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ABSTRACT
Signed network structure discovery has received extensive attention and has become a research focus
in the field of network science. However, most of the existing studies are focused on the networks with
a single structure, e.g., community or bipartite, while ignoring multiple structures, e.g., the coexis-
tence of community and bipartite structures. Furthermore, existing studies were faced with challenge
regarding large-scale signed networks due to their high time complexity, especially when determining
the number of clusters in the observed network without any prior knowledge. In view of this, we
propose a mathematically principled method for signed network multiple structure discovery named
the Signed Stochastic BlockModel (SSBM). The SSBM can capture the multiple structures contained
in signed networks, e.g., community, bipartite, and coexistence of them, by adopting a probabilistic
model. Moreover, by integrating the minimummessage length (MML) criterion and component-wise
EM (CEM) algorithm, a scalable learning algorithm that has the ability of model selection is proposed
to handle large-scale signed networks. By comparing state-of-the-art methods on synthetic and real-
world signed networks, extensive experimental results demonstrate the effectiveness and efficiency of
SSBM in discovering large-scale exploratory signed networks with multiple structures.

1. Introduction
Structure discovery for signed networkswith positive and

negative edges has received extensive attention and has be-
come a research focus in the field of network science [1, 2,
3, 4]. Different from unsigned networks containing only one
kind of edge describing a homogenous relationship [5, 6, 7],
the positive edges in signed networks usually represent trust,
like, or support relationships, while the negative edges usu-
ally represent distrust, dislike, or oppose relationships [8, 9].
Therefore, signed networks can characterize different rela-
tionships between individuals by adding positive and nega-
tive signs.

In recent years, researchers have found that the commu-
nity, i.e., a dense subnetwork, is one of the most common
structures in real-world networks [10]. Subsequently, some
community discovery methods have been proposed and can
be classified into two categories: discriminant and princi-
pled methods. For discriminant methods, optimization ob-
jectives, e.g., modularity, or heuristics, e.g., random walk
model, should be predefined according to specific network
characteristics [11, 12, 13, 14, 15, 16, 17]. However, dis-
criminantmethods are inflexible in practical applications due
to the difficulty of designing appropriate objective functions.
The principled methods are usually used to detect structures
in signed networks because probability models can capture
the intrinsic features of different structures when fitting the
observed networks [3, 18].
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Despite the success that previous studies achieved in struc-
ture discovery, there are two challenges remain unsolved: 1)
Generalization: both discriminant methods and principled
methods can mostly discover one single structure, e.g., com-
munity or bipartite, but cannot detect multiple structures,
e.g., the coexistence of community and bipartite. 2) Scal-
ability: most principled methods have high time complexity
due to parameter estimation and model selection, i.e., de-
termining the number of clusters K . To select an optimal
model, these methods have to traverse all possible K values
and then calculate the parameters of all the possible models
[4, 18], leading to high time complexity for a slightly large-
scale network.

In view of this, a generalized model for characterizing
multiple structures and a scalable learning algorithm for large-
scale exploratory signed networks are proposed in this paper.
The contributions are summarized as follows:

1) A new reparameterized signed stochastic block model,
namely SSBM, is proposed to characterize themultiple struc-
tures in the signed networks.

In the SSBM, a new parameter Λ is introduced to repa-
rameterize the parameter Π in the standard SBM. The repa-
rameterized model continues the idea of using block struc-
ture to characterize network structure, and the property of
structural equivalence in the standard SBM, i.e., the nodes
in the same block have similar connection patterns. This
allows SSBM to characterize a single structure, e.g., com-
munity or bipartite, and even more complex multiple struc-
tures, e.g., their coexistence in the signed networks. In ad-
dition, the reparameterization can fundamentally solve the
high time complexity problem encountered by most existing
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SBM learning methods, e.g., O(K2n2) when K is known;
otherwise, O(n5). This makes it possible to detect and ana-
lyze multiple structures of large-scale signed networks.

2) A scalable learning algorithm SSBM with model se-
lection ability is proposed for large-scale exploratory signed
networks.

Model selection ability indicates whether an algorithm
can discover network structures without prior knowledge.
For most existing signed network structure discovery meth-
ods, a serial learning mechanism is usually employed to per-
form parameter estimation and model selection alternately
in the model space. The time complexity resulting from this
mechanism is generally O(n5). For this purpose, a scalable
learning algorithm SSBM by integrating the minimum mes-
sage length (MML) [19] and component-wise EM (CEM)
algorithm [20] is proposed. The SSBM can synchronously
perform parameter estimation andmodel selection in the block
space [Kmin, Kmax], which can effectively reduce the learn-
ing time from O(n5) to O(n3). This parallel learning mech-
anism is crucial for realizing multiple structure discovery of
large-scale exploratory signed networks.

3)Experimental results on synthetic and real-world signed
networks in terms of generalization, robustness, and scala-
bility demonstrate superiority of SSBM.

For generalization, the experimental results on various
networks validate the effectiveness of SSBM in discovering
multiple structures. For robustness, according to the learned
parameters Λ, the densities of different noises, i.e., negative
edges within a block and positive edges between blocks, can
be denoted explicitly. Therefore, the SSBM can overcome
the influence of different noise types and densities and ac-
curately discover the multiple structures in the signed net-
works. For scalability, the experimental results on large-
scale synthetic and real-world signed networks confirm that
SSBM can effectively handle networks with tens of thou-
sands of nodes in minute-level time. This significant advan-
tage allows SSBM to discover multiple structures of large-
scale exploratory signed networks.

The rest of the paper is organized as follows. The pro-
posed model and learning algorithm are described in detail
in Section 2. The experimental results to validate the effec-
tiveness and efficiency of SSBM are presented in Section 3.
Section 4 summarizes the related works in terms of discrim-
inant and principled methods, and we conclude the paper in
Section 5.

2. Methodology
In this section, a novel signed stochastic block model,

namely SSBM, is introduced by reparameterizing the stan-
dard SBM to discovermultiple structures in signed networks.
Then, a scalable learning algorithm is proposed to perform
parameter estimation and model selection simultaneously.

2.1. Signed Stochastic Block Model
The standard SBM that only discovers structures con-

tained in unsigned networks can be formalized as [21]:
X = (K,Z,Φ,Π) (1)

whereK denotes the number of blocks in a network consist-
ing of n nodes. The latent variableZ is a n×K dimensional
matrix, and zik = 1 if node i is allocated to block k; other-
wise, zik = 0. Φ = (�1,⋯ , �K ) is a K dimensional vec-
tor, and �k represents the probability of allocating a node toblock k. Π is a K ×K dimensional matrix, and the element
�kq represents the probability of generating an edge betweenthe nodes in block k and block q.

According to the above definition, the standard SBMonly
can characterize unsigned network structure due tomatrixΠ.
For this problem, a new parameter Λ is introduced to repa-
rameterize Π, and Λ represents the probability matrix that
positive, negative, or null edges will be generated from a
block to a node. Then a new signed stochastic block model
is presented to characterize multiple structures in the signed
networks at a finer granularity.

Assuming thatEn×n is an adjacent matrix of an observed
signed networkN containing n nodes. The element eij equalsto 1, -1, or 0, denoting a positive, negative, or null edge exist-
ing between node i and node j. Then, a new signed stochas-
tic blockmodel, named SSBM, can be formulated as follows:

X = (K,Z,Φ,Λ) (2)
where the parameters K,Z,Φ are identical to them in the
standard SBM, i.e., K denotes the number of blocks, Z is
a n × K dimensional latent variable indicating node assign-
ments, and Φ is a K dimensional vector representing proba-
bility distribution of allocating a node to different blocks. Λ
is aK ×n×3 dimensional block-to-node connection matrix,
and the element �kj = (�kj1, �kj2, �kj3) represents probabil-ity generating a positive, negative, or null edge from a node
in block k and node j, respectively. Fig.1 shows a graphical
model of SSBM.

Zi eij

Φ Λ 

Figure 1: Graphical model of SSBM.

Note that SSBM is also a generative model that can gen-
erate various signed networkswith block structures. A signed
network can be generated by the following steps:

Step I: Allocate a node i to a block k according to the
probability �k;Step II: If node i is in block k, then generating a positive,
negative, or null edge between node i and node j according
to multinomial distribution �kj = (�kj1, �kj2, �kj3).
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Figure 2: The steps of SSBM generating signed networks.The solid lines between
two nodes denote the generated positive or negative edges labeled as "+" or "-",
respectively. The dotted lines denote edges to be generated, and the signs of edges
are determined by multinomial distribution with the parameter �kj formalized as
Mu(1, �kj = {�kj1, �kj2, �kj3}).

The graphical model of SSBM and the steps of SSBM
generating signed networks as mentioned above are exhib-
ited in Fig.1 and Fig.2, respectively. It is clear that eij isdependent on Zi and Λ, and Zi is only dependent on Φ.
Therefore, the likelihood of an observed signed network N
and the latent variable Z, namely, the complete data likeli-
hood p(N,Z|K,Φ,Λ), can be formalized as follows:

p(N,Z|K,Φ,Λ) = p(Z|K,Φ)p(N|K,Z,Λ) (3)
For Equation (3),

p(Z|K,Φ) =
n
∏

i=1

K
∏

k=1
�zikk (4)

p(N|K,Z,Λ) =
n
∏

i=1

K
∏

k=1

n
∏

j=1

3
∏

ℎ=1
�
zik�(aij ,2−ℎ)
kjℎ (5)

whereℎ ∈ {1, 2, 3}, andwhen x = y, �(x, y) = 1; otherwise,
�(x, y) = 0. Then the log form of Equation (3), i.e., the
complete data log likelihood is:

log p(N,Z|K,Φ,Λ) =
n
∑

i=1

K
∑

k=1
zik log�k

+
n
∑

i=1

K
∑

k=1

n
∑

j=1

3
∑

ℎ=1
zik�(aij , 2 − ℎ) log �kjℎ

(6)

2.2. Scalable Learning Algorithm
By combining MML criterion with CEM algorithm, a

scalable learning algorithm is proposed to carry out parame-
ter estimation andmodel selection simultaneously. TheCEM
algorithm is used to learn the parameters of blocks, andMML
is used to evaluate and select blocks. If one block is of poor
quality, e.g., empty, then it is discarded and no longer com-
puted in the subsequent iterations until convergence. Differ-
ent frommost of the existingmethods, our proposed learning
algorithm focuses on block space rather than model space.
The time complexity can be reduced when selecting models,
and the efficiency can be improved significantly.
2.2.1. Cost Function of SSBM

The detailed deduction of SSBM cost function based on
MML criterion is presented in this section. Specificially, the
cost function of MML is [22, 23]:

C(N, g) = − logp(N|g) − log p(g) + 1
2
log |I(g)|

+ d
2
(1 + log�d)

(7)

whereN represents the observed signed network, and g de-
notes model parameters, i.e., (K,Φ,Λ) in SSBM. d is the
dimension of g, �d ≈ (2�e)−1 when d is large. I(g) ≡
−Ep(N|g)[D2g log p(N|g)] is the Fisher information matrix, E
and |I(g)| denote expectation and determinant, respectively.

Since I(g) cannot be calculated analytically, an upper
bound of I(g) is constructed by the Fisher informationmatrix

Yang Li et al.: Preprint submitted to Knowledge-based Systems Page 3 of 13



SSBM: A Signed Stochastic Block Model for Multiple Structure Discovery in Large-Scale Exploratory Signed Networks

of complete data likelihood:
Ic(g) ≡ −Ep(N,Z|g)[D2g log p(N,Z|g)] (8)

whereD2g is the second derivative on g. The C(N, g) can beoptimized by minimizing Ic(g) [24].We let g = (K,Φ,Λ), Ic(g), a 3Kn +K dimensional di-
agonal matrix where diagonal elements are the second par-
tial derivatives of logp(N,Z|g). According to Equation (8),
we have:

−Ep(N,Z|g)[
)2 log p(N,Z|g)

)�k2
] = n�k−1 (9)

−Ep(N,Z|g)[
)2 log p(N,Z|g)

)�kjℎ2
] = n�k�kjℎ−1 (10)

Then the determinant of the 3Kn+K dimensional diag-
onal matrix Ic(g) is as follows:

|Ic(g)| = n3nK+K
K
∏

k=1
�−1k

K
∏

q=1

n
∏

j=1

3
∏

ℎ=1
�q�

−1
qjℎ (11)

A noninformative prior is used to formally characterize
p(g) due to Φ independent on Λ.

p(g) = p(�1, ..., �k)
K
∏

k=1

n
∏

j=1
p(�kj1, �kj2, �kj3) (12)

The standard Jeffrey prior [25] is adopted to characterize
p(�k,⋯ , �K ) and p(�kj1, �kj2, �kj3).

p(�1, ..., �k) ∝ (
K
∏

k=1
�k)

− 12 (13)

p(�kj1, �kj2, �kj3) ∝ (�kj1�kj2�kj3)
− 12 (14)

According to Equations (12), (13), and (14), -log p(g) in
Equation (7) can be formalized as follows:

− log p(g) = −1
2

K
∑

k=1
log�−1k − 1

2

K
∑

k=1

n
∑

j=1

3
∑

ℎ=1
log �−1kjℎ (15)

Finally, the cost function of SSBM is:

C(N, g) = − log p(N|g) +
K(c + 1)

2
log n

+ c
2

K
∑

k=1
log�k +

d
2
(1 + log �d)

(16)

where c is the number of parameters in a single block, and g
denotes the model parameters, i.e., (K,Φ,Λ).

From the perspective of information coding, Equation
(16) is essentially the sumof data coding lengths, i.e.,− log p(N|g),
andmodel coding length, i.e., K(c+1)2 log n+ c

2
∑K
k=1 log�k+

d
2 (1 + log �d). Optimizing the cost function is to minimize
information coding length. Because the parameters of an
empty block k, i.e., �k = 0, have no effect on total informa-
tion coding length, the final formalization of Equation (16)
can be rewritten by defining Kne < K to denote the number
of nonempty blocks:

C(N, g) = − log p(N|g) +
Kne(c + 1)

2
log n

+ c
2

∑

�k>0
log�k +

d
2
(1 + log �d)

(17)

2.2.2. CEM-based Optimization
In this subsection, the CEM algorithm is adopted to learn

model parameters in Equation (17). Obviously, the right side
of Equation (17) is opposite number of the sum of log likeli-
hood, i.e., log p(N|g), andmodel prior, i.e.,−Kne(c+1)

2 log n−
c
2
∑

�k>0 log�k−
d
2 (1+log �d), which is equal to model pos-

terior. The original optimization task can be transformed
from minimizing the cost function to maximizing the pos-
terior. Specifically, the learning algorithm consists of the
following two steps:

E-step: When N and o(t−1) are known, where o repre-
sents (Φ,Λ) and t is the times of iterations, the expectation
of complete data log likelihood, i.e., the Q function:

Q(o, o(t−1)) = EZ [log p(N,Z|K, o(t−1))]

=
n
∑

i=1

K
∑

k=1
�ik log�k+

n
∑

i=1

K
∑

k=1

n
∑

j=1

3
∑

ℎ=1
�ik�(aij , 2−ℎ) log �kjℎ

(18)
where �ik = E[zik; o(t−1)] is the posterior probability that
node i is allocated to block k when o(t−1) is known, and can
be calculated as follows:

�ik =
�(t−1)k

∏n
j=1

∏3
ℎ=1 �

�(aij ,2−ℎ)
kjℎ

∑K
l=1 �

(t−1)
l

∏n
j=1

∏3
ℎ=1 �

�(aij ,2−ℎ)
ljℎ

(19)

M-step: MaximizingQ(o, o(t−1))+log p(o), where log p(o) =
−Kne(c+1)

2 log n − c
2
∑

k∶�k>0 log�k −
Kne(c+1)

2 (1 + log �d).
Since ∑K

k=1 �k = 1, the Laplace function to be maximized
is as follows:

J = Q(o, o(t−1)) + log p(o) + �(
K
∑

k=1
�k − 1) (20)

Then an explicit solution on � can be obtained by calcu-
lating the partial derivative of Equation (20).

�(t)k =
max{0,

∑n
i=1 �ik −

c
2}

∑K
l=1max{0,

∑n
i=1 �il −

c
2}

(21)

Finally, the probability generating a positive, negative, or
null edge from block k to node j, i.e., �kj1, �kj2, and �kj3,
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can be represented as follows:

�kj1 =
∑n
i=1 �ik�(aij , 1)
∑n
i=1 �ik

�kj2 =
∑n
i=1 �ik�(aij ,−1)

∑n
i=1 �ik

�kj3 =
∑n
i=1 �ik�(aij , 0)
∑n
i=1 �ik

(22)

In the SSBM model, the ability of model selection can
be reflected by Equation (21). Specifically, �ik in the numer-
ator is posterior probability allocating node i to block k, then
∑n
i=1 �ik can be regarded as the number of nodes allocated to

block k. When the numerator is 0, i.e., ∑n
i=1 �ik <

c
2 , block

k will be discarded due to be empty, and the parameters are
not estimated in subsequent iterations. For SSBM, all blocks
are empty, and the algorithm is invalid when c is equal to 3n.
However, concerning on the right side of Equation (17), it
contains the log form of model posterior, which consists of
a log form of the Dirichlet prior of �k, i.e., c2

∑

�k>0 log�k,and a log likelihood, i.e., log p(N|g), when neglecting con-
stant term.

p(�1,… , �K ) ∝ exp{−
c
2

K
∑

k=1
log�k} =

K
∏

k=1
�
− c
2

k (23)

In Equation (23),− c
2 is a parameter of the Dirichlet prior,

and it has little influence on detecting results of network
structure when the data of observable signed network is suf-
ficient. That is, varying c in Equation (21) will not have a
significant impact on the posterior ofΦ. Moreover, the stan-
dard SBM needsK parameters to characterize a block, while
SSBM requires 3n parameters. The SSBM is essentially an
extension of the standard SBM from unsigned networks to
signed networks, and will degenerate to the standard SBM
regardless of the signs of edges, and then the number of
parameters of each block in SSBM is also K . Therefore,
c∕2 = Kne, i.e., the number of nonempty blocks, can be set
in the real applications.

Note that an important heuristic information on setting
the upper bound of detectable block space, i.e., Kmax, canbe inferred by Equation (21). Seen from the numerator, all
the retained blocks in the process of model selection meet
∑n
i=1 �ik > Kne, then

∑Kne
k=1

∑n
i=1 �ik >

∑Kne
k=1Kne, andKne <

√

n can be acquired, which can be seemed as the resolution
limit of SSBM. Therefore, when there is no prior knowledge
on signed networks, the heuristic information can provide a
good choice for initializing the maximum detectable block
number, i.e., Kmax =

√

n.
2.3. Time Complexity Analysis

The pseudo code of SSBM learning algorithm is pre-
sented in Algorithm 1, and the flow of execution is visual-
ized in Fig. 3. Obviously, the most time-consuming parts of
SSBM learning algorithm are repeat loop and foreach loop.
The foreach loop is responsible for evaluating block, select-
ing block, estimating parameters, and discarding block. The

repeat loop repeats above calculations until cost function con-
verges, and then the optimal model and latent variableZ are
obtained (Lines 24 and 25). Specifically, in foreach loop,
� (t)ik is calculated first, and then �(t)k (Lines 7 to 9). Since � (t)ikis posterior probability after the ttℎ iteration, the block qual-
ity can be evaluated based on∑n

i=1 �
(t)
ik and c

2 . For example,
if ∑n

i=1 �
(t)
ik < c

2 , i.e., block k cannot be supported by data,
�(t)k = 0 and block k will be discarded (Line 15); otherwise,
block k will be selected (Line 10). Then the parameters of
selected block will be estimated (Lines 11 and 12).

The time complexity of calculating �⋅k and �k in Lines
7 and 8 are O(nKmax) and �⋅k and u⋅k in Lines 11 and 12 are
O(n2), respectively. Thus, the time complexity of executing
a complete foreach loop is O(n2Kmax + nK2

max). The time
complexity of calculating C(N, g(t)) is O(n2Kmax + Kmax).The above calculations cost O(2n2Kmax + nK2

max + Kmax)in total. Assuming that the algorithm converges after T iter-
ations, the repeat loop is O(T n2Kmax). Therefore, the time
complexity of SSBM is O(T n2Kmax(Kmax − Kmin)) due tothe while loop executing Kmax −Kmin times.

3. Validation
In this section, the generalization, robustness and scala-

bility of SSBM will be validated by comparisons with state-
of-the-art methods on synthetic and real-world networks. The
programs of all algorithms are developed using MATLAB
2010b and run on a computer with a 4-core CPUwith a 3.20,
8GB RAM, and 64-bit Windows 10 operating system. For
all the compared algorithms, Kmin = 1 and Kmax = 10 are
set uniformly, and for SSBM, Kmin = 1 and Kmax =

√

n
are set in term of the aforementioned heuristic information,
and Φ is initialized by (1∕Kmax,… , 1∕Kmax), Λ is initial-
ized randomly, � = 10−4.
3.1. Metrics and Baselines

The accuracy of signed network structure discovery is
evaluated by normalizedmutual information (NMI) [34]. As-
sume thatA andB are the real and discovered network struc-
ture partitions, respectively. The NMI can be calculated as:

NMI(A,B) =
−2

∑CA
i=1

∑CB
j=1 mij log (

mijM
mi⋅m⋅j

)
∑CA
i=1 mi⋅ log (

mi⋅
M ) +

∑CB
j=1 m⋅j log (

m⋅j
M )

where M is confusion matrix, and mij denotes the number
of nodes belonging to block i of A and block j of B at the
same time. CA and CB are the number of blocks in A and B,
respectively. m⋅i and m⋅j represent the sum of the elements
in Row i and Column j inM , respectively. If the discovered
partitionB is identical to the real partitionA,NMI(A,B) =
1; otherwise,NMI(A,B) = 0.

Five classical signed network structuremethods, namely,
VBS [4], SSL [18], SISN [3], FEC [14], and DM [11], are
selected as compared methods.
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Algorithm 1: SSBM Learning Algorithm
Input: N,Kmin, Kmax
Output: gbest, Zbest

1 Initialize Φ(0); Λ(0); t ← 0;Kne ← Kmax; ";
2 u(0)ik ←

∏n
j=1

∏3
ℎ=1(�

(0)
kjℎ)

�(aij ,2−ℎ), for i = 1, .., n
and k = 1, .., Kmax;
Cmin ← +∞; g(0) = (Kmax,Φ(0),Λ(0))

3 while Kne ⩾ Kmin do
4 repeat
5 t ← t + 1;
6 foreach k = 1 to Kmax do

7 � (t)ik ←
�(t−1)k u(t−1)ik

∑Kmax
l=1 �(t−1)l u(t−1)il

, for i = 1, .., n;

8 �(t)k ←
max{0,

∑n
i=1 �

(t)
ik −

c
2 }

∑Kmax
l=1 max{0,

∑n
i=1 �

(t)
il −

c
2 }
;

9 �(t)q ← �(t)q (
∑Kmax
l=1 �(t)l )

−1;
10 if �(t)k > 0 then
11 �(t)kjℎ ←

∑n
i=1 �ik�(aij ,2−ℎ)

∑n
i=1 �ik

, for j = 1, .., n,
ℎ = 1, 2, 3;

12 u(t)ik ←
∏n

j=1
∏3

ℎ=1(�
(t)
kjℎ)

�(aij ,2−ℎ), for
i = 1, .., n;

13 end
14 if �(t)k ≤ 0 then
15 Kne ← Kne − 1;
16 end
17 end
18 g(t) = (Kne,Φ(t),Λ(t));
19 C(N, g(t))← Kne(c+1)

2 log n + c
2
∑

�k>0 log�k +
Kne(c+1)

2 (1 + log �d) −
∑n
i=1 log

∑Kmax
k=1 �(t)k u

(t)
ik ;

20 until
21 (C(N, g(t−1)) − C(N, g(t))) < "
22 if C(N, g(t)) < Cmin then
23 Cmin ← C(N, g(t));
24 gbest ← g(t);
25 Zbest ∼ multinomial(� (t));
26 end
27 end

• VBS [4] is a learning algorithm with model selection,
which is proposed by extending the standard SBM to
signed SBM in the framework of variational Bayesian.

• SSL [18] is a variational Bayesian EM algorithm based
on approximate evidence, and a signed stochastic block
model is defined by explicitly modeling the density
and noise distribution of the edges.

• SISN [3] is a signed network community discovery
method based on statistical reasoning, and a model
selection strategy based on the minimum description
length (MDL) is presented.

• FEC [14] is a method based on random walk model to

discover signed network communities by alternately
executing FC (finding amunicipality) and EC (extract-
ing a community).

• DM [11] is a local search method based on equilib-
rium theory proposed by Doreian and Murvar, which
detects networks structures by minimizing the noise
of signed networks.

3.2. Validation on Synthetic Signed Networks
In this section, the effectiveness of SSBM will be vali-

dated using synthetic networks compared with five state-of-
the-art methods.
3.2.1. Synthetic Datasets Generation

For the sake of fairness, synthetic signed networks are
mostly generated using the model proposed in [14]:

Modelsign = SG(c, m, k, pin, p−, p+) (24)
where c, m, and k are the number of blocks, the number of
nodes in a block, and average node degree, respectively. pinis a parameter for controlling cohesiveness. It represents
the probability of generating edges between nodes within
blocks. The closer the value is to 1, the more distinct the net-
work structure. p− and p+ are parameters for controlling the
noise. They represent the probabilities of generating nega-
tive edges within blocks and positive edges between blocks,
respectively. The larger the two values, the more complex
the network structure.

Five kinds of synthetic networks are generated using the
above generative model.

• Network I: It is generated by parameter configuration
(4,32,32,pin,0,0), where pin increases from 0.0 to 1.0,
and the step size is 0.1. It is a balanced signed network
where positive edges only exist within blocks while
negative edges only exist between blocks.

• Network II: It is generated by parameter configura-
tion (4,32,32,0.6,p-,0), where p− increases from 0.0
to 0.5, and the step size is 0.05. The negative edges
within blocks can be seen as network noises. As p− in-
creases, there are more negative edges within blocks.

• Network III: It is generated by parameter configura-
tion (4,32,32,0.6,0,p+), where p+ increases from 0.0
to 0.5, and the step size is 0.05. The positive edges be-
tween blocks can be seen as noises. As p+ increases,
there are more positive edges between blocks.

• Network IV: It is generated by parameter configuration
(4, 32, 32, 0.6, p-, 0.5), where p− also increases from
0.0 to 0.5, and the step size is also 0.05. There are two
kinds of noises in the generated network, i.e., posi-
tive edges between blocks and negative edges within
blocks, and it is more complex than network II.
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Figure 3: The visual flow chart of SSBM.

• Network V: Similar to Network IV, it is generated by
parameter configuration (4, 32, 32, 0.6, 0.5, p+), where
negative edges within blocks are generated with the
probability of 0.5, and positive edges between blocks
are generated according to p+.

Networks II-V are unbalanced signed networks that are
mainly used to validate the robustness of the proposedmethod.
To further verify the ability of SSBM to discover multiple
structures, Network VI containing community and bipartite
structures is generated by the following method.

• Network VI: It is generated by dividing all nodes into
two communities and two bipartites, and each block
contains 32 nodes. The number of positive, negative,
or null edges generated within and between blocks is
subject to multinomial distribution with parameters of
�kk and �kq , respectively. Specifically, �kk and �kqare set as follows:
�11 = {0.6, 0.1, 0.3}, �12 = {0.1, 0.2, 0.7}, �13 =
{0.1, 0.2, 0.7}, �14 = {0.1, 0.2, 0.7};
�22 = {0.2, 0.1, 0.7}, �23 = {0.01, 0.4, 0.59}, �34 =
{0.01, 0.4, 0.59};
�33 = {0.01, 0.01, 0.98}, �34 = {0.01, 0.4, 0.59};
�44 = {0.01, 0.01, 0.98}.

3.2.2. Results and Analysis
Fig. 4 presents the experimental results on synthetic net-

works. For balanced signed networks (Fig. 4 (a)), SSBM
and VBS show excellent performance in community struc-
ture discovery. With an increase of pin from 0 to 1, both of
them can find communities accurately, indicating that they
are insensitive to cohesiveness within blocks. The accuracy
of SISN decreases slightly only when pin = 0.5, and SSL and
DM are worse than SISN. SSL is incapable of discovering

community structure when pin = 0 since the cohesiveness
in the community is very weak, while with an increase of
pin, the community discovery ability of SSL is gradually en-
hanced. In contrast to SSL, when cohesiveness in the com-
munity is very strong, e.g., pin = 1, DM cannot discover
community structure. When pin < 1, DM has a good ability
of community discovery.

Experimental results on five kinds of unbalanced signed
networks are presented in Fig. 4 (b)-(f), respectively. In Fig.
4 (b), SSBM, VBS, and SSL perform the best. They are
not affected by noises within communities, and can accu-
rately find community structure. SISN can detect the com-
munity structure in most cases with noise ratio p− varying,
and it achieves the best performance (NMI = 0.923) when
p− = 0.15. For FEC and DM, the accuracy declines rapidly
when p− increases gradually, indicating that they are more
sensitive to noises within communities. In Fig. 4 (c), SSBM,
VBS, and SSL are also the best ones, and they can accurately
discover communities in all cases. As p+ increases, the per-
formance of SISN and DM decreases slightly, but the NMIs
are no less than 0.9 and 0.85, respectively. FEC is extremely
sensitive to noises between communities, and it can accu-
rately find the communities only when p+ < 0.1; otherwise,
it becomes ineffective.

As shown in Fig. 4 (d) and (e), SSBM and SSL still
exhibit competitive performance. VBS can accurately dis-
cover community structure when p+ ≤ 0.4, and it decreases
slightly with an increase of p+. SISN is slightly worse than
VBS, but the NMI is always larger than 0.83. FEC and DM
are the worst. Specifically, for Network IV, DM performs
better than FEC. FEC is invalid when p− ≤ 0.3. For Net-
work V, FEC is better than DM. Experimental results on
Network VI, which contains both community and bipartite
structures, are shown in Fig. 4 (f). Specifically, the NMIs
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Figure 4: Experimental results of six algorithms on six kinds of synthetic networks.

of SSBM, VBS, SSL, SISN, DM, and FEC are 1, 1, 0.958,
0.684, 0.957, and 0.273, respectively.

In summary, SSBM consistently exhibits the excellent
performance for all the synthetic signed networks. Results
on unbalanced signed networks further demonstrate that SSBM
has good robustness to different network noise types and in-
tensities, and shows strong generalization as well, i.e., it can
accurately find multiple structures existed in the networks.
Because real-world networks usually contain various noises
and structures, SSBM has more advantages on discovering
multiple structures in real-world networks than compared
methods.

3.3. Validation on Real-World Signed Networks
In this section, the ability of SSBM is further validated

by dealing with real-world networks.
3.3.1. Description of Real-World Datasets

In this experiment, we select three real-world datasets
with ground truth, i.e., the Slovene Parliamentary Party Net-
work (SPPN) [26], the Gahuku-Gama Subtribes Network
(GGSN) [27], theMonastery Network (MN) [28], and a real-
world dataset without ground truth, i.e., Country Network
[29], to validate the effectiveness of SSBM.

• SPPN [26] is a signed network representing the rela-
tions among political parties in the Slovenian Parlia-
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Table 1
Accuracy on three real-world signed networks

Networks Ktrue SSBM VBS SSL SISN DM FEC
SPPN 2 1/2 1/2 1/2 1/2 1/2 0.619/2
GGSN 3 1/3 1/3 1/3 0.528/3 0.938/4 0.911/4
MN 3 1/3 0/1 0/1 1/3 0.86/3 0.464/3

Avg(rank) 1(1) 0.667(4) 0.667(4) 0.843(3) 0.933(2) 0.665(5)

ment in 1994. The network contains 10 nodes, 2 com-
munities , and 18 positive edges and 27 negative edges
indicating that these political parties have similar or
opposite political relations.

• GGSN [27] describes political relationships between
the Gahuku-Gama subtribes in 1954. The network
contains 16 nodes, 3 communities, and 29 positive
edges and 29 negative edges representing alliances or
hostile political relations between political parties.

• MN [28] describes the emotion relations, i.e., like or
dislike, among monks in the New England monastery.
There are 18 nodes, 3 communities, and 51 positive
edges and 58 negative edges.

3.3.2. Results and Analysis
The results on three real-world networks with ground

truth are shown in Table 1. Ktrue denotes the number of
true communities, the value before “/” represents the NMI,
and the value after “/” represents the number of communities
discovered by algorithms. In the last line, the average NMI
of each algorithm is calculated, and the value in “()” repre-
sents the ranking of each algorithm based on average NMI.
SSBM outperforms all the compared methods because it can
accurately discover network structures for three real-world
networks. This further demonstrates that SSBM, using the
block-to-node connection probability matrix Λ to reparame-
terizeΠ in the standard SBM, can capture more fine-grained
network structure information and effectively improve the
accuracy ofmultiple structure discovery for signed networks.

SSBM is further validated using a real-world dataset with-
out ground truth, namely, the Country Network. It is derived
from the Correlates of War dataset of countries from 1996 to
1999. After removing isolated nodes and sparsely connected
components, the Country Network ultimately contains 144
nodes, 1099 positive and 144 negative edges, representing
military alliances and military disputes, respectively. The
partition result given by SSBM on the Country Network is
shown in Fig. 5. Each color represents a cluster, and the
solid dots represent nodes of the Country Network, and the
positive and negative edges are denoted by solid and dotted
gray lines, respectively. SSBMdivides the Country Network
into six clusters, where the number of nodes is 14 (yellow),
16 (blue), 18 (pink), 19 (white), 34 (green), and 43 (red),
respectively. Obviously, this partition is quite reasonable:
positive edges are mainly distributed within blocks, while
negative edges mainly exist between blocks, and there are
basically no controversial nodes.

Figure 5: The partition visualization of SSBM for Country
Network.

The above validations show that SSBM has excellent ac-
curacy and good generalization ability. It can detect the block
structures in the signed networks reasonably and efficiently
without any prior knowledge, and is more applicable for han-
dling real-world exploratory signed networks.
3.4. Validation of Scalability

For validating scalability , a series of unbalanced syn-
thetic signed networks with different scales are generated
using the aforementioned model (Equation (24)). All of the
unbalanced synthetic networks contain four clusters, i.e., c in
Equation (24) is 4. The m and k are set as 50, 100, 200, 500,
1000, 2500, and 5000 in sequence. That is, the numbers of
nodes n are 200, 400, 800, 2000, 4000, 10000, and 20000, re-
spectively. For all networks, p− = 0.5 and p+ = 0.5. When
n ≤ 10000, pin = 0.8; otherwise, pin = 0.4. Experimental
results on accuracy and running time are presented in Table
2 and Fig. 6 (a), respectively. As seen from Table 2, SSBM
and SSL are the best ones in all cases because the NMIs of
twomethods are always 1. VBS is slightly worse than SSBM
and SSL, and it can discover network structures accurately
in most cases. SISN is only capable of dealing with small
networks. DM and FEC are worst, and the results indicate
that the two methods are unadaptable to the signed networks
containing complex noises.

In Fig. 6 (a), although SSBM and SSL have the same
excellent accuracy, SSL needs a significant amount of time.
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Table 2
Accuracy on large-scale synthetic signed networks

Nodes 200 400 800 2000 4000 10000 20000
SSBM 1 1 1 1 1 1 1
VBS 1 1 1 1 0.857 0.857 1
SSL 1 1 1 1 1 1 1
SISN 1 1 – – – – –
DM 0.04 0.007 0.022 0.004 0.003 0.0006 –
FEC 0.01 0.08 0.026 0.012 0 0.003 –

For example, when n is 200, SSBM and SSL take 0.09 sec-
onds and 3.0 seconds, respectively. As network scale in-
creases, the advantage of SSBM on dealing with large-scale
networks is highlighted. When n is 10000, the running times
of SSBM and SSL are 120 seconds and 4467.8 seconds, re-
spectively. That is, SSBM is 37 times more efficient than
SSL. Furthermore, when n is 20000, the performance gap
between the two methods is even greater. SSBM only takes
739.2 seconds to discover network structures accurately, while
SSL requires 34463.3 seconds.

Moreover, the experiments on real-world signed networks
are designed to further the scalability of SSBM. TheWikiEd-
itor is one of the few real-world signed networkswith a slightly
larger scale [30]. It contains 21535 nodes, 269251 positive
edges and 79004 negative edges. The nodes represent users
participating in editing Wikipedia pages from Jan 2013 to
July 2014, who were classified into benign users and van-
dals. Each edit of any user can belong to either revert or
no-revert category. The edges between nodes are built on
co-edit relations, that is, if most of the co-edits for two users
belong to the same category, there is a positive edge between
the two users; otherwise, there is a negative edge. To verify
the scalability, a set of datasets are generated by extracting
from the WikiEditor in proportions as 10%, 20%, 30%, 50%,
80% and 100%, respectively. The running times of all the
algorithms on the datasets are shown in Fig. 6 (b).

SISN has the worst performance, and even cannot deal
with the dataset composed of 10% of the WikiEditor. There-
fore, it is not exihibited in Fig. 6 (b). The second worst is
FEC, and it will terminate due to lack of memory when the
size of dataset is more than 20% of the WikiEditor. The rea-
son is that the edges of the WikiEditor are relatively dense,
and FEC requires more computing resources in the execu-
tion process. DM performs better than FEC, and can handle
datasets with the size less than half of the WikiEditor, al-
though it takes a long time. SSL performs better than DM.
SSL can detect the larger datasets with the size no more
than 80% of the wikiEditor, and presents more faster run-
ning speed. SSBM andVBS are the best algorithms. Both of
them can handle all the datasets in a short time, and when the
size of dataset is equal or greater than 50% of the WikiEd-
itor, VBS takes less time than SSBM. For example, when
the dataset is the WikiEditor itself, SSBM takes 1572.06
seconds, while VBS takes only 819.16 seconds. The result
seems to indicate that VBS is more efficient than SSBM in
dealing with large-scale real-world signed networks, but it

is really not so. This is because that SSBM and VBS are
not fair in the settings of model search space. In term of the
heuristic information discussed previously, the model search
space of SSBM for all experiments is [1,√n], while VBS is
[1, 10]. Therefore, the larger n is , the larger model space
SSBM need to search, and the more time it will take. To
be fair, a new experiment on setting the model search space
of VBS as same as SSBM, i.e., the model search space of
VBS is also [1,√n], is presented. The corresponding result
is labeled by VBS-1 in Fig. 6 (b). Obviously, the running
time of VBS is much more than SSBM under the same con-
dition. For example, when the size of dataset is 50% of the
WikiEditor, SSBM takes 312.09 seconds while VBS takes
148449.14 seconds. As the size of dataset increasing, VBS
will be invalid.

The experimental results in term of scalability show that
the learning mechanism, synchronously carrying out param-
eter estimation and model selection, can significantly im-
prove SSBM learning efficiency Thismake SSBMhavemore
advantages and potentials in dealingwith large-scale exploratory
signed networks, especially unbalanced signed networks con-
taining multiple structures and various noises.
3.5. Further Discussion

In this section, the advantages of SSBM in terms of gen-
eralization, robustness, and scalability are summarized. SSBM
is essentially an extension of the standard SBM. First, we
use block-to-node connection probability matrix Λ to repa-
rameterize block-to-block connection probability matrix Π.
This enables the extended model to capture structure infor-
mation of networks from a more fine-grained perspective,
and makes it more expressive than the standard SBM. Sec-
ond, we let Λ be subject to a multinomial distribution, and it
can explicitly depict the probabilities of generating positive,
negative, and null edges and further exploit the applications
of the standard SBM from unsigned networks to signed net-
works. These two extensions enable SSBM to accurately
discover multiple structures in various signed networks.

The SSBMhas good robustness to noises because the pa-
rameter Λ can explicitly model noise densities in the signed
networks. Taking Λkj = (�kj1, �kj2, �kj3) as an example,
�kj1 and �kj2 represent the probabilities that generating pos-itive and negative edges between any node in block k and
node j, respectively. If node j belongs to block k, then �kj2is the probability of generating a negative edge between any
node in block k and node j, i.e., intrablock noise, and the ex-
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Figure 6: Running time on synthetic and real-world large-scale signed networks.

pectation ∑

j∈k
∑

i∈k �kj2 denotes the density of intrablock
noises. Conversely, if node j does not belong to block k, then
�kj1 denotes the probability that a node in block k generatesa positive edge to node j, and its expectation∑j∉k

∑

i∈k �kj1denotes the density of interblock noises. Therefore, SSBM
can effectively overcome the influence of network noiseswith
different types, e.g., negative edges in communities or posi-
tive edges between communities, and different densities, e.g.,
various configurations of p+ and p−.

According to the above analysis, the potential applica-
tions of SSBM can be briefly summarized in the follow-
ing four perspectives: 1) discovering and extracting multi-
ple structures in heterogeneous signed networks; 2) discov-
ering and extracting single or multiple structures in signed
networks containing complex noises; 3) discovering and ex-
tracting single or multiple structures in large-scale signed
networks; 4) discovering and extracting single or multiple
structures in exploratory signed networks.

It has to be said that Kmax is set as √n for SSBM ac-
cording to the heuristic information, i.e., the block search
space is [1, √n]. Therefore, when the number of blocks
contained in a signed network is greater than √

n, SSBM
cannot correctly detect the network structures. Kmax =

√

n
is the resolution limit of SSBM. For this case, a strategy can
be employed to flexibly set the block search space accord-
ing to the space complexity O(√n) , i.e., set [Kmin, Kmax]
as [(m − 1)√n + 1, m√n](m = 1, 2, ...,

√

n). This strategy
can ensure that SSBM can accurately discover the network
structures, effectively reduce the search space, and improve
the algorithm’s efficiency.

4. Related Work
This section introduces previous studies closely related

to ourmethod from discriminant and principled perspectives.
4.1. Discriminant Methods

Discriminant methods usually divide nodes to different
clusters based on predefined optimization objectives [31] or

heuristic information [32, 33]. In 1996, Doreian and Mur-
var proposed a frustration-based signed network community
discovery method named as DM [11], which detect commu-
nities by minimizing network noises. There are two kinds
of noises, i.e., negative edges in communities and positive
edges between communities. Besides community structure,
DM can also detect bipartite structure and coexistence of
community and bipartite structures. In view of this, DM can
be seen as the early multiple structure discovery approach.
Bnasal et al. proposed a community detection method for
signed networks by maximizing the sum of positive edges
within and negative edges between communities [12]. Traag
andBruggeman proposed amodularity-based community par-
tition method by maximizing the modularity of signed net-
works [13]. In addition, evolutionary computation and non-
negative matrix factorization methods are used to detect the
community structure. For instance, in 2016, Li et al. pro-
posed an optimizationmethod based on amultiobjective par-
ticle swarm to discover communities [16]. In 2018, Zhu et al.
used evolutionary algorithm to detect community structure
of unbalanced signed networks [17]. Recently, Li et al pre-
sented a new form of non-negative matrix factorization and a
probabilistic surrogate learning function for community de-
tection, but this method can only be applicable to unsigned
networks [35].

Most of discriminant methods mentioned above can only
discover community structure of signed networks. More-
over, the scalability of these methods is very limited. In view
of this, Yang et al. proposed a fast community discovery
method FEC by employing aMarkov stochastic process [14].
Anchuri et al. proposed a spectral method to find commu-
nities by optimizing modularity or other objective functions
[15]. These methods can effectively handle signed networks
with thousands of nodes, but they still cannot detect multiple
structures and are very sensitive to network noises. For all of
discriminant methods, there is a common problem that their
performances overly rely on predefined optimization objec-
tives or heuristic information.
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4.2. Principled Methods
For principled methods, network structures can be dis-

covered from a network generation perspective by fitting prob-
abilistic model to observed networks [36, 37]. For example,
Zhao et al. proposed a probabilistic model named as SISN
for detecting community structure of signed networks [3].
Compared with discriminant methods, principled methods
can find the intrinsic structures more accurately and have
good interpretability, but they also cannot discover multi-
ple structures contained in signed networks. For this pro-
plem, Yang et al. proposed a signed stochastic block model
and presented a variational Bayesian learning method SSL
for parameter estimation and model selection [18]. SSL can
effectively discover community or bipartite structure, but it
fails to detect coexistence of them. Zhao et al. proposed
a mathematically principled method, namely VBS, to dis-
cover the multiple structures in signed networks [4]. This
method firstly presented a probabilistic model to character-
ize the signed networks with community, bipartite or coex-
istence of them, and then deduced the approximate distribu-
tion of model parameters by utilizing a variational Bayesian
approach. VBS is the classical method of multiple structure
discovery for signed networks.

In recent years, some scholars carried out the researches
on multiple structure discovery for unsigned networks. Liu
et al. proposed a generative node-attribute network model,
namelyGNAN, by combining topological information of net-
work and attribute information of nodes[38]. GNAN can de-
tect communities more accurately due to utilizing node at-
tributes, and detect multiple structures including bipartite,
core-periphery, and their mixing structure. He et al. devel-
oped a Bayesian probabilistic mixture model NEGCD by in-
corporating network embedding into topological structure of
network[40]. NEGCD can detect assortative structure, i.e.,
community, and disassortative structure, i.e., bipartite, and
mixing structure. By contrast, the researches on detecting
multiple structures in signed networks are quite few, because
it is more difficulty and challenging but worth deeply study-
ing.

Moreover, high time complexity is a common problem
faced by all principled methods, making them fail to deal
with large-scale networks. To this end, some scholars con-
ducted the researches on scalability. Li et al introduced a new
belief-dynamic-based Markov clustering technique, called
BMCL, for large-scale network community detection, but
BMCL just can only deal with unsigned networks [39]. Zhao
et al. proposed a block-wise SBM learning algorithm named
as BLOS to improve the scalability of current SBM-based
learningmethods [41]. Different from existingmethods, BLOS
can implement model selection and parameter estimation si-
multaneously by introducing the minimum message length
(MML) criterion into a block-wise EM algorithm. BLOS
has good performance on dealing with large-scale networks
in real applications. On this basis, Li et al. proposed a repa-
rameterized SBM algorithm RSBM, which is suitable for
unsigned networks with heterogeneous distributions of node
degree and block size [42]. However, the above methods are

merely designed to focus on structural features of unsigned
networks, and can apply to signed networks.

5. Conclusions
In this paper, we propose a novel reparameterized signed

stochastic block model SSBM to characterize multiple struc-
tures in signed networks and present a scalable learning al-
gorithm with model selection ability by integrating MML
and CEM. The generalization, robustness, and scalability of
SSBM are validated on synthetic and real-world networks.
Experimental results demonstrated the superiority of SSBM
by comparing it with five representative network structure
discovery methods. Future works will be studied from two
aspects: the first is studying SBM variations for various net-
works based on reparameterization, e.g., heterogeneous net-
works, overlapping networks, multilayer networks, and dy-
namic networks; the second is presenting a general frame-
work of SBM physical parallel learning, which can further
improve scalability in dealing with large-scale networks.
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