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Abstract

Medical image registration is a fundamental and critical task in medical image
analysis. With the rapid development of deep learning, convolutional neural net-
works (CNN) have dominated the medical image registration field. Due to the
disadvantage of the local receptive field of CNN, some recent registration meth-
ods have focused on using transformers for non-local registration. However, the
standard Transformer has a vast number of parameters and high computational
complexity, which causes Transformer can only be applied at the bottom of the
registration models. As a result, only coarse information is available at the lowest
resolution, limiting the contribution of Transformer in their models. To address
these challenges, we propose a convolution-based efficient multi-head self-attention
(CEMSA) block, which reduces the parameters of the traditional Transformer and
captures local spatial context information for reducing semantic ambiguity in the
attention mechanism. Based on the proposed CEMSA, we present a novel Sym-
metric Transformer-based model (SymTrans). SymTrans employs the Transformer
blocks in the encoder and the decoder respectively to model the long-range spatial
cross-image relevance. We apply SymTrans to the displacement field and diffeo-
morphic registration. Experimental results show that our proposed method achieves
state-of-the-art performance in image registration. Our code is publicly available at
https://github.com/MingR-Ma/SymTrans!

1 Introduction

Medical image registration is the fundamental and crucial branch of many medical image analysis
tasks. Deformable medical image registration, a part of the medical image registration, aims to
establish the dense and nonlinear correspondence between a pair of images. Traditional image
methods formulate image registration as an optimization problem to search for a smooth transfor-
mation between the points in the pair of images [[13} 28]. However, the traditional methods are very
time-consuming and require a lot of computing resources because iterative optimization is required
every time for a new image pair.

Since recently, with the rapid development of deep learning, convolutional neural networks
(CNN) have been applied in many vision tasks and demonstrated the outperformance in many vision
tasks [[13} 23} 29]]. Compared to the traditional methods in medical image registration, CNN-based
methods can improve the registration performance and compute the dense transformation faster once
the CNN model train is finished. However, the inherent limitation of the CNN architectures, that
is, the local convolution operation (i.e., the local receptive field of CNN), makes the CNN-based
methods unable to obtain the long-range spatial relations [[10]. Although some approaches have been
proposed to enlarge the local receptive field of CNN, they are still restricted by the kernel size of the
convolution [32] 21]].

The Transformer module that performs well in natural language processing tasks does not have
the limitation of local receptive fields. Benefiting from the non-local receptive field capability of the
Transformer, VIT [10] is the first to apply the Transformer in computer vision (CV), which regards
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an image as a sequence of patches (i.e., making one image into tokens), achieves the state-of-the-art
image recognition results. Recently, many Transformer-based or variant Transformer-based methods
have been proposed to model the CV tasks, such as Swin Transformer [17]] and transU-Net []].

In medical image registration, the size of the local receptive field of CNN itself will limit the
performance of the CNN-based model to establish the correspondence between the same anatomical
structures of two images, especially when the same anatomical structure is distant. Based on the
Transformer studies in CV, some image registration approaches have utilized the Transformer in
their methods. Vit-V-Net [7], as we know, is the first to apply the Transformer in image registration
and achieves promising performance. There are also other Transformer-based image registration
methods, such as DTN [31]] and TransMorph [5]. However, the limited memory and a large number
of parameters force them to apply the Transformer at the bottom of their networks, where the coarse
feature maps are available. The lowest level resolution information limits the contribution of the
Transformer.

To address these issues, we propose an encoder-decoder scheme model consisting of convolu-
tional and Transformer blocks. We present the convolution-based efficient multi-head self-attention
(CEMSA), which focuses on capturing local and long-range contextual information. Specifically,
we utilize the depth-wise separable convolutional operations to capture the local contextual fea-
ture maps and compress the memory and parameters. We use our proposed patch expanding to
restore the feature maps from the last CEMSA-based Transfomer encoder to build the symmetric
encoder-decoder architecture. Then, the skip connections and the proposed merging operations
are used to restore and fuse feature maps in the decoder. Based on these proposed modules, we
build the CEMSA-Transformer-based symmetric network (SymTrans). We also introduce a variant
model diff-SymTrans to obtain the diffeomorphic deformation field. Qualitative and quantitative
evaluation of the experimental results demonstrates the outperformance of the proposed method in
image registration.

In summary, the main contributions of this work are following:

* CEMSA: We propose an efficient multi-head self-attention mechanism to save memory,
reduce parameters, and capture the local relevance.

* An CEMSA-Transformer-based symmetric architecture: We present a novelty CEMSA-
Transformer-based symmetric network, SymTrans, for deformable image registration.

* Displacement and diffeomorphic registration: We present the two registration fashions,
SymTrans, and diff-SymTrans. SymTrans yield the displacement field for registration, and
diff-Trans yield the deformation field, ensuring the diffeomorphic properties.

* State-of-the-art results: We compare SymTrans and diff-SymTrans with three unsupervised
learning-based and one wildly used traditional registration approaches. The experimental
results demonstrate the state-of-the-art performance.

2 Background

2.1 Image Registration

Deformable image registration aims at establishing spatial correspondence between two images. The
registration of a pair of images can be optimized by an energy function. The typical optimization
problem is written as:

(b:arggminE(Im,If,qS). (1)

In this energy function, I,,, and I; denote the moving and fixed image, respectively. And ¢ denotes
the deformation field, which indicates the directions and magnitudes of a spatial pixel point’s
transformation. [E can be fomulated as:

E(Im,If, ) = Egim(Imod, I1) + AR(¢), 2)

where E;,, (+) is the similarity metric, o is the interpolation operation, and I,,0¢ is the warped image
warped by the deformation field ¢. The similarity function is the metric to evaluate the level of
alignment between the warped moving image (i.e., I,,,0¢) and the fixed image I . R(-) is a regularizer
that enforces the deformation smooth. A is the hyperparameter to balance the contributions of the
similarity and the regularization.



2.2 Vision Transformer

A standard Transformer block consists of two components: multi-head self-attention (MSA) and
position-wise feed forward module (FFN) [24]. Let I is an image volume defined in the 3D spatial
domain 2 € RP*H*W To use the Transformer model the input volume, an image is first divided

into N patches, then flattened to sequences of vectors I, C RN*P”_ The number of patches can be

calculated by the formula N = ngifw, where (D, H, W) is the size of the image, P is the size of
each patch. Usually, the convolutional operation is utilized to split an image into patch embeddings
without overlap [30} [10]. After getting the patch embeddings of an image, these embeddings are
passed in the MSA. MSA applies the linear operation project the embeddings to the queries, keys,
and values (denoted as Q, K, V). Each linear projection set consists of k heads, which map the d,,
dimensional input into dj dimensional space. The input sequences to the global relations can be

formulated as:

T

MSA(Q,K,V) = Softmax(QK )V. €)]

Vdy,

The FFN is utilized to project the output sequence from MSA into a large scale (usually by the factor
of 4) dimensional space and then project it to the sequence’s original dimensional space. Thus, a
Transformer block is completed.

3 Related Work

Traditional deformable image registration methods optimize the energy function formulated as Eq.
iteratively for each pair of images. These methods include, Demons [25]], elastic model [22], and two
commonly used methods SyN [[1] and LDDMM [4]]. These methods, as traditional methods, still face
the problem of time-consuming calculations.

Unlike the traditional approaches, CNN-based methods learn the parameters of their model on
the training dataset to predict the deformation field between a pair of unseen images. Therefore,
CNN-based methods compute the deformation field usually less than a second (after training). The
CNN-based methods can be categorized as supervised and unsupervised. The supervised methods
require the ground-truth information in the dataset, while the ground-truth deformation fields are hard
to obtain [20} [11]. Comparing with the supervised registration methods, unsupervised methods are
not limited to the ground-truth information. According to the output of a methods, the registration
methods can be divided into two categories: the displacement field registration and the diffeomorphic
registration. The diffeomorphic methods compute the diffeomorphic deformation field to guarantee
the desirable diffeomorphic property [19, 9, 26| [16]]. The displacement field methods output the
deformation field directly from their CNN model, which directly use the deformation field to warp
the moving image toward the fixed image [3, [7]]. Some recent studies employ the Transformer at the
bottom of their network to overcome CNN’s local receptive field shortcoming [[7,131]. The reason
for placing the Transformer at the bottom of their networks is that the memory and computational
complexity significantly increase with the higher resolution level. Motivated by the latest researches
[27, 130], we propose the CEMSA. Based on CEMSA, we build the CEMSA-Transformer-based
symmetric network consisting of a total of ten Transformer blocks in 1/4, 1/8, and 1/16 resolution
levels to enhance the contribution of transformers.

4 Methods

Let a pair of images be defined in the spatial domain 2 C R", (n = 3). Fig. illustrates the overall
architectures of deformable image registration in this paper. Briefly, the moving and fixed images
(respectively denoted as Iy and I,,,) first input the proposed Transformer-based network, and then the
network outputs the deformation field. Finally, the spatial transformation network [[14] is utilized to
warp the moving image toward a fixed image via the deformation field. Lg;,, is the similarity loss
function to evaluate the similarity between warped and fixed images. L. is the regularization to
enforce the magnitude of the deformation field.
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Figure 1: Overview of the proposed method for deformable image registration. The pink block named
SS represents the scaling-and-squaring module. STN represents the spatial transform network. The
dotted line indicates the workflow for diffeomorphic registration.
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Figure 2: The proposed CEMSA block.

4.1 Efficient Transformer Block

The standard Transformer usually takes up a lot of memory because Transformer has a large number
of parameters, especially when applied in the 3D image tasks. To build the Transformer blocks
symmetrically both in the encoder and decoder, we present a novel convolution-based efficient
multi-head self-attention (CEMSA) for the Transformer block in this paper. The proposed CEMSA is
shown in Fig. 2] Compared with the standard Transformer, we employ the depth-wise separable and
grouped convolution in the proposed CEMSA, which can further capture local spatial context, and
reduce the semantic ambiguity and the computation costs. Each token input for attention function of
Q, K, V can be summarily formulated as:

x%%" = Flatten(Conv3D(Reshape(z), 5)), 4)

where x is the input tokens to the CEMSA. DWConv is the depth-wise convolutional operation with
the kernel size of s. GConv is the grouped convolutional operation with the number of the groups
of the input’s dimensions. After the DWConv and GConv, the LN (layer normalization) is applied.
Then, two linear projection sets are utilized to obtain K and V. After that, we adopt Eq. [3]to compute
the attention function on Q, K, V. We use different s for the depth-wise convolutional operation at
1/4, 1/8, 1/16 resolution levels. Then, we take advantage of the standard FFN to project the output of
CEMSA. Thus, an CEMSA-based Transformer block is constructed.

It is worth noting that compared with the Standard and efficient MSA block mentioned and
proposed in [10} 30]], we remove the position embedding to reduce the parameters further. [27]
illustrates that the Transformer with the convolutional projection does not require position embedding
because the convolutional projection represents the continuous positional information between tokens.
To weaken the affection of eliminating the position embedding, and fully guaranteeing the positional
information of each token, we use the single DWConv to compute the attention function on Q to get
the spatial positional information. Compared to the existing efficient MSA approach [30]], we do not
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Figure 3: The propsed symmetric Transformer-based netowrk.

use the linear projection after the DWConv to maintain the positional information of each token. The
role of the GConv operation is to reduce the parameters before the linear projections. According to
the set number of groups g, GConv can reduce the number of parameters to 1/g. We adopt Eq.
to compute the attention on Q, K, and V. As a result, the proposed CEMSA takes into account the
spatial positional relations and the information of tokens at different positions.

4.2 Symmetric Transformer-based Network

Using the proposed CEMSA-based Transformer, we can build the CEMSA-based Transformer
blocks (SymTrans) both in encoder and decoder. The proposed SymTrans is shown in Fig. 3] The
SymTrans is a U-shaped model like U-Net, consisting of 2 CNN-based encoding-decoding layers and
3 Transformer-based encoding-decoding layers. Each of the Transformer-based encoding-decoding
blocks requires a sequence input. We utilize the convolutional operations to perform the Patch
Embedding operations before each Transformer in the encoder, with the stride of 2, kernel size of 3
(i.e., the patch size), to obtain the patch sequences with overlap. Before the feature maps input the
next level Transformer block in the decoder, we utilize the Patch Expanding operations to enlarge the
feature maps.

In detail, the Patch Expanding operations consists of two linear projections, first expanding the
size of feature maps by the factor of 23, then expanding the feature maps dimension by the factor
of 2. In the gap of SymTrans, the skip connections are used to concatenate the output feature maps
from the Transformer in the encoder and the expanded feature maps from the decoder. Then, the
Fusion operations are utilized to reshape these two sequence feature maps to image form, then fuse
them using the convolutional operations. At the half and original size resolution level, we utilize the
convolutional blocks with the kernel size of 3, the stride of 1 (to the same resolution level), the stride
of 2 (to the next resolution level) for encoding and decoding.

4.3 Registration and Learning
4.3.1 Registration

In this paper, we apply the SymTrans to displacement field registration and diffeomorphic registration.
As shown in Fig. [T] the deformation field can be generated in two ways to register a pair of images:
the solid line following the SymTrans indicates the displacement field registration, the dotted line
following the SymTrans indicates the diffeomorphic registration. The diffeomorphic branch ensures
the diffeomorphism in registration. The diffeomorphism is a continuous, invertible, and one-to-one
mapping. To achieve that, we follow [9}[19] and use the stationary velocity field with the efficient
scaling-and-squaring approach to obtain the diffeomorphic deformation field. In the scaling-and-
squaring approach, the deformation field is represented as a Lie algebra member that is exponentiated
to generate the deformation field at time 1, which is a member of the Lie group, can be written as
#M) = exp(v). Starting from the initial deformation field at time 0, i.e., the output velo city field
from the SymTrans, can be formulated as:

¢(1/2T) =p+ %, 5)



where p is the map of spatial locations. The recurrence to obtain the deformation field at time 1 can

be written as:
¢(1/2"_1) — ¢(1/2t) ° ¢(1/2t). (6)

Hence, the time 1 deformation field ¢(1) = ¢(1/2) o $(1/2) is obtained.

4.3.2 Learning

The proposed SymTrans is optimized in an unsupervised manner by evaluating the similarity between
aligned and fixed image. As shown in Fig. [T} given a image pair (/,,,,/f), the Symtrans estimates

the deformation field ¢. Then, the STN warps I to obtain the warped image I, (denoted as
I, = I, 0 ¢). We apply the Lo loss both on the registration similarity and smooth regularization.

The loss function is defined as Eq. [2|and formulated as L = L, (I, fm) + ALyeg (Vo). We
optimize the parameters of SymTrans by minimizing this loss function.

S Experiments

5.1 Dataset and Metrics

We demonstrate the proposed method on the task of brain MRI registration. We use the publicly
available dataset OASIS, consisting of 425 T1-weighted brain MRI scans [18]], and 270 scans are
selected in this dataset for our experiment. We first resample each scan to 256 x 256 x 256 with the
isotropic voxels size of 1mm x 1mm x 1mm. Then, we conduct the standard preprocessing operation
to normalize, affine transformation, and strip the skull using FreeSurfer [12]. The segmentation maps
of each scan viewed as ground truth for evaluation also is obtained through FreeSurfer. Each scan
is cropped to 160 x 192 x 224, then resampled to 96 x 112 x 96. The dataset is split into 200, 34,
and 36 scans for train, validation, and test sets, respectively. We sequentially, without repetition,
combine two scans in the training set to obtain 39,800 permutations of image pairs. These scan pairs
are used for training our proposed, and the baseline approaches. We conduct the basis atlas-based
registration on the test set. Six and thirty scans are selected randomly as the atlas and moving images,
respectively.

Baseline methods and proposed methods are evaluated using the Dice similarity coefficients
(DSC), which calculates the overlapping between the ground truth segmentation maps and the warped
moving image corresponding segmentation maps. We count the negative Jacobian determinant
|J(¢)] < 0 to denote the number of folding. |J(¢)| < O relates where the voxels lose topology
preservation and the violate the diffeomorphic property when transformed via the deformation field.

5.2 Baseline Methods

We compare the proposed method SymTrans with five approaches, including one traditional and
four deep-learning methods. The symmetric image normalization registration method (SyN) is a
traditional iterative method to compute the deformation field [1]]. We use the SyN implementation in
the ANTSs [2] toolbox and set the iteration to [100,100,100]. The deep learning baseline methods,
including the CNN-based VoxelMorph [3], the CNN-based SYMNet [19], the Transformer-based
ViT-V-Net [7] and the Swin-Transformer-based TransMorph [6]. We use the publicly available
implementation of these four deep learning methods. We train the VoxelMorph, SYMNet, Vit-V-Net
and TransMorph with the setting of their suggested hyperparameters, on the same data set splitting,
respectively.

5.3 Implementation Details

The proposed framework is implemented by using the PyTorch. The STN in our method is the same
as the one utilized in VoxelMorph , Vit-V-Net, and TransMorph. We set the regularizing parameter A
to 0.02. We employ the Adam optimizer to optimize the parameters of the proposed network, with a
learning rate of le-4, on an NVIDIA RTX3080 10 GB GPU. The maximum iterations of training for
the deep-learning approaches are 300k.

The detailed configures of the proposed CEMSA-based Transformer during training is following:
s ={24,16, 12} at 1/4, 1/8, 1/16 resolution stages; the number of heads is {2, 4, 8} at each resolution



Method DSC [J(¢)| <0

Affine 0.520 (0.058) -
SyN 0.662 (0.038) 40.683 (78.042)
VoxelMorph 0.726 (0.031) 1453.778 (624.714)
SYMNet 0.719 (0.025) 1205.789 (365.011)
Vit-V-Net 0.730 (0.031) 1563.088 (631.037)
TransMorph 0.742 (0.027) 1631.978 (574.568)
SymTrans 0.747 (0.026) 1581.033 (587.560)
diff-SymTrans 0.742 (0.025) 2.033 (9.942)

Table 1: Qualitative comparison between our frameworks and baseline methods. DSC higher is better,
and |J(¢)| < 0 lower is better. Standard deviations are in bracket.

Fixed Image Moving Image

VM SYMNet Vit-V-Net TransMorph SymTrans diff-SymTrans

Figure 4: The atlas-based registration of lateral-ventricle, thalamus, and hippocampus by the Voxel-
Morph, SYMNet, Vit-V-Net, TransMorph, and the proposed SymTrans and diff-SymTrans.

stage; the patch size is {3, 3, 3}; the number of the grouped convolution’s groups is equal to the input
embedding dimension.

5.4 Results

5.4.1 Registration Accuracy

Fig. [] shows the registration results of a pair of images. The boundaries of three segmentation
maps are marked in the sampled slices to observe the deformation of each anatomical structure. We
quantitatively evaluate the accuracy of the baseline methods and the proposed SymTrans using the
DSC metric. The non-positive Jacobian determinants are utilized to assess the number of folding.
Table T]shows the results of different methods on the same test set. The proposed SymTrans, applied
to displacement field registration, produces the highest average DSC than the baseline methods.
The diffeomorphic registration using SymTrans (denoted as diff-SymTrans) still gives the higher
average DSC than baseline methods and decreases the average number of folding much lower, which
guarantees the topology of the original moving image. Besides, the lower standard deviations of the
SymTrans and diff-SymTrans show strong stability of the proposed SymTrans.

To demonstrate the alignment results of each anatomical structure, we report the DSCs of 35
anatomical structures in Fig. [5]The abbreviations in Fig. 5 are: Brainstem (BS), thalamus (Th),
cerebellum cortex (CblmC), lateral ventricle (LV), putamen (Pu), pallidum (Pa), cerebral white matter
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Figure 5: A boxplot illustrating the DSC of each anatomical structure segmentation for SyN, Vox-
elMorph, SYMNet, Vit-V-Net, and ours. We averaged the Dice values of the left and right brain
hemispheres and combined them into one structure for visualization.

Method Trans. L. Params (M) FLOPs (G)
VoxelMorph - 0.29 59.82
SYMNet - 1.12 4451
Vit-V-Net 1/16 31.50 65.77
TransMorph 1/4 46.69 112.75
SymTrans 1/4 16.05 63.53

Table 2: The parameters and FLOPs comparison of different methods for registration. Input image
size is 96 x 112 x 96 by default. Trans. L.: The starting deployment location of the Transformer.

(CeblWM), ventral DC (VDC), caudate (Ca), Amygdala (Am) hippocampus (Hi), 3rd ventricle
(3V), 4th ventricle (4V), amygdala(Am), CSF (CSF), cerebral cortex (CeblC), inf-lateral ventricle
(ILV), Vessel (Ve) and choroid plexus (CP). As we can see, the proposed SymTrans outperforms the
compared registration approaches on all of the 19 combined structures. The diff-SymTrans yields
better results than all baseline methods except TransMorph and SymTrans, while producing minimal
folding. To sum up, the proposed symmetric Transformer model based on the CEMSA achieves the
best results.

5.4.2 Computational Complexity

To illustrate the effectiveness of the proposed CEMSA, we compare its parameters and the FLOPs
with the baseline approaches. Table [3]shows the FLOPs and the parameters of each method. The
CNN-based networks, both VoxelMorph and SYMNet, have fewer parameters and FLOPs than
Transformer-based models because Transformer-based models have many linear operations, which
enlarge the parameters and FLOPs scale. Among these three Transformer-based methods, our
SymTrans achieves the lowest FLOPs. Compared with Vit-V-Net and TransMorph, the parameters of
the SymTrans are much fewer, and the FLOPs are fewer than theirs. Specifically, Vit-V-Net employs
12 Transformer blocks at the bottom of their model, each block containing 1.76M parameters.
TransMorph employs the Swin-Transformer blocks at the 1/4 resolution stage, which model the
input embedding patches with the dimensions of 96. In the SymTrans encoder, the depth of the
CEMSA-based Transformer at each resolution stage is equal to the depth of the Swin-Tranformer in
TransMorph.

In general, the parameters are gained while the size of the input token raises. Symtrans applies
the CEMSA-based Transformer blocks at 1/4, 1/8, and 1/16 resolution levels in the framework. Even
applying the CEMSA-based Transformer blocks at so manyresolution stages, SymTrans has about
49% fewer parameters than Vit-V-Net, and 67% fewer parameters than TransMorph. In practice, the
GPU memory occupied during training is about 3 GB with a batch size of 1 and an input image size
of 96 x 112 x 96 on our server. Vit-V-Net and Transmorph occupy about 6 GB and 7 GB of GPU
memory with the input padded image size of 96 x 128 x 96. Statistical results of parameters and



Method E-SymTrans D-SymTrans B-SymTrans SymTrans
DSC 0.734 (0.028) 0.717 (0.033) 0.714 (0.034) 0.740 (0.027)

Table 3: Comparison of placing the CEMSA-based Transformer in different branch of the proposed
network. Standard deviations are in bracket.

FLOPs indicate that the proposed CEMSA is feasible to reduce parameters, which provides a basis to
apply the Transformer at the high-resolution levels.

5.4.3 Ablation Studies

We investigate the performance when the CEMSA-based Transformer is applied at different locations
in the network to demonstrate that the symmetric framework is effective. The original Symtrans
and all the ablation are utilized to perform the displacement field registration. We train the ablation
variants for 100k iterations. Then, we find the best weights on the validation set and test these variants
on the test set.

Table [3|reports the DSC results of three variant SymTrans. E-SymTrans contains the CEMSA-
based Transformer blocks in the encoder and replaced the CEMSA-based Transformer blocks with the
convolutional blocks in the decoder. D-SymTrans indicates that only the CEMSA-based Transformer
blocks are utilized in the decoder, and the rest, as shown in Fig. El, are convolutional blocks. Patch
Embedding and the Fusion blocks in these two ablations are replaced with the basis convolutional
blocks. B-SymTrans is the CNN-based architecture that applies 10 CEMSA-based Transformer
blocks at the bottom. Each convolution block is followed by a LeakyReLLU activation to construct a
Conv block. The depths of Conv blocks are the same as the depths of the replaced CEMSA-based
Transformer. Patch Expanding blocks are replaced with the deconvolutional operation. The structures
form of E-SymTrans and D-SymTrans correspond to the structures form of TransMorph and Vit-V-Net.
We observe that the original SymTrans achieves the best performance. The results of these ablation
variants identify that employing the CEMSA-based Transformer at the high-resolution levels of the
network and applying them symmetrically as encoder and decoder enhance the registration accuracy.
That demonstrates that modeling high-resolution feature maps with the symmetric architecture can
facilitate the model to recognize meaningful semantic correspondences to anatomical structures.

6 Conclusion

This paper proposes an CEMSA mechanism to capture local spatial context, reduce semantic am-
biguity and parameters. Based on the proposed CEMSA, we build the Symtrans for deformable
image registration, which takes advantage of the long-range spatial relevance for feature enhance-
ments. The Transformer blocks based on CEMSA are not only applied at the bottom but also at the
higher-resolution levels both in encoder and decoder. The qualitative and quantitative evaluations
demonstrate that the SymTrans promotes the semantically meaningful correspondence of anatomical
structures and provide the state-of-the-art registration performance. Furthermore, the ablation studies
illustrate the impact on performance when the Transformer is applied on different components (i.e.,
encoder and decoder) of the model, which indicates the effectiveness of symmetric scheme and the
importance of building transformers at the high-resolution levels.
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