7.5 0.51 4.5 0.61 10.5 0.62 10.5 0.55 14.5 0.57 14.5 0.59 14
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(a) AP

(b) AUC

(c) NDCG

(d) RR

Figure 5: CD diagrams of the comparing algorithms under each evaluation criterion.
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and Precedence Mining models over most of the evaluation metrics. We can also observe
that the proposed approaches achieve similar performance to CRS-Max or even derive a bet-
ter rank in most cases, especially the median-based inductive approaches (ICRS3,ICRS7,
ICRS11, and ICRS15 ) and mean-based inductive approaches (ICRS4,ICRS8, ICRS12, and
ICRS16 ). We have also observed similar results with Maximum strategy based methods
(ICRS1, ICRS5, ICRS9, ICRS13, and ICRS17 ), whereas Minimum strategy based ap-
proaches (ICRS2, ICRS6, ICRS10, and ICRS14 ) performing poorly among the seventeen
proposed approaches. This comprehensive analysis reveals that Median and Mean-based
approaches capture the true precedence relations of a new item with respect to a user profile
compared to the Minimum strategy. The reason could be that sometimes there is a higher
chance of a user consuming items that are not of his regular interest but due to other users’
influence (like family, friends, etc.) or situational context . These items do not follow good
precedence relations with users’ actual interests. Therefore, it is evident that there is a
higher chance of minimum-based strategies capturing such precedence relations and that do
not represent the allure of a new item concerning the user profile. In other words, there may
be some noisy/outlier points in the user profile, and minimum-based strategies are more at-
tractive to these points and therefore not suitable to measure (non)conformity. Though the
same could be valid with the Maximum based strategies, it is more likely that even a single
item in the profile can influence to consume another item that follows higher precedence
relations. For example, a Deep Learning course may have a higher precedence relation with
a Machine Learning course, and that could be an influencing factor for a student to opt
for a Deep Learning course irrespective of other courses in the student profile. Experiment
results corroborate our claims.

In the second set of experiments, we compare the performance in terms of top-k recom-
mendation measures, namely precision@10, recall@10 and F1@10 (Figure 6). We observe
the similar results with varying the number of recommendations. It can be observed from
the figures that conformal approaches methods outperform the underlying precedence min-
ing model. Furthermore, findings reveal that inductive variants are comparable with the
CRS-max and CRS-med. Finally, we compared the execution time (in milliseconds) of the
different approaches. It can be seen from the Figure 7 that the inductive conformal rec-
ommender systems are much faster than traditional conformal recommender systems and
better than the precedence mining model. Altogether, the results corroborate our claim that
the inductive variant achieves a similar level of accuracy compared to its counterparts but
significantly reduces the execution time.

7. Conclusions and Future Work

In this paper, we propose an inductive variants of the conformal recommender system
that complements the recommendation by quantifying the (un)reliability in predictions. One
natural limitation with the existing transductive variants is the computation time that pre-
vents their applicability in the time constraint domains. We address this limitation and
propose an inductive variant that maintains the same moderate level of predictive accuracy
but reduces the computation time to a large extent. Our conformal approach exemplifies
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(a) precision@10

(b) recall@10

(c) F1@10

Figure 6: Performance of each comparing algorithm in terms of top-k recommendation metrics.
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Figure 7: Execution time comparison for different datasets

confidence in terms of the bounds on the error. Conformity/nonconformity measures are
key component of any conformal recommendation framework, and the prediction accuracy
largely depends on how well these measures are defined. In this work, we examined sevne-
teen different (non)conformity measures using the precedence relations among objects. We
theoretically proved that the proposed (non)conformity measures adhere to the principle of
validity under certain assumptions. Further, we emphasized our theoretical results with an
empirical demonstration. Rigorous experiments on several real-world datasets demonstrated
that the inductive conformal recommendation algorithms outperform the precedence min-
ing based recommender system and non-inductive methods in terms of execution time. We
observed that a few of the inductive variants outperforming the other approaches in terms
of other crucial measures of the recommender system when the basic assumptions of the
model are satisfied.

The current proposal sets a lot of scope for future research. Attaining the notion of
confidence in different recommendation models by determining suitable (non)conformity
measures is one of the exacting directions for enthusiastic researchers. Investigating the
conformal prediction for group recommender systems is a direction worth studying. Ex-
ploring the conformal approach for different matrix factorization-based methods is another
exciting direction to pursue.
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[23] Raphaël Morsomme and Evgueni Smirnov. Conformal prediction for students’ grades in a course
recommender system. In Conformal and Probabilistic Prediction and Applications, pages 196–213,
2019.

[24] Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
machines for regression. In European Conference on Machine Learning, pages 345–356. Springer, 2002.

[25] Chao Wang, Qi Liu, Runze Wu, Enhong Chen, Chuanren Liu, Xunpeng Huang, and Zhenya Huang.
Confidence-aware matrix factorization for recommender systems. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32, 2018.

[26] Arthur F Da Costa, Marcelo G Manzato, and Ricardo JGB Campello. Boosting collaborative filtering
with an ensemble of co-trained recommenders. Expert Systems with Applications, 115:427–441, 2019.

[27] Harris Papadopoulos. Inductive conformal prediction: Theory and application to neural networks. In
Tools in artificial intelligence. IntechOpen, 2008.

[28] Azene Zenebe, Ant Ozok, and Anthony F Norcio. Personalized recommender systems in e-commerce
and m-commerce: a comparative study. In Conference on Human-Computer Interaction (HCI Inter-
national), 2005.

[29] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(Mar):371–421, 2008.

[30] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic learning in a random world. Springer
Science & Business Media, 2005.

[31] Venkateswara Rao Kagita, Vineet Padmanabhan, and Arun K. Pujari. Precedence mining in group
recommender systems. In Pradipta Maji, Ashish Ghosh, M. Narasimha Murty, Kuntal Ghosh, and
Sankar K. Pal, editors, Pattern Recognition and Machine Intelligence, pages 701–707, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

[32] Venkateswara Rao Kagita, Arun K. Pujari, and Vineet Padmanabhan. Group recommender systems:
A virtual user approach based on precedence mining. In Stephen Cranefield and Abhaya Nayak,
editors, AI 2013: Advances in Artificial Intelligence, pages 434–440, Cham, 2013. Springer International
Publishing.

[33] Venkateswara Rao Kagita, Arun K. Pujari, and Vineet Padmanabhan. Virtual user approach for group
recommender systems using precedence relations. Information Sciences, 294:15 – 30, 2015. Innovative
Applications of Artificial Neural Networks in Engineering.

[34] V. Vovk, A. Gammerman, and G Shaffer. Algorithmic Learning in a Random World. Springer, 2005.
[35] Huayu Li, Richang Hong, Defu Lian, Zhiang Wu, Meng Wang, and Yong Ge. A relaxed ranking-

based factor model for recommender system from implicit feedback. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI’16, page 1683–1689. AAAI Press, 2016.
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Appendix A. Formal defintions of (non)conformity

We give the formal definitions of the (non)conformity measures described in Section 3
as follows.

CM2(oh) = minimum
oi∈Ot

j

PC(oi, oh).

CM3(oh) = median
oi∈Ot

j

PC(oi, oh).

CM4(oh) = mean
oi∈Ot

j

PC(oi, oh).

CM5(oh) = maximum
oi∈Ot

j

PC(oi, oh).

CM6(oh) = minimum
oi∈Ot

j

PP (oh | oi).

CM7(oh) = median
oi∈Ot

j

PP (oh | oi).

CM8(oh) = mean
oi∈Ot

j

PP (oh | oi).

CM9(oh) = maximum
oi∈Ot

j

PP (oh | oi).

CM10(oh) = minimum
oi∈Ot

j

PC(oi, oh)

Sup(oi)− PC(oh, oi)
.

CM11(oh) = median
oi∈Ot

j

PC(oi, oh)

Sup(oi)− PC(oh, oi)
.

CM12(oh) = mean
oi∈Ot

j

PC(oi, oh)

Sup(oi)− PC(oh, oi)
.

CM13(oh) = maximum
oi∈Ot

j

PC(oi, oh)

Sup(oi)− PC(oh, oi)
.

NCM14(oh) = minimum
oi∈Ot

j

Sup(oi)− PC(oi, oh)

nu
.

NCM15(oh) = median
oi∈Ot

j

Sup(oi)− PC(oi, oh)

nu
.

NCM16(oh) = mean
oi∈Ot

j

Sup(oi)− PC(oi, oh)

nu
.

NCM17(oh) = maximum
oi∈Ot

j

Sup(oi)− PC(oi, oh)

nu
.
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