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Xujuan Zhou, U Rajendra Acharya

• A novel federated architecture, FedStack, is proposed to overcome the
heterogeneity limitation in traditional federated learning.

• Enhanced personalized patient monitoring by adopting the proposed
novel federated architecture to classify physical activities.

• FedStack framework outperformed the baseline models’ performance in
federated learning.
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Abstract

Recent advances in remote patient monitoring (RPM) systems can recognize
various human activities to measure vital signs, including subtle motions
from superficial vessels. There is a growing interest in applying artificial
intelligence (AI) to this area of healthcare by addressing known limitations
and challenges such as predicting and classifying vital signs and physical
movements, which are considered crucial tasks. Federated learning is a rel-
atively new AI technique designed to enhance data privacy by decentraliz-
ing traditional machine learning modeling. However, traditional federated
learning requires identical architectural models to be trained across the lo-
cal clients and global servers. This limits global model architecture due to
the lack of local models’ heterogeneity. To overcome this, a novel federated
learning architecture, FedStack, which supports ensembling heterogeneous
architectural client models was proposed in this study. This work offers a
protected privacy system for hospitalized in-patients in a decentralized ap-
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proach and identifies optimum sensor placement. The proposed architecture
was applied to a mobile health sensor benchmark dataset from 10 different
subjects to classify 12 routine activities. Three AI models, artificial neu-
ral network (ANN), convolutional neural network (CNN), and bidirectional
long short-term memory (Bi-LSTM) were trained on individual subject data.
The federated learning architecture was applied to these models to build lo-
cal and global models capable of state-of-the-art performances. The local
CNN model outperformed ANN and Bi-LSTM models on each subject data.
Our proposed work has demonstrated better performance for heterogeneous
stacking of the local models compared to homogeneous stacking. Further
analysis of the global heterogeneous CNN model determined that the op-
timum placement of the sensors on human limbs resulted in better activity
recognition. This work sets the stage to build an enhanced RPM system that
incorporates client privacy to assist with clinical observations for patients in
an acute mental health facility and ultimately help to prevent unexpected
death.

Keywords: Federated Learning, ANN, CNN, Bi-LSTM, RPM, HAR.

1. Introduction

Remote patient monitoring (RPM) is a trending application in health
intelligence to identify health parameters using sensors without obstructing
a person’s day-to-day activities. Typical RPM systems can track and record
vital signs such as heart rate and breathing rate, but they can also be applied
to measuring physical activities like walking, running, unintentional falls,
and so on. This is achieved through a wide variety of device applications like
smartwatches [1], smart shirts [2], telehealth [3] and mobile sensors [4][5].

Artificial intelligence (AI) is being used in a variety of health applica-
tions [6] as such as image processing [7, 8], natural language processing [9],
sensor data processing [10], and so on. The use of artificial intelligence (AI)
can enhance the capabilities of RPM systems through processing the recorded
data and by training deep machine learning models to build efficient predic-
tive systems. An example of this is the use of early warning scores (EWS)
that have been designed by clinicians to detect early signs of patient deteri-
oration. Typical RPM systems predict possible future clinical events based
on recorded data as well as real-time time-series data. These assistive appli-
cations can be particularly useful for acute inpatient care, but they can also
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be applied to those being cared for in their home as a strategy to manage the
current pandemic. An important consideration when designing RPM systems
is to ensure the confidentiality of health information and be able to adapt
to the business processes of clinical activities. Current research approaches
promote homogeneous data-centric models built on a centralized data server.
This method of generalizing the data learning could limit the application of
RPMs to health care that needs to be person-centric and individualized.

Figure 1: Research Background

In healthcare applications, each patient has different demographics and
health history, which requires personalized monitoring. Traditional central-
ized learning approaches merge all client data to a cloud server and host a
model as shown in Fig. 1. A centralized architecture cannot cater to the
needs of personalized monitoring and compromises client privacy. Decentral-
ized learning can focus on individual client data, and this can be achieved
using a recently developed method called federated learning (FL) [11] as
shown in Fig. 1. This could overcome the privacy issues of centralized learn-
ing. However, it has a limitation of aggregating heterogeneous architectural
client models.

The research problem is local clients are compelled to use similar archi-
tectural models as part of their data modeling in traditional FL, which might
be impractical as each client might have different requirements and priori-
ties. A heterogeneous stacked federated learning architecture, FedStack is
proposed to address this problem. The primary aim of the proposed frame-
work is to decentralize the machine learning approach by allowing each device
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or client to train a machine learning algorithm on their private data locally.
Upon evaluation, the trained model predictions are communicated to a global
model residing in a separate server, thus decentralizing the client monitoring
process and preserving their privacy. The global model would then retrieve
stacked predictions from different devices or clients and update the central
machine learning model using heterogeneous data. The secondary aim of
this study is to adopt the framework of an RPM system to isolate each set
of patient data, protect their privacy, and train AI models locally. The pro-
posed FedStack also determines the optimum positions to place a sensor on
a human body to achieve greater activity recognition capability.

This study used a benchmark dataset with tri-axial sensor data collected
from 10 healthy volunteer subjects. Sensor data from each subject was fed to
three different AI models to classify and evaluate their activities. The pro-
posed FedStack learning approach was used to isolate each subject’s data and
ensemble the predictions of individual subject models. The ensemble predic-
tions were then communicated to a global model. Three different AI models
Artificial Neural Network (ANN), Convolutional Neural Network (CNN), and
bidirectional long short-term memory (Bi-LSTM) were trained as global and
local models on each subject data, and their classification performances were
evaluated and compared. The three AI models ANN, CNN, and Bi-LSTM
on local client data achieved an average balanced accuracy of 0.98, 0.99, and
0.93 respectively. CNN model has outperformed the other two AI models
on all nine subjects’ data. The predictions from the local client models were
ensembled and trained in the global model. The global CNN model has
outperformed the other two models with a balanced accuracy of 0.976 and
0.996 for homogeneous and heterogeneous stacked predictions respectively.
The global heterogeneous CNN model was evaluated with one sensor input
at a time to determine the optimum positions to place a sensor on a human
body. The sensors on the right wrist and the left ankle were optimum sensor
positions for human activity recognition. The global CNN model with the
right wrist and left ankle sensors data achieved balanced accuracy of 0.99
and 0.99 respectively.

The ultimate goal of this research is to detect accurate vital signs and nat-
ural body movements of multiple mobile patients in an acute mental health
setting. As part of this research, a simulated psychiatric hospital ward was
established using a remote patient monitoring (RPM) system utilizing sen-
sors and radio frequency identification (RFID) technology. Optimum posi-
tions of RFID reader-antennas were determined in the simulated ward based
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on received signal strength indicators (RSSI) from passive RFID tags [12].
Signals detected were considered vital signs originating from subtle motions
from the patient’s body, and those from larger body movements were consid-
ered indicative of physical activities. This research offers a method to classify
physical activities using AI models and compares their performances. FL is
introduced to protect individual patient privacy and enhance the AI archi-
tecture with decentralized modeling. The proposed approach was able to
classify the labels and outperform the state-of-art works in each local model
and global model. The study contributions are as follows:

• This study proposed a novel heterogeneous stacked federated learning
architecture to overcome the limitation of heterogeneous architectural
ensembling in the traditional federated learning approach.

• This research combines tri-axial data of multiple sensors on the human
body to track their natural body movements using federated learning
in the area of healthcare.

• The proposed approach achieved better accuracy than current baseline
models for human activity recognition by using AI models.

• In this study, Federated learning is introduced at a subject level to train
an AI model with individual subject data and design a personalized
monitoring system.

• This study determines the optimum placement of sensors on the human
body for activity recognition based on individual sensor data contribu-
tion in classifying the label activities.

Section 2 presents related works on human activity recognition (HAR)
using traditional machine learning methods, DL methods, and FL meth-
ods. Section 3 presents the research problem formulation, FedStack architec-
ture proposed in this study, and the methodology of adopting the proposed
framework for personalized patient monitoring. Experimental design, base-
line models, and performance metrics are discussed in Section 4. In Section 5,
experiment results and their analysis, baseline models comparison, and dis-
cussion on proposed research results have been presented. Finally, the paper
concludes in Section 6.
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2. Related Works

2.1. Traditional Machine Learning Methods

Sri Harsha et al. [13] analyzed commonly used machine learning algo-
rithms for sensor-based human activity recognition. The authors built a
HAR system based on tri-axial accelerometer and gyroscope data collected
via mobile phones. The data were classified into running, walking, climbing
up or down activities using support vector machines (SVM), decision trees,
and random forest models. These algorithms were evaluated using the Gini
index, and random forest outperformed the other models in classifying the
running or walking with an accuracy of 94.43%. Overall, the models achieved
moderate accuracy of 63.68%, 63.83%, and 68.07% for SVM, decision trees,
and random forest, respectively. Halim [14] proposed stochastic recognition
of personalized human daily activity recognition using hybrid descriptors and
random forests. Erhan et al. [15] classified activities of walking, climbing up
or down, sitting, standing, and laying down with accelerometer and gyro-
scope data collected from a smartphone. The authors used machine learning
models, namely decision trees, SVM, K-nearest neighbors (KNN), and en-
semble classification methods boosting, bagging, and stacking. The SVM
model achieved the highest accuracy of 99.4% compared to the other clas-
sification models. Asim et al. [16] presented interesting work with a novel
framework designed for HAR. The authors incorporated human behavioral
contexts in activity recognition. Six different context-independent activi-
ties of lying down, standing, bicycling, sitting, running, and standing along
with 15 different behavioral contexts were chosen as primary activities for
recognition originally described by Vaizman et al. [17]. These activities were
classified using decision trees, KNN, SVM, random forest, and Naive Bayes
classifiers. The authors compared the classifier’s performance for context-
independent HAR to context-dependent HAR. The random forest classifier
performed better in classifying both sets of activities.

2.2. Deep Learning Methods

DL methods have expanded their scope in diverse applications like pre-
dicting traffic flow. Wang et al. [18] proposed Multitask Recurrent Graph
Convolutional Network (MRGCN) to predict traffic flows accurately in a
city. Essien et al. [19] bidirectional long short-term memory stacked autoen-
coder to predict traffic flow from tweet messages with traffic and weather
information. DL methods overcome challenges traditional AI models face by
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learning efficient features from raw sensor data and customizing a hierarchy
from low-level features to high-level abstractions. Moreover, DL methods can
extract features automatically in a task-dependent manner [20]. Murad and
Pyun [20] use five public HAR datasets to compare the performance of deep
recurrent neural networks (DRNNs) with conventional mechanical methods
like SVM, random forest, and KNN. The authors presented unidirectional,
bidirectional, and cascaded architectures on long short-term memory (LSTM)
DRNNs and found that unidirectional DRNN on the USC-HAD dataset [21]
had the highest accuracy of 97.8%. Suto et al. [22] also tested the efficiency of
DL on real-time data collected through self-learning activity recognition ap-
plications. The authors classified activities such as cycling, running, jogging,
walking, sitting, standing, and lying using a convolutional neural network
(CNN), artificial neural network (ANN), and 1NN. CNN achieved an ac-
curacy of 94.2%, but its long training time was a limiting factor for their
usage in real-time HAR applications. Instead, the authors opted for a well-
constructed ANN to obtain optimal results.

2.3. Federated Learning

An increase in electronic assistive health applications like smartwatches
and activity trackers led to pervasive computing or ubiquitous computing
where each device can seamlessly exchange data with another [23]. Although
it has the advantage of tracking real-time changes in personalized human
health data being centralized for monitoring, it is vulnerable to security
breaches of data privacy [24]. As AI has matured, a vast amount of human
data is being generated worldwide. To manage this huge data, technology
company Google introduced a mechanism that trains a machine learning al-
gorithm across multiple decentralized devices or servers without exchanging
their local data samples and focusing on personalized data management. This
is called federated learning (FL) also known as collaborative learning [11]. FL
overcomes the issues of data privacy that exist with traditional centralized
learning techniques where all device or server data is merged for analysis.
Federated Learning has been widely adopted by various applications such as
semi-supervised credit prediction [25].

Currently, personalized human activity recognition is achieved using cloud-
based traditional machine learning algorithms and DL algorithms. FL en-
ables on-device training and shares its model parameters to be aggregated
instead of the server’s global model. Sannara et al. [26] evaluated the perfor-
mance of FL aggregation techniques like FedAvg, FedMa, and FedPer against
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centralized training techniques. The CNN model was used to classify eight
physical activities. However, even though the FL techniques outperformed
the local client models, the server model accuracy of the FL techniques was
low compared to centralized learning. An activity recognition system was
designed by Zhao et al. [27] that was based on semi-supervised FL. The au-
thors used unsupervised learning on clients to update LSTM autoencoders
locally and then communicate the models to a global server that executed
supervised learning using softmax classifiers. The activity recognition system
was built using LSTM to process the time series data. A personalized hu-
man activity recognition system based on the FederatedAveraging method,
HARFLS, was proposed by Xiao et al.[28]. The authors stressed the need
for feature extraction and designed a perceptive extraction network based
on a convolutional block. HARFLS, with the extractive network, was able
to outperform existing human activity recognition works. Another person-
alized indoor activity recognition system was based on Federated Markov
Logic Network (FMLN) framework developed by Zhang et al. [29]. Xiaomin
et al. [30] proposed a slightly different clusterFL approach to minimize the
empirical loss of trained models by exploiting the similarity of users’ data and
improving federated model accuracy and communication efficiency between
local models and global models.

2.4. Summary

Traditional machine learning, DL, and FL are subsets of AI with different
approaches toward human activity recognition. Traditional machine learning
models can classify human activities but need domain expertise to reduce
data complexity. This problem can be addressed using DL models to apply
an iterative approach to processing data and learning features. However,
neither traditional machine learning nor DL methodologies can safeguard
data privacy without a supportive framework. The need for DL to rely on
huge data for better modeling results led to centralized data management
systems, hindering personalized monitoring. FL is a framework designed
to address these issues by decentralizing the modeling architecture. In this
study, a novel heterogeneous FL architecture was designed with three AI
models consisting of a machine learning model and two DL models both
locally and globally to not only take advantage of the robust learning of DL
models but also to build a personalized monitoring system using decentralized
federated architecture. Client privacy can be protected due to federated
learning characteristics. The proposed design overcomes the limitation of
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heterogeneous architectural ensembling of local client models in traditional
federated learning.

Figure 2: Proposed FedStack architecture.

3. Methodology

3.1. Research Problem Formulation

The primary aim of this study is to design a heterogeneous FL process
to build a global model across a variety of AI architectural models that are
trained at individual clients or devices. Irrespective of data distribution or
model architecture at an individual client, a robust heterogeneous global FL
model needs to be designed. For Example, let’s say n clients or their devices
are using m different AI models for local data modeling of their data, and
each client estimated predictions p. The objective is to pass the predictions
m while holding the local data at the client level or local device. The problem
can be mathematically defined in Equation 1.

Train(G)←−
n∑

i=1

mi(pi) (1)

where:

• Train(G): Train Global Model (G) with local model predictions

• mi(pi): Local model(L) with their predictions (p) at each client i =
1, 2, 3..n

The secondary aim of this research is to adopt the heterogeneous FL
process to personalize patients’ physical activity monitoring while protecting
their private data and classify the activities on three-dimensional sensor data.
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The approach will also determine the optimum position of sensors on the
human body that will classify human activity appropriately. This is achieved
by analyzing each sensor data recorded from different human body positions
in classifying their physical activities.

3.2. FedStack Learning Framework

In this study, a novel federated learning framework, FedStack is proposed
to build a heterogeneous global FL model by stacking predictions of individ-
ual client models. This approach allows heterogeneous architectural models
at the client level, overcoming the issue of heterogeneity [31] in traditional
FL techniques. Let’s assume that n number of devices with different AI
models are getting trained for analytical purposes. For example, One client
might use neural networks, others might use deep learning models or even
linear models like generalized linear models (GLM), and so on. Each of
these AI models has different architectural structures [32] and traditional FL
techniques such as FedAvg cannot aggregate due to different internal and
external parameters for each architectural structure.

Let’s say three different clients with three distinct architectural AI mod-
els are being trained with their local private data to predict or classify la-
bels. The predictions of the three client models can be estimated in Equa-
tions 2,3,4,5. Equation 2 is from a linear regression model used by the first
client, in which response and input features are assumed to have a linear re-
lationship. The yi is predicted response variable for individual observations
i, βj are coefficient of each input features xi, εi are random errors. The sec-
ond client uses a non-linear model with three layers, an input layer, a hidden
layer, and an output layer. Equation 3 presents the output of each node or
neuron in a layer, which is configured with weight wi and bias b for each
input x and z output of the node. The output will be passed to a next-layer
neuron for processing. Equation 4 presents three layered output combined
to outcome the prediction y. The third client uses convolution neural net-
works to model and analyze their private information and is represented by
Equation 5.

y1i = β0 + β1xi + ...+ βpxp + εi (2)

z = f(b+ x.w) = f(b+
n∑

i=1

xiwi) (3)
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y2i = f(f(f(x.w1).w2).w3) (4)

y3i = bi +
nc−1∑
c=0

∑
k=−p

pxc,j−kwc,k (5)

These three AI models have different architectures and configurations for
three different clients or devices. Traditional FL techniques aggregate the
local model architectures to build a robust global model, but they have a
limitation in aggregating the heterogeneous model. The proposed FedStack
framework can overcome limitations and build a heterogeneous global Fed-
Stack model across heterogeneous devices with different AI models. This can
be achieved by heterogeneous stacking (non-identical architectural models),
in which the predictions of different architectural models are stacked as shown
in Equation 6. The heterogeneous stacked predictions of the three models
y1i, y2i, y3i, where 1i, 2i, 3i denotes non-identical architectural models. These
predictions are derived from Equations 2,4,5 for heterogeneous stacking and
used to train the global FedStack model as shown in Fig. 2. The framework
is designed to support the aggregation of identical architectural models, but
with the stacking predictions, not an average of model weights (FedAvg).
This process is called homogeneous stacking, as shown in Equation 7. The
predictions y1i of similar architectural models from different are stacked to
train the global model. To show identical architectural model predictions, 1i
was used in Equation 7.

Train(G)←− stack(y1i, y2i, y3i) (6)

Train(G)←− stack(y1i, y1i, y1i) (7)

Figure 3: Research architecture overview.
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3.3. Personalized Patient Monitoring
FedStack proposed in this study adopted the novel federated learning

framework to analyze the individual subject or device data and build a global
model by aggregating individually trained local AI models. All parameters
of the local model’s predictions were aggregated using the traditional stack-
ing ensemble technique and compiled in the global model as shown in Equa-
tion 6,7. The predictions of each AI model on each subject data were stacked
homogeneously and heterogeneously and passed to the global model. This
enabled a heterogeneous architecture for federated learning, where clients
could have a variety of model architectures. The proposed FL framework
can be adapted by RPMs to monitor patients’ activities based on classifica-
tion models. The models’ outcomes on individual patient data can stack to
build the FedStack global model, as shown in Fig. 3.

Traditional machine learning and DL models consolidate or centralize
data on a single machine or a data server, requiring users’ private data to
interpret the results. The Federated Learning-based architecture shown in
Fig. 2 has been designed for this research. This was introduced to decen-
tralize the data training approach and avoid centralizing the data on one
machine or a data center. It comprises local models and a global model.
All local models were trained individually on user devices, including public
and private data. Both traditional machine learning models and DL models
are suitable for this architecture. Based on the training on individual data,
the model parameters such as model predictions were communicated to the
global model executed in a cloud server. Implementing global models in the
cloud can run random rotations on local models and retrieve local model
parameters or predictions without the need for the original user’s data. Ran-
dom rotations were executed based on the individual user or device data
dimensions. Once the random devices or users were selected for the FL pro-
cess, model predictions were stacked using the traditional ensemble method
of stacking [33].

Traditional machine learning methods would require heuristic hand-crafted
feature extraction to enhance their performance [34]. Specifically, personal-
ized activity recognition would involve diverse data knowledge, including
sensors, limiting traditional machine learning methods. In contrast, deep
learning methods can learn features and automate model building [35]. Al-
though neural network family algorithms have been criticized for their black
box nature [36], deep learning models have been known for robust and ef-
ficient performance. The research community widely adopts these models
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for classification tasks related to human activity recognition [20, 21, 22, 27,
37, 30, 38, 39, 40, 41, 42, 43]. Three AI models, Artificial Neural Network
(ANN), Convolutional Neural Network (CNN), and bidirectional long short-
term memory (Bi-LSTM) were selected for this study because it does not
need domain expertise and data complexity is greatly reduced. Each of these
models has different architectures, which support the novelty claim of het-
erogeneous model training across different clients and training global models
with heterogeneous model predictions. Three iterations were designed for
this study, with one AI model trained as a local model and a global model
in each iteration.

3.3.1. Feature Reduction

Feature reduction techniques were subsequently implemented on the in-
dependent variables to reduce the dimensionality and filter noise from the
independent variables. A principal component analysis (PCA) was imple-
mented as part of the dimensionality reduction for each subject dataset. The
PCA created new uncorrelated variables called principal components, which
maximized variance among the features by transforming the input data into a
new coordinate system [44]. The transformed variables were used to compute
the covariance matrix, which led to calculating eigenvalues and correspond-
ing eigenvectors for the matrix. Based on the cumulative sum of explained
variance ratio retrieved from PCA, eigenvalues and the cumulative sum of
the eigenvalues were computed. The principal intent of using PCA was to
put the maximum possible information in the first components so that the
latter could be excluded from the model training. With this, filtered noise
was reduced, and feature reduction will be conducted. The reduced features
were split into learning and testing data, and the learning set was used to
train the AI models and evaluate their performance with the test set.

3.3.2. Artificial Neural Network (ANN)

ANN [45] is a collection of connected nodes called artificial neurons. Each
neuron receives an input signal to a process and passes it on to the next layer
of the ANN. A simple ANN can have only one input layer and one output
layer called a single-layer network. It can extend to multiple layers, where
hidden layers will be added between the input and output layers. The input
layer of the ANN used in this study had nodes equal to the number of features
selected, the output layer had nodes equal to the number of labels, and the
hidden layers were invisible layers whose count depended on the prediction
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or classification complexity of the problem. Weights and biases were added
to each hidden layer, and the transformed inputs were transmitted to the
next layers with an activation function. Each neuron had input with weight
and bias, as shown in Equation 8. This simple ANN is mathematically
represented in Equation 9 illustrating single input and output layers with
activation functions to calculate weights, and bias on the input value.

y = f(b+
n∑

i=1

xi.wi) (8)

y(x) =
n∑

i=1

Activation1(b+ wixi)

ANN(y) = Activation1(
eyi∑k
j=1 e

yj
)

(9)

where:

• b: Bias added on each hidden layer

• x: Input value.

• w: Weights added on each hidden layer

• y: Output value from each neuron

• Activation1: Activation functions on input and hidden layers.

• Activation2: Activation function on output layer.

ANN can be executed with three layers including an input layer, a hidden
layer, and an output layer [46] with loss function binary cross-entropy from
Keras. Rectified linear unit (ReLU) function has an activation function, and
it has a limitation of defining negative inputs to zero, which deactivates the
nodes or neurons. To overcome this challenge in datasets with negative at-
tributes, leaky rectified linear unit (LeakyReLU) [47] activation was adopted.
This is an extension of conventional ReLU activation which defines the nega-
tive inputs as an extremely small linear component as shown in Equation 10.
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The function returns input value x as it is for all positive inputs, and for
negative inputs returns a small value of 0.01 ∗ x.

f(x) = max(0.01 ∗ x, x) (10)

Softmax activation was used to normalize the output into a probability
distribution of classifying the record into one of the label activities. The
threshold on the probability was then determined to transform values to
label classification.

3.3.3. Convolutional Neural Network (CNN)

CNN [48] is a DL model which was developed for image classification
tasks where the 2-dimensional (2-D) data can be interpreted. The CNN
model is modified for human activity recognition by using 1-dimensional (1-
D) convolutional neural networks in each layer. Each input sensor signal
is then read to prepare an internal representation of the input, so it can
be mapped to an activity. Equation 11 presents the mathematical notation
of the 1-D CNN model with different activation functions adopted in each
model design layer.

y(x) =
n∑

i=1

Activation1(b+ wixi)

y(x) =
n∑

i=1

Activation2(b+ wixi)

CNN(y) = Activation3(
eyi∑k
j=1 e

yj
)

(11)

where:

• b: Bias added on each hidden layer

• x: Input value.

• w: Weights added on each hidden layer

• y: Output value from each neuron

• Activation1: Activation functions on input and hidden layers.
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• Activation2: Activation function on input and hidden layers.

• Activation3: Activation function on output layer.

MaxPool1D [49], a pooling operation that the maximum value for a fea-
ture set and used to create a down-sampled group feature. Following a con-
volutional layer, the pooling operation was conducted as one of the layers.
The pooled features were flattened [50] into a 1-D array before processing in
the output layer of the CNN model. The output layer provided a probability
of each label classification, which was optimized using a threshold value to
classify the features into a label.

3.3.4. Bidirectional Long Short-Term Memory (LSTM)

LSTM model is a type of recurrent neural network (RNN) with a similar
architecture. There are different variants of LSTM models like traditional,
uni-directional, and bidirectional LSTM. Memory blocks act as the main
component in the LSTM layer. There are three gates input, output, and
forget gates for an LSTM block which denotes write, read and reset opera-
tions. The bidirectional LSTM cell state carries the information from past
and future contexts to predict an element. Graphically, bidirectional LSTM
is presented in Fig. 4 [51]. Mathematically, the Bi-LSTM model is defined
in Equation 12. A regularization method, dropout [52] was used to exclude
activation and weight updates of recurrent connections from LSTM units
probabilistically.

Figure 4: Bi-LSTM architecture [51].
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y(x) =
n∑

i=1

Activation1(b+ wixi)

Bi− LSTM(y) = Activation2(
eyi∑k
j=1 e

yj
)

(12)

where:

• b: Bias added on each hidden layer

• x: Input value.

• w: Weights added on each hidden layer

• y: Output value from each neuron

• Activation1: Activation functions on input and hidden layers.

• Activation2: Activation function on output layer.

The Adam adaptive optimizer was used for all three models implemented.
The optimizer ensembles AdaGrad and RMSProp optimizers were imple-
mented to deal with sparse data. Each of the three AI models was trained
locally in each iteration and their performances were evaluated. These local
models’ weights were then aggregated based on their accuracy and forwarded
to build a global model. Finally, the global model was trained on unseen data
and evaluated, and is the final step of the federated architecture design shown
in Fig. 2.

In this study, the proposed FedStack Framework adopted the above-
discussed AI models to train clients’ data and evaluate their performance.
Instead of passing the client’s data, the local model’s predictions were passed
to the global model for training. With this strategy, client data will not
leave their device and so will protect their privacy. Clients can train mod-
els to their requirements and pass the predicted results to the global model.
This enables the personalization of client data modeling. Unlike the FedAVG
concept where the same architectural models are trained across global and lo-
cal models, FedStack supports heterogeneous architectures across local and
global models. This will not affect federated learning, as the models are
trained with predictions. Hence, the three AI models were used for both
local and global models.
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Algorithm 1 Proposed stacked Federated learning algorithm

Input: a set of subjects C = {1, 2, . . . , C}; a set of AI models M =
{1, 2, . . . ,M}; a set of labels K = {1, 2, . . . ,K}
Output: Classification probabilities of K, a set of labels, for each subject C.

1: Initialization: stack = ∅, D = ∅;
2: for c ∈ C do
3: Collect data on c: Dc ←− sensor(c);
4: Split dataset: Dc = Dtrain

c ∨Dtest
c ;

5: for m ∈M do
6: mtrain

c ←− Dtrain
c ;

7: mtest
c ←− Dtest

c ;
8: cK ←− f(c);
9: stack = stack ∪ {cK};

10: end for
11: end for
12: homogeneous stack = stack({cKi }, {cKi }, {cKi }), i ∈ {1, 2, . . . , |M|};
13: for m ∈M do
14: mtrain

g ←− homogeneous stack;
15: mtest

g ←− Dunseen c;

16: unseen cK ←− f(unseen c);
17: end for
18: heterogeneous stack = stack({cKi }, {cKj }, {cKk }), i, j, k ∈ {1, 2, . . . , |M|};
19: for m ∈M do
20: mtrain

g ←− heterogeneous stack;
21: mtest

g ←− Dunseen c;

22: unseen cK ←− f(unseen c);
23: end for
24: Return stack, unseenK

c ;
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3.3.5. FedStack Algorithm

The adopted FedStack framework for personalized patient monitoring was
achieved using Algorithm 1. The algorithm presented local and global AI
model execution with input client data with a set of labels. Line 1 to 11
shows the iteration of clients’ data for AI modeling and stores each model’s
predictions. Line 12 presents the homogeneous (identical architectural mod-
els) stacking, where cKi denotes the prediction of a local model derived from
Line 8 and i in all the model predictions denotes identical architectural mod-
els. Line 13 to 17 use the homogeneously stacked models prediction to train
global model mg to classify unseen client data {unseen cK} and test its per-
formance. Line 18 presents the heterogeneous (non-identical architectural
models) stacking, where {cKi }, {cKj }, {cKk } denotes the predictions of a local
models derived from Line 8 and i, j, k in the model predictions denotes non-
identical architectural models. Line 19 to 23 use the heterogeneously stacked
models prediction to train global model mg to classify unseen client data
{unseen cK} and test its performance. Lines 13 to 17 and 19 to 23 present
the global model training and evaluation with homogeneously stacked and
heterogeneously stacked predictions, respectively.

4. Experimental Design

4.1. Dataset

This study was conducted on MHEALTH (Mobile HEALTH) dataset,
a benchmark dataset on human behavior analysis with multi-modal sen-
sors [53][54]. It is fashioned upon the Banos et al.[54] studies where data
were collected on ten different subjects while performing natural activities
with three sensors placed on the subject’s chest, right wrist, and left ankle.
In addition to the physical activities, vital signs were recorded with 2-lead
electrocardiogram (ECG) measurements using the sensor placed in the chest
area. However, the ECG measurements were not an aim of this research and
as such two attributes of 2-lead ECG signal data were excluded, thus the
number of attributes was reduced to 21 and included a label as shown in
Tab. 1. The sensor placed in the chest area has three attributes comprising
tri-axial data of acceleration (x-axis, y-axis, z-axis). Similarly, the sensors
at the left ankle and right wrist have motion attributes of acceleration (x-
axis, y-axis, z-axis), gyro (x-axis, y-axis, z-axis), and magnetometer (x-axis,
y-axis, z-axis). Based on these tri-axial attributes, the authors labelled 12
natural activities like standing still, lying down, walking, and climbing stairs
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Table 1: Subject 1 Dataset—Top 5 values.

Attributes Top 5 values

C Sen AX -9.8184 -9.8489 -9.6602 -9.6507 -9.7030

C Sen AY 0.009971 0.524040 0.181850 0.214220 0.303890

C Sen AZ 0.29563 0.37348 0.43742 0.24033 0.31156

LA Sen AX 2.1849 2.3876 2.4086 2.1814 2.4173

LA Sen AY -9.6967 -9.5080 -9.5674 -9.4301 -9.3889

LA Sen AZ 0.63077 0.68389 0.68113 0.55031 0.71098

LA Sen GX 0.103900 0.085343 0.085343 0.085343 0.085343

LA Sen GY -0.84053 -0.83865 -0.83865 -0.83865 -0.83865

LA Sen GZ -0.68762 -0.68369 -0.68369 -0.68369 -0.68369

LA Sen MY -0.370000 -0.197990 -0.374170 -0.017271 -0.374390

LA Sen MY.1 -0.36327 -0.18151 0.18723 0.18366 -0.54671

LA Sen MZ 0.29963 0.58298 0.43851 0.57571 0.44586

RLA Sen AX -8.6499 -8.6275 -8.5055 -8.6279 -8.7008

RLA Sen AY -4.5781 -4.3198 -4.2772 -4.3163 -4.1459

RLA Sen AZ 0.187760 0.023595 0.275720 0.367520 0.407290

RLA Sen GX -0.44902 -0.44902 -0.44902 -0.45686 -0.45686

RLA Sen GY -1.0103 -1.0103 -1.0103 -1.0082 -1.0082

RLA Sen GZ 0.034483 0.034483 0.034483 0.025862 0.025862

RLA Sen MY -2.35000 -2.16320 -1.61750 -1.07710 -0.53684

RLA Sen MY.1 -1.610200 -0.882540 -0.165620 0.006945 0.175900

RLA Sen MZ -0.030899 0.326570 -0.030693 -0.382620 -1.095500

Label 0 0 0 0 0

using motion like acceleration, rate of turn, and magnetic field orientation
experienced by diverse body parts as shown in Tab. 2. Each of these labels
was numbered from 0 to 12. The dataset generalized all daily activities to
cover a wide range of body parts in each activity, speed, and intensity of
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Table 2: Label Activities

Standing still act-1
Sitting and relaxing act-2
Lying down act-3
Walking act-4
Climbing stairs act-5
Waist bends forward act-6
Frontal elevation of arms act-7
Knees bending (crouching) act-8
Cycling act-9
Jogging act-10
Running act-11
Jump front & back act-12

actions.
The main aim of designing this RPM system is to monitor multiple pa-

tients’ physical activities and vital signs in an acute mental health facility.
Therefore, the dataset comprises most of the physical activities typical of rou-
tine day-to-day life. The study offers an alternative method for classifying
human body motion to previous research methods. There were no constraints
on the data except the subject’s effort while performing the activities, and
all sessions were video recorded. Records were assigned a label 0 for those
with null activities to differentiate them from other activities in the dataset.

4.2. Data Preparation

The benchmark dataset comprises one dataset for each subject, which
sums up the count of datasets to ten log files. To ease the implementation
process, the log files were transformed into CSV files using python code and
read the CSV files as a data frame for each subject dataset. All the records
with null activities were excluded based on the label value 0. To ensure the
consistency in values of independent variables, all variables were standardized
using StandardScaler1 methods in the sklearn package.

Using the PCA technique, 21 principal components were extracted from
21 features of tri-axial data from the three different sensors, as shown in
Tab. 3. In this study, 95% of the total variability was explained by 16 prin-
cipal components. With this, the feature dimensionality was reduced and

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
StandardScaler.html
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Table 3: Subject 1—Dataset PCA values

Principal Eigen Cumulative
components Top 3 values values eigen values

PC 1 1.549 1.618 1.595 0.167 0.167
PC 2 0.133 0.089 0.066 0.122 0.289
PC 3 -1.047 -0.987 -0.959 0.107 0.396
PC 4 -0.838 -0.86 -0.885 0.092 0.488
PC 5 -1.142 -1.094 -1.104 0.082 0.569
PC 6 0.929 0.875 0.848 0.061 0.63
PC 7 -0.664 -0.697 -0.722 0.054 0.684
PC 8 -1.057 -1.054 -1.045 0.044 0.728
PC 9 -0.276 -0.273 -0.288 0.042 0.771
PC 10 -0.128 -0.186 -0.255 0.034 0.804
PC 11 -0.004 0.022 0.058 0.032 0.836
PC 12 0.245 0.215 0.212 0.029 0.865
PC 13 -0.044 -0.008 -0.022 0.026 0.891
PC 14 -0.176 -0.034 0.003 0.024 0.915
PC 15 -0.171 -0.206 -0.21 0.018 0.934
PC 16 -0.26 -0.296 -0.313 0.017 0.951
PC 17 -0.163 -0.166 -0.163 0.016 0.966
PC 18 -0.09 -0.066 -0.059 0.014 0.981
PC 19 -0.067 -0.076 -0.067 0.008 0.989
PC 20 0.1 0.109 0.124 0.006 0.995
PC 21 -0.008 -0.028 0.008 0.005 1

filtered noise was conducted by selecting the 16 principal components for
data modeling. All the tri-axial attributes were considered as features and
sparse the multi-class label variable into binary labels. The 16 principal com-
ponents and the 12 binary labels were transformed into test and train data
by splitting train data as 80% and test data as 20%. The transformed data
were then fed to AI models in the data modeling step.

4.3. Data Modeling

In the data modeling step, three different AI models ANN, CNN, and
LSTM is known for their efficient performance in HAR with strong evidence
from research community works. These AI models were trained individu-
ally on each subject dataset. Out of 10 subjects in the benchmark dataset,
nine subjects were considered individual clients, and one subject dataset was
trained to the global model. All three AI models discussed in the framework
section were trained, and their performance was evaluated on the nine client
datasets. As shown in the architecture of Fig. 2, a local model is denoted, Li

where i value ranges from 0 to 9 clients. It is built on each client with one
AI model at a time and their performances compared with FL.
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The ANN model was executed with three layers: an input layer, a hid-
den layer, and an output layer. The model used the activation function
LeakyReLU to avoid the zero input values of negative attributes in the tra-
ditional ReLU function. The Adam algorithm was chosen as the optimizing
method in all three AI models in this study. The second AI model adopted
was the CNN model. Each axis attribute of acceleration, gyro, and magne-
tometer was fed to a 1-dimensional convolutional layer with linear activation
and the signal passed to the LeakyReLU function with a small alpha value
of 0.1. MaxPool1D was employed in the next layer to downsample the input
representation and reduce the pool size to 2. The three layers were repeated
with a different number of neurons in each convolutional layer. Following
this, the pooled feature was flattened before it was forwarded to the output
layer of the deep learning model. Recurrent Neural Network (RNN) based
Bi-directional LSTM was also trained on each client dataset and the model
performance was evaluated. This DL model was executed with LeakyReLU
activation in the input layer. The dropout method was added in between
the input and output layers with a dropout percentage of 0.5. Softmax was
applied to the output layer as an activation function in all three AI mod-
els to output the probability of the label classification. The binary label
classification was optimized using the threshold capacity.

After individual client modeling, each model prediction was recorded.
All the client model predictions were stacked homogeneously and heteroge-
neously and passed to the global model. As mentioned earlier in this subsec-
tion, one of the subjects’ data was used to train the global model, which is
unseen data to the global model. The model was then trained with stacked
predictions of local models. In each iteration, the FL process was executed
with each AI model on each of the nine clients.

Python programming language (version 3.8) was used for data prepara-
tion, dimensionality reduction, and data modeling including FL and model
evaluation. TensorFlow and Keras packages were imported to execute all
three AI models. Communication between local models with a global model
in FL was based upon the proposed novel FedStack algorithm.

4.4. Baseline Models
The proposed research design was evaluated with baseline models with

state-of-art performances in human activity recognition.

• Ronao et al. [39] proposed a deep convolutional neural network (con-
vnet) to classify 1-D sensor data into physical activities and achieved
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an accuracy of 94.9% on raw sensor data, outperforming state-of-the-
art techniques in HAR. The performance was slightly improved to
97.75% with the temporal fast Fourier transform of the dataset. The
authors also show that increasing the convolutional layers increases
performance, but the complexity of the derived features decreases with
every additional layer in their study [40].

• Jiang et al. [41] proposed a novel approach to assemble signal sequences
of accelerometers and gyroscopes into a novel activity image using Deep
Convolutional Neural Networks (DCNN) and achieved an accuracy of
95.2%.

• Almaslukh et al. [42] proposed a stacked autoencoder (SAE) to achieve
high computational cost with low computation cost and yield an accu-
racy of 97.5%.

• Ignatov et al. [43] proposed a CNN model for local feature extraction
and combine them with statistical features. This approach outper-
formed state-of-the-art works with an accuracy of 96.1% in activity
recognition.

• Anguita et al. [55] proposed a traditional machine learning algorithm
SVM to classify human activities on their sensor dataset Activities of
Daily Living (ADL). The model achieved an accuracy of 96.4% domi-
nating previously discussed works using the deep learning CNN model.

• Cho et al. [38] proposed multiple 1-D CNN models for human activ-
ity recognition at different stages of the experiment to learn abstract
activities and then learn individual activities. This design achieved an
accuracy of 97.6%.

All these baseline models had the best performance in human activity recog-
nition with deep learning and traditional machine learning activities. The
proposed FedStack design with a similar deep learning model was evaluated
with these state-of-work performances.

4.5. Performance Metrics

Confusion matrix was used to evaluate the classification models. Each
subject dataset label was transformed using dummy variable encoding that
led to multiple binary labels for each record. To evaluate the multiple binary
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label classification, a multi-label confusion matrix was used. It was imported
from sklearn metrics and required two inputs, actual data and predicted data.
The classification models were evaluated on learned data as well as unseen
data. The multi-label confusion matrix for each transformed target variable.

Based on the confusion matrix for each target variable, metrics like bal-
anced accuracy, precision, recall, f1-score, and support were estimated us-
ing the classification report method from sklearn metrics [56]. All metrics
were estimated for the classification of each physical activity. Hence, the
classification model performance was evaluated by classifying each activity
individually.
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Figure 5: Subjects—Label Distribution

5. Experimental Results Analysis

5.1. Experimental Results

The study was analyzed with ten different subjects’ data using AI mod-
els. Each of the subjects was considered as an individual client, and an FL

25



process was initiated by passing nine client models (local models) parameters
to the global model. The communicated parameters were weight averaged
based on each local model performance on client data. The global model was
configured based on the aggregated parameters from the local models. In
addition to this, both local and global models were evaluated by classifying
the labels based on one sensor data at a time.

Before the data preparation step, the label distribution of each subject
data was visualized by excluding null activity with zero value as shown in
Fig. 5. The line chart presents subject-wise label distribution. Each subject
was differentiated with different colors as shown in the legend, with the x-axis
referring to the labels and the y-axis referring to the count of records with
labels for each subject. Except for the four labels of waist bends forward,
the frontal elevation of arms, knees bending (crouching), and jump front and
back, all others are class-balanced for all subjects. The labels’ waist bends
forward, the frontal elevation of arms, and knees bending (crouching) look
imbalanced with minor differences in numbers. Jump front and back labels
had significantly reduced to about 1000 records compared to other labels.

As part of the data modeling step, three AI models ANN, CNN, and
LSTM models were chosen for training and evaluation because of their ro-
bust and efficient performances in the classification of human physical ac-
tivities. Each of these models was trained with individual client data, con-
sidering them as local models in FL. The model performances in terms of
balanced accuracy are presented in Tab. 4 and compared. The CNN model
outperformed the other two AI models. ANN performance was close to the
CNN model and was even equivalent in client 6, client 7, and heterogeneous
stacked global model analysis. Bidirectional-LSTM had limited performance
compared to the CNN and ANN models. In addition to local models, the
global model performed equally with the local client models. It was built
on stacked predictions of local models and trained with the unseen data of
subject 10. All model performances were visually compared from the line
chart shown in Fig. 6. The chart compared all 9 clients, with the y-axis
denoting balanced accuracy and the x-axis are the models. Bi-LSTM model
performance significantly dropped for client 2 and client 5 data classification.
The ANN model had a similar trend, with its performance dipping for client
2 and client 5.

The stacked global models were trained using subject 10 data for each
AI model, and their performance was evaluated as shown in Fig. 7 & 8. It
demonstrates the classification performance of each AI model on each label
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Table 4: Proposed AI models performance (accuracy %).

Clients ANN CNN Bi-LSTM

Client 1 0.976 0.988 0.934

Client 2 0.939 0.957 0.837

Client 3 0.98 0.995 0.946

Client 4 0.991 0.997 0.948

Client 5 0.966 0.989 0.897

Client 6 0.984 0.984 0.928

Client 7 0.998 0.998 0.986

Client 8 0.985 0.991 0.951

Client 9 0.994 0.995 0.96

Homogeneous Stacked
Global Model

0.967 0.976 0.909

Heterogeneous Stacked
Global Model

0.996 0.996 0.986

activity that was calculated using a confusion matrix. The x-axis denotes the
labels, and the y-axis is the balanced accuracy calculated from the confusion
matrix.

The process of FL was iterated on the homogeneous and heterogeneous
stacked CNN models with the best performance for all 10 clients. Local
models were trained using a leave-one-out strategy where one client was
left out for global model training and each of the remaining nine clients
was trained to local models individually. The global models built on the
stacked predictions of local models classified physical activities and achieved
similar results for all 10 clients. Although the heterogeneous global model
outperformed the homogeneous model, they followed a similar trend. The
line chart presents the global CNN model’s accuracy in evaluating all 10
clients.
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Figure 6: Local and global model accuracies obtained for various clients.

5.2. Sensor Level—CNN Performance

To develop an efficient system with a single sensor, the best performed
global heterogeneous CNN model as shown in Fig. 9 was trained with one
sensor input at a time. All evaluated performance metrics of the models
are shown in Fig. 10. The three subplots compare the performance of the
federated global CNN model on the Chest sensor in Fig. 10a, the Left Ankle
sensor in Fig. 10b, and the Right Wrist sensor in Fig. 10c. Each subplot has
an x-axis with 12 labels and a y-axis with a scale to show balanced accuracy,
precision, recall, and f1-score.

The CNN model has considerable balanced accuracy, with an exception in
classifying jogging and climbing stairs activities of chest sensor data, as shown
in Fig. 10a. Precision metrics followed a similar trend with balanced accuracy.
Recall and f1-score had similar trends, with a number of fluctuations in each
label classification. The CNN model performed well with left ankle sensor
data input in terms of all metrics compared to chest sensor data input, as
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Figure 7: Homogeneous stacked global model

shown in Fig. 10b. There are a few exceptions in classifying walking, running,
jumping front & back, and climbing stairs. The CNN model performance in
classifying the label activities using right wrist sensor data, as shown in
Fig. 10c. The model was able to achieve more than 0.98 balanced accuracies
in classifying the labels except walking. Precision metric had a similar drop at
the walking label. Recall and f1-score had a drop for classifying the climbing
stairs activity.

5.3. Baseline Models Comparison

The proposed AI models’ performance has been compared with the state-
of-art baseline model results in human activity recognition, as shown in
Tab. 5. It has different article references with corresponding models imple-
mented in classifying human physical activities. The proposed local models’
accuracy was presented in mean accuracy. Out of all proposed AI models,
CNN models outperform baseline models, both locally and globally. ANN
local model and heterogeneous global model were the best performing base-
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Figure 8: Heterogeneous stacked global model

line models. Bi-LSTM global models were able to perform better, but the
local model needs further optimization.

5.4. Discussion

The primary contribution of this study is the heterogeneous FedStack
architecture shown in Fig. 2 which could process a variety of client archi-
tectures. Original federated learning has a limitation of aggregating differ-
ent architectural local models due to discrepancies in layer count mismatch.
The proposed FedStack algorithm overcame this challenge and outperformed
baseline models. This research will also contribute to the building of an
RPM system to remotely detect patient health parameters in an acute men-
tal health facility using passive RFID tags. One of the major challenges in
achieving this goal is the protection of private patient data. This proposed
machine learning model was trained locally and passed only the model pre-
dictions to the global model to prevent security breaches of private data. This
architecture presents an alternative to gathering both public and private data
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Figure 9: Global CNN model performance.

from all subjects and merging data for model building. This FL approach
has the additional advantage of randomly selecting subjects in an institution
and builds robust models based on communication between local models and
global models, where only the model weights are shared. The globally built
model predictions or parameters can also be communicated to local models
so that local models can be improved. This FL process secures individual
data and improves the diversity of data. The global and local models re-
main in continuous learning mode by updating each other with new model
weights. However, the FL approach needs to strengthen its features, being a
relatively recent innovation. One limitation is that the privacy rule of an FL
process can be violated by reverse engineering processes, and the research
community needs to explore methodologies to ensure that the features are
robust [57]. This is an interesting FL challenge that should be addressed in
future research.

To avoid the minor class imbalance in the label distribution, the balanced
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(a) Chest sensor
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(b) Left ankle sensor
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(c) Right wrist sensor

Figure 10: CNN performance at the sensor level.
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Table 5: Comparison of the proposed model with state-of-the-art techniques.

Reference Models Accuracy (%)

Ronao and Cho, 2016 [39] 3 * Conv + Dense layer 0.948
Jiang and Yin, 2015 [41] 2 Conv + Dense Layer 0.952
Ronao and Cho, 2015 [40] 3 * Conv + Dense Layer 0.948
Almaslukh, 2017 [42] 2 * Dense Layer (SAE) 0.975
Ignatov, 2018 [43] 1 * Conv + Dense Layer 0.961
Anguita et al., 2013 [55] SVM 0.964
Cho and Yoon, 2018 [38] DT + 2 * CNN 0.976

Proposed CNN—Client 3 * Conv + Dense 0.988
Proposed ANN—Client 1 * NN + Dense 0.979
Proposed Bi-LSTM—Client 1 * Bi-LSTM + Dense 0.932
Proposed Homogeneous
Stacked CNN Global Model

3 * Conv + Dense 0.976

Proposed Homogeneous
Stacked ANN Global Model

1 * NN + Dense 0.967

Proposed Homogeneous
Stacked Bi-LSTM Global Model

1 * Bi-LSTM + Dense 0.909

Proposed Heterogeneous
Stacked CNN Global Model

3 * Conv + Dense 0.996

Proposed Heterogeneous
Stacked ANN Global Model

1 * NN + Dense 0.996

Proposed Heterogeneous
Stacked Bi-LSTM Global Model

1 * Bi-LSTM + Dense 0.986

accuracy method was adopted for this study to avoid minor class imbalance
in the label distribution illustrated in Fig. 5. As shown in Fig. 7 & 8, overall
classification performance using a CNN model on each client and global model
demonstrated the best outcomes for label classification compared to the other
AI models tested. An exception to this model performance were the results
for homogeneous ANN and Bi-LSTM models that appeared to perform better
at classifying activities related to walking, knee bending, cycling, and jump
front and back.

Classification of labels for this dataset covered a diverse range of ac-
tivities. It was based upon large body movements from physical activities
that are performed either consciously or unconsciously. This is an impor-
tant aspect of designing the hospital-based RPM system, as patients in an
acute mental health facility are quite mobile. The approach proposed in
this research through classifying physical activities using AI models out-
performs traditional machine learning models discussed in the literature re-
view [13, 15, 16, 17].

The ANN model also demonstrated better performance when classifying
labels for climbing stairs, frontal elevation, and jump front and back. The Bi-
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LSTM model was proficient with classifying label activities with considerable
balanced accuracy, but ANN and CNN outperformed this model in all local
model performances. This indicates that RNN with memory blocks needs
further model optimization to enhance performance.

The secondary aim of this study was to understand the optimum position
for sensors on the body to track day-to-day activities. The dataset was
generated from labels based on sensors placed at the chest, left ankle, and
right wrist to detect upper body and limb movements. Data from each of
the sensors were used to train the AI models in the FL process. Based
on its superior overall classification performance, the heterogeneous global
CNN model was trained with each of the three sensors. Evaluation of label
classification performance shown in Fig. 10 demonstrates that right wrist
sensor data classified label activities with balanced accuracy close to 1.0.
Exceptions to this were activities involving complete leg movements such as
walking, climbing stairs, and cycling. Not surprisingly, the optimal placement
of sensors to track human activities were the limbs, as the majority of physical
activities involve hands and legs.

The state-of-art works baseline models in classifying physical activities
were compared with proposed AI models. Except for the study by Anguita
et al. [55], the other baseline models classified physical activities using deep
learning CNN models. The state-of-works classified limited physical activities
like walking, lying, sitting, walking upstairs, walking downstairs, standing,
and jogging. The proposed design in this study was successful in classifying
partial body motions like the frontal elevation of arms, waist bend forwards,
and knees bending (crouching). Jiang et al. [41] proposed a novel approach
of assembling accelerometer and gyroscope signals as 2-D data as input to a
deep CNN model for activity classification to reduce the computational cost.
The secondary aim of this study was also met in that the optimum placement
of sensors was determined. We have shown that a single sensor on the right
wrist can perform better than [41] achieving average balanced accuracy of
0.99 in classifying all 12 physical activities.

6. Conclusion

Personalized monitoring is key to healthcare monitoring applications.
This study focused on classifying individual client sensor data physical activ-
ities with various model architectures and ensembling the local models into a
global robust model. The proposed decentralized FedStack architecture was
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able to outperform the state-of-art works and achieve better performance
metrics. The study was able to identify and analyze the data collected from
three sensors placed on a human body to classify full-body motion, partial-
body motion, and still activities. The proposed design was evaluated by
limiting one sensor input at a time to determine the optimum placement of
sensors on the human body for activity recognition. This study overcomes
the limitation in traditional federated architecture where clients might have
differences in local model architectures and avoid model compilation prob-
lems in the global model. The limitations of the study are the global model is
trained with all clients’ model predictions involved in the personalized mon-
itoring. Also, the study assumes the same number of classification labels for
all ten clients. Therefore, there might be differences in the number of labels
across different clients. Other limitations would be the explainability of the
AI models, which still is an issue to make informed decisions in domains like
healthcare. From a technical perspective, the future direction of this study
would be to explore and verify privacy-related issues in this proposed Fed-
Stack architecture. Scientifically, the study can be extended to have vital
signs included for each client and classify them along with physical activities
to enlarge the scope for an enhanced remote patient monitoring system.
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