
Learning Twofold Heterogeneous Multi-Task by
Sharing Similar Convolution Kernel Pairs

Quan Fenga,b, Songcan Chena,b,∗

aCollege of Computer Science & Technology, Nanjing University of Aeronautics &
Astronautics, Nanjing, Jiangsu, 211106, China

bMIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of
Aeronautics & Astronautics, Nanjing, Jiangsu, 211106, China

Abstract

Heterogeneous multi-task learning (HMTL) is an important topic in multi-task

learning (MTL). Most existing HMTL methods usually solve either scenario

where all tasks reside in the same input (feature) space yet unnecessarily the

consistent output (label) space or scenario where their input (feature) spaces

are heterogeneous while the output (label) space is consistent. However, to the

best of our knowledge, there is limited study on twofold heterogeneous MTL

(THMTL) scenario where the input and the output spaces are both inconsistent

or heterogeneous. In order to handle this complicated scenario, in this paper,

we design a simple and effective multi-task adaptive learning (MTAL) network

to learn multiple tasks in such THMTL setting. Specifically, we explore and uti-

lize the inherent relationship between tasks for knowledge sharing from similar

convolution kernels in individual layers of the MTAL network. Then in order

to realize the sharing, we weightedly aggregate any pair of convolutional kernels

with their similarity greater than some threshold ρ, consequently, our model

effectively performs cross-task learning while suppresses the intra-redundancy

of the entire network. Finally, we conduct end-to-end training. Our experimen-

tal results demonstrate the effectiveness of our method in comparison with the

state-of-the-art counterparts.
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1. Introduction

MTL aims to improve the generalization performance of individual tasks by

learning multiple related tasks simultaneously. It has been successfully applied

in computer vision [1], natural language processing [2], speech recognition [3],

medical images processing [4], autonomous vehicles [5] and so on. Existing MTL

methods assume that the inputs (feature) spaces and outputs (label) spaces of

individual tasks are homogeneous (e.g., they have the same feature space and

label space) [6], [7], [8]. This assumption is only applicable in limited real world

scenarios.

In practice, general HMTL methods also likewise assume that 1) the inputs

(feature) spaces are homogeneous yet the outputs (label) spaces are inconsis-

tent, for example, [9] predicts the heterogeneous attributes of face images; [10]

evaluates poses of persons; 2) the input (feature) spaces are heterogeneous while

the output (label) space is consistent, for example, [11] uses the features of het-

erogeneous domains for image classification; [12] learns heterogeneous domain

metrics for text classification. However, there are more general scenarios in

reality, where the input and output spaces are heterogeneous (i.e., twofold het-

erogeneity), thus posing a big challenge for HMTL. To the best of our knowledge,

there has been almost no study yet to focus on the scenario.

In order to deal with such a complicated scenario, firstly, let us clarify the two

unique issues involved that will affect the performance of the HMTL methods.

The first is how to model the relationships among heterogeneous tasks as done

for homogeneous tasks. Due to the existence of the heterogeneity among those

tasks, there do more likely exist strong similarity, weak similarity, which in turn

leads to positive, negative correlations [13]. Therefore, modeling such unknown

relationships is important yet challenging. A recent work [14] has shown that

we can capture such relationship among tasks by embedding a shared unit into

the multi-layer perceptron to reflect the specific information of tasks. While by
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sharing the hyper-parameters, [15] designs a single pipeline HMTL network for

heterogeneous pose evaluation and action recognition of humans.

Secondly, how to obtain useful shared information during the learning pro-

cess. Since various information in heterogeneous tasks may have an implicit

interrelationship with a single task or all tasks, thus undoubtedly affecting the

performance of HMTL [16]. Therefore, it is very important to obtain effective

common information for individual tasks by the twofold heterogeneous multi-

task (THMT) learning. Recent research work has designed a feature matching

network to capture these shared information in heterogeneous tasks for HMTL

[17].

Even so, most previous HTML works relied on manually designing a shared

layer for tasks including the latter layers until a branching layer. For example,

[18] uses a BlitzNet shared layer for object detection and semantic segmen-

tation. [19] designs a dual-attribute-aware hierarchical network (DARN) for

cross-domain image retrieval at fully connected layers. These constraints bring

about comprehensive cross-task knowledge sharing. To overcome these, we de-

signed a MTAL network. Different from existing methods, the designed network

automatically selects similar convolution kernel pairs across-tasks to obtain com-

mon knowledge. Specifically, as shown in Fig (1): in the learning process, we

automatically capture the inherent relationship between tasks by exploiting the

similarity between convolution kernels. Next, we use a soft threshold to select

the suitable convolution kernel pairs for aggregation to form a set of new kernel

bank to learn individual tasks. Finally, we train the entire network in an end-

to-end manner. Our experimental results demonstrate the effectiveness of our

method in comparison with the state-of-the-art counter-parts.

In summary, our contribution can be summarized as four folds below:

1) We propose a set of novel MTAL networks, which provides a new way of

solving the information sharing problem in THMTL.

2) We design a soft threshold to select the suitable kernel pairs to prevent

possible negative transfer caused by existing MTAL network learning.

3) We design a novel sharing strategy, which utilizes the similarity between
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Figure 1: Our proposed MTAL networks. The network is composed of four identical individual

task networks, and the input/output task (feature/label) spaces of each task network are

heterogeneous, respectively. The black solid line mullion represents the convolution kernel

selection layer. Green, orange, purple, and yellow solid circles indicate different output tasks.

convolution kernels in the same individual layers to formulate the intrinsic rela-

tionship between tasks and aggregate them to suppresses the intra-redundancy

of the entire network.

4) We conduct experiments on eight public datasets and compare the state-

of-the-art methods to validate the effectiveness of our method.

The rest of this article is organized as follows: in Section 2, we review

the related methods of homogeneous and heterogeneous multi-task learnings

respectively; in Section 3, we introduced the specific implementation of our

method; in Section 4, we conduct experiments on the eight public benchmark

datasets and compare the state-of-the-art methods to show the effectiveness

of our method. Finally, Section 5 concludes this paper with future research

directions. The code is available at http://parnec.nuaa.edu.cn/3021/list.htm.
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2. Related Work

At present, deep learning has achieved remarkable results in computer vi-

sion and MTL. Our work is also based on deep learning framework, thus in this

section, we mainly review deep learning-based homogeneous MTL and hetero-

geneous MTL in recent years, respectively.

2.1. Homogeneous MTL

Such methods generally assume that the input (feature) space and the output

(label) space are homogeneous between tasks (i,e., the same feature space and

label space). In such a scenario, existing methods share the same features

between tasks, and they are applied in object detection, image classification,

medical image segmentation, and so on. To date, there have had approaches

proposed, we divide them into three categories according to the homogeneous

MTL sharing architectures: hard sharing, soft sharing, and hybrid sharing.

Task 2Task 2

Task 1Task 1

Shared layers 

Figure 2: Homogeneous MTL based on hard sharing.

1) Hard sharing MTL. As shown in Fig.(2), in the architecture, all tasks share

their knowledge in the same hidden space. For example, [20] uses a mutual rep-

resentation of hard parameters shared for personalized stress recognition. [21]

predicts the mortality of diverse rare diseases by initializing shared parameters

in hidden space. The MTL methods of this kind can not only assist in effec-

tive learning between tasks but also minimize the risk of over fitting during the

training process [22]. However, it is difficult to handle loosely related tasks [23].

2) Soft sharing MTL. As shown in Fig.(3), in its architecture, all task models

and parameters are independent, and the distance between the model parame-
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Constrained layers

Task 2Task 2

Task 1Task 1

Parameter sharing

Figure 3: Homogeneous MTL based on soft sharing.

ters is regularized to obtain similar parameters for joint learning. For example,

[24] uses a neural network parser to share parameters between the source do-

main language and the target domain language for natural language processing.

[25] utilizes tensor trace norms to regularize parameters in multiple networks

for image recognition. [26] learns multiple different tasks by jointly learning

transferable features and multi-linear relationships between tasks and features

in a fully connected layer. However, this method obviously relies on a prede-

fined shared structure, and the model has poor generalization performance for

the new tasks.

Task 2Task 2

Task 1Task 1

 Skipped layer

  Shared

  Shared

  Shared

Figure 4: Homogeneous MTL based on hybrid sharing.

3) Hybrid sharing MTL. As shown in Fig.(4), in the hybrid shared archi-

tecture, specific task strategies are used to select which layer of multiple task

network models can perform shared learning. For example, [27] uses task-specific

strategies to learn shared patterns for image semantic and normal segmentation.

The advantage of this method is that the number of parameters does not in-

6



crease as the number of tasks does. The disadvantage is that it cannot handle

heterogeneous tasks.

2.2. Heterogeneous MTL

HMTL usually assumes that the input (feature) space is the same, but the

output (label) space is unnecessarily consistent, or the input (feature) space is

heterogeneous and the output (label) space is consistent. Such methods share

heterogeneous features to make some predictions such as the heterogeneous at-

tributes of human faces and human poses, and classify various images or texts.

For these existing works, we can also divide them into two categories to the

HMTL sharing architectures: hierarchical sharing and sparse sharing.

Task 2Task 2

Task 1Task 1
Task 3Task 3

Task 4Task 4

Figure 5: HMTL based on hierarchical sharing.

1) Hierarchical sharing HMTL. As shown in Fig.(5), in the architecture,

various tasks perform hierarchical sharing learning in multiple task networks.

For example, [28] is used for image classification by weighting and sharing similar

features among different levels in the multi-task network. [29] learns a set of

shared semantic representations from the bottom of the supervised model to

multiple task hierarchies at the top of the model for natural language processing.

2) Sparse sharing HMTL. As shown in Fig.(6), in the sparse sharing architec-

ture, an HMT network is composed of various task networks and is sparse. For

example, [23] extracts sub-networks of different tasks from an over-parameterized

base network and uses masks to sparsify the features of different individual task
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networks to retain partly shareable features and delete irrelevant features for

the Part-of-Speech , Named Entity Recognition and Chunking. The advantage

of this method is to retain some useful information to help a specific task, and

remove the useless information. Obviously, sparse sharing from the perspec-

tive of information sharing can be regarded as an example of hard sharing and

hierarchical sharing.

Task 1Task 1

Task 2Task 2

Sparse

Sparse

Sparse

Figure 6: HMTL based on sparse sharing.

On the other hand, there are also typical works not using deep learning

architecture in dealing with HMTL problems. For example, [30] uses a linear

discriminant analysis of multi-task expansion algorithm (MTDA) for processing

tasks with different data representations. The method learns a separate het-

erogeneous feature transformation for each task. It’s purpose is to alleviate the

problem of insufficient label data during learning, and can jointly handle binary

and multi-class problems for each task. [31] uses non-negative matrix factor-

ization to learn sharing common semantic features in the feature space across

heterogeneous tasks for image classification. [32] learns a shared graph Lapla-

cian matrix in unified image features for visual clustering of different modalities.

3. Our Method

Our method is inspired by the fact that the activation maps generated by

similar convolution kernels in each convolution layer are also similar [33] [34].

For this reason, our method aims to automatically select similar convolution

kernel pairs across-task to obtain common knowledge for THMTL. As shown in

8



Fig.(7), our method consists of measuring the similarity of convolution kernels,

selecting suitable kernel pairs, and aggregating them to form a set of new kernel

bank. Specifically, Section 3.1 formally formulates the problem. Section 3.2

illustrates how to find similar convolutional kernels in the convolutional layer of

the network and utilize a soft threshold to select suitable kernel pairs. How to

aggregate these kernel pairs is discussed in Section 3.3. Section 3.4 derives the

objective function of THMTL to deploy such a mechanism.
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Figure 7: Convolution kernel pairs sharing mechanism. In the l-th layer of the MTAL network,

the model measures the similarity of convolution kernels in task networks T1 and T2 while

selects the suitable convolution kernel pairs through the threshold for aggregation to form

a set of new kernel bank. The purple and blue rectangles represent the convolution kernels

of task networks T1 and T2 , respectively. The yellow and cyan octagons represent the new

kernels aggregated. The solid line box on the right represents the new kernel bank. The

gray octagons represent independent kernels that are not shared to continually learning their

corresponding tasks.

3.1. Problem formulation

Suppose we are given N tasks {Ti}Ni=1, some of which are related or unre-

lated. The training dataset Di =
{(
xih, y

i
h

)}ni

h=1
for Ti contains ni samples with

xih ∈ Rdi and its corresponding label yih ∈ {1, . . . , ci}, where di and ci are the

numbers of dimensions and classes in the dataset Di, respectively. We do not
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assume that the datasets from different tasks share the same feature space, so

the dimensions of feature spaces can be different. This makes MTAL applica-

ble under more general settings than most existing handling heterogeneous task

methods.

3.2. Measure the similarity of the convolution kernels

The goal of HMTL is to improve the generalization performance of individ-

ual tasks by sharing their relevant information. However, such information is

generally unavailable and implicit. To mine this information, there have been

some works proposed, they can mainly be summarized as HMTLs based on

shallow and deep networks according to the architecture. Here we only focus

on the deep HMTL under the same network structures since the deep networks

has been more satisfactorily applied in the MTL fileds, which can be subdivide

into two types according to sharing way:

1) feature-sharing-based. This type of method is to learn a common repre-

sentation from different task features in the same hypothetical space, thereby

effectively helping to learn each task. Typically, [35] uses tensors to represent

the feature interactions from different tasks in the same shared subspace for in-

ductive transfer of related information, thereby providing better generalization

performance for multi-task models. [36] uses the `{1,2} norm to regularize the

weight matrix to extract relevant features between tasks for learning multi-tasks

with different feature dimensions. These methods will lower their generalization

performance when the tasks are unrelated or the distributions of the data are

different.

2) parameter/weight-sharing-based. This type of methods mainly learns mul-

tiple tasks jointly by sharing common parameters hidden in the weights of dif-

ferent task models. According to different implementation manners, we further

divide it into the following three sub-types: 1) sharing the parameters between

task models based on the same space assumption: for example, [37] shares

weight parameters in different tasks in the same subspace for face detection,

key point positioning, pose estimation, and gender prediction. 2) parameter
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matrix factorization based: e.g., [38] uses the matrix tri-factorization to process

collective matrices associated with different tasks and performs joint learning

to predict two types of drug-disease associations. 3) equal prior shared assump-

tions based: e.g., [39] uses a kind of meta data (i.e., contextual attributes) as a

priori information to capture the relationships between different tasks for mul-

tiple tasks clustering. The above methods mainly utilize model parameters to

associate different tasks. However, it is a great challenge to design an appro-

priate implementation manner in different tasks to obtain shared parameters.

To demonstrate the importance of these parameter sharing manners in HMTL,

we further studied the current two excellent deep network frameworks based on

parameter sharing that are typically capable of handling heterogeneous tasks.

E.g., the cross stitch network [40] connects the low-level layers of different single-

task networks by learning the parameter α in the task features, which is defined

as

 x̃ijA

x̃ijB

 =

 αAA αAB

αBA αBB

 xijA

xijB

 (1)

where xijA and xijB represent the activation-maps learned in the two sub-networks,

and are linearly combined to realize the information interaction in the neurons

of the hidden layer, thereby outputting new hidden features x̃ijA and x̃ijB . The

SubNetwork Routing (SNR) [41] decomposes the shared-bottom module of the

MMOE [42] network into three subnetworks and shares the parameters z to

learn relevant information among different tasks, which is defined as

 v1

v2

 =

 z11W11 z12W12 z13W13

z21W21 z22W22 z23W23



u1

u2

u3

 (2)

where u1, u2 and u3 represent the outputs by the hidden layer of each lower-level

sub-networks, W is the transformation matrix, v1 and v2 represent the inputs of

the higher-lever sub-networks of the next layer. Instead of the above methods

of sharing neuron units in the hidden layers of the network, our method is to
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share the set of neurons in (similar) convolution kernel pairs to improve the

generalization and efficiency of the MTAL network.

In order to implement the above sharing, we assume that in the l-th layer for

an individual task, there is a group ofm convolution kernels Wl
Ti

=
{
wl

Ti1
, wl

Ti2
. . . , wl

Tim

}
,

(i = 1, 2, ..., N), which form Wl =
{

Wl
T1
, Wl

T2
, . . . ,Wl

TN

}
in the MTAL net-

work. Then, we measure the similarity between convolution kernel pairs by the

following cosine similarity to capture the relationship between tasks:

dcos(vec(w
l
Ti

), vec(wl
Tj

)) =
vec(wl

Ti
)T · vec(wl

Tj
)

|| vec(wl
Ti

) ||
2
· || vec(wl

Tj
) ||

2

(3)

where vec(·) represents the vectorization operator.

Next, we just consider sharing the kernel pairs that satisfy formulation (4)

while retaining the remaining independent kernels to prevent possible negative

transfer caused by existing MTAL network learning.

dcos(vec(w
l
Ti

), vec(wl
Tj

)) ≥ δ, δ ∈ [0.1, 0.9] (4)

3.3. Aggregation of Convolution Kernels

To further perform the sharing, we use the weighted aggregation of pairwise

wl
Ti

and wl
Tj

to model the shared representation between individual tasks as

follows: {
wl

Ti,Tj
| wl

Ti,Tj
= ϕl

i,jw
l
Ti

+ ϕl
j,iw

l
Tj
, i 6= j, ϕl

j,i + ϕl
j,i = 1

}
(5)

where ϕl
i,j and ϕl

j,i are weight coefficients, wl
TiTj

represents the aggregated ker-

nels. In this way, we reduce the number of weights in the entire network while

suppressing intra-redundancy (due to over-parameterization [43]). Our experi-

ments show that the memory of the entire network can be saved by about 13.1%

compared to the original structures, as empirically analyzed in 4.6.

For joint learning of multiple tasks in the MTAL network, we gather (5) to

form a kernel bank and perform a simple average aggregation as follows:

ŵl
Ti

=

∑
w∈Ml

Ti

wl
MTi∣∣Ml

Ti

∣∣ (6)

12



where ŵl
Ti

represents the averaged kernel, Ml
Ti

is the new kernel bank (i.e.,

Ml
Ti

=
{
wl

Ti,Tj
, . . . , wl

Ti,TN

}
, (j = 2, . . . , N, j 6= i)), wl

MTi
is the kernel of the

bank.

3.4. Objective Function of individual & total task

In the MTAL learning, we use the inputs XTi (i = 1, 2, . . . , N) and the labels

YTi
(i = 1, 2, . . . , N) to minimize following the individual task loss function LTi

as follow

LTi
= −

ni∑
i=1

yh(log y′h) + λ‖WTi
‖2F (7)

where the first term is the cross-entropy loss of individual tasks, the second term

is the `2 norm regularization. λ is an adjustment hyper-parameter. Then, we

define the total objective function of the entire network as

LTtotal
= LT1

+ LT2
+ ...+ LTN

(8)

The whole process of the proposed method to solve THMT is summarized

in Algorithm (1).

4. Experiments

In this section, we use VGG [44] network as a base-model but also other

networks such as ResNets [45]. We conduct two sets of experiments on eight

public datasets to verify the performance, that is, one set of experiments uses

the prior relationships between tasks (e.g., obtained through cross-validation

experiments) while the other set does not.

4.1. Datasets

We use the following datasets for experiments, and divide 70% for training,

and the remaining 30% for testing, which is detailed in Table (1).

The Office-Caltech dataset1 contains the Office-Caltech10 dataset and the

Office-Caltech31 dataset, each of which has a total of 2533 samples and is com-

posed of a subset of image datasets from three different databases: Caltech,

1https://people.eecs.berkeley.edu/~jhoffman/domainadapt/
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Algorithm 1: MTAL

Notations: T1, T2, . . . , TN denote input heterogeneous tasks;

Wl =
{

Wl
T1
,Wl

T2
, . . . ,Wl

TN

}
denotes the convolution kernels of the l-th

layer; η denotes learning rate; δ is the threshold; θ are the weights of

the entire network; Ml
Ti

denotes the new kernel bank.

Input: T1, T2, . . . , TN , η, δ

Output: θ

1 random initialization Wl

2 repeat

3 for all
{

(xh, yh) ∈ DTj

}N
j=1

do

4 for each convolution layer l do

5 for each Ti do

6 Ml
Ti

= {}

7 for each Tj(j 6= i) do

8 The convolution kernel pairs similarity is calculated

by (3)

9 If dcos(vec(w
l
Ti

), vec(wl
Tj

)) ≥ δ : put wl
Ti,Tj

into Ml
Ti

10 Convolution kernel sharing by using (5)

11 end for

12 Update weight ŵl
Ti

by (6)

13 end for

14 end for

15 Calculate the output of the current sample sequence {y′h}
N
h=1

16 Update weight θ by using back propagation algorithm

17 end for

18 until convergence;

14



Amazon, and Webcam. We select a set of Amazon from the Office-Caltech31

dataset, and randomly select 10 categories, with a minimum image size of

200 ∗ 150 and a maximum image size of 900 ∗ 557.

The Office Home dataset2 is composed of subsets of image datasets from

different fields of Art, Clipart, Product, Real-World. Each subset has 65 different

categories and 15,500 images. We randomly select 10 classes in the Art subset

of the Office Home with the image size of 117 ∗ 85 and 4384 ∗ 2686.

The Coil-20 dataset3 is a 20-object grayscale image dataset, consisting of a

set of 720 unprocessed images of 10 objects and another set of 1,440 normalized

image datasets of 20 objects. The image acquisition comes from placing the

object on the electric turntable against a black background, rotate the turntable

by 360 degrees to capture the pose of the object with a fixed camera or take an

image of the object by rotating the turntable by 5 degrees. We select the first

set of unprocessed image datasets for the experiment.

The Chars74K dataset4 is composed of two datasets of English characters

and Kannada characters, where the English characters include 3 datasets of A

(A-Z), a (a-z), and 0-9 handwritten digits (HD) with a total of 62 categories,

3410 images, handwritten by 55 volunteers. We use the A, a, HD subsets in

the English character datasets, and randomly select 10 categories from the A,

a subset for the experiment.

The Typographic dataset5 is a classic dataset used for machine learning,

image classification, and image recognition. It is mainly composed of 0-9 typo-

graphic numbers, a total of 10,000 pictures, and the picture size is 12 ∗ 16.

4.2. Comparison Methods

We compare our method with the following five representative methods.

2http://hemanthdv.org/OfficeHome-Dataset/
3https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
5http://www.catalina.com.cn/info_249972.html
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Table 1: Parameters and settings for each datasets.

Datasets Number of categories Size of image Dataset partition (%)

Amazon 10 150 ∗ 900/557 ∗ 28 70/30

Art 10 117 ∗ 85/4384 ∗ 2686 70/30

Coil-20 10 128 ∗ 128 70/30

HD 10 28 ∗ 28 70/30

Typographic 10 12 ∗ 16 70/30

a 10 28 ∗ 28 70/30

A 10 28 ∗ 28 70/30

Single task6 baseline: This method uses a single VGG network to learn the

predictive model for each independent task.

Multi-task7 baseline: This method uses multiple identical VGG networks to

jointly learn a multi-task prediction model.

MTDA8 [30]: This method uses linear discriminant analysis to handle mul-

tiple tasks represented by different data.

Cross-Stitch network 9 [40]: This method introduces the cross stitch unit in

the convolutional neural network of two different tasks for knowledge sharing,

thereby improving the learning performance of the network.

NDDR-CNN10 [46]: This method performs feature fusion at each layer on

different tasks to obtain shared information, thereby improving the predicting

accuracy of the model.

MTAL11: This is our proposed method, which mainly aims at automati-

cally selecting similar convolution kernel pairs across tasks to obtain common

information for THMTL.

6https://github.com/machrisaa/tensorflow-vgg
7https://github.com/luntai/VGG16_Keras_TensorFlow
8https://yuzhanghk.github.io/
9https://github.com/helloyide/Cross-stitch-Networks-for-Multi-task-Learning

10https://github.com/ethanygao/NDDR-CNN
11http://parnec.nuaa.edu.cn/3021/list.htm
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MTALR
12: This is our proposed method, which uses the prior relationship

between tasks in the experiment.

4.3. Hyper-Parameter Tuning

In the contrasted deep neural network methods, we adjust the hidden units,

learning rate, and the number of training steps in each layer according to the

parameter settings of the corresponding references. In MTAL, we adjusted the

hyper-parameters in the same way and chose the stochastic gradient descent

method as the network optimizer. Specifically, we set the learning rate η to 0.01

and λ to 0.1. For δ, we have verified through multiple experiments that its value

is 0.4 when the tasks are related, but it is 0.55 when the tasks are unrelated.

All the deep models are implemented by Tensorflow.

4.4. Results of Model Performance

We respectively show the performance of various methods on the datasets

HD, a, Typographic, A, Coil-20, Art, and Amazon. The detailed analysis is show

as follows:

Firstly, when using the relationship between tasks, we find from Table(2) and

Table(4), that the accuracy of MTALR is better than most methods. However,

when the relationship between tasks is not used, we find from Table(3) and

Table(5) that the accuracy of MTAL is better than other methods.

Secondly, in Table(2) and Table(4) we find that most of the MTL methods

are better than the single-task learning method, which proves the effectiveness

of jointly learning multiple heterogeneous tasks by exploring the relationship

between tasks. In particular, Table(2) shows that all methods are better than

single-task learning methods, which indicates that the more similar the relation-

ship between tasks, the better the generalization performance of all methods.

In addition, we observe that the results of different multi-task methods are

different, which is caused by the differences among tasks.

12http://parnec.nuaa.edu.cn/3021/list.htm
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Table 2: Performance comparison among various methods that use task relationships on HD,

a, typographic, and A datasets. Among them, the bold numbers are the best classification

results, and the underlined numbers are the second-best classification results.

Methods
Group 1 Group 2

HD a Typographic A

Single-task 0.76± 0.025 0.80± 0.023 0.95± 0.011 0.84± 0.020

Multi-task 0.83± 0.015 0.85± 0.015 0.97± 0.015 0.86± 0.020

MTDA 0.78± 0.032 0.82± 0.014 0.95± 0.015 0.85± 0.040

Cross-Stitch 0.81± 0.017 0.86± 0.012 0.97± 0.015 0.88± 0.015

NDDR-CNN 0.80± 0.040 0.88± 0.035 0.97± 0.014 0.87± 0.033

MTALR 0.83± 0.035 0.92± 0.029 0.97± 0.014 0.98± 0.013

Again, the results in Tables (2) to (5) show that most MTL methods using

task relationships are better than those without task relationships. It suggests

that most of the current MTL methods rely on the relationship between tasks.

However, from these results, we find that MTAL is equivalent to the best method

of the first set of experiments, and it improves the accuracy on HD and Amazon

in Tables (3) and (5). This further reflects the excellent performance of the

convolution kernel pairs sharing mechanism.

Table 3: Performance comparison among various methods in HD, A, typographic, and a

datasets without the task relationships. Among them, the bold numbers are the best classifi-

cation results, and the underlined numbers are the second-best classification results.

Models HD A Typographic a

Single-task 0.76± 0.025 0.84± 0.020 0.95± 0.011 0.80± 0.023

Multi-task 0.82± 0.030 0.85± 0.090 0.92± 0.012 0.84± 0.090

MTDA 0.75± 0.047 0.78± 0.025 0.90± 0.024 0.82± 0.012

Cross-Stitch 0.82± 0.019 0.86± 0.020 0.95± 0.015 0.87± 0.090

NDDR-CNN 0.80± 0.026 0.87± 0.017 0.96± 0.005 0.85± 0.023

MTAL 0.86± 0.038 0.98± 0.014 0.97± 0.016 0.92± 0.025

Finally, as shown in Figure (8), we find that the overall performance of

the MTAL and MTALR methods is better than other methods. The above

experimental results are consistent with our theoretical analysis.
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Table 4: Performance comparison among various methods that use task relationships on HD,

Coil-20, Art, and Amazon datasets. Among them, the bold numbers are the best classification

results, and the underlined numbers are the second-best classification results.

Methods
Group 1 Group 2

HD Coil-20 Art Amazon

Single-task 0.76± 0.025 1 0.59± 0.041 0.76± 0.032

Multi-task 0.81± 0.041 1 0.57± 0.059 0.77± 0.042

MTDA 0.80± 0.007 0.97± 0.018 0.59± 0.013 0.72± 0.043

Cross-Stitch 0.81± 0.040 1 0.60± 0.055 0.77± 0.045

NDDR-CNN 0.79± 0.041 1 0.60± 0.051 0.80± 0.044

MTALR 0.86± 0.034 1 0.67± 0.050 0.80± 0.043

Table 5: Performance comparison among various methods in HD, Art, Coil-20, and Amazon

datasets without task relationships. Among them, the bold numbers are the best classification

results, and the underlined numbers are the second-best classification results.

Models HD Art Coil-20 Amazon

Single-task 0.76± 0.025 0.59± 0.041 1 0.76± 0.032

Multi-task 0.79± 0.047 0.61± 0.060 1 0.77± 0.047

MTDA 0.77± 0.051 0.58± 0.025 0.95± 0.042 0.70± 0.044

Cross-Stitch 0.78± 0.037 0.59± 0.058 1 0.78± 0.047

NDDR-CNN 0.78± 0.038 0.58± 0.063 1 0.78± 0.044

MTAL 0.82± 0.035 0.65± 0.056 1 0.82± 0.040

4.5. Threshold selection analysis

To prevent the negative transfer caused by existing MTAL network learning,

we conduct threshold experiments on related and unrelated scenarios between

tasks. We set the threshold in the range of 0.1-0.9, train 10 epochs for each

value, and finally compute the mean and standard deviation of classification

accuracy. As shown in Fig.(9), we can obtain: 1) When the tasks are related

and δ ≥ 0.4, the generalization performance of the MTAL network is the best.

2) When the tasks are unrelated and δ ≥ 0.55, the generalization performance

of the MTAL network is the best.

4.6. Model parameters compression and sharing strategy visualization

We have obtained the sharing rate (i.e., network redundancy compression)

of the convolution kernels in the MTAL network and each convolution layer

by experiments. As shown in Table(6), the kernel pairs shared ratios of each
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Figure 8: Performance comparison of various methods on mean and mean square error. In

Fig.8 (a), 1 and 2, the performance comparison of various methods using task relationships

when the tasks are related and unrelated, respectively. In Fig.8 (b), 1 and 2, the performance

comparison of various methods that do not use task relationships when tasks are related and

unrelated, respectively.

convolutional layer in the MTAL network are 12.5%, 12.5%, 16.7%, 12.5%,

8.3%, 8.3%, 12.5%, 16.7%, 12.5%, 16.7%, 12.5%, 16.7%, 16.7% respectively.

The solution space of the entire network can be compressed to 13.1%.

To verify the feasibility of the convolution kernel pairs sharing mechanism

proposed in this paper, we respectively visualized the activation maps in the

first and second convolution layer of the MTAL network. Fig.(10) shows the

activation maps generated in the first layer of the convolution layer when the

task is partially related. We find that more shapes and features information can

be shared in the active maps area. Fig.(11) shows the activation maps generate

in the second convolution layer when the tasks are unrelated. We further find

that more textures and contours information can be shared in the activation

map area. The above visualization results show that it is feasible to perform

cross-task learning by sharing similar convolution kernel pairs.

4.7. Model convergence analysis

In this section, we show the loss functions of the two sets of tasks in Fig.(12)

(a) and (b) to analyze the convergence of the model. In Figure 12(a), we find

that the loss function of task 2 tends to converge after about 40 iterations,
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Figure 9: The selection result of δ in various tasks. Fig.9 (a) and (b) show the corresponding

learning value δ when the tasks are related and unrelated.

while tasks 4, 3, and 1 tend to converge after about 60, 70, and 80 iterations,

respectively. In Figure 12 (b), we observe that the loss function of task 6

tends to converge after about 40 iterations, while tasks 5, 8, and 7 converge

after about 80, 120, and 150 iterations, respectively. The above shows that our

model converge relatively fast.

5. Conclusion

In this paper, we provide a deep learning framework MTAL for processing

THMT. Compared with the previous MTL method, the MTAL network ex-

plores and uses the inherent relationship between tasks to share knowledge of

similar convolution kernel pairs in each of their layers to learn THMT. The net-

work not only effectively performs cross-task learning but also suppresses the

intra-redundancy of the entire network. Meanwhile, MTAL can handle related

heterogeneous tasks well and achieve great performance when they are unre-

lated. At the same time, the designed sharing strategy in MTAL can be flexibly

embedded in other deep multi-task learning frameworks. To evaluate the pro-

posed MTAL, we conduct experiments on eight public datasets and compare

with the state-of-the-art HMTL methods. Experimental results show superior-

ity of our MTAL. In summary, our work can enrich HMTL research from three

aspects: 1) an adaptive THMT learning mechanism that can avoid negative

transfer caused by jointly learning multiple tasks due to incorrect pre-defined
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Table 6: Kernels sharing ratio

MTAL network Kernels sharing ratio (%)

Conv1 1 layer 12.5

Conv1 2 layer 12.5

Conv2 1 layer 16.7

Conv2 2 layer 12.5

Conv3 1 layer 8.3

Conv3 2 layer 8.3

Conv3 3 layer 12.5

Conv4 1 layer 16.7

Conv4 2 layer 12.5

Conv4 3 layer 16.7

Conv5 1 layer 12.5

Conv5 2 layer 16.7

Conv5 3 layer 16.7

Total network 13.1

task relationships; 2) a new method for solving THMT with no relation among

tasks; 3) a new THMT sharing strategy for learning multiple heterogeneous

tasks. However, in this work, we do not solve the problem of unbalanced and

interpretable shared learning among multiple heterogeneous tasks and will de-

vote ourselves to solving these problems next.
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Figure 10: Visual activation maps when the tasks are relevant. The activation maps are

extracted from the first convolutional layer in the MTAL network. The red, purple, brown,

and orange solid line boxes denote the activation maps generated from different convolution

kernels in task 1 and task 2, respectively.
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