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Abstract

Science communication has a number of bottlenecks that include the ris-
ing number of published research papers and its non-machine-accessible and
document-based paradigm, which makes the exploration, reading, and reuse
of research outcomes rather inefficient. Recently, Knowledge Graphs (KG),
i.e., semantic interlinked networks of entities, have been proposed as a new
core technology to describe and curate scholarly information with the goal to
make it machine readable and understandable. However, the main drawback
of the use of such a technology is that researchers are asked to manually
annotate their research papers and add their contributions within the KGs.
To address this problem, in this paper we propose SCICERO, a novel KG
generation approach that takes in input text from research articles and gener-
ates a KG of research entities. SCICERO uses Natural Language Processing
techniques to parse the content of scientific papers to discover entities and
relationships, exploits state-of-the-art Deep Learning Transformer models to
make sense and validate extracted information, and uses Semantic Web best
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practices to formally represent the extracted entities and relationships, mak-
ing the written content of research papers machine-actionable. SCICERO
has been tested on a dataset of 6.7M papers about Computer Science gen-
erating a KG of about 10M entities. It has been evaluated on a manually
generated gold standard of 3, 600 triples that cover three Computer Science
subdomains (Information Retrieval, Natural Language Processing and Ma-
chine Learning) obtaining remarkable results.

Keywords: Knowledge Graph, Scholarly Domain, Scientific Facts, Artificial
Intelligence

1. Introduction

Exploring, interlinking, and analysing scientific literature is crucial for
producing new knowledge and tools, improving our understanding of the
world, and addressing the fundamental challenges of our time. It is also a
very challenging task, since the literature is composed by millions of het-
erogeneous articles in natural language. Researchers and other stakeholders
typically explore this complex space by using academic search engine (e.g.,
Google Scholar, Scopus, PubMed, Semantic Scholar), which however allow
only basic queries and simply returns list of relevant documents that need to
be manually analysed. This limitations constitute a significant bottleneck in
the knowledge flow of the scientific process [1, 2].

The main issue is that current systems lack a good representation of the
underline scientific knowledge and thus cannot support more sophisticated
queries about the entities described in the literature such as methods, tasks,
and materials as well as their relations (e.g., a method can be used to solve
a task, a material to evaluate a method). A partial exception may be the
field of biology, which can rely on some comprehensive, even if still noisy,
representations of the relevant entities (e.g., UMLS [3]).

For this reason, the research community has been proposing several solu-
tions for producing structured, interlinked, and machine-readable description
of the scientific knowledge within research publications [2, 4, 5]. Typically,
the resulting representation uses semantic web technologies, such as ontolo-
gies and knowledge graphs. Ontologies in computer science are “explicit
specifications of a conceptualization” [6] that are used to formalize the concep-
tual schema of a domain by defining the types of entities and their relations.
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They are typically encoded using the Web Ontology Language (OWL)1 and
are considered the cornerstones of the Semantic Web [7]. KGs consist of large
networks of entities and relationships that provide machine readable and un-
derstandable information about a specific domain following a formal seman-
tics [8]. They are composed by triples in the form of <subject, predicate,

object>, for instance: <Bill Gates, founderOf, Microsoft>. The schema
of a KG is often defined in a domain ontology. Large-scale KGs are typically
produced semi-automatically from structured and unstructured data. Some
well-known examples are DBpedia [9], Google Knowledge Graph2, Babel-
Net3, and YAGO4.

Generating large-scale and high quality knowledge graphs of scientific
knowledge from the literature is still an unsolved challenge [10]. Current
solutions either rely on systems for assisting human experts in formalizing
their knowledge [2, 5] or on information extraction pipelines [11, 12]. The
first class of solutions is unable to scale and can only be applied to small
domains (e.g., computational linguistics [13], intrusion detection [14]). In-
formation extraction techniques can scale, but typically struggle to produce
a high-quality output that can be used in a practical setting. In particular,
current approaches for extracting entities and relationships from scientific
texts [11, 15, 16, 12, 17] typically focus on processing individual documents.
Generating a large-scale, consistent, and semantically sound representation
of the scientific literature from million of articles is a very different task.
Therefore, simply applying current methods for entity and relationship ex-
traction on a large set of papers will produce a very noisy and incoherent
result [18]. We thus need to solve several challenges in this space, such as: 1)
integrating the outputs of different documents and tools in a coherent rep-
resentation, 2) assessing the validity of the resulting triples, and 3) defining
a flexible ontological schema to formalize a variety of statements from the
literature.

In 2021, we tackled these issues by introducing the information extraction
approach described in Dess̀ı et al. [18], which is able to combine information

1https://www.w3.org/OWL/
2http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.

html
3https://babelnet.org/
4https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/
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from different tools according to a domain ontology and produce large-scale
KGs. This approach inspired several further works in the field [19, 20, 21, 22,
23, 24] and was used to produce the Artificial Intelligence Knowledge Graph
(AI-KG) [25], a knowledge base describing 820K research entities in the field
of AI. However, this first attempt also suffered from several limitations, such
as: i) the entity extraction modules did not take advantage of the expert
knowledge acquired from the analysis of the resulting knowledge graphs, ii)
a limited ability to merge together multiple versions of the same entity (e.g.,
data cleaning algorithm, data cleaning automation, and preset data cleaning
strategy), iii) a shallow and manual method for mapping verbal predicates to
semantic relations, and iv) a limited methodology for assessing the validity
of a triple, based on a very simple multilayer perceptron classifier.

In this paper, we introduce SCICERO, an improved information extrac-
tion architecture that addresses all these limitations. This novel solution is
able to extract five types of entities (tasks, methods, materials, metrics, and
other entities) and several relationships between them (we currently support
179 object properties, but more can be added). Specifically, we introduced
the following advancements to the previous approach [18]:

• A novel method to extract relationships which exploits frequent pat-
terns extracted from the scientific literature and manually revised by
domain experts.

• A new module to merge various shapes of the same entity by using the
Computer Science Ontology (CSO) [26], Wikidata5, and DBpedia [27],
and the SentenceTransformers framework [28].

• A novel methodology to semi-automatically map predicates to semantic
relationships using VerbNet [29].

• A novel module to check the validity of the triples based on SciB-
ERT [30], a state-of-the-art transformer model for the scientific domain.

The code of SCICERO is publicly available at https://github.com/danilo-dessi/
SKG-pipeline, in order to ensure full reproducibility and allow the commu-
nity to further build on our effort.

5https://www.wikidata.org/wiki/Wikidata:Main_Page
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We evaluated SCICERO against several alternative solutions on a bench-
mark composed by 3,600 triples in the field of the Information Retrieval (IR),
Natural Language Processing (NLP), and Machine Learning (ML). We show
that SCICERO yields the best performance in terms of F1 and discuss the
effect of its different components (Section 5.2). We also demonstrate that the
number of source documents of a statement can be used to estimate its reli-
ability (Section 5.3), allowing users to choose different compromises between
coverage and accuracy.

In summary, the main research contributions of this paper are:

• We introduce SCICERO, a new approach that integrates Semantic Web
best practices, NLP, and Machine Learning for building KGs of scien-
tific concepts from research papers.

• We release a ground truth6 of 3,600 triples covering the field of Informa-
tion Retrieval, Natural Language Processing, and Machine Learning.

• We perform an evaluation of SCICERO in terms of precision, recall,
and F-measure.

• We provide a use case of SCICERO on a big dataset of scientific liter-
ature for producing a Computer Science Knowledge Graph.

• We make available the full source code of SCICERO at https://

github.com/danilo-dessi/SKG-pipeline.

The remainder of this paper is organized as follows. Section 2 discusses
the related work. SCICERO is detailed in Section 3. A use case and a KG
generated with the proposed architecture can be found in Section 4. Sec-
tion 5 reports the evaluation. Finally, Section 7 ends the paper by discussing
limitations and defining future research directions where we are headed.

2. Related Work

The knowledge extraction task of processing scientific literature to pro-
duce KGs of scientific concepts is in its early age and most of the efforts
in that direction have been carried out in the last decade [31]. The scien-
tific community, as well as industry, have an increasing interest to keep up

6https://github.com/danilo-dessi/SKG-pipeline/tree/main/eval
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with the growing number of research findings as the need to efficiently query
them in the most efficient way is more and more urgent. Therefore, it has
become essential to build AI-based pipelines and methodologies to deal with
the amount of research papers avoiding overwhelming researchers and prac-
titioners in the exploration, study, and application of research findings [32].

The use of scientific KGs is one of the main innovations to support the
dynamics mentioned above. They are mainly of two types: i) KGs that
describe the content of scientific publications (e.g., AI-KG [25], ORKG [2],
and Nanopublications [33]), and ii) KGs that describe metadata such as au-
thors, venues, citations, and research topics (e.g., AIDA [34], OpenAlex7, the
Microsoft Academic Graph (MAG)8, AMiner [35], Open Academic Graph9,
Scholarly-data.org [36], Scopus10, Semantic Scholar11, OpenCitations [37],
Dimensions12, Core [38]).

KGs can be generated either manually or automatically. For example,
ORKG and Nanopublications are manually built: they require researchers
and practitioners to create RDF triples to describe scientific literature. Con-
versely, AI-KG is automatically generated and curated. SCICERO con-
tributes to the automatic generation of scientific KGs and focuses on the
Computer Science domain, although it would be straightforward to extend
it to other domains as well. Several KGs focus a specific domain and they
can thus be referred to as domain KGs, defined in [39] as:

“an explicit conceptualisation to a high- level subject-matter domain and its
specific subdomains represented in terms of semantically interrelated entities
and relations”.

The first attempts to detect entities for KG generation exploited Part-Of-
Speech (PoS) tags. For example, a graph-based approach called Babelfy13

was built on top of Word Sense Disambiguation (WSD) and Entity Linking
(EL) [40]. Later approaches started to combine a variety of resources and

7OpenAlex - https://openalex.org/
8Microsoft Academic Graph - https://www.microsoft.com/en-us/research/

project/microsoft-academic-graph
9Open Academic Graph - https://www.openacademic.ai/oag/

10Scopus - https://www.scopus.com/
11Semantic Scholar - https://www.semanticscholar.org/
12https://www.dimensions.ai
13http://babelfy.org/
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include ensemble models that can capture contextual information to recog-
nize pieces of text that represent entities. They could also infer potential
relationships among them [12]. For example, FRED14 [11], which builds on
top of Boxer [41], identifies both entities and relationships from natural lan-
guage text. More precisely, it extracts frames, events, concepts and entities,
associates them to several ontologies, and structures the extracted pieces of
text according to the Resource Description Framework (RDF). One challenge
that it is difficult to address with FRED is the extraction of domain-specific
entities and relationships that require tuned methods to capture and describe
specific domain semantics. Moreover, FRED can only process a single text
at a time and thus it cannot address the integration of information com-
ing from various natural language sources into a KG. SCICERO differs from
FRED because it specifically targets the scholarly computer science domain
and aims at integrating information from a large number of research papers.

The parsing of scientific papers from unstructured text into structured
form is a topic that has gained increasing attention from the scientific com-
munity and main publishers (e.g., Springer, Elsevier, etc.) [42, 43]. In 2017,
within the SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and
Relations from Scientific Publications [44] competition, participants were
asked to provide tools and methods to find entities and relationships from a
scientific annotated corpus of research publications. Since then, approaches
for addressing this problem using syntactical patterns and machine learning-
based models have been released and employed to transform plain text into
structured graph representations [45, 46, 47]. An example of those is rep-
resented by the work described in [47] that was designed to capture the
hyponymy relationship between noun phrases that were found in the text.
Recurrent neural networks are used instead in [48] to jointly extract entities
and relationships to create triples. In addition, authors in [48] also generated
constraints (called conditional tuples) which can be applied to the extracted
triples to check their validity according to their context of application.

Wadden et al. [49] introduced DyGIEpp, an approach for extracting
triples from natural language scientific text. In their work, entities and re-
lationships are extracted by using a transformer model able to capture the
meaning of pieces of text that are associated with pre-defined entity types
and find relationships among the entities. More recently, due to the pan-

14http://wit.istc.cnr.it/stlab-tools/fred/
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demic situation, articles describing coronaviruses have been also targeted.
For example, Wang et al. [50] adapted a recognition tool based on distant
supervision for detecting 75 types of entities in the scientific literature about
medicine. However, a drawback of the proposed approach is that the rela-
tionships among entities are not extracted from text.

In addition, these tools present some limitations when applied on the
vast amount of research papers available today. First of all, they do not
fully integrate information coming from different pieces of text: the result-
ing graphs are simply created by generating nodes for the entities and edges
for the relationships extracted by the single articles. This typically results
in a very noisy output. Second, the limited number of supported relation-
ships is not sufficient to express the meaning of difficult concepts expressed
in natural language within a scientific paper. Additionally, existing method-
ologies usually produce KGs that do not have a good coverage, i.e., they
do not contain the whole information about the entities of a specific do-
main, and present a variety of mistakes and incorrect statements. Indeed,
KG construction methodologies usually present a trade-off between coverage
and correctness [51]. This problem is particularly relevant for KGs which are
generated by information extraction techniques. Therefore, addressing such
shortcomings through the use of validation methods is crucial. The main de-
velopments about this topic can be found in recent works for KG completion
and error detection [51]. To address this challenge, models built on top of
KG embeddings [52, 53, 54], graph features [55], or transformers [56, 57], are
proposed to verify the correctness of newly generated triples. They usually
train a classifier on the existing KGs (i.e., they use a portion of the KG
as a ground truth) since it is unfeasible to manually annotate thousands or
millions of triples. The resulting classifier is then applied to validate new
facts to be included in the KGs. Similarly to the existing literature, SCI-
CERO exploits a transformer-based model which is fine-tuned on a set of
reliable triples to identify triples that might describe erroneous facts about
the Computer Science domain. Finally, existing approaches lack well-defined
semantics and semantic web best practices to make sense of data and enable
users to explore and reason on the generated graph. For example, the triples
generated by DyGIEpp are not described by means of ontologies thus lim-
iting the possibility to reason and make sense out of them. In comparison,
SCICERO addresses the above-mentioned challenges by (i) integrating en-
tities and relationships that come from different papers and extracted from
different tools, (ii) validating the triples by means of ontology- and machine
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learning-based approaches, and (iii) following best practices in the design of
ontologies to express the domain semantics.

3. The SCICERO Architecture

This section describes SCICERO, a novel approach for automatically gen-
erating KGs of scientific concepts. SCICERO takes in input 1) a collection of
texts from scientific articles (typically titles and abstracts) and 2) a domain
ontology and returns i) a set of typed entities extracted from the articles and
ii) a set of statements describing the relationships between two entities as
well as a number of relevant metadata. The entities are typed according to
five possible classes (Task, Method, Material, Metric, and OtherEntity) and
linked by 179 object properties as specified in the domain ontology available
at https://scholkg.kmi.open.ac.uk/cskg/ontology. The ontology has
been developed to formally describe the relationships among research enti-
ties within the computer science domain (see Section 3.3.2). Each statement
is encoded as a rdf:Statement instance and contains the following informa-
tion:

• the triple describing the relationship between two entities in the form of
<subject, predicate, object> (using the object properties: rdf:sub-
ject, rdf:predicate, and rdf:object);

• the number of articles from which the claim was extracted (cskg-ont:has-
Support)

• the set of IDs of the articles from which the statement was extracted
(provo:wasDerivedFrom);

• provenance and versioning information of the combination of techniques
used to detect this specific statement (provo:wasGeneratedBy).

The architecture of SCICERO is depicted in Fig. 1. It includes three main
components. First, the extraction modules (Section 3.1) apply two methods
for identifying entities (CSO Classifier and DyGIEpp) and four techniques
for extracting relationships between these entities (DyGIEpp, OpenIE, PoST,
and DepT). This step produces four sets of triples: TDY GIEpp, TOpenIE, TPoS,
and TDep. In this phase, entities can be very noisy and relations are a com-
bination of pre-determined relations from supervised methods (e.g., part-of,
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Figure 1: The SCICERO’s schema to generate Scientific KGs.

used-for, feature-of ) and verbal predicates extracted by the NLP methods
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(e.g., use, utilize, exploit, identify, select).
In the second phase, the entity and relationship handlers (Section 3.2)

integrate these triples in a common representation. Entities are cleaned
by removing punctuation characters, discarding stop-words, and filtering
out generic terms. Entities that refer to the same concept (e.g., machine
learning approach and machine learning method) are also merged together.
Relationships are then mapped to a target ontological schema. For in-
stance, the verbal predicates analyze, inspect, and examine are mapped to
the object properties which use the verb analyze as representative (i.e., cskg-
ont:analyzesMaterial, cskg-ont:analyzesMethod, cskg-ont:analyzesOtherEntity,
cskg-ont:analyzesTask, and cskg-ont:analyzesMetric).

Finally, the triple validation modules (Section 3.3) select the set of triples
that will compose the knowledge graph according to a two-steps valida-
tion process. First, the transformed-based validation module identifies high-
quality triples that are consistent with the ones associated with a good num-
ber of articles. Second, the ontology-based validation module filters out
triples that do not comply with the ontological schema. For example, the
triple <cskg:labeled text, cskg-ont:usesTask, cskg:named entity re-

cognition>, where cskg:labeled text is a cskg-ont:Material and cskg:named-
entity recognition is a cskg-ont:Task, does not comply with the ontology
schema because the class cskg-ont:Material is not in the domain of the object
property cskg-ont:usesTask (a material cannot use a task). In the following
we will describe in detail every step of the process.

3.1. Extraction Modules

This section describes the tools used to extract the entities and the rela-
tionships from natural language text. Specifically, we extract entities using
two modules: 1) DyGIEpp Module [58] (Section 3.1.1, also used for identify-
ing relationships) and 2) the CSO Classifier Module [59] (Section 3.1.2). We
detect relationships between these entities according to four approaches: 1)
DyGIEpp Module [58] (Section 3.1.1), 2) the Stanford Core NLP - OpenIE
Module [60] (Section 3.1.3), 3) PoS Tag-based Relationships Extractor Mod-
ule [61] (Section 3.1.4), and 4) Path-based Relationships Extractor Module
(Section 3.1.5), a novel approach that we introduce in this paper.

3.1.1. DyGIEpp Module

DyGIEpp[58], a framework designed by Wadden et al., analyzes scientific
abstracts to generate a set of entities and relationships. Specifically, SCI-
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CERO employs the DyGIEpp model scierc15, a BERT-based model tuned for
parsing computer science scientific text. DyGIEpp can detect six types of en-
tities (Method, Task, Material, Metric, Other-Scientific-Term and Generic),
and seven types of relations (i.e., Used-for, Hyponym-Of, Compare, Part-
of, Conjunction, Feature-of, Evaluate-for). Since we do not differentiate
between Other-Scientific-Term and Generic, these are merged in the Other-
Entity category. DyGIEpp applies a feed-forward neural network on input
text textual span representations to compute two scores. The first score gives
the probability for a text to be a research entity of pre-defined types. The
second score gives the probability that one of the pre-defined relationships
exists between two extracted entities given the text surrounding the entities.
Its output is a set of entities EDyGIEpp and a set of relationships TDyGIEpp. A
softmax function is applied to distinguish one of the possible entity types or
relationship. As an example, for the sentence “The required simulation time
is usually long for the power grid design.”, the text span simulation time
has been identified as a research entity of type Metric with a softmax value
of 0.96, the text span power grid design has been identified as an entity of
type Method with a softmax value of 1.0, and EVALUATE-FOR has been
identified as a relationship with softmax value of 0.98 in the generated triple
<simulation time, EVALUATE-FOR, power grid design>.

3.1.2. CSO Classifier Module

The CSO Classifier 16 [59] is a classifier built on top of the Computer Sci-
ence Ontology (CSO), an ontology that describes research topics in the field
of Computer Science. The CSO Classifier uses unsupervised syntactic- and
semantic-based classification components to detect research topics in a text
i.e., it verifies whether a piece of text represents a CSO topic. The syntactic
component detects unigrams, bigrams, and trigrams using a rule-based ap-
proach, applies the Levenshtein similarity, and uses a pre-defined threshold
to compare the n-grams to research topics in CSO. The semantic component
builds on top of a domain-trained Word2Vec model, regular expressions on
PoS tags, and a threshold to compare a text span with CSO research topics.
The output of this sub-module is the set of entities ECSO. The reader can
find more details about the CSO classifier in [59].

15https://github.com/dwadden/dygiepp#pretrained-models
16https://github.com/angelosalatino/cso-classifier
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3.1.3. Stanford Core NLP - OpenIE Module

This module is built on top of the Stanford Core NLP suite [60]. Ope-
nIE [62] is an annotator that extracts domain-independent triples from a
text. To start with, it builds clauses which are groups of terms that include
at least a subject-noun and a verb by traversing the parsing tree of the input
text. Clauses are shortened thus creating a set of short sentence fragments,
that are subsequently transformed into triples. In the context of the pro-
posed approach, the resulting triples are filtered by checking the overlapping
of subjects or objects with the set ECSO∪EDyGIEpp. Triples whose subject or
object are not part of ECSO ∪EDyGIEpp are discarded. Moreover, only triples
that have a relationship whose tokens are verbs according to the associated
PoS tags are used to build the KG. The output of this module is the set of
triples TOpenIE.

3.1.4. PoS Tag-based Relationships Extractor Module

PoS Tagger 17 [61] is an annotator that associates a PoS tag with each term
in an input text. PoS tags are used to detect verbs between pairs of entities
in a sentence. In more details, given a sentence si and the set of entities
extracted from it Ei ⊂ ECSO ∪ EDyGIEpp, all the verbs V = {v0, . . . , vz}
between each pair of research entities (em, en)|em, en ∈ Ei are used to create
triples <em, v, en> where v ∈ V . To reduce noise that this approach might
generate, verbs are sought only between couples of entities whose distance
(i.e., the number of tokens between two entities) is equal or less than a
predefined window size w. The output of this module is the set of triples
TPoS.

3.1.5. Path-based Relationships Extractor Module

This novel module builds on top of the Stanford Core NLP Dependency
Parser [63] and aims to extract meaningful triples by exploiting a set of
pre-defined paths on the dependency trees of the sentences. In order to
identify high-quality and frequent paths, a set of dependency trees DT =
{dt0, . . . , dtz} built on a representative sample of scientific papers, and a set
of research entity pairs EEi = {(eim, ein), . . . , (eio, eip)} for each dti have
been employed. First, to define these paths, the set of shortest paths P on
the dependency trees in DT containing at least one verb between the to-
kens of a pair of entities is generated (i.e., in a path the two endpoints must

17https://nlp.stanford.edu/software/tagger.shtml
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Figure 2: The dependency tree of the sentence “The device includes two or more ambient
light sensors”.

be identified as entities). Examples of paths on the dependency trees are
(nsubj → obj), (nsubj → obj → conj), (acl → obj), and so on. The rela-
tionship between the two entities has to be a verb and is searched among the
tokens of the path between the two entities. The 50 most frequent shortest
paths composing the set P ′ ⊆ P are considered candidates to be good paths
(i.e., paths that capture meaningful text fragments that can be converted
into triples and included in the KG). The rationale behind selecting frequent
paths is that a path must identify a certain amount of knowledge; a path
that only detects a few triples is not of interest for the KG.

For each p ∈ P ′, 20 triples were subsequently extracted and manually
annotated by 4 Computer Science researchers. For example, given the sen-
tence “The device includes two or more ambient light sensors”, the path
(nsubj → obj), the entities device and light sensors, and the sentence depen-
dency tree (see Fig 2), where the words device and includes are linked by the
relation nsubj, and the words includes and sensors are linked by obj, we can
extract the triple <device, includes, light sensors>. Paths were eval-
uated considering the number of correct triples out of the twenty extracted.
Paths which generated more than 60% of correct triples were chosen as good
paths. This resulted in the set P ′′ composed by 12 paths18.

Given a new input text tnew and its entities Etnew, the module builds its
dependency tree dtnew and uses the paths of the set P ′′ to extract relation-
ships between pairs of entities (em, en)|em, en ∈ Etnew. The output of this
module is the set of triples TDep.

3.2. Entity and Relationship Handlers

This section describes how entities and relationships are cleaned and
merged together.

18https://github.com/danilo-dessi/SKG-pipeline/blob/main/resources/path.

txt
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3.2.1. Entity Cleaning and Validation Module

The entity extraction process can generate very generic or noisy terms
(approach, model, model 1, etc.). We thus apply a number of transformations.
First, acronyms are solved by exploiting the fact that they are usually placed
in brackets immediately after the extended form of the related entities (e.g.,
Computer Science Ontology (CSO)). Then, common English stop-words pro-
vided by the NLTK19 library as well as punctuation signs (e.g., apostrophes
and commas) are removed. All entities are lemmatized using the WordNet
lemmatizer20. In order to discard generic entities, SCICERO filters out the
ones with a Information Content (IC) score21 lower than a empirically defined
threshold thIC (10 in the prototype, as reported in Section 4). It also use a
blacklist of common entities22. To avoid discarding significant entities within
the Computer Science domain, it uses a white-list which includes both CSO
topics and the ‘Fields of Study’ subjects from MAG.

3.2.2. Entity Mapping and Merging Module

The same entity can appear in many different forms in a text, e.g.,
machine learning approach, machine learning algorithm, machine learning
method, etc. All these forms need to be merged into a single entity. To
achieve this goal, we apply two methods for entity merging that rely respec-
tively on external knowledge bases and deep learning transformers.
Merging through Linking to External Resources. The set of entities
E is mapped to CSO, Wikidata, and DBpedia. Given an entity e ∈ E, the
linkage to CSO is done by performing string matching of a text representing
the entity e and the research topics in CSO. The entity e is compared to the
whole set of topic labels provided by CSO, say {lt1 , . . . , ltn}, where lti is the
label l of the i-th topic t. As a result, if there is a perfect match between
e and a research topic label lti , the entity e is used as representative entity
of ti, and of all alternative topics {tn, . . . , tm} of ti (i.e., topics that have a
different URI and are linked together by the property cso:relatedEquivalent23)
whose labels {ltn , . . . , ltm} are present in the set of entities E. For example,

19https://www.nltk.org/
20https://www.nltk.org/_modules/nltk/stem/wordnet.html
21https://www.nltk.org/howto/wordnet.html
22https://github.com/danilo-dessi/SKG-pipeline/blob/main/resources/

blacklist.txt
23http://cso.kmi.open.ac.uk/schema/cso#
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the entity natural language processing is compared against all entities and
its equivalent alternatives in CSO. The match occurs with the label natural
language processing of the CSO topic cso:natural language processing which
has alternative topics cso:nlp and cso:natural language processing systems.
In this case, the entity natural language processing is used as representative
entity and is not changed within the triples. On the other side, the equivalent
topics are subsequently checked within the set of entities E; if they are found,
then the module replaces them with the entity natural language processing
in the triple sets. For example, if nlp is found within E, then the entity nlp
is replaced with the entity natural language processing in the triples of sets
TDyGIEpp, TOpenIE, TPoS, and TDep.

The linkage to Wikidata is done by using a SPARQL query which per-
forms string matching with entities and their alternative labels (i.e., linked
by the property rdfs:altLabel similarly to what was performed with the CSO).
To limit potential false matches with entities of other domains, the SPARQL
query is designed to find entities which are: i) instances of the entity Com-
puter Science24, ii) subclasses of Computer Science, iii) instances of a subclass
of Computer Science, iv) part-of or facet-of Computer Science, and v) not am-
biguous within Wikidata (i.e., they do not have “Wikimedia disambiguation
page” as value of the property schema:description25 which is present when a
certain entity appears multiple times in Wikidata with different meanings).

Finally, entities are linked to DBpedia through DBpedia Spotlight [64]26,
using a similarity score ≥ 0.8. Entities in the set E that are mapped to
the same DBpedia entity are merged together. To avoid conflicts between
the three linking strategies (e.g., the same entity is linked to different set
of alternative labels by using the three external knowledge sources), this
module links the entities by giving priority to CSO, then Wikidata, and
finally DBpedia.
Merging through Transformers. Entities that are not linked to external
resources are analyzed by this module to detect those that can be merged.
To this purpose, entities in E are used to create an index based on the to-
kens they contain (i.e., each single token of the entities in E is used as key
of the index, and the index values are the entities themselves). Two entities

24https://www.wikidata.org/wiki/Q21198
25https://schema.org/description
26https://www.dbpedia-spotlight.org/
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en, em ∈ E are compared if they share at least one token. The comparison is
executed by employing the framework SentenceTransformers [28] and encod-
ing the research entities with the paraphrase-distilroberta-base-v2 transformer
model. Research entities whose cosine similarity is equal to or greater than a
threshold thmerge (set empirically to 0.9) are merged together. For example,
suppose that the entities machine learning approach, ml approach and ml
method are not linked by using external knowledge bases. First, the index
{machine :[‘machine learning approach’], learning : [‘machine learning ap-
proach’], approach : [‘machine learning approach’, ‘ml approach’], ml : [‘ml
approach’, ‘ml method’], method : [‘ml method’]} is created. Then, for each
key of the index the encoding of the entities of its list of values are com-
pared by the SentenceTransformers framework. Let us assume that the first
key analyzed is ‘ml’. The entities ml approach and ml method are compared
and merged (their similarity is ≥ than 0.9); e.g., the entity ml method is
mapped to ml approach. Then, let us assume that the second key analyzed
is approach. The entities machine learning approach and ml approach are
compared and merged since also their similarity is ≥ than 0.9. The three
initial entities are thus merged in the single entity ml approach.

3.2.3. Relationship Manager Module

The triples in TDY GIEpp, TOpenIE, TPoS, and TDep typically present a large
number of distinct relations that may be considered synonyms, produced by
the four different methods of relationship extraction. For example, the re-
lations includes, involves, embeds, and contains may be used to express the
same information as their meaning is similar. In order to reduce redundant
information, we map the extracted relations to a relatively small number of
predefined relations. To this purpose, we generated a mapping that links 464
verbs to 39 representative verbs. This mapping has been built by using the
VerbNet [29] verb taxonomy to extend the mapping of scientific verbs intro-
duced in [25], which covered only 194 verbs. Therefore, thanks to VerbNet
we were able to add 270 additional verbs.

VerbNet is a verb-based lexicon which structure syntactic and semantic
information to categorize verbs in hierarchically organized classes. Classes
are characterized by a set of verbs and by additional sub-classes, which we do
not consider here since their meaning is often quite different from the initial
class. VerbNet can be enriched with domain-specific jargon while holding
as a core the most common use and semantics of verbs from more general
contexts.
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The verb mapping generated in [25] was built by applying a hierarchical
clustering algorithm on the Word2Vec embeddings of the verbs. The closest
verb to the centroid of each cluster was selected as representative verb for all
the other verbs in the same cluster.

The representative verbs of the existing mapping are used to i) manually
explore the VerbNet classes, and, ii) select the VerbNet class according to the
meaning that we wanted to convey within the generated KG. For example,
the representative verb support was firstly used to explore the extension of
VerbNet classes yielding support-15.3, contiguous location-47.8 and admire-
31.2 ; subsequently only the class support-15.3 was held for the meaning that
we wanted to give to the triples that include the support verb relation. For
example, including the verbs applaud and venerate from the class admire-
31.2, and hence including the class admire-31.2 itself, would give a misleading
meaning to the representative verb support according to what an expert
would expect from a triple <A, support, B> in a scientific KG.

After selecting the VerbNet class for each representative verb, all the verbs
of the chosen VerbNet class were mapped to the representative verb. For
example, the verbs hold and bear from the class support-15.3 were mapped
to the representative verb support. Then, each representative verb which were
present in the original mapping provided by [25] were included to complete
the new manually generated map of verbs. For example, the verbs assist and
enable and others from the mapping defined in [25] were also included and
mapped to support. Finally, a manual review was carried out and a few more
classes were created to avoid that some verbs were mapped to representative
verbs whose meaning was largely different. The resulting mapping is available
online27.

SCICERO applies the mapping on the sets which include verb relations
i.e., TOpenIE, TPoS, and TDep, switching the original verb with the represen-
tative verb. Some triples may end up having the same subject, relation, and
object after this and are thus merged. For example, the triples <knowledge
discovery process, define, supervised machine learning> and<know-
ledge discovery, specify, supervised machine learning> are mapped
and merged to the same triple <knowledge discovery process, defines,

supervised machine learning> because the verbs define and specify are

27https://github.com/danilo-dessi/SKG-pipeline/blob/main/resources/CSKG_

VerbNet_verb_map.csv
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Figure 3: The schema of the validation modules used to discard erroneous triples.

mapped to the same representative verb defines. Finally, the pre-defined re-
lations in the set TDyGIEpp are manually mapped to specific verb relations of
the defined mapping which is available online28. After this process, a unique
set T including all the extracted and processed triples is generated.

3.3. Triple Validation Modules

This section describes the two methodologies applied by SCICERO to
discard triples that i) are erroneous artifacts of the information extraction
process or the integration procedure, or ii) do not align with the knowledge
contained in the generated KG or the domain ontology. Figure 3 shows the
schema of the two modules (i.e., the Transformer-based Validation Module
and the Ontology-based Validation Module) that perform this validation. The
first method exploits transformers to identify low-quality triples. The second
one checks that the type of entities and the relationships align with the
ontological schema.

28https://github.com/danilo-dessi/SKG-pipeline/blob/main/resources/

SKG-dygiepp-Mapping.csv
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3.3.1. Transformer-based Validation Module

Intuitively, a triple that is extracted from multiple documents by multi-
ple approaches has a higher probability to be correct than a triple that is
extracted from one or a few documents using one or a few approaches. Sec-
tion 5.3 discusses the quantitative data that confirm this intuition. Therefore,
within SCICERO, we use two scores to define a triple as reliable or uncertain,
thus selecting triples which can be directly included in the resulting KG and
triples which need to be validated. The first score, s1, is given by the number
of papers from which a triple was extracted from. The second score, s2, is
given by the number of extractor tools that were able to detect the triple.
For example, if a triple t is extracted from 10 papers and the tools that were
able to detect it were DyGIEpp Module and the Path-based Relationships
Extractor Module, the two scores will be s1 = 10 and s2 = 2. We refer to
these scores as support.

Using the support, it is possible to define a subset of reliable triples Treliable,
and a subset of uncertain triples Tuncertain. The sets Treliable and Tuncertain are
disjoint and their union is equal to T . In this module, the set Treliable is used to
fine-tune a transformer model on the sequence classification downstream task
(i.e., the task of classifying sequences of text according to a given number of
classes). More precisely, the transformer model implements a function θ : t →
{0, 1} that takes a triple t as an input and predicts 1 if t represents a correct
fact that can be added in the KG, 0 if the triple t does not represent a correct
fact and must be discarded. The rationale is that a triple consistent with the
triples in Treliable is typically of good quality and could be included in the KG.
In other words, the transformer model is tuned to verify whether a triple from
the set Tuncertain can be part of the KG whose triples are in the set Treliable [57].
This module uses the scibert scivocab uncased [30] transformer model which
is pre-trained on the full texts of 1.14M papers from Semantic Scholar29. The
transformer model is fine-tuned according to the set Treliable which includes
all triples with support s1 ≥ ths1 or s2 ≥ ths2. The reader notices that
SCICERO is aimed to be applied on large collections of research papers which
will naturally include redundant statements appearing in multiple triples.
Hence, it can always rely on a set of triples with high support for the training
phase. For this reason our approach does not typically suffer from the cold
start problem. For each triple t ∈ Treliable, a triple t′|t′ ̸∈ T , generated by

29https://www.semanticscholar.org/
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corrupting t, i.e., replacing either the subject or the object with a random
chosen entity, is created. The triples {t′0, . . . , t′n} are used to build the set
of negative triples Tnegative. The set Treliable ∪ Tnegative is used to fine-tune
the model. Treliable represents the triples whose label is 1, whereas Tnegative

is the set of triples whose label is 0. To feed the model, each triple is
transformed into text, e.g., the triple <authentication protocol, uses,

cryptography> is transformed in the plain text authentication protocol uses
cryptography, which is then encoded and used within the model. The trained
model is then applied on all triples in Tuncertain to verify whether they are
consistent with the set Treliable. All the triples with the label predicted by
the transformer equal to 1 are used to build the set Tconsistent.

3.3.2. Ontology-based Validation Module

This section describes the ontology used to represent scientific facts and
how SCICERO exploits it to filter out semantically erroneous triples. The on-
tology uses the namespace http://scholkg.kmi.open.ac.uk/cskg/ontology#
(prefix cskg-ont) and builds on top of SKOS30 and PROVO31. It is de-
signed to represent the domain semantics on top of the types of entities
identified by the DyGIEpp tool (i.e., Method, Task, Material, Metric, Oth-
erEntity) and the 39 representative verbs (described in Section 3.2.3). It
describes five classes of research entities: cskg-ont:Method, cskg-ont:Metric,
cskg-ont:Material, cskg-ont:Task, cskg-ont:OtherEntity. The types Other-
Scientific-Term and Generic from DyGIEpp, which are associated to generic
entities with no specific categorization, were both mapped to the class cskg-
ont:OtherEntity. The ontology also describes 179 object properties (e.g.,
cskg-ont:usesMethod, cskg-ont:includesMaterial, cskg-ont:Method, cskg-ont:ana-
lyzesMetric) which were derived from the 39 representative verbs. For exam-
ple, the representative verb produces was used to create the object properties
cskg-ont:producesMethod, cskg-ont:producesMetric, cskg-ont:produces:Task, cskg-
ont:producesOtherEntity, and cskg-ont:producesMaterial, the verb queries is
used to create the object properties queriesMaterial, cskg-ont:queriesOther-
Entity, and so on.

Each object property is associated with domain and range restrictions.
For example, since it is correct to say that aMethod or a Task uses aMaterial,

30SKOS - https://www.w3.org/2004/02/skos/
31PROV-O - https://www.w3.org/TR/prov-o/
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the verb uses was utilized to create the object property usesMaterial which
has both Method and Task in its domain, and Material as its range. At
the same time, it is incorrect that a Material uses a Method, therefore, in
the definition of the object property usesMethod, the class Material was not
included in the domain of the property. The reader can find the ontology at
http://scholkg.kmi.open.ac.uk/cskg/ontology#.

This module analyzes all triples from the set Treliable ∪ Tconsistent and
discards them if the subject or the object do not comply with the range
and domain of the relation as defined in the ontology. For example, the
triple <dbpedia, usesMethod, deep learning>, where dbpedia is a Ma-
terial and deep learning is aMethod, is discarded, whereas the triple <senti-
ment analysis, usesMaterial, lexical resource>, with sentiment ana-
lysis being a Task and lexical resource being a Material, is included in the
KG. Finally, the triples and their relevant metadata (e.g., support, linked
papers) are refied and encoded in RDF.

4. Use Case

In this section, we describe the application of SCICERO on a big dataset
of scientific literature for producing a Computer Science Knowledge Graph
(CS-KG)32, a knowledge graph describing 10M entities and 41M statements.

4.1. Dataset

We selected the abstracts and titles of 6.7M research articles in the field
of Computer Science. This sample was retrieved from the MAG dataset, con-
sidering only papers associated with the Field of Study “Computer Science”
in 2010-2021 and with at least one citation. We also required the abstracts
to contain a number of tokens between 15 and 250.

4.2. Implementation Settings

This section describes the setting parameters as well as the statistics
about the SCICERO KG generation process. The settings used to generate
the scientific KG are reported in Table 1. Thresholds and scores were empir-
ically set to find a balance between the quality of the overall triples and the
coverage of the KG.

32CSKG - https://scholkg.kmi.open.ac.uk/
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Table 1: Models and parameter values used to execute SCICERO to create the KG about
Computer Science.

Description & Symbol Value

PoS Tagger windows size w 15
Information Content thIC 10

Embeddings similarity threshold thmerge 0.9
Support s1 3
Support s2 3

The Extraction Modules produced 53M triples from DyGIEpp, 34M from
OpenIE Module, 58M from the PoS Tag-based Relationships Extractor, and
14M from the Path-based Relationships Extractor. Entities and Relationships
were cleaned by the Entities and Relationships handling modules yielding a
total of 68M candidate triples. Among them, 2.6M had a high support ac-
cording to the thresholds of s1 and s2 reported in Table 1 and composed the
set Treliable. 500K of these highly supported triples were used in a train and
test split setting to fine-tune the transformer model within the Transformer-
based Validation Module. Specifically, 80% of the highly supported triples
were employed for fine-tuning and the remaining 20% were used to evaluate
the model. The evaluation of the transformer model in terms of precision, re-
call, and f-measure is reported in Table 2. The first row of Table 2 describes
how the fine-tuned model is able to predict the Class 0 (i.e., to correctly
discard inconsistent triples). The second row reports the performance in
predicting the Class 1 (i.e., to correctly recognize highly supported triples
and, therefore, consistent triples with the training set). Finally, the third
row reports the macro average indicating an overall good performance of
the model in recognizing consistent triples. The transformer model was ap-
plied on 66M lowly supported triples (Tuncertain) and recognized as consistent
46M triples (Tconsistent). Finally, the Ontology-based Validation Module was
applied on the set Treliable ∪ Tconsistent and filtered out about 7M triples that
were inconsistent with the ontology. The remaining 41M triples were reified
to generate the KG. In Table 3, we report some examples of i) triples that
were considered valid by SCICERO and included in the KG, ii) triples that
were discarded by the Transformer-based Validation Module, and iii) triples
that were discarded by the Ontology-based Validation Module.

4.3. The Computer Science Knowledge Graph

23



Table 2: Precision (P) Recall (R) and F-measure score (F1) of the transformer model
applied on the test set containing highly supported triples.

Class - Average P R F1

Class 0 (triples removal) 0.85 0.81 0.83
Class 1 (consistent triples recognition) 0.82 0.86 0.84

Macro Average 0.83 0.83 0.83

cskg:statement_4623968 a cskg-ont:Statement, prov:Entity ;

rdf:subject cskg:face_recognition ;

rdf:predicate cskg-ont:providesTask ;

rdf:object cskg:authentication ;

cskg-ont:hasSupport 5 ;

provo:wasDerivedFrom cskg:2403598213,

cskg:2940931619,

cskg:2966617151,

cskg:3017824383,

cskg:958306837 ;

provo:wasGeneratedBy cskg:OpenIE,

cskg:PoSTagger .

Figure 4: The statement describing the triple <cskg:face recognition, cskg-
ont:providesTask, cskg:authentication>.

The CS-KG generated by SCICERO includes 41M statements extracted
from the 6.7M input abstracts. Statements are formalized according to the
domain ontology described in Section 3.3.2.

Research entities are described within the http://scholkg.kmi.open.

ac.uk/cskg/resource/ namespace (prefix cskg). Each statement is asso-
ciated with the research papers it was generated from (using the property
provo:wasDerivedFrom), the number of source papers (cskg-ont:hasSupport),
and the modules that were involved in its extraction (provo:wasGeneratedBy).
An example of statement generated by SCICERO is depicted in Fig. 4. The
triple <face recognition, providesTask, authentication> is reified and
linked to research papers where it was extracted from (e.g., 2940931619,
2966617151, and so on), the extraction modules that generated it (i.e., Ope-
nIE and PoSTagger), and its support (i.e., 5).
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Table 3: Examples of valid and discarded triples according to the validation performed by
the Transformer-based Validation Module and the Ontology-based Validation Module

subject relation object status

feed forward neural
network system uses

back propagation
technique approach valid

intelligent assistant
system uses knowledge graph valid

object recognition
model set includes edge detection valid

wind power
forecasting methodology uses

deep neural
learning network valid

time synchronization uses controls message valid

robust networking uses continual connectivity valid

blending anomaly skos:broader insider activity valid

machine learning skos:broader
climate adaptation

strategy
discarded by
transformer

machine learning skos:broader
buzzword sounding

technique
discarded by
transformer

sentiment analysis produces time migration amount
discarded by
transformer

cable tv network
operator produces knowledge graph

discarded by
transformer

numerical optimization uses wikidata
discarded by
transformer

private cloud skos:broader post processing
discarded by
ontology

natural language
processing technique skos:broader cyber abuse

discarded by
ontology

knowledge base executes virtual space
discarded by
ontology

knowledge graph produces fault handling plan
discarded by
ontology
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5. Evaluation

This section reports the evaluation of SCICERO on a benchmark of 3,600
manually annotated triples and discusses in detail the contribution of the
different components introduced in Section 3.

5.1. Evaluation Protocol

The evaluation of SCICERO has been performed by assessing its abil-
ity to extract and recognize correct triples. To this purpose, we produced
CS-KG3600, a benchmark of 3, 600 manually annotated triples. We first ex-
tracted a set of triples from the ones used to produce CS-KG (Section 4.3).
Specifically, we selected 1, 200 triples from three sub-fields of computer sci-
ence, i.e., Machine Learning, Natural Language Processing, and Information
Retrieval. We consider a triple about a certain domain if the subject or the
object is a sub-topic of that domain in CSO33.

For instance, the triple <cskg:affinity propagation, skos:broader,
cskg:cluster analysis > was assigned to Machine Learning because cskg:-
cluster analysis is a sub-topic of Machine Learning in CSO. The full list
of sub-topics is available online34.

The resulting set is composed six sub-sets of 600 triples each:

• Set 1 (Very High Support), which includes triples with s1 ≥ 5.

• Set 2 (High Support), which includes triples with 3 ≤ s1 < 5 or
s2 ≥ 3.

• Set 3 (Low Support), which includes triples with s1 < 3 and s2 < 3.

• Set 4 (Discarded by the Transformer-based Validation), which
includes triples that have been discarded by the Transformer-based Val-
idation Module during the creation of CS-KG.

33The relevant topics on CSO are Machine Learning (https://cso.kmi.open.ac.uk/
topics/machine_learning), Natural Language Processing ( https://cso.kmi.open.

ac.uk/topics/natural_language_processing), and Information Retrieval (https://
cso.kmi.open.ac.uk/topics/information_retrieval).

34CSO Topics - https://github.com/danilo-dessi/SKG-pipeline/blob/main/

resources/cso_topcis.txt
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• Set 5 (Discarded by the Ontology-based Validation), which in-
cludes triples have been discarded by the Ontology-based Validation
Module during the creation of CS-KG.

• Set 6 (Random), which includes triples that were randomly generated
by replacing the head or tail of a triple in CS-KG.

The set CS-KG3600 was manually annotated by 3 senior researchers (dif-
ferent than the authors of this paper) in the three chosen domains. For each
triple, experts were asked to annotate 1 if the triple was correct accord-
ing to their expertise and the scientific literature and 0 otherwise. Experts
were provided with the type of the entities (e.g, Method, Material) and were
free to use digital libraries, such as Google Scholar and Scopus. The Fleiss’
kappa agreement [65] between the three annotators was 0.525, indicating a
moderate agreement. We created the gold standard using the majority rule
approach.

5.2. Results and Discussion

We compared 18 alternative approaches on CSKG3600 :

• DyGIEpp [58], described in Section 3.1.1;

• OpenIE [60], described in Section 3.1.3;

• PoST [61], described in Section 3.1.4;

• DepT, introduced in this paper and illustrated in Section 3.1.5;

• eleven combinations of DyGIEpp, OpenIE, PoST, and DepT - inte-
grated according to the Entity and Relationship Handlers (described
in Section 3.2);

• a partial version of SCICERO using only the Transformer-based Vali-
dation Module (Section 3.3.1);

• a partial version of SCICERO using only the Ontology-based Validation
Module (Section 3.3.2);

• the full version of SCICERO.

Section 5.2.1 focuses on the first 15 approaches, which are based on the
four extraction tools and their integration, while Section 5.2.2 reports the
performance of the methods that also use the validation modules.
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5.2.1. Extractors Performance

Table 4 reports the performances of the 15 approaches in terms of pre-
cision, recall, and F-measure. The four basic methods for extracting triples
(DyGIEpp, OpenIE, PoST, and DepT) obtained a precision score in the
range 0.57 – 0.68. In terms of recall, the extractors obtained values lower or
equal than 0.4, which indicates that a single tool or module is not sufficient
to extract an amount of information that can be used to adequately describe
the Computer Science domain. The F-measure of the extractors ranges from
0.24 to 0.49. However, when the extractors are combined, the recall increases
without paying too much in terms of precision. The version which integrates
all of them yields an F-measure score of 0.69. The F-measure increases with
the number of tools that are combined: the combination of two tools leads to
a maximum F-measure of 0.60, the combination of three of them reaches an
F-measure of 0.65, and, as aforementioned, the combination of all the four
tools achieves an F-measure of 0.69. This suggests that combining different
tools for triple extraction, which rely on possibly complementary strategies,
may be the best solution.

Table 4: Precision (P), Recall (R), and F-measure (F) of the evaluation of the proposed
base modules on the CS-KG3600 set.

Triples identified by P R F

DyGIEpp 0.68 0.38 0.49
OpenIE 0.58 0.28 0.37
PoST 0.59 0.40 0.48
DepT 0.57 0.15 0.24

DyGIEpp + OpenIE 0.60 0.51 0.55
DyGIEpp + PosT 0.58 0.61 0.60
DyGIEpp + DepT 0.62 0.45 0.52
OpenIE + PoST 0.54 0.52 0.53
OpenIE + DepT 0.56 0.35 0.43
PosT + DepT 0.57 0.46 0.51

DyGIEpp + OpenIE + PoST 0.55 0.80 0.65
DyGIEpp + OpenIE + DepT 0.57 0.56 0.57
DyGIEpp + PoST + DepT 0.57 0.68 0.62
OpenIE + PoST + DepT 0.54 0.58 0.56

DyGIEpp + OpenIE + PoST + DepT 0.54 0.95 0.69
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Table 5: Precision (P), Recall (R), and F-measure (F) evaluation of SCICERO on the
CS-KG3600 set.

Triples identified by P R F

DyGIEpp + OpenIE + PoST + DepT 0.54 0.95 0.69
DyGIEpp + OpenIE + PoST + DepT + Transformer 0.65 0.91 0.76
DyGIEpp + OpenIE + PoST + DepT + Ontology 0.59 0.83 0.69
SCICERO (DyGIEpp + OpenIE + PoST

+ DepT + Transformer + Ontology)
0.75 0.79 0.77

5.2.2. Triple Validation Modules Impact

Although combining the extractor tools allows to achieve a good recall
score, the resulting triples are fairly noisy, yielding a precision of 0.54 (see
precision of DyGIEpp + OpenIE + PoST + DepT in Tables 4 or 5). In
this section we study the effect of the two approaches for assessing triples:
Transformer-based Validation Module and Ontology-based Validation Module.
Table 5 reports the results of the experiments.

The application of the Transformer-based Validation Module allows to
increase the precision by 0.11 while lowering the recall of by 0.04. The
Ontology-based Validation Module increases the precision by 0.05, but loses
0.08 in terms of recall. The final version of SCICERO, which combines the
two strategies, outperforms all the other methods in terms of precision (0.75)
and F-measure (0.77).

Table 6 reports the performance of the full version of SCICERO on the
three sub-fields: Natural Language Processing, Information Retrieval, and
Machine Learning. The performance are similar across the different research
areas, suggesting that SCICERO is quite consistent in the Computer Science
domain.

In conclusion, the experiments yielded two main insights. First, tools only
working at level of single documents may be not sufficient to produce a com-
prehensive representation of the domain. Therefore, we may need to develop
solutions that are able to integrate and validate information from multiple
tools and multiple documents. Second, the approaches for filtering triples
based on their consistency with highly supported ones (the Transformer-
based Validation Module) and compliance with the domain ontology (the
Ontology-based Validation Module) can drastically improve the quality of the
produced triples.
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Table 6: Precision (P), Recall (R), and F-measure (F) evaluation of the full SCICERO
pipeline (i.e., DyGIEpp + OpenIE + PoST + DepT + Classifier + Ontology (full pipeline))
on the Natural Language Processing, Information Retrieval, and Machine Learning sub-
domains in CS-KG3600.

Computer Science subdomain P R F

Natural Language Processing 0.71 0.82 0.76
Information Retrieval 0.76 0.79 0.77
Machine Learning 0.78 0.77 0.78

5.3. Analysis of the CS-KG3600 Subsets

Figure 5 reports the percentage of correct triples for each of the six subsets
in CS-KG3600, as defined in Section 5.2.1. The two sets with high support
contain the majority of correct triples (86% and 75%), indicating that the
support can be used as a reliable confidence score for the triples within the
generated KG. Triples with a low support are less often correct (65%).

A manual analysis showed that highly supported triples typically describe
more general facts about Computer Science and on which the community
reached a consensus, e.g., <cskg:computer vision, cskg-ont:usesTask,
cskg:image retrieval>, <cskg:document classification, cskg-ont:uses-
Method, cskg:bayesian classification>). Conversely, lowly supported
triples tend to describe more specific use cases or claims that often need to
be interpreted within a specific context. For instance, it is difficult to say
if the triple <cskg:automatic detection of gait phase, cskg-ont:uses-
Method, cskg:markov model> is correct or not without considering the spe-
cific research paper35 where it was extracted from.

Interestingly, 34% of the triples discarded by the transformer module and
22% of those discarded by the ontology module are actually correct according
to the annotators. Finally, 14% of the random generated triples have been
labeled as correct by humans. This might be due to the fact that these triples
contain at least one entity from the selected subdomains, and the other one
from the KG, and this may produce a few plausible triples.

5.4. Limitations and Applicability to other Domains

This section discusses the main limitations of SCICERO in its current
implementation and outlines what needs to be further developed for applying

35https://doi.org/10.1109/TMECH.2018.2836934
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Figure 5: Percentage of correct triples within subsets of CS-KG3600.

it to other domains.
A first limitation is indeed related to the fact that several of the SCI-

CERO components are tailored to computer science, therefore it cannot be
used as it is on other scientific fields. Specifically, the extractor modules
which use DyGIEpp and its scierc model as well as the CSO Classifier are
exclusive to this research area. However, both of them can be modified to
work on different fields. Specifically, the DyGIEpp framework provides sev-
eral pre-trained models that can be exploited to extract pre-defined types of
entities and relationships from other fields. For instance, it can be used in
the biomedical domain by adopting the GENIA36 model, in the protein/drug
domain by using the ChemProt37 model, and in the news domain by adopting
the model trained on the ACE 05 38 corpus.

As far as the CSO Classifier is concerned, it can be replaced by tools

36GENIA - https://s3-us-west-2.amazonaws.com/ai2-s2-research/dygiepp/

master/genia.tar.gz
37ChemProt - https://ai2-s2-research.s3-us-west-2.amazonaws.com/dygiepp/

master/chemprot.tar.gz
38ACE 05- https://catalog.ldc.upenn.edu/LDC2006T06
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that can recognize entities belonging to a specific taxonomy. For example,
SciSpacy39 can be used to recognize entities belonging to the biomedical do-
main from plain text and to map them to several ontologies and taxonomies
such as Medical Subject Headings (MeSH)40, Unified Medical Language Sys-
tem (UMLS)41, Gene Ontology (GO)42, RxNorm43, and Human Phenotype
Ontology (HPO)44. The existing modules to find and link entities to external
resources can also be developed for other domains considering the abundance
of available resources (e.g., in Mathematics using the Mathematics Subject
Classification (MSC)45 and in Physics using the Physics Subject Headings
(PhySH)46). In order to run SCICERO on a different field it is also necessary
to modify the domain ontology and the mapping between verbal predicates
and relations. Indeed, the types of entities and the terminology used may
depend heavily on the domain.

A second limitation of SCICERO is represented by its computational
costs. For example, it required more than 200GB of RAM for handling all
the entities and relationships extracted from 6.7M research articles. Such a
limitation can be addressed by using efficient big data frameworks. We are
now working in this direction by porting to Apache Spark47 some of the most
computational expensive modules. A first prototype is already available in
the repository48.

6. Future Research Directions

We expect that the KGs generated by SCICERO will be employed for
supporting a variety of significant tasks. For example, KGs of research con-
cepts similar to the output of our use case (i.e., CS-KG) have been used to
provide terminology about specific research entities for key-phrase extrac-

39SciSpacy - https://allenai.github.io/scispacy/
40MeSH - MedicalSubjectHeadings.
41UMLS - https://www.nlm.nih.gov/research/umls/index.html
42GO - http://geneontology.org/
43RxNorm - https://www.nlm.nih.gov/research/umls/rxnorm/index.html
44HPO - https://hpo.jax.org/app/
45MSC - https://mathscinet.ams.org/mathscinet/msc/msc2020.html
46PhySH - https://physh.aps.org/
47https://spark.apache.org/
48https://github.com/danilo-dessi/SKG-pipeline/tree/main/spark_entity_

cleaning_and_mapping
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tion [66], to generate scholarly knowledge graph embeddings for classifying
research publications [21], to develop systems for recommending research ar-
ticles [24], and to study novel link prediction methodologies targeting the
scholarly domain [67].

The resulting KGs may also be used for several other ambitious tasks such
as research trend forecasting [68] (i.e., identifying and predicting emerging
technologies and research trends) and hypothesis generation (i.e., suggest-
ing to scientists new hypotheses to test). Indeed, these tasks require an
accurate, large-scale, and machine-readable representation of the scientific
domain. For example, for the research trend forecasting task, it is crucial to
rely on a knowledge base that describes how research entities evolved and
interacted in the past. CS-KG provides such knowledge since triples are asso-
ciated to research papers published in a specific year. As far as the hypothesis
generation task is concerned, the knowledge graph can be used to generate
new triples (that can be seen as hypotheses to test) and verify their plausibil-
ity. For instance, similarly to what has been done in the Transformer-based
Validation Module, the knowledge graph can be employed to train machine
learning models to verify whether new triples aligns with or complement the
current knowledge.

As next step, we will focus on improving the pipeline to overcome the
limitations discussed in Section 5.4 and applying the produced KG to the
described downstream tasks. More specifically, future work will involve i) a
new design of the source code to make it fully parallel and scalable by using
big data frameworks, ii) the exploration of a more fine-grained categorization
of our entities (e.g., among instances of cskg-ont:Material we can identify
images, text data, audio data, videos, and so on), iii) the use of the generated
KG for a variety of tasks such as forecasting research dynamics, entity linking,
and hypothesis generation.

7. Conclusion

In this paper we presented SCICERO, a novel approach for automati-
cally generating scientific KGs from the titles and abstracts of research pa-
pers. SCICERO relies on a modular architecture that combines five extrac-
tion modules (the DyGIEpp Module, the CSO Classifier Module, the Stanford
Core NLP - OpenIE Module, the PoS Tag-based Relationships Extractor Mod-
ule, and the Path-based Relationships Extractor Module), three modules for
integrating entities and relationships, and two validation modules.
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Within SCICERO, entities are extracted from the input text and linked by
exploiting both pre-defined and verb-based relations. They are then merged
by mapping them to external resources such as CSO, Wikidata, and DB-
pedia. Moreover, deep learning transformers are employed for two different
purposes: i) merging entities that are not linked to external resources by
using the framework SentenceTransformers and encoding the research enti-
ties with the paraphrase-distilroberta-base-v2 transformer model; ii) predict
whether a certain triple is correct or not using the scibert scivocab uncased
transformer model pretrained on 1.14M papers from Semantic Scholar. SCI-
CERO also validates the resulting triples against an ontology that describes
179 possible relations between scientific entities.

SCICERO has been applied to a collection of about 6.7M research paper
titles and abstracts from Computer Science ranging from 2010 to 2021. The
evaluation that has been carried out concerns the ability of SCICERO to
extract and recognize correct triples. It has been performed on three different
domains: Machine Learning, Natural Language Processing, and Information
Retrieval. The experiments shows that SCICERO yields a precision of 0.75,
a recall of 0.79, and a F-measure of 0.77 on a gold standard of 3, 600 triples
annotated by three humans experts. Last but not least, we publicly release
the source code of SCICERO to make our results reproducible and to support
the scientific community, as it can be easily adapted to other domains.
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