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Abstract

Nonnegative matrix factorization (NMF) has been widely studied in recent years

due to its effectiveness in representing nonnegative data with parts-based rep-

resentations. For NMF, a sparser solution implies better parts-based represen-

tation. However, current NMF methods do not always generate sparse solu-

tions. In this paper, we propose a new NMF method with log-norm imposed

on the factor matrices to enhance the sparseness. Moreover, we propose a novel

column-wisely sparse norm, named `2,log-(pseudo) norm to enhance the robust-

ness of the proposed method. The `2,log-(pseudo) norm is invariant, continuous,

and differentiable. For the `2,log regularized shrinkage problem, we derive a

closed-form solution, which can be used for other general problems. Efficient

multiplicative updating rules are developed for the optimization, which theo-

retically guarantees the convergence of the objective value sequence. Extensive

experimental results confirm the effectiveness of the proposed method, as well

as the enhanced sparseness and robustness.
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1. Introduction

It has been increasingly ubiquitous to use high-dimensional data in various

areas such as machine learning, data mining, and multimedia data processing,

which makes the task of learning from examples challenging [1, 2]. A widely used

technique to handle such data is dimension reduction, among which matrix fac-

torization methods have drawn significant attention. Matrix factorization seeks

two or more low-dimensional matrices to approximate the original data such that

the high-dimensional data can be represented with reduced dimensions [3, 4].

Typical matrix factorization techniques include principal component analysis

(PCA), nonnegative matrix factorization (NMF), singular value decomposition

(SVD), eigenvalue decomposition (EVD), etc.

For some types of data, the entries are naturally nonnegative. For example,

the pixel values of images or the frequencies of words in a document are naturally

nonnegative. For such data, parts-based representation is believed to commonly

exist in human brain with both psychological and physiological evidence [5, 6,

7]. The parts-based representation inspires us to seek two nonnegative factor

matrices to approximate the original nonnegative data, which leads to the NMF.

Among the two factor matrices, one is considered as the basis while another is

treated as the representation or soft indicator matrix. NMF only allows additive

combinations of the basis vectors, which enables NMF to learn a parts-based

representation [8].

NMF has been extensively studied in recent years [9, 10, 11, 12, 13, 14, 15],

which has found applications in various areas, such as pattern recognition [16],

multimedia analysis [17], and text mining [18]. Basically, the goal of the origi-

nal NMF is to approximate a nonnegative matrix with two nonnegative factor

matrices with physical meanings [8]. For the constrained optimization prob-

lem, multiplicative updating-based strategy has been developed and commonly

adopted for its optimization [19]. The original NMF seeks the factorization in

Euclidean space and thus it only accounts for the linear relationship of data

while omitting the nonlinear ones. To tackle this issue, variants such as the
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graph regularized NMF (GNMF) [20], the robust manifold NMF (RMNMF)

[21] are developed based on manifold learning. Other than manifold technique,

kernel method is also used in NMF methods, which relies on the convex NMF

framework [22, 23]. It assumes that the basis can be represented as a combi-

nation of the data and thus it is doable to calculate the similarity of examples

and basis in kernel space.

For NMF methods, it is pointed out that sparser solutions reveal better

parts-based representation [20]. However, recent studies show that NMF does

not always generate sparse factorization, which implies failure in learning parts-

based representation [24, 25]. To combat this issue, various approach have been

attempted for sparse solutions, such as Bayesian sparse learning [26, 27]. For

example, a maximum a posteriori (MAP) estimation framework is developed

to address the sparse nonnegative matrix factorization problems [27], which is

built upon the sparse Bayesian learning. The sparse Bayesian learning frame-

work places a sparsity-promoting prior on the data [28], which has been shown

to give rise to many models in literature [29]. Bayesian group sparse learning

introduces Laplacian scale mixture distribution for sparse coding given a sparse-

ness control parameter [26]. It is natural to impose the `0-norm for sparseness,

which counts the number of nonzero elements in a matrix. However, `0-norm

is generally hard to solve and the `1-norm has been widely used as a relaxation

for sparseness property in the machine learning community. Unfortunately, the

`1 may be inaccurate to approximate `0 if there are large entries in the input

matrix or vector. Recently, nonconvex approximations to the rank function

have drawn significant attention in various applications such as subspace learn-

ing [30] and robust PCA [31]. It is shown that nonconvex approximations such

as log-determinant rank approximation have been successful in low-rank ma-

trix recovery problems. The reason is that the nonconvex approximations can

better reveal the behavior of the true rank function than the convex approach.

In fact, the low-rankness of a matrix is closely related to the sparsity of its

singular values, where the rank function is equivalent to the `0-norm of the vec-

tor of singular values. Thus, the success of nonconvex approximations to the
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rank function inspires us to design nonconvex approximations to the `0-norm

for enhanced sparse property.

Moreover, nonnegative data such as images often have noise, which has ad-

verse effects and degrades the learning performance. Thus, there is a crucial

need to tackle noise effects from data [21, 32]. The `2,1-norm, which is defined

as the summation of `2-norms of all column vectors in a matrix, has been widely

used to enforce example-wise sparsity to deal with noise effects [33, 21, 34, 35].

Different from `1-norm that treats all entries independently, `2,1-norm measures

input matrix in an example-wise way, which allows it to preserve spatial infor-

mation of examples [21]. For nonnegative data such as images, such property

of `2,1-norm is indeed desirable. It is noted that the calculation of `2,1-norm

is closely related to the `1-norm in that it adds the `2-norms of all columns

with equal weights. Thus, the `2,1 may have similar issues to `1-norm in re-

sulting column-wise sparse property. In this paper, to better tackle noise is-

sues and enhance column-wise sparsity, we propose a novel `2,log-(pseudo) norm

with column-wisely sparser property. For the `2,log-based shrinkage problem,

we provide a closed-form solution, which can be generally used in various other

problems.

We summarize the key contributions of this paper as follows: 1) We propose a

novel NMF model with log-based sparsity constraints. The new model generates

sparser solutions to the factorization, which reveals better parts-based represen-

tation; 2) Multiplicative updating rules are developed for efficient optimization;

3) Regarding the updating rules, we provide theoretical analysis that guarantees

the convergence of our algorithm; 4) We propose a novel `2,log-(pseudo) norm

to restrict column-wise sparsity. The `2,log-(pseudo) norm is invariant. Similar

to the soft-thresholding problem, we formally provide the `2,log-shrinkage oper-

ator, which is the solution to the `2,log-(pseudo) norm associated thresholding

problem. The `2,log-shrinkage operator can be generally used in other problems;

5) The `2,log-shrinkage operator guarantees that the data with noise subtraction

are nonnegative at each iteration, which ensures the nonnegativity and conver-

gence of the factorization; 6) Extensive experiments confirm the effectiveness of
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our method in clustering and data representation.

The rest of this paper is organized as follows: In Section 2, we briefly review

some methods that are closely related to our research. Then we introduce our

method, including its formulation, optimization, and convergence analysis in

Section 3. To enhance the robustness of the new method to noise effects, we

present the robust model in Section 4, including its formulation, optimization,

and convergence analysis. We conduct extensive experiments and present the

detailed results in Section 5. Finally, we conclude the paper in Section 6.

Remark: In this paper, the proposed log-based sparse approximations do

not satisfy the definition of norms. They are named as (pseudo) norms for

simplicity of representation.

2. Related Work

In this section, we briefly review some closely related works, including the

original NMF and graph Laplacian.

2.1. Original NMF

Given nonnegative data X = [x1, · · · , xn] ∈ Rp×n with p being the dimen-

sion and n sample size, NMF is to factor X into U ∈ Rp×k (basis) and V ∈ Rn×k

(coefficients) with the following optimization problem [8]:

min
uij≥0,vij≥0

‖X − UV T ‖2F , (1)

where uij and vij are the ij-th elements of U and V , respectively, and k � n

enforces a low-rank approximation of the original data.

2.2. Graph Laplacian

To account for nonlinear relationships of data in a mapped low-dimensional

space, graph Laplacian is a powerful technique that has been widely used [36].

It is defined as

Tr(V TDV )−Tr(V TWV ) = Tr(V TLV ), (2)
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where W = [wij ] is a similarity matrix that measures pair-wise nonlinear simi-

larities of the examples, D = [dij ] is a diagonal matrix with dii =
∑
j wij , and

L = D −W is the graph Laplacian matrix.

3. Log-norm Regularized Sparse NMF

In this section, we will present the log-norm regularized sparse NMF model,

including its formulation, optimization, and convergence analysis.

3.1. Formulation

For nonnegative data such as images, the parts-based representation has

been shown effective in representing their latent structures. This inspires us to

develop parts-based representation to represent such data. The NMF methods

have been extensively studied for parts-based representation, which are assumed

to generate sparse representation due to the fact that they only involve positive

combination of the basis. However, recent studies show that NMF does not

always result in sparse factorization [24, 25], which implies that NMF does

not always succeed in finding good parts-based representation. It is crucial for

NMF methods to have sparse solutions, since sparser solutions imply better

parts-based representation [20], which reveals the underlying true structures

of the data. To enhance the sparseness and reveal the nature of parts-based

representation, various approaches have been developed in the literature, such

as Bayesian NMF [14] and regularization technique [24]. In this paper, we

adopt the most widely used approach and impose the sparsity constraints with

the `1-norm regularization on the basis and representation matrices U and V ,

respectively, which leads to

min
U,V
‖X − UV T ‖2F + α‖U‖1 + β‖V ‖1

s.t. uij ≥ 0, vij ≥ 0,

(3)

where α ≥ 0 and β ≥ 0 are two balancing parameters, and ‖M‖1 =
∑
ij |mij |

is the `1-norm for a matrix M = [mij ]. In practice, the `1-norm is often used
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as a tight convex relaxation of the `0-norm, whereas the latter is rarely used

in practice due to the hard optimization. However, the `1 sparsity measure

becomes an increasingly bad proxy to the `0 norm if any of the elements are large

[37]. When the input matrix has large values, the `1-norm may approximate the

`0-norm with significant error, which may lead to inaccurate approximation and

sub-optimal solution. Although greater values of α and β may lead to sparser

solutions, such solutions do not necessarily have good interpretations for the

data. To obtain sparsity with a learning model, it is natural to require that the

model first approximates the sparsity accurately. Unfortunately, the `1-norm

may be inaccurate in approximating sparsity and more accurate approximation

is admirable for sparsity learning. To withdraw this drawback and better restrict

the sparsity, we propose to impose the following regularization instead of the

`1-norm:

‖M‖log =
∑
ij

log(1 + |mij |).

In this paper, we call the above term log-norm (`log-(pseudo) norm), which can

be considered as a special case in [37]. Particularly, the `log-(pseudo) norm

admits the followings properties:

• ‖M‖log ≥ 0 always holds.

• For large |mij |, we have log(1+|mij |)� |mij |. This reveals that ‖M‖log �

‖M‖1, implying closer approximation to the true sparsity if a matrix con-

tains large values.

We replace the `1-norm with the `log-(pseudo) norm in (3) and obtain the

following model:

min
U,V
‖X − UV T ‖2F + α‖U‖log + β‖V ‖log

s.t. uij ≥ 0, vij ≥ 0.

(4)

It is seen that the `log-(pseudo) norm imposed on the basis and representation

matrices renders the model to restrict more accurate sparse constraints, which

may lead to sparser solutions. For NMF methods, multiplicative optimization
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strategies are often adopted. With the `log-(pseudo) norm regularization, it is

seen that it is more challenging to design efficient multiplicative optimization

algorithm for (4). It is noted that model (4) only considers the linear relation-

ships of data in Euclidean space. However, this might be less sufficient since

there often exist nonlinear relationships of data, which are omitted in the above

model. To account for nonlinear structures of the data, we extend the above

model and seek the representation on manifold, which leads to the log-norm

regularized sparse NMF (LS-NMF):

min
U,V
‖X − UV T ‖2F + λTr(V TLV ) + α‖U‖log + β‖V ‖log

s.t. uij ≥ 0, vij ≥ 0,

(5)

where λ ≥ 0 is a balancing parameter and L is the graph Laplacian matrix. It is

seen that with the graph Laplacian, the new model (5) enforces the smoothness

of the data representation from nonlinear kernel space to the low-dimensional

space, such that the learned representation V represents nonlinear structures

of the data. In rest of this section, we will develop an efficient multiplicative

updating rule for the optimization of (5) and provide the corresponding con-

vergence analysis. We will further extend (5) to its robust version in the next

section.

3.2. Optimization

In this subsection, we will design an efficient optimization algorithm for (5)

and present the detailed derivations. The objective in (5) is equivalent to

O =Tr(XXT )− 2Tr(XV UT ) + Tr(UV TV UT )

+ λTr(V TLV ) + α‖U‖log + β‖V ‖log.
(6)

The Lagrangian function of O is

L =Tr(XXT )− 2Tr(XV UT ) + Tr(UV TV UT )

+ λTr(V TLV ) + α‖U‖log + β‖V ‖log + Tr(ΨUT ) + Tr(ΦV T ),
(7)

where Ψ = [ψij ] and Φ = [φij ] are two matrices with ψij and φij being the

Lagrangian multipliers of constraints uij ≥ 0 and vij ≥ 0, respectively. We take
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the partial derivatives w.r.t U and V , respectively, and obtain

∂L
∂U

= −2XV + 2UV TV + α1d×k � (1d×k + U) + Ψ

∂L
∂V

= −2XTU + 2V UTU + 2λLV + β1n×k � (1n×k + V ) + Φ

(8)

where � is the element-wise division operation of two matrices, 1 is matrix of

1’s with size being clarified in the corresponding subscript. Using the Karush-

Kuhn-Tucker (KKT) conditions of ψijuij = 0 and φijvij = 0, we have

− 2(XV )ijuij + 2(UV TV )ijuij + α(1d×k � (1d×k + U))ijuij + ψijuij

=− 2(XV )ijuij + 2(UV TV )ijuij + α
uij

1 + uij
= 0,

(9)

− 2(XTU)ijvij + 2(V UTU)ijvij + 2λ(LV )ijvij + β(1n×k � (1n×k + V ))ijvij + φijvij

=− 2(XTU)ijvij + 2(V UTU)ijvij + 2λ(DV )ijvij − 2λ(WV )ijvij + β
vij

1 + vij
= 0.

(10)

The above equations (9) and (10) lead to the following updating rules of the

proposed model:

uij ← uij
(XV )ij

(UV TV )ij + α 1
2(1+uij)

(11)

vij ← vij
(XTU)ij + λ(WV )ij

(V UTU)ij + λ(DV )ij + β 1
2(1+vij)

, (12)

or equivalently

uij ← uij
(2XV )ij

(2UV TV + α1d×k � (1d×k + U))ij
(13)

vij ←vij
2(XTU + λWV )ij

(2V UTU+2λDV +β1n×k�(1n×k+V ))ij
. (14)

For the convergence of the above updating rules, we will provide the detailed

theoretical analysis in the following subsection. It is noted that the detailed

derivations of optimization and analysis of convergence for (5) are crucial be-

cause they are necessary for the robust model in the next section.

3.3. Convergence Analysis

In this section, we theoretically analyze the convergence of the updating

rules provided in (13) and (14). Regarding the updating rules, we have the
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following theorem.

Theorem 1. The objective O in (5) is non-increasing under the updates in

(13) and (14). The objective function is invariant under these updates if and

only if U and V are at a stationary point.

In the following, we will provide the proof regarding the updates of U and V ,

respectively. To begin the proof, we need to introduce the definition of auxiliary

function, which is described below.

Definition 1. For the functions G(v, v′) and F (v), if the following conditions

G(v, v′) ≥ F (v), G(v, v) = F (v)

are satisfied, then G(v, v′) is an auxiliary function of F (v).

Regarding auxiliary function, it has a useful property, which is provided in

the following lemma.

Lemma 1 ([20]). If G(v, v′) is an auxiliary function of F (v), then F (v) is

non-increasing under the updating rule of

v(t+1) = argmin
v
G(v, v(t)). (15)

Proof. The statement is easily seen according to the following chain of inequal-

ity:

F (v(t+1)) ≤ G(v(t+1), v(t)) ≤ G(v(t), v(t)) = F (v(t)). (16)

It is seen that Lemma 1 guarantees that the objective function value of F (v)

non-increasing if the updating rule of (15) is adopted. Next, we will show that

the updates of (13) and (14) are exactly the updating rule of (15) with proper

auxiliary functions of U and V , respectively.

Since the updating rules are essentially performed in element-wise manner,

it is sufficient to show that the objective function is non-increasing with respect

to each element of the matrix variable. In the following, we first consider the
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updating of V . For V , we denote each of its elements by vab. Correspondingly,

we use Fab to denote the vab-associated part in O. Then it is straightforward

to obtain the first and second derivatives of Fab with respect to vab as follows:

F ′ab =(−2XTU + 2V UTU + 2λLV )ab +
β

1 + vab
, (17)

F ′′ab =2(UTU)bb + 2λLaa −
β

(1 + vab)2
. (18)

Then, we formally have the following lemma, which defines an auxiliary function

for Fab.

Lemma 2. The function

G(v, v
(t)
ab ) =Fab(v

(t)
ab ) + F ′ab(v

(t)
ab )(v − v(t)

ab )

+
(V UTU)ab + λ(DV )ab + β

2(1+v
(t)
ab )

v
(t)
ab

(v − v(t)
ab )2

(19)

is an auxiliary function for Fab(v).

Proof. It is easy to check the second condition for auxiliary function, which is

seen as below:

G(v, v) =Fab(v) + F ′ab(v)(v − v)

+
(V UTU + λDV )ab + β

2(1+v)

v
(v − v)2

=Fab(v).

(20)

To show that the first condition, i.e., G(v, v
(t)
ab ) ≥ Fab(v) holds, we compare

G(v, v
(t)
ab ) with the Tylor expansion series of Fab(v), which is expanded as follows:

Fab(v) =Fab(v
(t)
ab ) + F ′ab(v

(t)
ab )(v − v(t)

ab )

+

[
(UTU)bb + λLaa −

β

2(1 + v
(t)
ab )2

]
(v − v(t)

ab )2.
(21)

Thus, to show G(v, v
(t)
ab ) ≥ Fab(v), we only need to show (19) ≥ (21), which is

equivalent to show

(V UTU)ab + λ(DV )ab + β

2(1+v
(t)
ab )

v
(t)
ab

≥ (UTU)bb + λLaa −
β

2(1 + v
(t)
ab )2

. (22)
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With straightforward algebra, it is easy to see that

(V UTU)ab =

k∑
l=1

v
(t)
al (UTU)lb ≥ v(t)

ab (UTU)bb, (23)

and

λ(DV )ab =λ

n∑
l=1

Dalv
(t)
lb ≥ λDaav

(t)
ab

≥λ(D −W )aav
(t)
ab = λLaav

(t)
ab .

(24)

Thus,
(V UTU)ab + λ(DV )ab + β

2(1+v
(t)
ab )

v
(t)
ab

≥ (V UTU)ab + λ(DV )ab

v
(t)
ab

≥(UTU)bb + λLaa

≥(UTU)bb + λLaa −
β

2(1 + v
(t)
ab )2

.

(25)

Thus, G(v, v
(t)
ab ) is an auxiliary function of Fab(v).

Next, with the above definition 1 and Lemmas 1 and 2, we will prove Theo-

rem 1 in the following.

Proof of Theorem 1. To obtain v
(t+1)
ab , we need to solve the following problem

v
(t+1)
ab = argmin

v
G(v, v

(t)
ab ). (26)

It is seen that G(v, v
(t)
ab ) defined in (19) is quadratic and convex. Thus, (26)

admits solution with first-order optimal condition:

F ′ab(v
(t)
ab ) + 2

(V UTU)ab+λ(DV )ab+
β

2(1+v
(t)
ab )

v
(t)
ab

(v − v(t)
ab ) = 0. (27)

It is seen that(27) leads to

2
(V UTU)ab + λ(DV )ab + β

2(1+v
(t)
ab )

v
(t)
ab

· v

=2(V UTU)ab + 2λ(DV )ab +
β

(1 + v
(t)
ab )
− F ′ab(v

(t)
ab )

(28)
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Hence,

v
(t+1)
ab =v

(t)
ab −F

′
ab(v

(t)
ab )

v
(t)
ab

2(V UTU)ab+2λ(DV )ab+
β

(1+v
(t)
ab )

=v
(t)
ab

2(V UTU)ab+2λ(DV )ab+
β

(1+v
(t)
ab )
−F ′ab(v

(t)
ab )

2(V UTU)ab+2λ(DV )ab+
β

(1+v
(t)
ab )

=v
(t)
ab

2(XTU)ab + 2λ(WV )ab

2(V UTU)ab + 2λ(DV )ab + β

(1+v
(t)
ab )

,

(29)

which essentially results in the updating rule of (14). Since G(v, v
(t)
ab ) is an

auxiliary function for Fab(v), (29) guarantees the non-increasing property of

Fab(v). Hence, the objective O is non-increasing under the update rule of (14).

Mathematically, the matrices U and V are playing similar rules in the model

and thus the proof regarding (13) follows (14). We only need to replace X with

XT and set λ = 0, then the above analysis applies to (13), which concludes the

proof.

Remark. In the above analysis, it is been shown that the value of objective

function is decreasing with the alternative updating rules of U and V . We

define Υ = [UT , V T ]T ∈ R(d+n)×k and treat the updates of (13) and (14) as a

mapping Υ (t+1) =M(Υ (t)). Then, clearly we have Υ ∗ =M(Υ ∗) at convergence.

Following [22, 38], with non-negativity constraint enforced, we expand Υ u

M(Υ ∗) + (∂M/∂Υ )(Υ −Υ ∗), which indicates that ‖Υ (t+1)−Υ ∗‖ ≤ ‖∂M/∂Υ‖ ·

‖Υ (t)−Υ ∗‖ under an appropriate matrix norm. In fact, ‖∂M/∂Υ‖ 6= 0 generally

holds. Thus, (13) and (14) roughly have a first-order convergence rate.

4. Robust Log-norm Regularized Sparse NMF

In this section, we further develop a robust model based on the LS-NMF,

which is named robust log-norm regularized sparse NMF model (RLS-NMF). In

particular, with the fundamentals of the LS-NMF in Section 3, we will present
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the detailed formulation, optimization, and convergence analysis for RLS-NMF

in this section.

4.1. Formulation of RLS-NMF

It is noted that the LS-NMF model raised in Section 3 seeks the nonnegative

representation with original data. Unfortunately, data are often observed and

collected with noise, which severely degrades the learning performance. Thus,

there is a demanding need to develop more robust model to handle noise ef-

fects and promote the learning performance. To enhance the robustness, we

adopt the more robust measure `2,1-norm to minimize the residual instead of

the Frobenius-norm, which leads to

min
U,V
‖X − UV T ‖2,1 + λTr(V TLV ) + α‖U‖log + β‖V ‖log

s.t. uij ≥ 0, vij ≥ 0,

(30)

where, for a matrix M , ‖M‖2,1 =
∑
j ‖mj‖2 is the `2,1-norm with column-wise

sparsity. Here, the `2,1-norm is invariant and helps keep spatial information of

the examples. However, the optimization of `2,1 with nonnegative constraints

is difficult. To facilitate the optimization, we further decompose the data as

X = UV T + S, where the matrix S with column-wise sparsity is introduced to

account for the noise. With the above assumption, we relax model (30) to the

following

min
U,V,S

‖X − S − UV T ‖2F + γ‖S‖2,1

+ λTr(V TLV ) + α‖U‖log + β‖V ‖log

s.t. uij ≥ 0, vij ≥ 0,

(31)

where γ ≥ 0 is a balancing parameter. It is seen that the relaxed model (31)

is easier to solve and the balancing parameter γ allows the model to have more

freedom. It is noted that the `2,1-norm is defined as the summation of `2-norms

of all column vectors in a matrix, where the summation actually performs in a

way similar to `1-norm. As pointed out in earlier section that the `1-norm might

be less efficient in approximating the true sparsity, we design the following novel

14



`2,log-(pseudo) norm to better restrict column-wise sparsity:

‖M‖2,log =
∑
j

log(1 + ‖mj‖2). (32)

For any type of noise, the expectation of the sparsity measurement by (32) is less

than the `2,1-based measurement. Our explanation of the above statement is as

follows. Let c be a column of S and we denote the elements of c by c1, c2, · · · , cd.

For any types of distribution of ci for i = 1, · · · , d, the expectation of the log-

based approximation is generally less than the `2-based approximation. Let

E(·) be the expectation and f∑d
i=1 c

2
i
(y) be the probability density function for

y =
∑d
i=1 c

2
i , then the above conclusion can be formally analyzed in the following

way:

E

(
log

(
1 +

√∑d

i=1
c2i

))
=

∫ +∞

0

log(1 +
√
y)f∑d

i=1 c
2
i
(y)dy

<

∫ +∞

0

√
yf∑d

i=1 c
2
i
(y)dy = E

(√∑d

i=1
c2i

)
.

(33)

The above inequality generally holds for all columns of S, i.e., s1, · · · , sn, thus

it is straightforward that

E
(
‖S‖2,log

)
= E

(∑n

i=1
log(1 + ‖si‖2)

)
=
∑n

i=1
E(log(1 + ‖si‖2))

<
∑n

i=1
E(‖si‖2) = E

(∑n

i=1
‖si‖2

)
= E(‖S‖2,1).

(34)

Moreover, if si only contains essentially small values, then it is natural that si

contains noise and is indeed sparse. Thus, for such a column of S, it is essentially

important that the approximation is close to 0 rather than 1 to distinguish

noise effects and useful information. It is noted that log(1 +
√
x) <

√
x holds

for small x > 0, which indicates that the log-based approximation is closer to

0 than the `2-based approach and thus is more accurate in approximating the

real sparsity. Thus, it is expected that the log-based approximation is more

accurate in approximating the real sparse indicator of the columns than the

`2-based approach.

We incorporate the `2,log-(pseudo) norm into (31), which leads to the robust
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log-norm regularized sparse NMF model (RLS-NMF):

min
U,V,S

‖X − S − UV T ‖2F + γ‖S‖2,log

+ λTr(V TLV ) + α‖U‖log + β‖V ‖log

s.t. uij ≥ 0, vij ≥ 0.

(35)

For the optimization and convergence analysis of the RLS-NMF model in (35),

we will present them in details in rest of this section.

4.2. Optimization of RLS-NMF

For S-minimization, the sub-problem is

min
S
‖X − S − UV T ‖2F + γ‖S‖2,log. (36)

We formally provide the following theorem to solve this type of optimization

problem.

Theorem 2 (`2,log-shrinkage operator). Given matrix Y and a nonnegative

parameter τ , the following problem

min
W

1

2
‖Y −W‖2F + τ‖W‖2,log (37)

admits closed-form solution in a column-wise manner:

wi =


ξ
‖yi‖2 yi, if fi(ξ)≤ 1

2‖yi‖
2
2, (1 + ‖yi‖2)2 > 4τ , ξ > 0

0, otherwise,

(38)

where fi(x) = 1
2 (x− ‖yi‖2)2 + τ log(1 + x), and ξ = ‖yi‖2−1

2 +
√

(1+‖yi‖2)2

4 − τ .

Proof. The objective of (37) can be rewritten in a column-wise manner as

min
wi

n∑
i=1

{1

2
‖yi − wi‖22 + τ log(1 + ‖wi‖2)

}
, (39)

such that each wi can be obtained by column independently. For wi, the sub-

problem is

min
wi

1

2
‖yi − wi‖22 + τ log(1 + ‖wi‖2). (40)
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We may treat wi as a special matrix and perform thin SVD to it. Then it is

seen that wi has exactly one singular value, which is σ(wi) =
√
wTi wi = ‖wi‖2,

where σ(·) is the singular value of the input vector. Thus, (40) is equivalent to

min
wi

1

2
‖yi − wi‖22 + τ log(1 + σ(wi)). (41)

Hence, according to [30], the solution to (41) is obtained with

wi = uiσ
∗(wi)v

T
i , (42)

where ui and vi are left and right singular vectors of yi and σ∗(wi) = argminx≥0
1
2 (σ(yi)−

x)2 + τ log(1 + x). Thus, by solving the equation, we have

σ∗(wi)=


ξ, if fi(ξ)≤fi(0), (1 + σ(yi))

2>4τ , ξ > 0,

0, otherwise,

(43)

with fi(x) = 1
2 (x−σ(yi))

2 +τ log(1+x), and ξ = σ(yi)−1
2 +

√
(1+σ(yi))2

4 − τ . It is

straightforward that yi = yi
‖yi‖2 ‖yi‖2[1] is a thin SVD of yi, where [1] is a special

matrix with 1 being the only one element. We substitute ui = yi
‖yi‖2 , σ(yi) =

‖yi‖2, and vi = [1] into above equations, which leads to (38) and concludes the

proof.

Remark. Regarding the problem (37), it is easy to verify that for a given Y , a

larger τ generally leads to a potentially sparser solution for W . To see this, we

consider the three conditions given in (38). We only consider the case 0 ≤ τ <

(1+‖yi‖2)2

4 , since τ ≥ (1+‖yi‖2)2

4 directly returns a zero matrix as the solution

for W . Then, it is straightforward to see that for τ ′ > τ , the corresponding

ξ′ = ‖yi‖2−1
2 +

√
(1+‖yi‖2)2

4 − τ ′ < ξ. Thus, given Y , Prob(ξ′ > 0|Y ) < Prob(ξ >

0|Y ), implying that the third condition is more difficult to satisfy for τ ′. For

the first condition, our analysis is as follows. Let e = 1+‖yi‖2
2 , then

fi(ξ) =
1

2
(ξ − ‖yi‖2)2 + τ log(1 + ξ)

=
1

2
(−e+

√
e2 − τ)2 + τ log(e+

√
e2 − τ)

= (e2 − e
√
e2 − τ − τ

2
) + τ log(e+

√
e2 − τ).

(44)
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We treat (44) as a function of τ and let g(τ) = fi(ξ), then it is seen that

g′(τ) =
e

2
√
e2 − τ

− 1

2
+ log(e+

√
e2 − τ) +

τ

e+
√
e2 − τ

· −1

2
√
e2 − τ

=
e(e+

√
e2 − τ)−

√
e2 − τ(e+

√
e2 − τ)− τ

2
√
e2 − τ(e+

√
e2 − τ)

+ log(e+
√
e2 − τ)

=
e2 + e

√
e2 − τ − e

√
e2 − τ − e2 + τ − τ

2
√
e2 − τ(e+

√
e2 − τ)

+ log(e+
√
e2 − τ)

= log(e+
√
e2 − τ)

= log
(
(1 + ‖yi‖2)/2 +

√
(1 + ‖yi‖2)2/4− τ

)
= log(1 + ξ) > 0.

(45)

Thus, it is straightforward that g(τ ′) > g(τ) for τ ′ > τ , which implies that

Prob(g(τ ′) ≤ ‖yi‖
2
2

2 |Y ) < Prob(g(τ) ≤ ‖yi‖
2
2

2 |Y ). Thus, the first condition is also

more difficult to satisfy for τ ′. In summary, it is seen that the conditions in (38)

are more difficult to satisfy for a larger value of τ , which suggests that a larger

τ potentially leads to a larger number of zero columns for w and thus leads to

a potentially sparser solution.

For ease of representation, we denote the `2,log-shrinkage operator in (38) as

Sτ (Y ). Then S admits a closed-form solution with the `2,log-shrinkage operator:

S = S γ
2
(X − UV T ). (46)

To solve U and V , the associated sub-problem is

min
U,V
‖X − S − UV T ‖2F + λTr(V TLV ) + α‖U‖log

+ β‖V ‖log s.t. uij ≥ 0, vij ≥ 0.

(47)

It is seen that the above problem is similar to (5) except that the factorization

is performed on X−S in (47) instead of X. To derive updating rules for U and

V in a similar way to (13) and (14), we first provide the following theorem to

guarantee the non-negativity of X − S, which is essential for the optimization

and nonnegativity of U and V .

Theorem 3. Given nonnegative data X and values of U and V , the matrix

X − S is nonnegative under the updating rule of (46).
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Proof. We denote M = X − UV T , then it is easy to see that the optimal sj

is either a zero vector or scaled mj with a positive scaling factor ξ/‖mi‖2. We

consider the following two cases.

1) For the columns that sj = 0, it is easy to verify that xj − sj = xj , which

is nonnegative.

2) For the columns that sj 6= 0, it is easy to see that

ξ =
‖mj‖2 − 1

2
+

√
(1 + ‖mj‖2)2

4
− τ

≤ ‖mj‖2 − 1

2
+

√
(1 + ‖mj‖2)2

4
=
‖mj‖2 − 1

2
+

1 + ‖mj‖2
2

= ‖mj‖2.
(48)

Thus, it is seen that the corresponding sj is obtained by scaling mj with a factor

ξ
‖mj‖2 ≤ 1, which indicates that xj−sj = mj−sj+(UV T )j =

‖mj‖2−ξ
‖mj‖2 +(UV T )j

is nonnegative.

It is seen that all columns of X − S are nonnegative and thus the matrix

X − S is nonnegative.

Theorem 3 is important in that it guarantees the nonnegativity of U and V

with the following updating rules, which is essential to the nature of parts-based

representation:

uij←uij
(2(X − S)V )ij

(2UV TV + α1d×k � (1d×k + U))ij
(49)

vij←vij
2((X−S)TU+λWV )ij

(2V UTU+2λDV +β1n×k�(1n×k + V ))ij
. (50)

4.3. Convergence Analysis for RLS-NMF

For the updating rules of (46), (49) and (50), it is guaranteed that the

objective function value sequence converges. We formally provide the theoretical

result with the following theorem.

Theorem 4. Given nonnegative initial values of U and V , the objective func-

tion of (35) is monotonally decreasing under the updating rules of (46), (49)

and (50).

19



Proof. Given nonnegative initial values of U and V , X − S is nonnegative.

Then the proof of U and V follows Theorem 1 by replacing X with X − S.

Thus, the objective function is non-increasing under the updating rules of (49)

and (50). For the updating rule of (46), since it is the optimal solution to

(36), the objective function is guaranteed to be non-increasing. Due to the

nonnegativity of the objective function (35), the value sequence must converge

under the updating rules (46), (49) and (50).

5. Experiments

In this section, we conduct extensive experiments to testify the effectiveness

of the proposed method. In particular, we compare our method with several

state-of-the-art NMF methods, including NMF [8], weighted NMF (WNMF)

[39], orthogonal NMF (ONMF) [40], convex NMF (CNMF) [22], graph regu-

larized NMF (GNMF) [20], robust manifold NMF (RMNMF) [21], and semi

NMF (Semi-NMF) [22]. We testify all methods on 8 widely used benchmark

data sets, including Yale [41], Jaffe [42], ORL [43], AR [44], Extended Yale B

(EYaleB) [45], COIL20 [46], Pendigits [47], and Semeion [48]. All examples of

these data sets are scaled to have a unit `2 norm. Three evaluation metrics are

used in the experiment, including clustering accuracy, normalized mutual infor-

mation (NMI), and purity. All these metrics have values ranging within [0, 1],

where the higher values represent better clustering results. For these metrics,

we briefly introduce them in the following. Clustering accuracy measures the

extent to which each cluster contains data points from the same class. It is

defined as

Accuracy =

∑n
i=1 δ(map(ri), li)

n
, (51)

where n is the total number of data points, ri and li are the predicted and true

labels of the data point xi, respectively, δ(a, b) is a delta function that returns

1 when a = b otherwise 0, and map(ri) is a mapping function that maps ri to

an equivalent label by permutation such that (51) is maximized. Normalized
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Figure 1: Examples of the data sets used in our experiments. Because Pendigits data set has

low resolution and it is hard to observe visual feature details, we do not show examples from

this data set.

mutual information measures the quality of the clusters, which is defined as

Normalized mutual information =

∑N
i=1

∑N
i=1 ni,j log

ni,j
nin̂j√

(
∑N
i=1 ni log ni

n )(
∑N
j=1 n̂j log

n̂j
n )

, (52)

where N is the number of clusters, ni and n̂j denote the sizes of the i-th clus-

ter and j-th class, respectively, and ni,j denotes the number of data points in

the intersection between them. Purity is a simple and transparent evaluation

measure, which measures the extent to which each cluster contains data points

from primarily one class. It is defined as

Purity =
1

n

N∑
i=1

max
j

(ni,j). (53)

For all methods in comparison, we follow the following settings for parame-

ters. We tune all the balancing parameters within the set {0.001, 0.01, 0.1, 1, 10,

100, 1000} for all methods. For the graph Laplacian that is used in methods

such as GNMF, RMNMF, and RLS-NMF, without loss of generality, we use

the binary weighting strategy with 5 neighbors kept in the similarity graph ma-
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trix. For all methods in comparison, the exact number of clusters of the data is

provided to determine k, which follows a common setting in literature [23, 20].

After we obtain the factorization from each method, K-means clustering is per-

formed on the representation matrix V to obtain the final clustering result. For

all methods, we tune the parameters with all possible combinations and report

the best performance.

Table 1: Clustering Performance on 8 Benchmark Data Sets

Data
Accuracy (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

Semeion 52.86 63.03 43.57 55.56 45.20 50.09 57.94 68.49 68.86

EYaleB 12.34 16.16 16.86 14.79 9.61 11.43 24.61 18.64 37.20

ORL 53.50 55.75 56.25 52.25 23.00 49.00 57.25 62.25 68.50

AR 10.46 22.69 27.54 26.00 11.92 22.85 32.62 26.85 29.23

Jaffe 85.45 97.65 95.77 90.61 69.95 82.63 97.65 98.59 98.59

Yale 21.82 43.03 44.85 44.85 40.00 41.21 40.00 48.48 48.48

COIL20 67.43 82.71 56.39 63.40 56.87 57.36 61.74 85.97 85.97

Pendigits 77.97 79.20 49.55 73.62 60.12 58.58 72.78 88.16 88.26

Data
Normalized Mutual Information (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

Semeion 43.50 58.88 35.44 44.82 37.96 40.12 47.91 61.69 62.98

EYaleB 21.59 25.86 28.46 26.73 14.39 16.32 43.32 29.12 44.11

ORL 74.51 74.72 73.08 72.78 43.51 69.76 75.39 76.41 81.44

AR 25.71 43.49 44.04 43.43 27.12 41.23 49.46 44.53 44.72

Jaffe 85.40 96.50 93.54 89.44 70.65 84.46 96.48 98.13 98.13

Yale 29.25 48.34 48.20 51.09 41.37 43.99 47.52 51.50 51.50

COIL20 76.00 90.59 66.65 72.73 70.53 70.94 73.92 90.32 90.32

Pendigits 71.09 73.02 40.48 66.07 60.29 58.84 67.27 83.88 84.06

Data
Purity (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

Semeion 54.05 65.29 45.95 56.56 45.20 54.74 58.82 68.49 68.86

EYaleB 13.01 18.39 17.94 15.29 10.65 09.32 25.43 19.26 38.19

ORL 60.50 62.25 61.00 58.50 25.00 47.25 63.25 65.75 72.25

AR 11.08 25.23 29.31 28.92 13.00 20.38 35.38 29.00 31.62

Jaffe 85.45 97.65 95.77 90.61 74.18 82.36 97.65 98.59 98.59

Yale 26.06 44.24 44.85 47.27 40.61 40.61 41.21 48.48 48.48

COIL20 69.24 84.44 58.13 64.65 60.07 60.14 63.61 86.25 86.25

Pendigits 77.97 79.20 49.57 73.62 65.78 65.01 72.78 88.16 88.26

The top three performances are highlighted in red, blue, and green, respectively.

5.1. Comparison of Clustering Performance

In this test, we conduct extensive experiments to testify the effectiveness

of the proposed method. For all the methods, we follow the settings as de-

scribed above and report the detailed clustering performance in Table 1. It

is observed that the proposed method generally achieves the best performance

with significant improvements. In particular, the RLS-NMF achieves the best

performances with significant improvements on 7 out of 8 data sets in clustering

accuracy and purity, and 6 out of 8 data sets in NMI, respectively. On EYaleB

and ORL data sets, the RLS-NMF improves the performance by about 10% in

accuracy and purity. In the other cases, the RLS-NMF achieves the top second
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Table 2: Clustering Performance on Corrupted Jaffe Data Set

Corruption

Level

Accuracy (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

20% 77.00 89.20 76.53 84.51 75.59 68.08 90.61 89.20 92.96

40% 61.50 77.93 65.73 67.14 56.34 58.69 63.38 76.53 80.75

60% 52.11 57.75 55.40 50.23 48.83 43.66 50.23 68.54 69.95

Corruption

Level

Normalized Mutual Information (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

20% 79.30 87.52 75.51 81.80 76.80 70.93 86.28 86.82 89.31

40% 58.66 73.20 62.11 69.84 57.71 54.51 60.30 73.94 78.29

60% 49.25 59.07 50.11 47.97 44.75 41.26 47.96 62.63 66.41

Corruption

Level

Purity (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

20% 80.75 89.20 79.34 84.51 76.53 72.77 90.61 89.20 92.96

40% 62.44 77.93 67.61 71.83 61.50 59.62 63.38 76.53 80.75

60% 54.93 60.56 56.34 54.46 50.23 46.01 52.11 69.48 69.95

Table 3: Clustering Performance on Corrupted Yale Data Set

Corruption

Level

Accuracy (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

20% 36.36 36.36 38.18 38.18 34.55 30.30 39.39 44.85 46.67

40% 31.52 39.39 38.18 38.79 27.27 34.55 27.88 40.00 43.64

60% 30.91 32.73 30.91 31.52 26.06 32.73 31.52 39.39 40.00

Corruption

Level

Normalized Mutual Information (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

20% 39.55 42.21 41.38 43.43 39.71 36.98 46.60 46.62 49.15

40% 35.96 43.03 40.84 44.11 33.55 38.08 34.39 44.33 44.62

60% 35.51 35.90 34.48 35.39 32.03 34.99 35.22 42.59 44.09

Corruption

Level

Purity (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

20% 37.58 38.79 40.00 40.00 37.58 32.73 43.64 44.85 48.48

40% 34.55 40.61 38.18 40.00 30.91 35.15 29.09 40.00 43.64

60% 33.33 32.73 34.55 32.73 29.70 34.55 33.94 40.00 41.21

performance with comparable performance to the best method. For example, on

COIL20 data set, the RLS-NMF has the top performance in accuracy and pu-

rity, respectively. In NMI, the RSL-NMF achieves the top second performance,

which is slightly inferior to the GNMF by 0.27%. It is noted that among all

baseline methods, GNMF and Semi-NMF are among the most competing ones.

In particular, Semi-NMF has the best performance on AR data set in all metrics

while GNMF has the best performance in NMI on COIL20 data set. In all other

cases, these two methods have inferior performances to the RLS-NMF. Gener-

ally, we observe that the RLS-NMF has better performance than the LS-NMF.

However, on some data sets, such as Jaffe and COIL20, the RLS-NMF has the

same performance as the LS-NMF. We explain this as follows: In such data sets

as Jaffe and COIL20, the noise effects are not strong, which can be observed

23



Table 4: Clustering Performance on Corrupted COIL20 Data Set

Corruption

Level

Accuracy (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

20% 60.76 79.31 56.32 64.79 53.75 60.49 59.51 80.97 83.82

40% 56.53 67.85 58.89 56.53 51.32 58.47 56.94 76.25 80.49

60% 61.46 67.99 56.74 61.60 54.48 56.39 61.25 71.32 71.32

Corruption

Level

Normalized Mutual Information (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

20% 70.79 85.60 68.89 72.60 66.88 71.60 70.91 87.13 88.79

40% 69.36 74.60 69.48 69.36 63.75 68.83 69.60 79.99 83.14

60% 69.32 75.54 67.75 71.19 62.87 66.77 68.12 77.30 77.30

Corruption

Level

Purity (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

20% 61.46 80.76 57.99 65.90 58.82 66.11 61.53 82.78 84.10

40% 58.75 71.46 61.18 58.75 56.04 62.78 57.92 76.32 80.49

60% 62.78 69.03 60.35 62.92 56.87 58.54 61.81 73.26 73.26

The top three performances are highlighted in red, blue, and green, respectively.

from Figure 1. Thus, we believe that the noise term and the `2,log-(pseudo)

norm is not essential in this case. However, on other data sets with heavy noise

effects, such as EYaleB data set, we can see that the RLS-NMF has signifi-

cantly improved performance than the LS-NMF, which verifies the effectiveness

and necessity of the robust model. In the next test, we will further testify the

RLS-NMF on data sets with artificial noise to confirm its effectiveness.

5.2. Comparison on Noisy Data with Random Corruptions

To further testify the effectiveness and robustness to noise effects of the

RLS-NMF model, we conduct experiments on noisy data. In particular, we

consider two types of noise in our experiments, including random corruption and

Gaussian noise. In this subsection, we first conduct experiments on randomly

corrupted data. Throughout this subsection, we keep the same settings for all

methods as in Section 5.1. Without loss of generality, we conduct experiments

on Yale, Jaffe, and COIL20 data sets, where we randomly remove 20%, 40%,

and 60% elements from these data sets, respectively. We show some examples of

the corrupted data examples in Figure 2. It is seen that the images are severely

damaged with the 60% level of corruption, which makes the clustering of such

data more challenging. We report the comparison results in Tables 2 to 4. It

is observed that the RLS-NMF obtains the best performances in all cases with

significant improvements over the baseline methods. It should be noted that on
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Figure 2: Examples of the corrupted images from Jaffe (on top) and Yale (on bottom) data

sets. From left to right are images with 20%, 40%, and 60% level corruptions, respectively.

original Yale and Jaffe data sets, the RLS-NMF obtains the same performance

with the LS-NMF. However, with heavy noise effects, the RLS-NMF shows

superior performance to the LS-NMF. These observations show the improved

robustness of the robust model on randomly corrupted data sets.

5.3. Comparison on Noisy Data with Gaussian Noise

In this subsection, we further evaluate the proposed method on data sets

with Gaussian noise. In particular, we test all methods under different noise

level conditions. Without loss of generality, we conduct experiments using Yale,

ORL, COIL20, and Semeion data sets. In our test, we add zero mean Gaussian

noise to the data sets with variance varies within {0.0052, 0.012, 0.0152}, which

are referred as light, moderate, and heavy noise conditions in this test. For each

data set, we map the data to ensure nonnegativity by subtracting the smallest

value. We show some examples of ORL and COIL20 data sets for illustration of
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Table 5: Clustering Performance on ORL Data Set with Gaussian Noise

Variance
Accuracy (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

0.005 56.50 56.00 57.75 55.50 18.00 39.50 47.75 61.00 63.50

0.010 49.75 52.75 52.16 49.75 15.75 28.50 32.75 54.25 54.75

0.015 33.50 39.25 37.96 33.50 17.25 23.00 25.50 40.75 44.00

Variance
Normalized Mutual Information (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

0.005 73.61 73.86 62.18 73.99 37.39 59.44 65.01 75.86 76.52

0.010 67.32 69.67 69.10 67.32 34.09 49.39 51.49 69.97 73.17

0.015 56.62 59.26 53.42 56.62 34.68 43.61 44.53 58.25 61.45

Variance
Purity (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

0.005 60.75 60.00 57.76 61.00 19.00 43.50 52.00 64.50 66.00

0.010 54.75 58.05 55.83 54.75 17.00 32.25 36.25 57.75 60.25

0.015 37.75 43.25 42.85 37.75 17.50 25.00 28.00 44.75 48.25

Table 6: Clustering Performance on Yale Data Set with Gaussian Noise

Variance
Accuracy (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

0.005 40.61 43.03 43.89 41.82 24.85 38.79 41.82 48.48 49.70

0.010 40.00 44.24 39.77 40.00 32.12 35.15 36.36 43.03 48.48

0.015 36.36 41.21 37.56 40.00 23.64 32.73 36.36 44.85 46.06

Variance
Normalized Mutual Information (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

0.005 45.68 45.03 44.66 45.87 32.26 43.55 47.74 50.59 49.04

0.010 41.76 49.16 41.06 41.76 37.92 38.28 45.41 44.32 50.92

0.015 40.02 43.34 39.98 42.47 26.36 34.47 42.42 49.71 49.03

Variance
Purity (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

0.005 41.21 45.45 43.89 43.03 29.70 40.00 46.06 49.09 49.70

0.010 41.82 45.45 39.97 41.82 33.33 35.76 38.79 44.24 49.09

0.015 38.79 43.03 37.56 40.61 24.24 33.33 36.97 46.67 49.09

the noise effects in Figure 3. The other experimental settings remain the same

as those in Sections 5.1 and 5.2. We report the clustering results in Tables 5 to 7.

As the noise becomes heavier, it is observed that all methods have significantly

reduced performances, which confirms the adverse effects of noise. Generally, we

can see that the LS-NMF and RLS-NMF obtain the best performances among

all methods. Moreover, the RLS-NMF has relatively better performance than

the LS-NMF. For example, the RLS-NMF has slightly improved performance

over LS-NMF on COIL20 data set under the light noise condition. However,

the RLS-NMF has significantly improved performance over LS-NMF on COIL20

data set under moderate and heavy noise conditions, which, again, confirms the

enhanced robustness of the RLS-NMF model and the effectiveness of using the

`2,log-norm.
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Table 7: Clustering Performance on COIL20 Data Set with Gaussian Noise

Variance
Accuracy (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

0.005 58.75 79.17 77.35 63.40 47.29 59.65 60.28 83.54 83.96

0.010 64.24 77.64 73.33 64.24 26.94 61.32 65.59 80.76 82.01

0.015 67.64 72.22 70.09 59.93 19.79 57.50 61.32 74.24 77.50

Variance
Normalized Mutual Information (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

0.005 73.76 85.85 85.07 74.30 56.95 70.90 70.91 90.35 90.63

0.010 76.03 84.98 85.59 76.03 38.89 70.72 72.21 87.39 88.43

0.015 75.95 79.03 77.74 72.72 28.28 69.76 68.40 79.47 80.98

Variance
Purity (%)

NMF GNMF RMNMF WNMF CNMF ONMF Semi-NMF LS-NMF RLS-NMF

0.005 62.78 80.03 79.17 65.35 50.07 62.64 62.99 86.39 86.45

0.010 65.63 80.00 75.56 65.63 30.90 62.78 66.87 80.97 82.15

0.015 69.10 75.00 73.21 62.64 22.36 59.24 61.60 74.31 78.54

Figure 3: Examples of the images with Gaussian noise from ORL (on top) and COIL20 (on

bottom) data sets. From left to right are images with Gaussian noise with variance being

0.0052, 0.012, and 0.0152, respectively.

5.4. Parameter Sensitivity

For unsupervised learning methods, it is difficult to determine optimal pa-

rameters in real-world applications. Thus, it is important that unsupervised

method performs well insensitively to parameters. In this test, we show the
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Figure 4: Performance changes of RLS-NMF with respect to γ, where α and β are fixed to be

the optimal ones used in Section 5.1, respectively.

Figure 5: Performance changes of RLS-NMF with respect to α and β on different data sets,

where γ is fixed to be the optimal one used in Section 5.1.

sensitivity of RLS-NMF to the balancing parameters. Without loss of gener-

ality, we show the results on four data sets, including COIL20, Jaffe, ORL,

and Semeion. On other data sets, we can observe similar patterns. Specifi-

cally, we conduct experiments from two perspectives. That is, we first show

the effects of parameter γ and then show how the combination of parameters

{α, β} affects the final clustering performance of RLS-NMF, respectively. For
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Figure 6: Examples of convergence curves of the LS-NMF (on top) and RLS-NMF (on bottom)

on different data sets.

γ, we fix α and β to be the ones used in Section 5.1 and vary γ within the

set {0.001, 0.01, 0.1, 1, 10, 100, 1000}. We show the results in Figure 4. It is ob-

served that with a broad range of values for γ, the RLS-NMF can achieve good

performance. We can also observe that the RLS-NMF tends to perform better

with larger γ values, which might be explained that larger γ values render the

RLS-NMF better account for noise effects.

For {α, β}, we fix γ to be the ones used in Section 5.1 and vary α and β within

the set {0.001, 0.01, 0.1, 1, 10, 100, 1000}. We show the results in Figure 5. It

is seen that the RLS-NMF obtains relatively high performance within a broad

range of parameter selections. In particular, the RLS-NMF is insensitive to

α and small β values tend to be more effective. We observe similar patterns

on other data sets, which suggests us to set small values for β in real-world

applications.

5.5. Convergence Analysis and Time Comparison

In Sections 3.3 and 4.3, we have provided theoretical analysis of the con-

vergence of the objective value of the LS-NMF and RLS-NMF methods. In

this section, we further provide experimental results to verify the convergent

property of the optimization algorithms. Without loss of generality, we con-

duct experiments on four data sets, including Yale, Semeion, Jaffe, and EYaleB,

where we plot how the value of objective function changes with respect to the it-
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Figure 7: Empirical results on convergence rates of different methods: (a)-(b) curves of LS-

NMF and RLS-NMF on all data sets, respectively; (c)-(d) comparison of all methods on

EYaleB and Semeion data sets, respectively.

eration numbers for both LS-NMF and RLS-NMF. For each data set, we fix the

parameters to be the ones used in Section 5.1, which lead to the highest cluster-

ing performance. We show the curves of the first 200 iterations in Figure 6. It is

observed that the objective value sequences on these data sets indeed converge,

which empirically verifies the convergent property of the proposed algorithms.

Moreover, we observe that the proposed algorithms generally converge within

about 100 iterations, which implies their fast convergence and efficiency.
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Figure 8: Comparison of time cost of all methods on different data sets.

Then, we further empirically investigate the convergence rate of the proposed

algorithms. In particular, we plot the values of
{ |f(t+1)−f∗|
|f(t)−f∗|

}
in our experiment,

where {f (t)} denotes the objective value sequence and f∗ denotes the convergent

value of {f (t)}. As seen in above test, the proposed LS-NMF and RLS-NMF

algorithms converge within about 200 iterations. Thus, in this test we treat

f (500) as the empirical value of f∗, where 500 is sufficiently large to guarantee

the convergence of {f (t)}, and show the results in ????. It is seen that, as far as

can be observed, the values of |f
(t+1)−f∗|
|f(t)−f∗| are always less than 1, which indicates

that the sequence {f (t)} is convergent with a linear convergence rate. Without

loss of generality, we test all algorithms on EYaleB and Semeion data sets to

compare their convergence rates and show the results in ????. It is seen that the

curves generally imply that these methods have a linear convergence rate, which

basically suggests that all the methods have comparable convergence rates.

Moreover, we test the time cost for all methods and show the results in

Figure 8, where all algorithms are terminated after 500 iterations. This test is

conducted with MATLAB 2018a on a workstation with Intel(R) Xeon(R) W-

2133 CPU. It is seen that the LS-NMF and RLS-NMF have at least comparable

efficiency to other methods, such as ONMF. Considering that the LS-NMF

and RLS-NMF have superior performance to the other baseline methods in

clustering, such comparable speed, though not the fastest, is indeed acceptable.
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Figure 9: Visual examples of the basis vectors learned by various methods from ORL data set

by different methods.

5.6. Sparsity Learning

In this test, we investigate the ability of the proposed method in sparsity

learning with the `log-(pseudo) norm regularization. Throughout this test, we

fix the parameters to those used in Section 5.1 for all methods, where these pa-

rameters lead to the best clustering performance. As pointed out in [20], sparser

basis learned by NMF models implies better parts-based representation. In this

test, we first show some examples of the basis learned by different methods.

Without loss of generality, we conduct this test on ORL data set. The learned

basis vectors have 1024 dimensions and we reshape them to size of 32×32 for

visual illustration. Then we visually show the reshaped basis vectors as gray

scale images in Figure 9. It is observed that the basis images learned by Semi-

NMF are not sparse, which is explained by the mixed signs of the basis. Among

all methods, RLS-NMF generates the sparsest basis vectors as can be observed

from the results. The sparser basis vectors suggest that RLS-NMF can learn

better parts-based representation than the baseline methods, which implies its

effectiveness in finding a low-dimensional representation of the data.
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Figure 10: Comparison of LS-NMF and the `1 approach in sparse learning.

Figure 11: Visual examples of the original and reconstructed images. (a)-(b) are from Yale

while (c)-(d) are from ORL, respectively.

Moreover, to verify the effectiveness of the `log-(pseudo) norm in restricting

sparseness of the factor matrices, we compare the LS-NMF with the `1-norm

approach. The `1-norm approach is obtained by replacing the `log-(pseudo)

norm in (4) with the `1-norm, where multiplicative updating rules are used

in a way similar to LS-NMF. For both approaches, we show the results on

several data sets, including AR, EYaleB, Yale, and ORL, where the parameters

are tuned such that best clustering performance is observed. We show how

the sparsity of U and V matrices changes with respect to the iterations in

Figure 10, where the sparsity follows the definition given in [24]. It is seen

that the LS-NMF has superior performance in restricting the sparsity of the

basis and representation vectors, which verifies the effectiveness of the proposed

approach in learning parts-based representation.
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5.7. Data Reconstruction

To better understand the factorization results of the proposed method, we

further show some examples of reconstructed data by RLS-NMF. Without loss

of generality, we show some reconstructed example images from Yale and ORL

data sets in Figure 11. The parameters are set to be the ones used in Sec-

tion 5.1, which leads to the best clustering performance. It is observed that the

reconstructed images well capture the key features of original images. More-

over, some outliers like glasses are significantly removed in the reconstructed

images. These observations verify the effectiveness of the RLS-NMF in finding

parts-based representations.

6. Conclusion

In this paper, we propose a new type of sparse NMF methods, including the

LS-NMF and RLS-NMF, with the latter being the robust version of the former.

The RLS-NMF learns the basis and representation matrices with `log-(pseudo)

norm, which enhances the sparseness of the learned parts-based representation.

Moreover, to enhance the robustness of the RLS-NMF model to noise effects, a

noise term is introduced, which is restricted to be example-wisely sparse with

the novel `2,log-(pseudo) norm. Efficient multiplicative updating rules are devel-

oped for optimization, which have theoretical convergence guarantee. Extensive

experiments verify the effectiveness of the RLS-NMF in clustering and data

representation.
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