
Ad-Hoc Explanation for Time Series

Classification

A. Abanda amaiabanda@gmail.com
1
, U. Mori usue.mori@ehu.es

2
,

and J. A. Lozano ja.lozano@ehu.eus
1,2

1
Basque Center for Applied Mathematics (BCAM), Mazarredo

Zumarkalea, 14, 48009 Bilbao, Spain
2
Department of Computer Science and Artificial Intelligence,

University of the Basque Country UPV/EHU, Manuel de

Lardizabal 1, 20018 Donostia-San Sebastian, Spain

August 29, 2022

Abstract

In this work, a perturbation-based model-agnostic explanation

method for time series classification is presented. One of the main

novelties of the proposed method is that the considered perturbations

are interpretable and specific for time series. In real-world time series,

variations in the speed or the scale of a particular action, for instance,

may determine the class, so modifying this type of characteristic leads to

ad-hoc explanations for time series. To this end, four perturbations or

transformations are proposed: warp, scale, noise, and slice. Given a

transformation, an interval of a series is considered relevant for the

prediction of a classifier if a transformation in this interval changes the

prediction. Another novelty is that the method provides a two-level

explanation: a high-level explanation, where the robustness of the

prediction with respect to a particular transformation is measured, and

a low-level explanation, where the relevance of each region of the time

series in the prediction is visualized. In order to analyze and validate our

proposal, first some illustrative examples are provided, and then a

thorough quantitative evaluation is carried out using a specifically

designed evaluation procedure.

Keywords: Time series classification, agnostic, ad-hoc explanation, time
series transformations, robustness

1

1 Introduction

Machine learning models are used daily in a wide range of application
domains, both in research and in real-word problems. Specifically, the analysis
of temporal data has become one of the most popular tasks. Among the
challenges when working with time series, one of the most common tasks is
Time Series Classification (TSC). The objective of this tasks is finding a
function f : T ! y that maps the space of time series to the space of labels,
based on the example pairs in a training set D = (T1, y1), . . . , (Tn, yn), where
yi is the label associated to the time series Ti, and the time series are assumed
to be independent and identically distributed. Over the years, machine
learning models, and TSC models in particular, have become more and more
complex -also accurate-, leading to a decrease in the transparency of the
decisions they make and, hence, in their interpretability.

Even if a model obtains a good performance in a given problem, being able
to understand and interpret its predictions is a key aspect to trust the model,
specially in some critical domains, such as biomedicine. In order to deal with this
issue, a new field of research, called Explainable Artificial Intelligence (XAI) [1],
has greatly emerged in recent years. The goal of explainability is to explain the
decision of a specific model with respect to a particular instance. For image data,
for instance, the explanation of a model for a given instance is usually shown
as a saliency map [2], where each pixel is colored depending on its relevance in
the prediction of the model.

Explanation methods can be categorized in several ways: regarding the
model-dependence, they can be model-dependent (intrinsic) or
model-independent (agnostic), while, depending on their scope, they can be
local or global. Intrinsic explanation methods are limited to the particular
model (or types of model) they are designed for, while agnostic explanation
methods are general approaches for obtaining an explanation of any model.
Local methods provide explanations for a particular data instance, while
global explanation methods provide a single explanation for a whole dataset
(the coe�cients of a linear model, for instance).

Recently, one of the most popular perturbation-based explanation
methods, the Local Interpretable Model-agnostic Explanations (LIME) [3], has
been adapted to time series classification [4]. The LIME method, from where
we depart in this paper, consists of locally approximating the classifier by an
interpretable model. To this end, a synthetic neighbourhood is generated
around a given instance by perturbing it, and then, the explanation is obtained
by learning an interpretable model using the neighbours (see [3] for more
details). In [4], in order to adapt the method to time series and take the
temporal information into account, the perturbations to generate the
neighbours are defined as transformations applied to one or more intervals
(subsequences) of the time series, instead of to isolated points. These
transformations consists of replacing the given interval(s) by another
subsequence, such as an interval of random noise, the linear interpolation
between the first and last point of the interval, or subsequences extracted from

2

the time series of the training set.
The main drawback of these methods is that the neighbourhoods generated

with these transformations are not realistic. For instance, if a time series
represents the electricity consumption of a country (as in the
ItalyPowerDemand dataset from the UCR repository [5]), replacing a given
interval of the series by random noise does not produce a realistic neighbour.
In particular, the generated neighbour does not have a semantic meaning,
since an interval of random noise can not be interpreted from an electricity
consumption point of view.

Our proposal aims at going a step further, and provides a local
model-agnostic explanation for TSC based on a more realistic neighbourhood
for time series. To this end, the vicinity of a time series is generated by
applying transformations that are more natural for time series data. More
specifically, in this work, we consider 4 transformations based on [6, 7, 8]:
warp, scale, noise and slice. With these transformations, the explanations
provided by our method have an interpretation: an interval is important
because, if a certain transformation is applied to this interval, the prediction
will change. More concretely, given a transformation type, the proposed
method provides two explanations: on one hand, the robustness for the
prediction of the classifier with respect to that transformation and, on the
other, the relevance of each region of the series in the prediction.

The main contribution of our work is that, while standard TSC explanation
methods just reveal the relevant regions of a given time series, our method
provides an additional knowledge: a region of the series is important because, if a
specific transformation is applied to this region, the classifier is likely to label the
transformed time series into another class. This information can be very useful
in many real-life problems, such as, for instance, in an scenario where the time
series represent the water flow of a water distribution network and the objective
is to find water leaks [9]. Given a time series that represents a water leak, our
method reveals which region of the series is relevant for classifying it as a water
leak and, which transformation should be applied to this region to transform the
series into a non-leak flow. In particular, if a region is shown to be relevant with
respect to the scale transformation of level xx, it means that if this subsequence
is scaled with a magnitude of xx (moved down, for instance), the classifier would
label the series into the non-leak category. In conclusion, the explanation would
give us information about the time localization and magnitude of the leak.

The rest of the work is organized as follows: in Section 2, the
state-of-the-art of explanation methods for time series classification is
introduced, while the proposed transformations for time series are presented in
3. The explanation method is thoroughly described in Section 4, while the
experimentation is presented in Section 5. Finally, the main conclusions are
drawn in Section 6.

3

2 State-of-the-art

In the field of TSC, the growing interest in explainability has been materialized
in several proposals. In Table 1, we have summarized the existing explanation
methods for TSC, including the name of the method, the explanation type, the
model-dependence and scope.

As it can be seen in the table, there are di↵erent forms in which the
explanations are provided in TSC; the most common explanation type is given
in the form of a saliency map, where the relevance of each point of a time
series in the prediction of the classifier is computed and then visualized. Other
types of methods include explanations based on shapelets [10, 11] (in which a
subsequence or set of subsequences of the time series that are relevant for the
classification are provided) or counter-examples [12, 13] (in which, given a
target time series, a similar series that is classified into another class is shown).

Regarding the model-dependence, most of the proposed explanations
methods for TSC are intrinsic approaches
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20], that is, they are limited to a particular
classifier or set of classifiers. Among these proposals, we can distinguish
between di↵erent approximations: in [14, 16], for instance, two feature based
classifiers are presented, in which the time series are transformed into some
specific feature spaces and the relevance of each feature in the classification is
computed. Then, the explanation is computed by translating the relevance
back to the time domain. In AI-PR-CNN [11], on the contrary, the authors
propose a shapelet based TSC method, in which adversarial training is used to
obtain shapelets that are similar to some subsequences of the real series. The
explanation is given directly by the shapelets found by the method during the
training of the classifier. In [15], the main idea is to find the minimum number
of changes that need to be applied to a time series to change the decision of
the Random Shapelet Forest classifier [21]. Another explanation method is
presented in [17], where, given a K-NN classifier, the explanation is given by
the closest time series that belongs to the other class (with respect to a given
distance measure). The last group of intrinsic methods is a set of explanation
methods that are specifically designed for DNN. In some cases, the gradients
included in the DNN are exploited for obtaining the explanation [20, 12], while
others employ AutoEncoders [13] or exploit specific architectures of the DNN
that enable explanations, such as the Class Activation Map (CAM) layer
[18, 19]. As mentioned previously, this type of methods are limited to the
particular classifier(s) they are obtained from.

Contrary to intrinsic methods, agnostic methods are capable of explaining
the decision of any classifier. In the field of TSC, on which this work focuses,
to the best of our knowledge, four local explainers have been proposed
[4, 22, 23, 24]. In [24], one of the most popular perturbation-based explanation
methods, the Local Interpretable Model-agnostic Explanations (LIME) [3], is
directly applied to time series. In [4], instead, the LIME method is adapted to
time series by applying some transformations to intervals in the time domain
(subsequences of the time series). An extension of the LIME method called

4

SHAP [25] is used for the explanation method proposed in [22], where
transformations are applied to intervals of the time series in both the time and
frequency domain. Finally, a Local Agnostic Subsequence-based Time Series
explainer (LASTS) is presented in [23]. The explanations are provided in the
form of exemplar and counter-exemplar time series (synthetic time series that
are classified into the same or into a di↵erent class of the target time series,
respectively). The authors employ autoencoders (AE) [26] to create synthetic
neighbours around the target time series, together with a shapelet tree for
designing an explanation that provides subsequences that must, or must not,
be contained in a time series to obtain a particular outcome.

Method Type Model-dependence Scope

AI-PR-CNN [11] Shapelets Intrinsic* (DNN) Local
MTEX-CNN [12] Saliency Intrinsic* (DNN) Local

CEM [13] Counter-examples Intrinsic* (DNN) Local
SAX-VSM [14] Saliency Intrinsic Local

Tweaking RSF [15] Counter-examples Intrinsic Local
MrSEQL-SM [16] Saliency Intrinsic Global
Native-Guides [17] Counter-examples Intrinsic* (K-NN) Local

CAM [18, 19] Saliency Intrinsic* (DNN) Local
Dynamic Masks [20] Saliency Intrinsic* (DNN) Local

LEFTIST [4] Saliency Agnostic Local
TimeXplain [22] Saliency Agnostic Local
LASTS [23] Counter-examples Agnostic Local
LIME TS [24] Saliency Agnostic Local

Table 1: Existing explanations methods for TSC and their characteristics. The
* indicates that these methods are not limited to one specific classifier but to a

type of classifiers. The type is shown between parenthesis (DNN refers to
Deep Neural Networks and K-NN refers to TSC method employing the

K-Nearest Neighbour classifiers).

A particular aspect that complicates the design of the proposal of
explanation methods is that the evaluation is usually carried out in a
qualitative way. In TSC, most of the explanation methods are evaluated
visually by performing a case of study
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23]. However, there are also some
proposals in which e↵orts have been made to carry out a quantitative
evaluation. In these works, the authors usually propose a specifically designed
quantitative measure that depends on the particular classifier or problem
being explained [11, 20, 4, 23]. A more particular evaluation methodology is
employed by Guillemé et al. in [4], where a user study is carried out in a
dataset in which characteristic patterns of the classes are relatively easy to
identify visually. In this way, users are asked to answer some questions
regarding the discriminative parts of the series, and the answers are compared
with explanations obtained by their method. Lastly, a promising work is

5

presented in [24], where the authors propose a model agnostic evaluation
methodology for TSC explanation methods (in the form of saliency maps). In
this work, the time series are perturbed according to the relevance of each
point in the prediction. The main underlying idea is that perturbations on the
relevant parts should change the decision of the classifier more frequently than
perturbations on the non-relevant parts.

3 Time series Transformations

As stated in previous sections, the explanation method that we will present
in this work is based on LIME [3]. As such, it is based on generating a local
interpretable model using a neighborhood of the target instance. In this context,
in order to generate the neighborhood, the target instance is perturbed using
a set of pre-defined transformations. The main achievement of this work is
to include specific transformations for time series that will result in realistic
and semantically interpretable neighbors. In this section, we present the set of
transformations for time series that we are going to consider for our explanation
method.

Time series can be analyzed in both the time and frequency domain, and
thus, the transformations could be defined in both these spaces. However, in
TSC and more specifically in TSC explainability, it is much more common to
work in the time domain. Indeed, to the best of our knowledge, the only work
in TSC explainability where the series are represented in the frequency domain
is [22]. The main reason for this is that transformations in the time domain
can be applied to specific temporal instances (or intervals), they are usually
more intuitive and easier to interpret. In this sense, our transformations will be
defined in the time domain.

Once we focus on the time domain, there are many methods that are useful
to generate synthetic time series, for example time series bootstrapping [27,
28, 29], o Generative Adversarial Networks (GAN) [30]. The main objective
of these methods is to produce time series that resemble the time series in
a given database of series (follow the same probability distribution). These
methods do not allow to fully control the characteristics of the generated time
series, and hence a generate and test type of methodology would have to be
used (in combination with a distance measure such as in [3]) with the aim
of selecting the neighboring time series. In order to provide a more e�cient
approach, we will generate the vicinity of a time series by using a set of realistic
and controlled transformations for time series, for which we follow the ideas
presented in [6, 7, 8].

In [6], the authors state that a similarity measure for time series should be
robust to a set of transformations and they propose the scale, warp, noise, and
outliers transformations. In [7], the authors claim that time series with
unequal lengths appear naturally in real-world problems due to reasons such
as variations in the frequency of measurements (warp) or variations in the
starting or/and ending index of the time series (slice), and propose

6

transformations to simulate this kind of time series. Lastly, time series data
augmentation is addressed in [8], where two methods are proposed: time series
slice extraction and window warping. Inspired by the previous works, we
decided to consider 4 transformations: warp, scale, noise, and slice. In our
case, transformations that involve intervals of the time series are considered, so
the outlier transformation -which applies to certain indexes of the series but
not to a whole interval- has not been taken into account. In the following
sections, the considered transformations are presented in detail.

3.1 Warp

This transformation is a deformation of the series in the time axis (x-axis),
which produces a compression or expansion (depending on the warp level) of
the values of a series in a given interval. Time series with an interval warped
at di↵erent warp levels appear frequently in problems such as the GunPoint
dataset from the UCR repository, in which a sensor on the wrist of a person
measures the movements in the x-axis. There are two classes in this problem,
the Gun and the Point class; in the former, a person has a gun on his/her hip,
takes the gun to point it at a target for one second, and brings the gun back
to the hip. In the latter, the same action is simulated without the gun, that
is, the person points at a target with a finger. Figure 1 shows two time series
from this dataset, one from each class. The interval that represents the gun
rising can be seen as a warped version of the interval that represents the hand
rising (or vice-versa). In particular, in the time series from the Gun class, this
movement is made in a quicker manner than in the time series from the Point
class. In this case, this interval is considered discriminative with respect to
the warp transformation, because if we compress/expand it, the classifier could
change its class prediction.

7

Figure 1: Two time series from the GunPoint dataset. The time series from
the Gun class can be seen as a warped version of the time series from the Point
class (or vice-versa), where the warp has been applied in the marked interval.

In order to synthetically create warped versions of a reference time series
T = (t1, . . . , ti, . . . , tl), we propose the warp transformation; given an interval
[s, e] in which the transformation is applied (such that 0 < s < e < l) and a
warp level kw, the warped version of T is defined by:

T 0 = (t01, . . . , t
0
i, . . . , t

0
s+(e�s)⇤kw+(l�e)) (1)

where

t0i =

8
>>><

>>>:

ti, if i  s

(w1tp + w2tq)/kw, if s < i  s+ kw(e� s)

te+i�(s+kw(e�s)), i > s+ kw(e� s)

(2)

where tp = max
j=1,...,l

[jkw] < i and tq = min
j=1,...,l

[jkw] � i. The notation [] refers

to the nearest integer and the weights are defined by w1 = kw � (i � p) and
w2 = kw � (q � i). The first and last parts in (2) correspond to the interval
that remains from the reference time series. The second part corresponds to the
warped interval, which is a weighted average of the two nearest warped points
of the reference time series.

Note that this transformation compresses (kw < 1) or expands (kw > 1) an
interval of the reference series, thus the transformed series will be shorter or
larger than the reference series. Two examples of synthetic warped versions of

8

a reference time series from the ArrowHead dataset from the UCR repository
are shown in Figure 2.

(a) kw = 1.2 in [100, 200]. (b) kw = 0.7 in [30, 100].

Figure 2: A reference time series from the ArrowHead dataset and two
examples of synthetic warped version.

3.2 Scale

This transformation is a deformation of the series in the y-axis. It produces an
upward or downward displacement (depending on the scale level) of the values of
a series in a given interval. Time series with di↵erent scale levels can be found,
for example, in the Adiac dataset from the UCR repository. In this dataset,
images of 37 classes of diatoms (unicellular algae) are converted into time series,
and time series from di↵erent classes di↵er in the scale in several intervals (see
Figure 3). The interpretation of this fact is that these two diatoms have very
similar shapes, but di↵er in the amplitude of the shape in some intervals. As
such, the scale in those intervals is considered as relevant for the prediction.

Figure 3: Two time series from di↵erent classes of the Adiac dataset that di↵er
in the scale level in the marked intervals.

We propose the scale transformation of a reference time series
T = (t1, . . . , ti, . . . , tl) as: given an interval in which the transformation is

9

applied [s, e] (such that 0 < s < e < l) and a scale level ks, the scaled version
of the series is:

T 0 = (t01, . . . , t
0
i, . . . , t

0
l) (3)

where

t0i =

8
<

:
ti ⇤ ks, if s  i  e

ti, otherwise
(4)

A reference time series from the ArrowHead dataset and two examples of
synthetic scaled versions are shown in Figure 4.

(a) ks = 0.7 in [180, 230]. (b) ks = 1.2 in [30, 80].

Figure 4: A reference time series from the ArrowHead dataset and two
examples of synthetic scaled versions.

3.3 Noise

The noise transformation consists of adding noise to the series in a given interval.
An example of time series with di↵erent noise levels that determine the class
can be seen in the ECG200 dataset from the UCR repository, for instance. In
this dataset, the electrical activity of a heartbeat is recorded in two scenarios
(normal heartbeat and a myocardial infarction). Figure 5 shows two time series
from di↵erent classes that di↵er in the noise level in the marked interval. In
these two examples, it can be seen that the heartbeat in both scenarios is very
similar, but the normal heartbeat is smoother than the heartbeat of myocardial
infarction. In this case, a noise transformation in this interval may make the
classifier predict the series into another class and, hence, the noise level in the
given interval is considered as discriminative.

10

Figure 5: Two time series from di↵erent classes of the ECG200 dataset that
di↵er in the noise level in the marked interval.

Given a reference time series T = (t1, . . . , ti, . . . , tl), an interval in which the
transformation is applied [s, e] (such that 0 < s < e < l) and a noise level kn,
the noise-transformed version of the series is defined by:

T 0 = (t01, . . . , t
0
i, . . . , t

0
l) (5)

where

t0i =

8
<

:
ti +N (0, A⇤kn

100), if s  i  e

ti, otherwise
(6)

with A = |max(T)�min(T)| the amplitude of the series. As Equation 6 shows,
the added noise is a Gaussian noise N (µ,�), with µ = 0 and a � that depends
on the amplitude of the time series and the noise level kn. In this way, for
kn = 5, for example, the standard deviation is set to 5% of the amplitude of the
series.

A reference time series from the ArrowHead dataset and two examples of
synthetic versions with noise are shown in Figure 6.

(a) kn = 2 in [80, 170]. (b) kn = 7 in [160, 200].

Figure 6: A reference time series from the ArrowHead datasets and two
examples of synthetic versions with noise.

11

3.4 Slice

The slice transformation selects a subsequence of the time series and aligns
it at the beginning of the reference time series. This transformation can be
seen as selecting and shifting a subsequence of the time series. As the authors
of [7] pointed out, for many time series that represent audio, video, or sensor
recordings, the exact moment at which the recording starts and finishes may
vary. For instance, for a time series that represents the audio recording of a
person saying a word, the location of subsequence that represents the word may
be di↵erent depending on the exact starting and ending point of the recording.

Sliced time series can be found, for example, in the AllGestureWiimoteY
dataset from the UCR repository. This dataset consists of the y-axis recording
of 10 individuals performing 10 di↵erent gestures measured by the Nintendo
Wiimote controller. Two series from di↵erent classes are shown in Figure 7; it
can be seen that both time series have very similar shapes, but the time series
from class 5 is a sliced version of the time series from class 7. That is, if the
recording of the time series from class 7 had started a bit later and had finished
before, the classifier would probably have classified it in class 5. In this way,
the marked interval and, in particular, its location are considered as relevant
for the prediction.

Figure 7: Two time series from the AllGestureWiimoteY dataset. The time
series from class 5 can be seen as a sliced version of the time series from class 7.

Given a reference time series T = (t1, . . . , ti, . . . , tl) and a random interval
[s, e], the slice transformation consists of removing the intervals [1, s) and (e, l]
from the reference series. In this way, in contrast to the previous
transformations, the slice transformations does not modify the series in the
[s, e] interval, but it is applied in [1, s) [(e, l]. The sliced version of T is
defined by:

T 0 = (t01, . . . , t
0
i, . . . , t

0
e�s) (7)

where
t0i = ts+i, i = 1, . . . , e� s (8)

12

This transformation involves the time axis of the series, and hence, the
transformed time series are shorter than the reference series. A reference time
series from the ArrowHead dataset and two examples of sliced versions are shown
in Figure 8.

(a) Sliced in [5, 250]. (b) Sliced in [20, 230].

Figure 8: A reference time series from the ArrowHead dataset and two
examples of synthetic sliced versions.

To sum up, the proposed transformations enable the creation of synthetic
time series that (i) have a semantic interpretation -as we have shown in the
examples above- and (i) seem more realistic than those obtained by the
perturbations proposed for other existing explanation methods for TSC, such
as [4, 22]. In [20], the authors do not provide illustrative examples of the
perturbed time series.

Note that our method can be applied to any time series from any type of TSC
problem, but it is particularly interesting for problems in which the considered
transformations are meaningful and semantically interpretable. Note that this
requirement holds in most TSC problems (regardless the application domain),
but there are some examples in which it is not fulfilled; in the StarLigthCurves
dataset from the UCR repository, for instance, the time series represent the
brightness of celestial objects as a function of time, and the noise transformation
in an interval with very low brightness could produce a synthetic time series with
a negative brightness values in this interval. In this case, our method with the
noise transformation would not be suitable.

4 Time Series Classification Explanation

Method

Given a time series in a labelled dataset, a classifier, and a transformation, the
method provides a two level explanation: the high-level explanation describes
the robustness of the prediction with respect to the transformation, while the
low-level explanation displays the relevance of each region of the series in the

13

prediction.

4.1 High-level explanation

The high-level explanation can be summarized in 3 steps (see Figure 9):

WARP
Neighbourhood

Interval-domain Time-domain

Reference
time series

Same
class

Other
class

Same
class

High-level explanation

Estimation
 of the

robustness

Neighbour
labelling

Neighbour
generation

1.0

0.0

-1.0

-2.0
0 50 100 150 200 250

Class 1

1.0

0.0

-1.0

-2.0
0 50 100 150 200 250

1.0

0.0

-1.0

-2.0
0 50 100 150 200 250

1.0

0.0

-1.0

-2.0
0 50 100 150 200 250

1.0

0.0

-1.0

-2.0
0 50 100 150 200 250

Neighbour

1.0

0.0

-1.0

-2.0
0 50 100 150 200 250

Neighbour

1.0

0.0

-1.0

-2.0
0 50 100 150 200 250

Neighbour

Figure 9: Scheme of the high-level explanation with an example of time series
from the ArrowHead dataset and warp transformation with kw = 0.7.

Neighbour generation. We create neighbour time series by sampling a
random interval of the reference series and applying the transformation to this
interval. For this, a random interval generation is needed, such that all the
time indexes of a series have the same probability to appear in an interval. We
employ an approach called randomized unwrap the circle method [31], which
considers the intervals as wrapped around the perimeter of a circle (described
in Algorithm 1).

Algorithm 1: Randomized unwrap the circle method

Input : Parameters of Beta prime distribution ↵, �
Output: Random interval in [0, 1]
Sample x from BetaPrime(↵, �)
Sample u uniformly on [�x, 1]
Return [0, 1] \ [u, u+ x]

Neighbour labelling. In this step, the generated neighbours are labelled by
the classifier. Some of the transformations involve deformations in the time
axis of the time series, giving rise to neighbours with larger or shorter lengths
than the reference time series. Since many benchmark classifiers for TSC are
not adapted to varying length series [7], this leaves us two options: to employ a
pre-processing step to equal the lengths of all the series, or to limit our method
to classifiers that can handle series of varying lengths. The first option involves

14

adding information to the shorter series and removing information from the
larger series, while the second works with all the information but restricts our
method to a shorter number of classifiers. In this work, in order modify the time
series as little as possible, the second option has been adopted. In addition, since
we consider classifiers that are able to handle unequal length time series, our
method can be directly applied to obtain explanations for this type of time
series.

Estimation of the robustness. We consider that the prediction is robust
with respect to the transformation if all the neighbours are classified into the
same class of the reference time series. In the following, we call I = I= [
I 6= the set of generated random intervals, where I= refers to those intervals
that result in neighbours from the same class of the reference series, and I 6=
to those that result in neighbours from other classes. As such, in this step,
the robustness of a prediction with respect to a transformation, Rtransf , is
quantified by measuring the percentage of neighbours that are classified into
the same class of the reference time series:

Rtransf = |I=|/|I|

where the operator | | refers to the cardinal. Rtransf varies in the range [0, 1],
where a value of 0 means that the prediction is completely sensitive to the
transformation, since all the considered neighbours are labelled into another
class. A value of 1, in contrast, means that the prediction is completely robust
with respect to the transformation, since all the considered neighbours are
labelled into the same class of the reference series.

4.2 Low-level explanation

The low-level explanation consists of computing the relevance of each region of
the time series in the prediction. In this step, two possible scenarios are
considered: the prediction is completely robust with respect to a
transformation (Rtransf = 1), or the prediction is somewhat sensitive to a
transformation (Rtransf < 1). In the first case, a transformation never a↵ects
the prediction, and hence, the low-level explanation is that there are no
intervals that have a special impact on the prediction, with respect to the
transformation. In the second case, the low-level explanation is computed
following the next steps (see Figure 10).

15

Isolation
of intervals
of interest

Low-level explanationSame class
Other class

1.0

0.0

-1.0

-2.0
0 50 100 150 200 250

1.0
0.8
0.6

0.0

0.4
0.2

Intersection

Figure 10: Scheme of the low-level explanation with an example of a time
series from the ArrowHead dataset.

Isolation of intervals of interest. An interval is considered relevant for the
prediction if a transformation applied to this interval changes the prediction
of the classifier (i.e., those intervals in I 6=). In some regions of the time series,
however, there may be intervals both from I 6= and from I=. In order to guarantee
that a region of the series is relevant for the prediction, we define the intervals
of interest as those intervals from I 6= that do not have many intervals from I=
in the vicinity.

Specifically, an interval i 6= is considered of interest if it is mainly surrounded
by intervals from I 6=. Based on this idea, the procedure to identify the intervals
of interest is summarized as follows:

(i) For each interval i 6= 2 I 6=, find the K closest intervals in I = I= [I 6=
employing the Hausdor↵ distance1.

(ii) If more than K/2 of those intervals belong to I 6=, i 6= is considered an
interval of interest. On the contrary, if at least K/2 of those intervals
belong to I=, i 6= is not considered an interval of interest.

Note that the distribution of the intervals of I between I 6= and I= varies for
each time series. As such, using a fixed value of the parameter K for all the
time series would bias the vicinity towards the predominant interval type (I 6= or
I=). Hence, we set the parameter K as a proportion of the number of intervals
in I 6=.

Intersection. This step consists of summarizing and representing the
information of the interval of interest in the original time series. The idea is
that, the more intervals of interest that contain a time index i, the more
relevant this index is for the prediction. As such, given a time series
T = (t1, . . . , ti, . . . , tl), we compute the number of isolated intervals that
contain the index i for i = 1 . . . l and this values are stored in a vector

1
Given two intervals A = [a1, a2] and B = [b1, b2] in R, the Hausdor↵ distance [32] is

defined by dH(A,B) = max{|a1 � b1|, |a2 � b12|}. Note that the slice transformation is

applied in the union of intervals instead of in intervals (Section 3.4), thus the extension for

unions [33] is used for this transformation.

16

w = (w1, . . . , wi, . . . , wl). The explanation, thus, can be seen as a weight
vector w, in which wi represents the relevance of the time index i in the
prediction. Then, the time series is coloured depending on these values. The
red colour indicates that these time indexes are contained in many relevant
intervals, so this region is important for the prediction, while the blue colour,
indicates the opposite. Note that the colorbar is normalized to [0, 1].

Note that, given a time series, a transformation and a classifier, the cost of
computing an explanation is dominated by the neighbour labelling step. In this
step, the generated neigbours are labelled by the corresponding classifier, so the
time that this process involves significantly varies depending on the classifier
itself and the length of the time series.

5 Experimentation

In this section, we first present the experimental set-up, followed by three
cases of study of the explanations provided by our method in some example
time series chosen from the UCR repository. Then, a quantitative evaluation is
presented, for which we adapt the evaluation methodology presented in [24].
This procedure quantifies the informativeness of explanation methods for TSC,
and we adjust it to the context of the proposed transformations. All the code
has been developed in Python and is publicly available2.

5.1 Set-up

The experimentation has been carried out considering several parameters of
the transformations. The warp and scale levels considered in this
experimentation, kw and ks, are {0.7, 0.8, 0.9, 1.1, 1.2, 1.3}, while the
considered noise levels, kn are {1, 3, 5, 7, 9}. Other sets of parameters could be
considered, but we limit our experimentation to the mentioned values; we
think that they lead to a reasonable variety in the transformations, while
creating realistic neighbours with no extreme modifications in the time series.
Each transformation level is independently studied. The slice transformation
does not depend on any parameter but, in order to ensure a minimum length
in the generated neighbours, we set the minimum interval length to 0.3 ⇤ l,
where l is the length of the series that is the object of study.

Regarding the neighbour generation process, the size of the neighbourhood is
set to 500, while the parameters in 1 are set to ↵ = 8 and � = 18. such that the
probability of a index to be covered by an interval is 0.3 [31]. In this way, each
time index appears in approximately 150 of the 500 generated neighbours. In
the computation of the intervals of interest, the parameter K is set to 0.1*|I 6=|.

2
https://gitlab.bcamath.org/aabanda/tscexplanation.

17

Lastly, regarding the classifiers, as mentioned before, in this
experimentation we employ classifiers that handle varying length time series.
As such, 3 benchmark and diverse classifiers for TSC have been chosen: from
the category of elastic or distance-based classifiers, the 1-NN-DTW distance,
from shapelet-based classifiers, the Shapelet Transform (ST), and, from the
dictionary-based category, the Bag-of-SFA-Symbols (BOSS).

5.2 Case of study

In this section, the proposed explanation method is studied in some example
time series extracted from 3 datasets of the UCR repository: GunPoint, Co↵ee
and ItalyPowerDemand. The GunPoint and Co↵ee datasets have been chosen
because they have already been used before in methods concerning TSC
explainability [18, 16, 14]. The ItalyPowerDemand dataset has been chosen
with the aim of including a less used dataset from another more economic
context; the energy consumption.

Note that our method provides an independent explanation for each
transformation and they do not need to be consistent; each transformation
leads to an explanation with a particular meaning. In the same manner, the
explanations provided for di↵erent classifiers in the same time series can be
di↵erent, since the explainability is dependent on the decision of the classifier.

5.2.1 GunPoint dataset

From the GunPoint dataset, introduced in Section 3.1, we have randomly3

chosen a time series from each class for the examples shown in Figure 11.
Figure 11a shows the explanation obtained for the warp transformation
(kw = 0.7) and the 1-NN-DTW classifier in a time series from the Gun class.
The Rwarp is 0.45, which indicates that the output of the classifier in this time
series is quite sensitive to the warp transformation - more than a half of the
neighbours generated by warping random intervals of the series are classified
into the Point class-. Our method states that the most discriminant region is
the part in which the subject raises the gun from the hip; if the subject does
this movement faster, the time series is likely to be classified into the other
class.

The explanation for a time series from the Point class for the scale
transformation (ks = 1.2) and the 1-NN-DTW classifier is shown in Figure
11b. The Rscale is 0.64, so the prediction is rather robust to the scale
transformation (35% of the scale transformed neighbours are classified into the
other class). The explanation indicates that the most discriminative region is
the part in which the subject is pretending to hold the gun on the hip; if the
vertical position of his/her hand was lower than what it is, the 1-NN-DTW
would probably classify this time series into the other class.

3
For the sake of reproducibility, the index of each example time series is specified: time

series 52 (Fig. 11a) and 1 (Fig. 11b)

18

(a) Warp (kw = 0.7) with the

1-NN-DTW classifier,

Rwarp= 0.45.

(b) Scale (ks = 1.2) with the 1-NN-DTW

classifier,

Rscale= 0.64

Figure 11: Two explanations provided by our method in a time series from the
Gun class (a) and Point class (b) from GunPoint dataset.

5.2.2 Co↵ee dataset

The Co↵ee dataset is a binary dataset composed of time series that represent
food spectrographs of two types of co↵ee: arabica and robusta. We have
randomly4 chosen a time series from each class for the examples shown in
Figure 12. Figure 12a shows the explanation obtained for a time series from
the Arabica class with the noise transformation (kn = 9) and the BOSS
classifier. In this case, the output of the BOSS classifier is very robust to the
noise transformation (Rnoise = 0.94); it is very di�cult to mislead the
classifier by adding noise to the time series. An interesting finding is that the
explanation obtained by our method is very similar to that reported in [16] for
a time series from the same class, even when the methods are fundamentally
di↵erent. The authors point out that the highlighted regions correspond to the
chlorogenic acid and ca↵eine contents of the co↵ee blends, i.e., the regions that
discriminate between the Arabica and the Robusta co↵ee types [34].

An explanation obtained for a time series from the Robusta class with the
slice transformation and the ST classifier is shown in Figure 12b. The prediction
of the ST classifier in this time series is quite sensitive to the slice transformation,
with a Rslice of 0.48. Analogously, the explanation obtained by our method is
very similar to that presented in [16], where the highlighted regions correspond
to the discriminative parts reported in [34].

4
For the sake of reproducibility, the index of each example time series is specified: time

series 52 (Fig. 11a) and 1 (Fig. 11b)

19

(a) Noise (kn = 9) with the BOSS

classifier,

Rnoise= 0.94.

(b) Slice with the

ST classifier,

Rslice= 0.48.

Figure 12: Two explanations provided by our method in a time series from the
Arabica class (a) and Robusta class (b) from Co↵ee dataset.

5.2.3 ItalyPowerDemand dataset

ItalyPowerDemand is a dataset in which the time series represent the six-month
electrical power demand (with 4 observations per month) in Italy. There are
two classes, where the time series in class 1 represent the electric demand from
October to March (cold semester), and the time series in class 2 from April to
September (warm semester). We have computed our explanation in two5 time
series from the test set: a time series from the cold semester (Figure 13a) and
a time series from the warm semester (Figure 13b).

(a) Warp (kw = 0.7) with the ST

classifier,

Rwarp= 0.67.

(b) Scale (ks = 0.7) with the 1-NN-DTW

classifier,

Rscale= 0.77.

Figure 13: Two explanations provided by our method in a time series from the
cold semester class (a) and warm semester class (b) from ItalyPowerDemand

dataset.

In Figure 13a, the explanation for the warp transformation (with kw = 0.7)
and the ST classifier is shown for a time series from the cold semester. It can

5
For the sake of reproducibility, the index of each example time series is specified. Time

series 13 (Fig. 13a) and 1 (Fig. 13b).

20

be seen that the most relevant part is the peak in the interval [17, 21] (from
the beginning of February to the beginning of March). In particular, if it is
compressed to a shorter interval, the ST classifier would label the time series
into the warm semester class. From a semantic point of view, the interpretation
is that this peak of the electric demand at the end of the semester is wider in
the cold semester than in the warm semester. So, if we compress the time axis
in this interval and narrow this peak, the ST would classified the time series in
the warm semester.

In Figure 13b, instead, we have computed the explanation for the scale
transformation (with ks = 0.7) and the 1-NN-DTW classifier. The explanation
shows that the most relevant part of the time series is in the interval [6, 10]
(from the beginning of May to the beginning of June). More concretely, if the
subsequence in this interval is scaled down in the y-axis, the 1-NN-DTW
classifier would label the time series into the cold semester class. From a
semantic point of view, the interpretation is that the increase in the electric
demand in the first part of the semester is lower in the cold semester than in
the warm semester.

5.3 Quantitative evaluation on UCR

5.3.1 Experimental Design

In this section, the quantitative evaluation of the proposed method is presented,
for which we will adapt the methodology presented in [24] to our context. Given
a time series and an explanation, the authors propose perturbing the time series
by adding noise to the important and non-important regions of the series. The
idea behind their method is that perturbations on the important regions should
change the class prediction more frequently than perturbations on the non-
important regions.

The important and non-important regions are defined based on the
distribution of the values of the weight vector w computed in Section 4: the
p% most important indexes are those indexes with the p% highest values of w,
and we will call the set of these indexes p+. Analogously, the p% least
important indexes are those corresponding to the p% lowest values of w, and
we will call the set of these indexes p�. In their work, however, the only
considered perturbation is noise, and it is added independently to each time
index. The adaptation to this evaluation method that we propose, allows the
considered transformations to be employed as perturbations (not only noise).

The general evaluation procedure is summarized in Figure 14: given a
classifier and a dataset divided into train/test sets, the classifier is trained
using the train set and the explanations for all the time series in the test set,
w1, . . . , wm (where m is the number of time series in the test set), are
computed. Then, perturbed versions of the test set are computed for di↵erent
values of p (in this work, 3 values of p are considered: 10, 50, 90). More
specifically, if X is the test set, Xp� is a modified version of the test set in
which the least important p% of the time indexes are perturbed in all the time

21

series of this test set. Analogously, Xp+ is a modified version of the test set in
which the most important p% of the time indexes are perturbed in all the time
series of this test set. Then, the labels of all the series in the perturbed test
sets are predicted by the classifier; given a perturbed test set, X10+ for
instance, the classifier is employed to obtain the corresponding labels Y 10+ . In
order to measure the frequency in which the labels of a perturbed test set are
di↵erent from the labels of the true test set, the consensus between them is
defined by:

Cp+ =
1

m

mX

s=0
ys=y

p+
s

where

ys=y
p+
s

=

(
1 if ys = yp+

s

0 otherwise
(9)

The consensus varies from 0 to 1, where 0 means that all the labels in Y p+ are
di↵erent from those in Y , while 1 means that all the time series in the perturbed
test set are classified in the same class as the original time series. The case for
perturbations p� is analogous. The consensus is computed sequentially for the
di↵erent values of p = (10, 50, 90), such that Cp� and Cp+ form two curves (as
shown at the bottom of Figure 14).

The area under each curve, eLoss1 and eLoss2 correspondingly, is computed
employing the trapezoidal rule. Lastly, the area between both curves (named
in the original work as �eLoss, equation 10) is calculated; if it is positive, the
explanation is considered informative and if it is negative, uninformative.

22

1

0.5

p

Co
ns

en
su

s

10 50 90

TEST SET

PERTURBED
TEST SETS

Figure 14: Scheme of the evaluation methodology.

�eLoss = eLoss1 � eLoss2 (10)

In the original work, given the p% most important indexes of w, the
transformation is directly applied to these indexes. In the context of our work,
the transformations are applied interval-wise instead of index-wise and, hence,
an interval in the p% most important indexes is needed. As such, two
scenarios are considered: 1) the p% most important time indexes form a single
interval or 2) the p% most important time indexes form more than one
interval. In the first scenario, a random interval is sampled in this range, and
the perturbation is applied to this interval. In the second scenario, the longest
interval is chosen, a random interval is sampled in this range and the
perturbation is applied to this interval. The case of p% least important time
indexes is analogous.

Lastly, note that the authors of the original work [24] employ di↵erent
classifiers to obtain the explanations and to evaluate the explanations (i.e., to
label the modified test sets). In our work, since the explanation depends on
the classifier for which it has been calculated, the same classifier is employed
for both purposes.

5.3.2 Results

The evaluation is carried out in 10 datasets from the UCR repository. Among
the datasets with univariate time series of equal length with no missing values,

23

we have chosen a dataset from each of the categories defined in [35]. Given
the high computational cost required for evaluating our method in an entire
dataset, we have excluded those from the audio, sound and tra�c categories
because of their high dimensions. For the same reason, within the selected
categories, we have chosen the dataset with the smallest dimension. The chosen
datasets and the corresponding categories are: PowerCons (device), ECG200
(ECG), EOGHorizontalSignal (EOG), InsectEPGSmallTrain (EPG), PigCVP
(hemodynamics), ArrowHead (image), GunPoint (motion), ItalyPowerDemand
(sensor), CBF (simulated) and Co↵ee (spectro). Note that the proposed method
is a general framework that could be used to explain the decision of a time series
classifier applied in any application domain.

Recall that, in some cases, the prediction may be robust with respect to a
given transformation and hence, there is no important region for this instance,
classifier and transformation. As such, the evaluation is carried out using only
those instances for which the Rtransf is lower than 1. In order to provide more
information to the reader, we also report the dataset-robustness with respect to
a transformation, measured by the number of instances in the test set in which
the prediction is robust to the transformation.

With the considered settings, �eLoss varies in the range [�2, 2], and an
explanation is considered informative if the corresponding �eLoss is positive.
The evaluation procedure is repeated 10 times in order to remove the e↵ect of
randomness in the interval-wise perturbation process. Table 2 reports the
mean �eLoss (and the mean dataset-robustness between parenthesis) for each
combination of classifier and dataset across the di↵erent transformation levels.
The detailed results for all the transformation levels are provided as
supplementary material.

24

Warp Scale

1-NN-DTW BOSS ST 1-NN-DTW BOSS ST
PowerCons 0.74 (0.88) 0.54 (0.68) 0.44 (0.66) 0.68 (0.77) 0.65 (0.85) 0.62 (0.78)
ECG200 0.52 (0.81) 0.45 (0.51) 0.42 (0.54) 0.72 (0.69) 0.48 (0.75) 0.29 (0.88)

EOGHorizontalSignal 0.61 (0.95) 0.63 (0.60) 0.08 (0.56) 0.57 (0.58) 0.43 (0.48) 0.08 (0.57)
InsectEPGSmallTrain - (1) 0.34 (0.99) 0.18 (0.95) - (1) 0.27 (0.75) 0.49 (0.76)

PigCVP 0.67 (0.95) 0.25 (0.72) 0.30 (0.16) 0.38 (0.66) 0.14 (0.94) 0.04 (0.72)
ArrowHead 0.61 (0.90) 0.42 (0.49) 0.19 (0.59) 0.62 (0.41) 0.25 (0.49) 0.19 (0.86)
GunPoint 0.63 (0.91) 0.46 (0.84) 0.36 (0.93) 0.60 (0.39) 0.35 (0.87) 0.24 (0.82)

ItalyPowerDemand 0.28 (0.71) 0.38 (0.29) 0.34 (0.73) 0.53 (0.77) 0.28 (0.65) 0.45 (0.93)
CBF 0.41 (0.89) 0.50 (0.99) 0.56 (0.88) 0.57 (0.94) 0.47 (0.98) 0.45 (0.92)
Co↵ee - (1) 0.68 (0.87) 0.29 (0.69) 0.66 (0.55) 0.39 (0.89) 0.18 (0.87)

Noise Slice

1-NN-DTW BOSS ST 1-NN-DTW BOSS ST
PowerCons 0.38 (0.80) 0.16 (0.90) 0.07 (0.92) 0.59 (0.01) -0.04 (0.07) 0.15 (0.30)
ECG200 0.24 (0.64) 0.17 (0.72) 0.15 (0.69) 0.44 (0.03) 0.05 (0.54) 0.08 (0.53)

EOGHorizontalSignal 0.64 (0.68) 0.42 (0.52) 0.08 (0.57) 0.14 (0.34) -0.10 (0.30) 0.01 (0.15)
InsectEPGSmallTrain - (1) 0.24 (0.99) 0.17 (0.77) - (1) 0.82 (0.86) 0.58 (0.50)

PigCVP 0.50 (0.78) 0.31 (0.91) 0.08 (0.68) 0.07 (0.16) 0.63 (0.83) -0.11 (0.12)
ArrowHead 0.54 (0.52) 0.27 (0.36) 0.43 (0.56) 0.10 (0.07) 0.24 (0.27) -0.10 (0.50)
GunPoint 0.45 (0.57) 0.05 (0.73) 0.43 (0.51) -0.01 (0.02) 0.65 (0.81) 0.75 (0.49)

ItalyPowerDemand 0.10 (0.75) 0.06 (0.68) 0.09 (0.86) 0.57 (0.01) -0.04 (0.07) 0.22 (0.30)
CBF 0.12 (0.98) 0.11 (0.99) 0.14 (0.92) 0.41 (0.01) 0.08 (0.31) 0.04 (0.01)
Co↵ee 0.14 (0.65) 0.08 (0.94) 0.09 (0.52) 0.65 (0.00) 0.05 (0.86) 0.56 (0.86)

Table 2: The mean �eLoss obtained for the considered transformations across
the di↵erent transformation levels. The mean dataset-robustness is shown

between parenthesis. For each dataset and transformation, the best �eLoss is
shown in bold.

Table 2 shows that the mean �eLoss is positive in almost all the
dataset-transformation-classifier combinations, which means that the
explanation is informative. In fact, there are only 6 cases (of the 120 cases) in
which it is negative (they are marked in italics). The results clearly validate
our explanation method, since, perturbing the important parts change the
prediction of the classifier more frequently than perturbing the non-important
parts, regardless of the classifier, transformation or dataset.

If we analyze the results transformation-wise, it can be seen that all the
negative values, that is, the non-informative explanations, are for the slice
transformation. However, there are also high positive values for this
transformation. This could indicate that this particular transformation is not
suitable for the datasets in which our method obtains negative values. If we
analyze the results with respect to the classifier, instead, in the majority of the
datasets and transformations, the best explained classifier (highlighted in
bold) is the 1-NN-DTW, which obtains the highest values in 28 of the 40
dataset-transformation combinations. It is followed by the BOSS classifier,
which obtains the best explanations in 8 cases, while the ST classifier wins
only in 4 cases.

The dataset-robustness is generally very high (except for the slice
transformation) in all the cases, which means that it is rather hard to change
the prediction of the classifiers employing the considered transformations. This

25

can be due to the distribution of the classes within each dataset, or due to the
capacity of the classifiers employed in this work to handle the transformations.

It is worth noting that the dataset-robustness depends on the parameter of
the transformation (as shown in the tables presented in the supplementary
material); for the warp and scale transformations, the closer the parameter is
to 1, the greater the dataset-robustness, while for the noise transformation,
the lower the parameter, the greater the dataset-robustness (which seems
reasonable in both cases, since those are the parameters that involve the
slightest modifications).

There are some interesting findings related with the classifiers that deserve
attention; for example, the prediction of the 1-NN-DTW classifier is found to
be robust to all the transformations in the InsectEPGSmallTrain dataset and
for the warp transformation in the Co↵ee dataset for all the considered
transformations levels. In addition, the 1-NN-DTW is found to be the most
robust classifier for the warp transformation in 7 of the 10 datasets, which
backs our expectations, since it is an elastic classifier specifically designed to
deal with time warping. Lastly, the BOSS classifier is known to be robust to
noise [4], but in our experimentation it is found to be the most robust classifier
with respect to the noise transformation in only 5 of the 10 considered
datasets.

6 Conclusions and Future Work

In this work, an explanation method for time series classification that provides
realistic -and specific to time series- explanations is proposed. For this, 4
transformations for time series are presented (warp, scale, noise and slice) and
a synthetic neighbourhood of a time series is created by applying these
transformations to random intervals of the series. The method provides
explanations at two levels: in the high-level, the robustness of a classifier’s
prediction with respect to a given transformation is measured, while in the
low-level, the relevance of each region of the series in the prediction is
computed.

In the experimentation, we first visually validate the explanation provided
by our method in some time series extracted from datasets of the UCR
repository. Taking advantage of the semantic meaning of the time series, our
methods show, for example, that the speed of the action recorded in the
GunPoint dataset is discriminant. In the latter, the proposed method is
quantitatively evaluated by adapting an existing evaluation methodology [24]
to the context of our transformations. The methodology consists of perturbing
the time series in the important and non-important regions (according to the
explanation), and checking whether the perturbations in the important regions
change the prediction of the classifier more frequently than perturbations in
the non-important regions. The results show that this holds in almost all the
considered combinations of dataset-classifier-transformation, which confirms
the informativeness of our method. Moreover, the dataset-robustness

26

(measured by the number of time series in the test set for which the prediction
is robust to a transformation), give some insights into how robust the
classifiers are to the considered transformations; the 1-NN-DTW classifier, for
example, which is supposed to be very robust to time warping, is shown to be
the most robust classifier with respect to the warp transformation in 7 of the
10 considered datasets.

Lastly, there are many possible directions for the future work. For instance,
it could be interesting to extend our method to the multi-variate time series
classification scenario. Also, given that the time series found in many real-
life scenarios are streaming series [36], a challenging future work could be to
extend our method to this type of time series by considering the corresponding
specificities. Moreover, in this method, the transformations have been studied
independently, while it could be interesting to study other transformations or
combinations of transformations, for example, by successively applying di↵erent
transformations to random intervals. In the same manner, other time series
generation techniques (such as time series bootstrapping [29]) could be used to
generate the neighbourhood of a given instance. To conclude, we think that our
method is a first attempt at empirically studying the robustness in TSC, and it
could be interesting to continue in this direction.

Acknowledgments

This research is supported by the Basque Government through the BERC
2018-2021 program and by Spanish Ministry of Economy and Competitiveness
MINECO through BCAM Severo Ochoa excellence accreditation
SEV-2017-0718, as well as through project TIN2017-82626-R funded by
(AEI/FEDER, UE) and acronym GECECPAST. In addition, by the Research
Group IT1244-19 programs (Basque Government), PID2019-104966GB-I00
(Spanish Ministry of Economy, Industry and Competitiveness) and Elkartek
project 3KIA (KK2020/00049). A. Abanda is also supported by the Grant
BES-2016-076890. The authors would like to thank the people who
contributed to the UCR time series repository.

References

[1] A. Barredo, N. Dı́az-Rodŕıguez, J. Del, A. Bennetot, S. Tabik,
A. Barbado, S. Garcia, S. Gil-lopez, D. Molina, R. Benjamins,
R. Chatila, F. Herrera, Explainable Artificial Intelligence (XAI): Concepts
, Taxonomies, Opportunities and Challenges Toward Responsible AI,
Information Fusion (2020) 82–115doi:10.1016/j.inffus.2019.12.012.
URL https://doi.org/10.1016/j.inffus.2019.12.012

[2] T. Narayan, M. Tscherepanow, B. Wrede, A Saliency Map based on
Sampling an Image into Random Rectangular Regions of Interest, Pattern
Recognition 45 (9) (2012) 3114–3124. doi:10.1016/j.patcog.2012.02.

27

009.
URL http://dx.doi.org/10.1016/j.patcog.2012.02.009

[3] M. T. Ribeiro, C. Guestrin, Why Should I Trust You? Explaining the
Predictions of Any Classifier, The 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2016) 1135–1144.

[4] M. Guilleme, L. Roze, V. Masson, A. Termier, Agnostic local explanation
for time series classification, International Conference on Tools with
Artificial Intelligence (ICTAI) (2019) 432–439doi:10.1109/ICTAI.2019.
00067.

[5] A. Bagnall, J. Lines, W. Vickers, E. Keogh, The UEA & UCR Time Series
Classification Repository.
URL www.timeseriesclassification.com

[6] P. Esling, C. Agon, Time-Series Data Mining, ACM Computing Surveys
45 (1) (2012) 1–34. doi:10.1145/2379776.2379788.
URL http://dl.acm.org/citation.cfm?doid=2379776.2379788

[7] C. W. Tan, E. Keogh, G. I. Webb, Time Series Classification for Varying
Length Series, arXiv:1910.04341v1.

[8] A. L. Guennec, S. Malinowski, R. Tavenard, Data Augmentation for Time
Series Classification using Convolutional Neural Networks, International
Workshop on Advanced Analytics and Learning on Temporal Data
(AALTD16).

[9] A. Blázquez-Garćıa, A. Conde, U. Mori, J. A. Lozano, Water leak detection
using self-supervised time series classification, Information Sciences 574
(2021) 528–541. doi:10.1016/j.ins.2021.06.015.

[10] L. Ye, E. Keogh, Time series shapelets: A novel technique that allows
accurate, interpretable and fast classification, Data Mining and Knowledge
Discovery 22 (1-2) (2011) 149–182. doi:10.1007/s10618-010-0179-5.

[11] Y. Wang, E. Fromont, S. Malinowski, Learning Interpretable Shapelets
for Time Series Classification through Adversarial Regularization, arXiv
preprint arXiv:1906.00917arXiv:arXiv:1906.00917v2.

[12] R. Assaf, I. Giurgiu, F. Bagehorn, A. Schumann, MTEX-CNN:
Multivariate Time series EXplanations for Predictions with Convolutional
Neural Networks, IEEE International Conference on Data Mining (ICDM)
(2019) 952–957doi:10.1109/ICDM.2019.00106.

[13] J. L. B, E. Zugasti, X. D. Carlos, Contrastive Explanations for a Deep
Learning Model on Time-Series Data, Vol. 1, Springer International
Publishing, 2020. doi:10.1007/978-3-030-59065-9.
URL http://dx.doi.org/10.1007/978-3-030-59065-9{_}19

28

[14] P. Senin, SAX-VSM: Interpretable Time Series Classification Using SAX
and Vector Space Model, IEEE International Conference on Data Mining
(ICDM) (2013) 1175–1180doi:10.1109/ICDM.2013.52.

[15] I. Karlsson, J. Rebane, P. Papapetrou, Explainable Time Series
Tweaking via Irreversible and Reversible Temporal Transformations, IEEE
International Conference on Data Mining (ICDM)doi:10.1109/ICDM.
2018.00036.

[16] T. Le, N. Severin, G. Iulia, I. Martin, G. Ifrim, Interpretable Time Series
Classification using Linear Models and Multi-Resolution Multi-Domain
Symbolic Representations, Data Mining and Knowledge Discovery 33 (4)
(2019) 1183–1222. doi:10.1007/s10618-019-00633-3.
URL https://doi.org/10.1007/s10618-019-00633-3

[17] E. Delaney, D. Greene, M. T. Keane, Instance-Based Counterfactual
Explanations for Time Series Classification, International Conference on
Case-Based ReasoningarXiv:arXiv:2009.13211v1.

[18] H. Ismail, F. Germain, L. I. P.-A. Muller, J. Weber, Deep Learning for Time
Series Classification: a Review, Data Mining and Knowledge Discovery
33 (4) (2019) 917–963. doi:10.1007/s10618-019-00619-1.
URL https://doi.org/10.1007/s10618-019-00619-1

[19] Z. Wang, W. Yan, T. Oates, Time Series Classification from Scratch with
Deep Neural Networks: a Strong Baseline, International Joint Conference
on Neural Networks (IJCNN) (2017) 1578–1585.

[20] J. Crabb, M. Van der Schaar, Explaining Time Series Predictions with
Dynamic Masks, International Conference on Machine LearningarXiv:
arXiv:2106.05303v1.

[21] I. Karlsson, P. Papapetrou, H. Boström, Generalized random shapelet
forests, Data Mining and Knowledge Discovery 30 (5) (2016) 1053–1085.
doi:10.1007/s10618-016-0473-y.

[22] F. Mujkanovic, V. Doskoč, M. Schirneck, TimeXplain – a Framework
for Explaining the Predictions of Time Series Classifiers, arXiv preprint
arXiv:2007.07606 (2020) 1–17arXiv:arXiv:2007.07606v1.

[23] R. Guidotti, A. Monreale, F. Spinnato, D. Pedreschi, F. Giannotti,
Explaining Any Time Series Classifier, 2020 IEEE Second International
Conference on Cognitive Machine Intelligence (CogMI) (2020) 167–176doi:
10.1109/CogMI50398.2020.00029.

[24] T. T. Nguyen, T. L. Nguyen, G. Ifrim, A Model-Agnostic Approach
to Quantifying the Informativeness of Explanation Methods for Time
Series Classification, International Workshop on Advanced Analytics and
Learning on Temporal Data (AALTD20).

29

[25] S. M. Lundberg, S.-i. Lee, A Unified Approach to Interpreting Model
Predictions, Proceedings of the 31st international conference on neural
information processing systems (Section 2) (2017) 1–10. arXiv:arXiv:
1705.07874v2.

[26] G. E. Hinton, R. R. Salakhutdinov, Reducing the Dimensionality of Data
with Neural Networks, Science 313 (5786) (2016) 504–507.

[27] W. Härdle, J. P. Horowitz, J., Kreiss, Bootstrap Methods for Time
Series, International Statistical Review 30 (2003) 3–26. doi:10.1016/
B978-0-444-53858-1.00001-6.

[28] S. Lahiri, Resampling Methods for Dependent Data, Vol. 46, 2003. doi:
10.1198/tech.2004.s795.

[29] D. Rajapaksha, C. Bergmeir, LIMREF: Local Interpretable Model Agnostic
Rule-Based Explanations for Forecasting, with an Application to Electricity
Smart Meter Data, 2022.

[30] J. Yoon, D. Jarrett, Time-series Generative Adversarial Networks,
Advances in Neural Information Processing System (NeurIPS) (2019) 1–
11.

[31] L. Devroye, P. Epstein, J.-R. Sack, On Generating Random Intervals and
Hyperrectangles, Journal of Computational and Graphical Statistics 2 (3)
(1993) 291–307.

[32] F. Hausdor↵, Set Theory, 2nd Edition, Republished by Americal
Mathematical Society (AMS) – Chelsea 2005, 1962.

[33] M. F. Barnsley, Superfractals, Australian National University, Canberra.

[34] R. Briandet, E. K. Kemsley, R. H. Wilson, Discrimination of Arabica and
Robusta in Instant Co↵ee by Fourier Transform Infrared Spectroscopy and
Chemometrics, Journal of Agricultural and Food Chemistry (1996) 170–
174.

[35] A. Bagnall, J. Lines, W. Vickers, E. Keogh, The UEA and UCR time series
classification repository.
URL http://www.timeseriesclassification.com

[36] B. Hu, Y. Chen, E. Keogh, Classification of streaming time series under
more realistic assumptions, Data Mining and Knowledge Discovery 30 (2)
(2016) 403–437. doi:10.1007/s10618-015-0415-0.

30

