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Abstract

Tweets are the most concise form of communication in online social media.
Wherein a single tweet has the potential to make or break the discourse of the
conversation. Online hate speech is more accessible than ever, and stifling its
propagation is of utmost importance for social media companies and users
for congenial communication. Most of the research has focused on classify-
ing an individual tweet regardless of the tweet thread/context leading up to
that point. One of the classical approaches to curb hate speech is to adopt a
reactive strategy after the hateful content has been published. This strategy
results in neglecting subtle posts that do not show the potential to instigate
hate speech on their own but may portend in the subsequent discussion en-
suing in the post’s replies. In this paper, we propose DRAGNET++, which
aims to predict the intensity of hatred that a tweet can bring in through
its reply chain in the future. Our model uses the semantic and propagat-
ing structure of the tweet threads to maximize the contextual information
leading up to and the fall of hate intensity at each subsequent tweet. We
explore three publicly available Twitter datasets – Anti-Racism contains the
reply tweets of a collection of social media discourse on racist remarks during
US political and COVID-19 background; Anti-Social presents a dataset of
40 million tweets amidst the COVID-19 pandemic on anti-social behaviours
with custom annotations; and Anti-Asian presents Twitter datasets collated
based on anti-Asian behaviours during COVID-19 pandemic. All the cu-
rated datasets consist of structural graph information of the Tweet threads.
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We show that DRAGNET++ outperforms all the state-of-the-art baselines
significantly. It beats the best baseline by an 11% margin on the Person
correlation coefficient and a decrease of 25% on RMSE for the Anti-Racism
dataset with a similar performance on the other two datasets.

Keywords: Hate intensity prediction, Twitter reply chain, online social
media, hate speech, graph neural network
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

Motivation. The proliferation of social media has enabled users to share
and spread ideas at a prodigious rate. While the information exchanges in
social media platforms may improve an individual’s social connectedness with
online and offline communities, these platforms are increasingly plagued with
the rampant onslaught of provocative and toxic content. One such highly
toxic content is ‘hate speech’, defined by the Cambridge dictionary as “public
speech that expresses hate or encourages violence towards a person or group
based on race, religion, sex, or sexual orientation .” Hate speech on social
media has created dissension among online communities and culminated in
offline violent hate crimes [1]. Therefore, addressing the spread of hate speech
on social media is critical.

Major social media platforms such as Facebook and Twitter have made
significant efforts to combat the spread of hate speech on their platforms [2,
3]. For example, the platforms have established clear policies regarding hate-
ful conduct [4, 5], implemented mechanisms for users to report hate speech,
and employed content moderators to detect hate speech. However, such ap-
proaches are labor-intensive, time-consuming, and thus not scalable or sus-
tainable in the long run [6, 7]. Traditional machine learning and deep learning
methods have also been proposed to automatically detect hate speech in on-
line social media [8, 9, 10]. However, most of the existing methods are limited
to classifying hate speech at the individual post level, ignoring the network
and propagation effects of hateful content on social media [11].

Ideally, social media content moderators would want to identify hateful
posts and monitor posts and threads more likely to incite hatred. Consider
the example of tweet propagation shown in Figure 1. The initial source
tweet is a benign tweet that reports the Russian invasion of Ukraine. How-
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User 0:
Ukrainians wake
up to full blown
war as Russian

troops move
closer to Kyiv

User 1: Holy sh*t!
This is getting serious

User 2: rt: My heart
goes to the
Ukrainians

User 4: Well can't blame
Putin for this! Ukraine

must be punished! 

User 7: Burn Ukraine to the
ground for their foolish
decision to go NATO!

User 5: Russian are just helping to
liberate Ukraine! We will purge the

neo-Nazi! Kill them all!

User 3: It is a just a
"special Operation"

User 6: The world is going
crazy! World War 3!
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Figure 1: An example of a tweet propagation. The hateful tweets are highlighted in red.

ever, as time evolves, we observe hateful content justifying the Russian in-
vasion and promoting violence against the Ukrainians. Existing automated
hate speech detection methods could help content moderators detect hate-
ful tweets. Nonetheless, content moderators could significantly improve the
effectiveness and efficiency of moderation by prioritizing posts likely to gen-
erate a large number of hateful tweets in their retweet or reply threads. This
a challenging problem as the post that induces hateful content may not be
hateful itself (e.g., source tweet in Figure 1). Early detection of tweets likely
to generate a large amount of hateful content becomes a critical real-world
issue.

Very few studies examined the hate intensity of Twitter conversation
threads for early hate speech detection. Lin et al. [12] manually categorized
Twitter conversation threads into different levels of hatred and proposed a
deep learning model to forecast and classify tweets into the pre-defined hatred
levels. Recently, Sahnan et al. [13] introduced the hate intensity prediction
task and proposed DRAGNET, a deep stratified learning framework that
predicted the intensity of hatred that a root tweet can fetch through its sub-
sequent replies. Nevertheless, DRAGNET assumes a linear sequence for the
conversation thread in its model, in which tweets in conversation threads are
arranged in a chronological sequence. This neglects the tree structural infor-
mation inherently present in a conversation thread; there could be multiple
branches in a conversation thread similar to the example shown in Fig. 1.
The structural information may be an important feature that could better
inform and improve hate intensity prediction. For instance, we may notice
a heated debate along the branches of the conversation threads; therefore,
modeling the dynamics of the tree structure of the conversation thread may
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aid us in better predicting the eventual hate intensity of the conversation
thread.

Research Objectives. In this paper, we aim to fill this research gap and
extend our earlier work [13] by proposing DRAGNET++ that models mul-
tifaceted information to forecast the hate intensity of a Twitter conversation
thread. Specifically, we define our problem statement as follows – given a
root tweet and a few of its initial replies, can we predict the hate intensity of
the subsequent replies of the tweet? To model this problem, we first quantify
the hate intensities of tweets in the conversation thread and express them as
a series of hate intensities, transforming the task into a time-series problem.
At a high level, DRAGNET++ adopts a similar stratified learning framework
as suggested in [13] to model the hate intensity profiles of Twitter conversa-
tion threads and categorize them into clusters of varying hate intensity. In
addition to the content sentiment and temporal information, DRAGNET++
also captures structural information of the conversation thread. Specifically,
DRAGNET++ adopts Graph Neural Networks (GNN) to learn the semantic
and propagation structure of conversation threads.

As the prediction of hate intensity in conversation threads is a rela-
tively new research problem, we conduct thorough experiments and analyses
to evaluate DRAGNET++. We collate three publicly available real-world
datasets – Anti-Racism with 3.5k root tweets, Anti-Social with 668k root
tweets, and Anti-Asian with 218k root tweets. We extensively analyze these
datasets to examine the hate intensities of real-world Twitter conversation
threads. We benchmark DRAGNET++ against DRAGNET and six other
baselines on the hate intensity task. Finally, we examine case studies and
conduct ablation studies to explain the advantages and limitations of DRAG-
NET++.

Contributions. We summarize our contributions below:

• We analyze the hate intensity in three large-scale real-world Twitter
datasets. This is the first large-scale study that examines hate intensity
in Twitter conversation threads.

• We propose DRAGNET++, a stratified learning framework with struc-
tural graph augmentation to perform hate intensity prediction.

• We conduct extensive experiments and show that DRAGNET++ con-
sistently outperforms state-of-the-art methods in the early prediction
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of hateful conversation threads. Specifically, DRAGNET++ outper-
forms the best baseline by at least 34% on Pearson Correlation Coef-
ficient (PCC), reduction of at least 200% on Root Mean Square Er-
ror (RMSE), and 7% lower on Mean Forecast Error (MFE) across the
datasets. Comparing the performance of DRAGNET++ with DRAG-
NET shows an average improvement of 8.33% on PCC and an average
reduction of 16.07%, and 18.20% on RMSE and MFE, respectively.

• Our case studies demonstrate the viability of predicting hate speech
early to prevent the propagation of hateful content.

Organization of the paper: We start by presenting the developments
until recently related to hate speech detection and time series forecasting in
Section 2. Following this, we define the formulation of hate intensity profiles
appropriate to our problem statement in Section 3. We then move on to
detailing our model in Section 4. Further, we analyze the various datasets
and present their statistics and observations in Section 5. We discuss a brief
overview of various baselines in Section 6.1. Section 6.2 presents a detailed
comparison, analysis of the model performance, and the effect of various
parameters used to fine-tune the model. We conclude the paper in Section
7.

Reproducibility. The source codes of DRAGNET++ and all the base-
lines and the dataset are available at the following link: https://github.

com/LCS2-IIITD/Predicting-Hate-Intensity.

2. Related Work

2.1. Causes of Hate Speech

There are several reasons for individuals to harbor hatred towards each
other or a particular group of people. According to Navarro’s [14] discussion,
hate can arise when someone perpetrates harm or discrimination against oth-
ers. Hate is often characterized by the devaluation of the victim, which can
escalate to the point of elimination in extreme cases. This notion demon-
strates the snowball effect commonly associated with hatred as arguments
progress. In the context of the internet, John et al. [15] highlight that
people tend to self-disclose more frequently or intensely in online media, a
phenomenon known as the online disinhibition effect. Furthermore, Lind-
say et al. [16] argue that social media, a highly interconnected platform,
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is driven by algorithms and primarily profits from user engagement. As a
result, it unintentionally propagates extreme content under the guise of serv-
ing user interests. The causes of hate speech are multifaceted, and some of
them are introduced due to technological advancements. While we do not
explicitly study the cause of hate speech in individual tweets, our proposed
model possesses the capability to identify ”high-risk” tweets and reply chains,
alerting content moderators to conduct further analysis and gain a deeper
understanding of the causes of hate speech.

2.2. Hate Speech Detection in Social Media

Industry and academics have paid close attention to the work on hate
speech detection. With the advancement of deep learning, neural language
processing systems that can automatically extract features from the text have
seen a lot of success [17, 18, 19]. This opens up new possibilities for hate
speech detection [20, 21, 22, 23, 24, 25]. Gamback et al. [7], for example,
used Convolutional Neural Networks (CNN) to classify hate speech by ex-
tracting word similarities. Similar research was done by Park et al. [26], who
presented the HybridCNN model to investigate word and character combina-
tion patterns to detect hate speech. On the other hand, Del et al. [27] used
Long Short Term Memory (LSTM) to record the long-term dependencies of
words in phrases to differentiate hatred remarks. Badjatiya et al. [21] eval-
uated the use of the LSTM model in conjunction with the Gradient-Boost
Decision Tree (GBDT) to perform hate speech classification and found that
it greatly enhanced performance. Zhang et al. [22] presented a CNN+GRU
network architecture to investigate word dependency for recognizing hate
speech tweets, combining the benefits of CNN-based models and Gate Re-
current Unit (GRU)-based models. However, most research focuses on learn-
ing a particular textual property while ignoring other valuable data. Cao et
al. [28] introduced DeepHate, a deep learning-based hate speech detection al-
gorithm for mining multi-faceted textual representations. Lee et al. [29] later
developed DisMultiHate, a hateful meme classification model that can learn
both textual and visual information. Recently, Awal et al. [25] proposed
a meta-learning-based framework (HateMAML) that can effectively detect
hate speech in eight different low-resource languages.

Pre-trained language models such as BERT [30] and GPT [31] can ex-
tract external information from massive volumes of text data. These models
have also been used in hate speech detection models with promising results
[32, 33]. For example, Awal et al. [33] used the pre-trained BERT model as a
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shared layer and created AngryBERT, a multi-task learning model that can
jointly detect hate speech and classify sentiment. Nonetheless, most previ-
ous research works have focused on categorizing hate speech. A few research
looked into how hate speech spreads through social media. In a recent dis-
cussion, Dahiya et al. [34] discussed the necessity of anticipating the hatred
intensity of tweets. Lin et al. [12] classified the tweets into different levels
of hatred and suggested that the HEAR model tracks posts likely to cause
hate speech. Closer to our work is DRAGNET [13], which is a deep stratified
learning framework that predicts the hate intensity of a conversation thread
based on what a root tweet can fetch through its subsequent replies. DRAG-
NET models the linear sequence for the conversation thread chain, where the
tweets are arranged chronologically. Such a modeling approach ignores the
conversation thread’s inherent structural information propagation informa-
tion. We address this limitation and propose DRAGNET++which considers
the Twitter conversation thread’s structural information to improve hate in-
tensity prediction.

On the other hand, some comprehensive datasets are proposed in hate
speech shared tasks. They focus on niche aspects of hate speech. For ex-
ample, Basile et al. [35] released a task focusing on hate speech against
immigrants and women in a multilingual setup. Sanguinetti et al. [36] for-
mulated testing out of domain dataset between tweets and news headlines.
They explored the prevalence of verbless fragments in most hate speech texts.
Furthermore, potential hate speech spreaders can be inferred from an indi-
vidual’s Twitter feed [37]. Narrowing a step deeper, Pavlopoulos et al. [38]
discussed toxic span detection from previously annotated hateful comments
by re-annotating them at the span level. They gave a more fine-grained
understanding of spans contributing to toxicity.

2.3. Time Series Forecasting Modeling

The hatred intensity prediction problem can be reduced to a time se-
ries prediction task, where we forecast the hate intensity of the conversation
thread in the future. Time series models are designed to predict values or
trends over time in the future and have been extensively studied in many
fields such as transportation[39], finance[40], event forecasting, [41] and dis-
ease transmission [42]. Therefore, we also introduce the existing studies of
time series forecasting (TSF) models.

Traditional TSF methods, such as ARMA [43], exponential smoothing
[44], and linear space models, have been the basis of much work and achieved
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better performance. With the rapid development of deep learning technology
in recent years, more and more end-to-end TSF models have been proposed.
Compared to traditional methods, deep learning-based models such as CNN,
RNN, and LSTM can automatically extract features from the input without
domain expertise, widely accepted in many fields. For example, Oord et
al. [45] adopted CNN in raw audio generation and proposed the WaveNet
model. Based on WaveNet, Borovykh et al. [46] utilized CNN to perform
conditional time series forecasting tasks. The model shared filter weights
assuming the hidden patterns are time-invariant at each step. In addition, the
RNN contains an internal memory state, which can also retain information
about previous time steps [47]. However, due to vanishing gradients, the
performance of classical RNN-based models degrades as the sequence length
increases. Later, the LSTM model overcomes the long-term dependency
problem to some extent. Elsworth et al. [48] used LSTM for TSF tasks,
improving performance and robustness.

However, most of the above models only focus on one-step predictions.
Some recent studies [49, 50] generalize sequence-to-sequence (Seq2Seq) mod-
els and propose them for multi-step time series forecasting methods. Fan
et al. [50] exploited attention mechanisms to capture the temporal context
information extracted by the RNN encoder. Combined with a bidirectional
LSTM decoder, the model can generate multiple future horizons simulta-
neously. Later, researchers proposed new architectures [51, 52] to reduce
error accumulation in multi-step prediction. For instance, Sen et al. [51]
combined global matrix factorization models and local temporal networks to
capture latent patterns in time series. In recent years, the Transformer ar-
chitecture has been proposed for natural language processing tasks and has
also achieved success on time series data [52, 53]. Moreover, some studies
[54, 55] proposed models to estimate the probability distribution of future
time series. For example, Yuan et al. [54] and Koonchli et al. [56] employed
Generative Adversarial Networks (GANs) to predict future values. Salinas
et al. [55] proposed a DeepAR model for probabilistic prediction based on
auto-regressive recurrent networks.

3. Preliminaries

Hate Intensity Definition. Table 1 summarizes the denotations of the
important notations. Let an ordered sequence of first t number of replies to
a root tweet ϕ be T ϕ1,t =< cϕ1 , c

ϕ
2 , · · · , c

ϕ
t >, where cϕi refers to the ith reply.
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Table 1: Important notations and denotations.

Symbol Definition

ϕ Root tweet
cϕi ith reply to root tweet ϕ
Rp,q Hate value set of q reply tweets of the pth root tweet
R∗p,q The set of hate values for the q reply tweets of the pth root tweet

predicted by the autoencoder
Ss(1,n) Cosine similarity set between root tweet and n reply tweets

Rs(1,n) Set of hate intensity profiles

j Number of clusters
δ Window size
th Number of replies in history
tf Index of the last reply tweet in the conversation thread
n Maximum length of the conversation thread
s Total number of conversation threads
NXh Dimension of encoded history latent vector
NXf Dimension of encoded future latent vector

X Latent vector of Rp,q
X ∗ Latent vector of R∗p,q
Cc List of cluster centers
P(Cci) Likelihood of belongingness to ith cluster identified with Cci
P∗(Cci) Predicted weight for ith cluster centre Cci to calculate Xc
Xd Pre-processed prior vector
Xh, Xf The representation of historical and future conversation threads
X ch, X cf The representation of pseudo historical and pseudo future conversation

threads
Eh(·) The encoder model of historical conversation threads
Ef (·) The encoder model of future conversation threads
GM(·) Fuzzy Clustering
PR(·) Prior model
FP(·) Future Predictor
FPd(·) 1st segment of Future Predictor
FPp(·) 2nd Future Predictor
D(·) Decoder
T E(·) Tree Encoder

As the replies in the original dataset have no ground-truth hate intensity,
we quantify the hate intensity of each reply using a weighted sum of two
measures as suggested in [34]:

H = wHc(c) + (1− w)Hl(c), (1)
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where Hc indicates the probability that the reply is hateful, and it is cal-
culated by a state-of-the-art hate speech detection model (we will elaborate
it in Section 6.2). Hl is the average score for all words in a reply from a
model-independent hate lexicon that comprises 2,895 words as proposed in
[57]. w ∈ [0, 1] is a hyper-parameter that balances two quantities of the hate
intensity score. As Hc ∈ [0, 1] and Hl ∈ [0, 1], the final hate intensity score
of a reply H is still between 0 and 1. We do not filter any tweet threads
based on their hate intensity. Therefore, each conversation thread T can be
mapped to a sequence of hate intensity scores,

H(T ϕ1,t) =< H(cϕ1 ),H(cϕ2 ), · · · ,H(cϕt ) > (2)

To avoid noise and drastic fluctuations that are not in line with reality,
we further smooth the hate intensity sequence by utilizing a rolling average
operation with window size δ [34]. A window consists of δ consecutive replies,
and the window that starts from the kth reply is denoted by T ϕk,k+δ. Finally,
the hate intensity of a window for the tweet ϕ is measured as,

H(T ϕk,k+δ) =
∑

c∈T ϕk,k+δ

H(c) = w
∑

c∈T ϕk,k+δ

Hc(c) + (1− w)
∑

c∈T ϕk,k+δ

Hl(c), (3)

where H(T ϕk,k+δ) ∈ [0, δ], and δ is the window size.
Sentiment Features. The emotional feedback of users is reflected in

the sentiment features of reply posts, which provide both for and against
arguments of the original tweet. Therefore, we use the cosine similarity be-
tween the sentiment embedding of the root tweet (ϕ) and its accompanying
replies (cϕ1 , c

ϕ
2 , · · · ) to capture the sentiment context of a conversation thread,

denoted as CS(ci) = CosineSim(Embed(cϕi ), Embed(ϕ)). The sentiment em-
bedding is the second last fully-connected layer from the pre-trained XLNet
model [58] for sentiment classification. To smooth the value and eliminate
the effect of noise, we also apply the rolling average operation to the senti-
ment context sequences CS(T ϕ1,t) with the same window size δ as performed
on H(T ϕ1,t).

Problem Definition. Given (i) a root retweet ϕ, (ii) its last th his-
torical replies T ϕ1,th = {cϕ1 , c

ϕ
2 , · · · , c

ϕ
th
}, (iii) the corresponding hate intensity

sequence {H(T ϕk,k+δ)|k ∈ [1, 2, · · · , th− δ]}, and (iv) Gϕ = (V,E) referring to
the adjacency matrix of the propagation tree, where V = {ϕ, cϕ1 , c

ϕ
2 , · · · , c

ϕ
t },

and eij ∈ {0, 1} denote the retweeting/reply relationships between tweets
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(i.e., root tweet or replies), we aim to predict the hate intensity of the up-
coming replies cϕt′ in the propagation tree of the root tweet ϕ. However, in
corresponding to the historical hate intensity sequence, we consider predict-
ing the hate intensity for each window of cϕt′ , denoted by H(T ϕt′,t′+δ), instead
of directly predicting the hate intensity of each reply.

4. Methodology

This section presents our proposed hate intensity prediction method,
DRAGNET++. It is a deep stratified learning [59] method that splits hetero-
geneous data points (in this case, Twitter conversations) into homogeneous
clusters/strata before training a deep regressor on each stratum to predict
hate intensity.

Figure 2 illustrates the overall architecture of DRAGNET++. The two-
dimensional vector forms the training set of window-wise hate intensity pro-
file and sentiment context value sequences.

Rs(1,n) = {R(p,q) : 1 ≤ p ≤ s, 1 ≤ q ≤ n}
R(p,q) = {H(T ϕpk,k+δ) : 1 ≤ k ≤ q − δ}
Ss(1,n) = {S(p,q) : 1 ≤ p ≤ s, 1 ≤ q ≤ n}
S(p,q) = {CS(T ϕpk,k+δ) : 1 ≤ k ≤ q − δ}

(4)

where s represents the total number of conversations, and n represents the
maximum conversation length. The elements R(p,q) ∈ Rs(1,n) and S(p,q) ∈
Ss(1,n) represent the pth data point, where the conversation thread is of length

q (ϕp represents the pth root tweet).
DRAGNET++ uses an autoencoder to learn low-dimensional latent rep-

resentations for the hate intensity profile of conversation threads. Specifically,
the model learns two alternative latent representations: Xh, which represents
the first few replies, and Xf , which represents the future hatred trend for the
remaining replies. Once these representations, Xh and Xf , are combined, the
model uses an unsupervised setting to apply a fuzzy clustering technique to
give cluster membership probabilities and cluster centers to each conversa-
tion thread. The number of clusters is determined by a hyper-parameter j.
Following this, the model trains with historical node and propagation struc-
ture G

(1,th)
ϕ using the tree encoder to learn the structure embedding Xhs. The

model then trains a new deep neural network unit to predict cluster mem-
bership probabilities given Xh, Xhs and Ss(1,th) , which assign cluster centers
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Figure 2: The overall framework of DRAGNET++. The autoencoder is trained on hate-
intensity profiles of the entire conversation thread. Using the trained autoencoder, the
history and future latent representations are concatenated and clustered using the fuzzy
clustering algorithm GM(·). In the Prior model, PR(·), graph representations, history la-
tent representations and sentiment features are concatenated to generate the Prior Knowl-
edge vector. On inference, (a) the history latent representation, (b) sentiment similarity
features of the history, and (c) the graph representation of the conversation thread are
used to predict the future hate intensity profile.

for a new conversation thread. Finally, using Xh and P(Cc1, Cc2, · · · , Ccj),
a novel deep regressor predicts the latent representation of the future hate
trend X ∗f , which, when coupled with Xh, is transformed to the whole hate
trend by the decoder trained during the autoencoder phase.

Figure 3 illustrates an example processing of an abstract tweet thread us-
ing our model. Four representations are derived from the input tweet thread:
History, Future, Sentiment and Graph representations. The history and fu-
ture representations are fed into the Fuzzy Clustering algorithm to predict
the cluster centers. In parallel, a Prior model is trained on history, sentiment
and graph representations forming the prior knowledge. This is combined
with cluster centers to learn/assign the cluster membership probabilities in
the fuzzy associations step. Further, these probabilities are combined with
history representations in the Future Predictor to predict the latent represen-
tation of future hate trends. In the final step, the future latent representation
is concatenated with the history representation and fed into the decoder to
predict the overall hate trend of the entire conversation thread.
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Figure 3: An example processing of an abstract tweet thread using our model. We show the
various stages and representations learned by our model and how they combine to profile
the final hate intensity of future replies. We differentiate the earlier and future tweets in
the input threads using orange and green colors. δ is the size of the sliding window of
tweets. The tree encoder shows differences between the node and edge representations.
Fuzzy clustering and fuzzy associations share a common color code to show the assignment
of cluster memberships. The final decoder block represents some tweets being assigned
high hate intensity scores (i.e., tweets in red)

4.1. Time-series Representative Learning

The vector of the conversation thread Rs(1,n) can be viewed as a collection
of irregularly lengthening time series (window-wise hatred intensity profiles).
The Dynamic Time Warping (DTW) distance metric and its derivatives are
used to group comparable trends together in state-of-the-art approaches for
clustering irregular time series [60]. DTW’s precision in mapping time se-
ries similarity is beneficial, but the noisy and volatile character of the data
points in the present research prevents it from showing high efficiency in
clustering comparable hatred patterns into a single stratum. We propose
an autoencoder to translate each conversation thread R(p,q) in Rs(1,n) to a
low-dimensional latent representation in order to capture a more suitable
representation of the time series. We also propose a multi-encoder strategy
instead of a single encoder-decoder design as proposed in [61].
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4.2. Proposed Autoencoder

To capture the hate intensity series, the autoencoder module seeks to
learn a low-dimensional representation. In DRAGNET++, we specifically
construct two encoders and a single decoder. Using the two encoders, the
model can learn the representations of historical and future hate intensity se-
quences separately. The decoder then uses the representations to reconstruct
the original hate intensity sequence.

4.2.1. Encoder

Several studies provide models for univariate and multivariate [62, 63]
time series to mine the hidden patterns of various sequences. We use a state-
of-the-art Inception-Time [63] module to automatically extract features and
represent hate intensity sequences, denoted as:

Xm = Et(Rs(1,n)), (5)

where Xm ∈ Rs×n×4 is the multivariate intermediate representation of Rs(1,n) .
The Inception-Time module is denoted by Et(·). After the Inception-Time
module, we flatten Xm and use multilayer perceptrons as the classification
stage. Finally, the representations are written down as follows:

Xo = Elt(flatten(Xm)), (6)

Here, Xm is transformed into a one-dimensional vector using flatten(·). Elt(·)
denotes multilayer perceptrons that have been trained to learn the best rep-
resentation of the hate intensity sequence.

We develop the history encoder (Eh) and the future encoder (Ef ) based on
Equations (5) and (6) to encode hate intensity sequences of both historical
and future conversation threads:

Xh = Eh(Rs(1,th))

Xf = Ef (Rs(th+1,tf ))
(7)

where Xh ∈ Rs×NXh and Xf ∈ Rs×NXf denote the historical and future latent
representations, respectively. NXh and NXf represent the length of Xh and
Xf , respectively.

14



4.2.2. Decoder

Although we use two encoders to convert the hate intensity of each con-
versation thread into two latent representations, Xh and Xf , we only employ
one decoder, D(·) to return the latent representation to the original input.
The decoder is trained to reconstruct the original hate intensity profile per
conversation thread by concatenating the two latent representations. The
decoder’s operation can be summarised as follows:

R∗s(1,n) = D([Xh ⊕Xf ]), (8)

where R∗s(1,n) is the reconstructed hate intensity sequence containing both

historical and future hate intensity sequences.

4.3. Fuzzy Associations

The hate intensity profiles of conversation threads in our dataset are
noisy, volatile, and lack a discernible pattern, as mentioned in Section 4.1.
Our goal is to group similar profiles using low-dimensional latent representa-
tions of data obtained by autoencoder (as explained in Section 4.2). Recent
research that supports this technique attests to the validity of deep learning-
based models’ effectiveness in learning hidden features from time-series data
for various applications [64, 65]. We apply a clustering strategy over the
latent representations to aggregate heterogeneous hate intensity profiles into
(near-) homogeneous clusters. Finding meaningful correlations in data is un-
duly dependent on the number of clusters j and the cluster centers in this
unsupervised context. As a result, rather than restricting each profile to a
single cluster, we apply a fuzzy clustering approach and use the membership
probabilities as a feature embedding.

We define the combined latent space X as,

X = Xh ⊕Xf . (9)

Rather than using a hard clustering strategy, in which each profile’s asso-
ciation to the nearest cluster is fixed, we use cluster membership probability
using a fuzzy clustering approach instead. The membership probability vec-
tor, denoted by P (Cc1, Cc2, . . . , Ccj), reflects the associative probabilities of
each cluster with the provided chain, where Cci denotes the cluster center of
the ith cluster.
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Figure 4: The tree encoder T E(·) for generating graph-level representations for each con-
versation thread.

4.3.1. Fuzzy Clustering

We cluster on the combined latent representation X because our goal is
to uncover correlations between each hate intensity profile and homogeneity
groupings. To locate the clusters Cc, which is the collection of cluster centers,
we use a state-of-the-art fuzzy clustering model [66], indicated by GM(·):

Cc = GM(X ) = (Cc1, Cc2, · · · , Ccj). (10)

where j is the pre-defined number of clusters, and Cci is the cluster centre of
the ith cluster.

4.4. Tree Encoder

Twitter conversation threads typically contain numerous replies (i.e., tweets)
with various propagation topological structures. These propagation struc-
tures capture the relationships between the tweets; modeling the topological
structures would enrich the conversation thread’s representation for down-
stream machine learning tasks [67, 68]. For our hate intensity prediction
task, we design a tree encoder T E(·) to fuse the information of tweet content
and the structural information to represent the conversation tree. The tree
encoding process is presented in Fig 4(a). Specifically, to learn a conversa-
tion thread’s representation, we first learn the node embedding by designing
a sub-module using a hate intensity prediction task to learn the tweet’s rep-
resentation. Next, we leverage a Graph Neural Network (GNN) [69] to learn
the conversation tree embedding by fusing the conversation tree structural
information and the node embedding.

Learning Node Embedding. We adopt the tweet-level hate intensity
prediction task as the supervised signal for learning the embedding of the
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node (i.e., tweet). We first leverage pre-trained Word2Vec [70] word embed-
ding to represent the words in individual tweets. Next, we use a two-layer
bidirectional gated recurrent unit (BiGRU) to learn the individual post’s
representation, and the tweet-level hate scores are used as training signals.
Specifically, the post representations are fed into a two-layer MLP classifier
to predict the post’s hate label. The model is formulated as follows:

wi = Bi-GRU(< w0, w1, · · · , wN >),

p̂k = Att(< w0, w1, · · · , wN >),

ŷk = MLP (p̂k),

(11)

where ŷk is the predicted hate score for the k tweet. We can train the model’s
parameters with the loss function below and the Adam optimizer. We can
obtain the tweet-level embedding p̂k. The loss function (Lh) is defined as
follows:

Lh =
N∑
k=1

(yk − ŷk)2 + reg(Θ) (12)

where N is the number of tweets in all conversation threads, reg(·) is a
regularization function to alleviate overfitting, and Θ is a parameter for the
fine-tuning model.

Learning Tree Embedding. The goal of learning the tree embedding
of the conversation thread is to leverage useful propagation structural infor-
mation to perform early hate intensity prediction. Working towards this goal,
we leverage GNNs to model the tree structure in the conversation threads.
Specifically, GNNs model the conversation thread structural information as a
directed graph with the node represented using the node embeddings learned
from the previous section:

P (l) = σ(D−1/2AD−1/2P (l−1)W (l−1)) (13)

where W is the trainable parameter, P (l−1) ∈ Rn×d is the representation of all
tweets, P 0 is initialized by all tweet-level embeddings p̂k, k ∈ {1, 2, · · · , th}
learned using formula (11), A and D are the adjacency matrix and degree
matrix of the conversation thread tree structure, respectively. Finally, using
the average pooling operation, we can obtain the graph-level embedding of
the reply tree, denoted X hs.
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4.5. Boosting Prediction with Prior Knowledge

The task of predicting the hate intensity of upcoming replies, provided
limited history R∗s(1,th) , is strenuous even for state-of-the-art deep learning

models due to the noisy, volatile, and heterogeneous nature of the time-
series hate intensity profiles. To address this, we introduce the notion of prior
knowledge to the prediction component of our pipeline as the weighted sum of
the cluster centers, where the weights correspond to the cluster membership
probabilities for the new chain, denoted by P∗(Cc1, Cc2, . . . , Ccj). We define
prior knowledge as follows:

X c =
∑

i∈(0≤i≤j)

CciP
∗(Cci) (14)

Note that Cc is calculated over X , i.e., the combined latent representation.
Therefore, to calculate the complete membership probability vector for a new
chain, we cannot directly use the fuzzy clustering model GM(·). Instead,
we construct a prior model PR(·) to predict the membership probabilities
for new chains using only the latent representation of the history Xh, the
sentiment feature Ss(1,th), the historical replies Rs(1,th)

and propagation tree

structure G
(1,th)
ϕ .

PR(Eh(Rs(1,th)
),Ss(1,th) , T E(Rs(1,th)

, G(1,th)
ϕ )) = P∗(Cc1, Cc2, · · · , Ccj) (15)

The precision of the predictions by the prior regression model is measured
by comparing P∗(Cc1, Cc2, . . . , Ccj) against P(Cc1, Cc2, . . . , Ccj).

4.5.1. Estimating Latent Representation of Upcoming Conversation Threads

The designed decoder needs the latent representations of historical and
future conversation threads to reconstruct the complete hate intensity pro-
file. However, our primary objective is to predict the future hate intensity
profile based on historical information. To provide the decoder with the abil-
ity to perform prediction, we propose a future representation predictor that
uses historical information to estimate the latent representation of future
hate intensity profile Xf . Then, combined with the latent representation of
historical conversation threads, the output can be fed into the decoder.

Specifically, we utilize the prior knowledge extracted by the fuzzy clus-
tering module and the latent representation Xc of the historical conversation
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threads. To avoid the estimation problem being unduly influenced by prior
knowledge, we design the predictor in two steps. In the first step, for each
conversation thread, the prior latent representation of historical conversation
threads Xc

h contains the required information to predict the latent represen-
tation of future conversation threads. Moreover, we have the expected latent
representation Xh encoded from the initial historical replay chains. As a re-
sult, we use the difference operator on the expected (Xh) and estimated priors
(X c

h) of the historical conversation threads to evaluate the deviation of these
two representations. Secondly, a single-layer perceptron FPd(·) is used to
learn the representation (Xd) in a hidden space, indicating the dissimilarity
between the prior knowledge and the history conversation threads.

Xs = Xh 	X c
h

Xd = FPd(Xs)
(16)

We finally obtain the Xhc vector by concatenating the provided input Xh,
the pre-processed prior Xd and Xc

f as, Xhc = Xh⊕Xd⊕Xc
f . The second stage

is the deep linear transformation model FPp(·) that predicts the upcoming
hate intensity in the latent space X∗f as follows:

X ∗f = FPp(Xhc) (17)

4.6. Decoding the Future

We use the decoder module trained in Section 4.2.2 to forecast entire hate
intensity profiles (i.e., R∗s(1,n)) based on the expected latent representation of
the upcoming hate intensity X ∗f . In particular, we concatenate the original
latent representation (Xh) of historical hate intensity sequences with the
expected future representation (X ∗f ), denoted as:

X ∗ = Xh ⊕X ∗f (18)

where X ∗ is the predicted hate intensity profile of the upcoming conversation
thread in the latent space. The decoder is designed to be a mirror of the
encoder. The decoder is defined as follows:

R∗s(1,n) = D(X ∗) (19)

where R∗s(1,n) denotes the expected hate intensity profile for the next future

conversation thread. Finally, we compare the predicted and original hate
intensity score sequences (i.e., Rs(1,n)) to evaluate and report the performance
on several metrics.
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4.7. Comparison with DRAGNET

From the modeling standpoint, DRAGNET++ has advanced DRAG-
NET [13] on two aspects: DRAGNET++ exploits the tweet-level seman-
tics and the conversation-level structural information to improve hate inten-
sity prediction. DRAGNET leveraged sentiment features, calculated as each
tweet’s similarity in the conversation threads to the root tweet. However,
this approach largely ignores the complex relationships among the tweets in
the conversation threads. Furthermore, as illustrated in our earlier exam-
ple in Fig. 1, the root tweet might be benign, and anchoring the sentiment
features computation base on the root tweet may not provide an accurate
forecast of the sentiment of the subsequent tweets in the conversation threads.
Therefore, DRAGNET++ addressed this limitation by modeling the tweets’
semantics with an additional hate intensity prediction task at the tweet level
and the conversation thread structure with GNNs as the tree encoder. The
intuition is that by learning the node (i.e., tweets) and tree (i.e., conversation
thread) representations using GNNs, we are able to capture the dependency
among the tweets in the conversation threads and extract unique structural
patterns that could improve the prediction of hate intensity for conversation
thread.

5. Datasets

We evaluate DRAGNET++ on three publicly available large Twitter
datasets. These datasets contain a large amount of Twitter conversation
threads, which were originally collected for other hate speech-related stud-
ies. Table 2 shows the statistics of the datasets.

Dataset #Conversation threads
Conversation thread length

#Tweets #Unique users
Min. Max. Avg.

Anti-Racism 3,500 1 582 200 750,235 620,437
Anti-Social 668,082 1 20014 31 40,385,257 4,980,160
Anti-Asian 218,790 1 2822 35 206,348,565 23,895,911

Table 2: The statistics of the three datasets used in our experiments.

In the Anti-Racism dataset [13], the authors manually identified various
real-world events using a hashtag-based matching via the Twitter API. Dur-
ing the tumultuous year of 2020, many topics polarised the discussion, such
as the 2020 US Presidential election, the Brexit referendum in the UK, and
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extending similar political issues across the US, the UK, and India. Adding
to the diversity of the dataset, sinophobic tweets attributing coronavirus
to China are also curated in the dataset, with most mentions (in tweets)
as “China virus”. The final dataset comprises 3500 Twitter conversation
threads with over 750K tweets.

In the Anti-Social dataset [71], the COVID-19-related tweets were col-
lected from the Twitter platform. The authors performed query searches us-
ing case-sensitive keywords such as “covid-19”, “COVID-19”, “Coronavirus”,
“coronavirus” and “corona”. Leveraging the Twitter Streaming API, the au-
thors collected the conversations related to these queried tweets. Using this
approach, the authors collected over 650K Twitter conversations with over
40M tweets published between March 17 and 2020 to April 28, 2020.

In the Anti-Asian dataset [72], the authors focused on the Asian hate
speech surrounding the COVID-19 discussions. They followed a similar
keyword-based approach but as a two-step process. The covid-19 keywords
are used to narrow the COVID-19-related tweets, following which hate key-
words about anti-Asian hate is used to segregate the tweets as defined by
the collection for the dataset. Finally, counter-speech keywords are keywords
and hashtags used to counter hate speech and support Asians. It comprises
of 42 keywords. The authors used a combination of Twitter Streaming API
and Twitter Search API to collect real-time tweets between January 15, 2020
and March 26, 2021. The dataset comprises over 210K Twitter conversation
threads with more than 206M tweets.

As mentioned in Section 3, our main task is building hate-intensity profiles
for each dataset’s tweets. However, it is important to note that we do not
use the class labels in the datasets for our task as they do not contain ground
truth for the hate intensity of tweets. Instead, we will be using the tweet
text to derive the hate intensity scores (as discussed in Section 3).

Length of Conversation Threads. Figure 5(a) shows the length of con-
versation threads over the number of conversation threads for the Anti-
Racism dataset. The average conversation thread length is around 200, with
the maximum length being 582. On the other hand, Figures 5(b) and 5(c)
show a clipped version of the entire graph for better visualization of the dis-
tribution. Most of the tweets constitute lengths less than or equal to 100. To
understand the full picture, the numerical statistics of Anti-Social and Anti-
Asian are represented in Table 2. The maximum length in the Anti-Social
dataset goes as high as 20014. However, the average length of the dataset is
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Figure 5: Distribution of number of conversation threads vs length of each conversation
thread and the number of unique users in respective conversation threads for all three
datasets. Note that for the Anti-Social and Anti-Asian datasets, the x-axis ticks start
from 10 and ends earlier than the maximum length as described in Table 2 to show the
distribution more clearly.

around 31. Along similar lines, the Anti-Asian dataset also touches a maxi-
mum conversation thread length of 2822 with an average length of 35 across
the tweet threads.

Number of Unique Users. Figure 5 also highlights the number of unique
users per reply thread. For the Anti-Racism dataset, it can be observed that
the unique users and the lengths follow a similar distribution. The increased
number of unique users can be attributed to limited re-engagement by the
same users for a particular thread. Furthermore, both the Anti-Social and
Anti-Asian datasets exhibit a high variation in the length of the threads with
a consistent presence of threads in almost all lengths. Correspondingly, the
unique users touch about 65 for about 225 threads in the case of Anti-Social,
whereas 70 unique users for about 240 threads in Anti-Asian.
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Number of Conversation threads and Tweets. The conversation threads
and the total number of tweets are presented in Table 2. Compared to the
Anti-Racism dataset, the other two datasets possess a vast number of con-
versation threads, forming the ideal datasets to test the performance of the
models. However, the number of tweets is 206M for Anti-Asian, whose con-
versation threads are less in number than Anti-Social, which has about 40M
tweets in total. This shows the variation in conversation thread length for dif-
ferent datasets and the corresponding unique users overall, adding diversity
to the datasets.

6. Experiments

6.1. Baselines

There are few studies that predict hate intensity profiles in Twitter con-
versations [13, 34]. As a result, we use time-series forecasting and temporal
pattern model based on both conventional and deep learning as baselines.

• LSTM [73]: Long short-term memory is a neural network architecture
with feedback connections that is very effective. LSTMs, unlike RNNs,
perform better on long-range predictions, such as time-series problems.
As suggested by Elsworth and Güttel [73], we employ a stacked LSTM.
We use ReLU as the activation function for each layer to forecast the
hate intensity profile.

• CNN [74]: A convolutional neural network considers the hate inten-
sities’ time information to better profile the tweet’s upcoming replies.
We employ a 1-D CNN architecture with ReLU activation as the last
layer. The kernel size is 2, and the number of filters employed is 64.

• N-Beats [75]: Neural Basis Expansion Analysis for interpretable
Time Series forecasting is a deep learning model designed to tackle
the univariate time-series problem. With a very deep stack of fully-
connected layers, it incorporates forward and backward residual link-
ages.

• DeepAR [55]: It is a supervised learning approach for forecasting
scalar time-series using Recurrent Neural Networks (RNN), which is
achieved by auto-regressively training the RNN on numerous related
time-series data.
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• TFT [76]: Temporal Fusion Transformers are used in conjunction
with multi-horizon forecasting to help the model mix known future
inputs and extract exogenous correlations from the time series’ past
input data. The model employs a self-attention-based architecture to
give interpretable time-series insights.

• ForGAN [77]: Probabilistic forecasting of sensory data using gen-
erative adversarial networks employs an adversarial network to learn
data generating distributions and compute probabilistic forecasts over
them. In a time-series forecasting problem, the model claims to learn
the conditional probability distribution of future values with no quan-
tile crossing or reliance on the prior distribution.

• DRAGNET [13]: It is a deep stratified learning approach. To create
the latent representation of past and future tweets from the specified
point of reference as hyperparameter, an autoencoder is utilized using
the Inception-Time module [63]. This is combined with a fuzzy cluster-
ing algorithm to forecast the future hate intensity sequence, which is
reinforced with sentiment features to determine the correlation of each
tweet with the root tweet.

6.2. Experimental Setup

The hyperparameters used for all the experiments are as follows: δ = 10,
w = 0.6, th = 25, tf = 275, n = 300, j = 15, NXh = 32, NXf = 128. In
the auto-encoder step, DRAGNET++ is implemented with the Inception-
Time module [63] for transformation with variable kernel sizes – 5,7, and
9. Sentiment characteristics, history encodings from the auto-encoder, and
graph structure information are fed into fully-connected layers in the prior
model. A Gaussian mixture model with full covariance is utilized for fuzzy
clustering. Davidson model [78] is the default hate-speech classifier. We
utilize the Adam optimizer with an lr = 0.001 for faster convergence, and
the training and test split is set at 80 : 20. The train-test split is based on
the number of conversation threads since we would like to train and test on
complete tweet propagation.

Our model predicts the future hate intensity sequence, given the tweets
and historical hate intensity sequence for the chosen window length. To
evaluate, three metrics for this task are used: (i) Pearson correlation
coefficient (PCC), where a higher value is better, (ii) Root Mean Square

24



Error (RMSE), and (iii) Mean Forecast Error (MFE), where lower values
are better.

6.3. Experimental Results and Analysis

The overall performance of DRAGNET++ and baselines on the three
datasets are shown in Table 3. Across all datasets, we find that DRAG-
NET++ outperforms the baselines. Specifically, for the Anti-Racism dataset,
DRAGNET++ outperforms the best baseline (N-Beats) by 40% on PCC.
Other assessment parameters show a similar trend, with a 100% reduction in
RMSE and a 9× reduction in MFE compared to N-Beats. On the contrary,
as compared to the baselines on the Anti-Asian dataset, both DRAGNET
and DRAGNET++ perform poorly on PCC. One possible explanation is the
dataset’s restricted chain of responses. DRAGNET++ on the other hand,
outperforms N-Beats by more than 3× on RMSE when optimizing the in-
accuracies on hate intensity profiles. TFT has a higher MFE score than
DRAGNET, but DRAGNET++ has the highest total score. Along with
LSTM and CNN, ForGAN appears to be among the worst performers. On
the Anti-Social dataset, DRAGNET++ outperforms the best baseline, TFT,
by 0.223, 0.476, and 0.202, respectively, on PCC, RMSE, and MFE. When
DRAGNET and DRAGNET++ are directly compared, the latter performs
better on all three datasets and on all three metrics. This demonstrates how
graph information inherent in tweet threads can help forecast hate intensity
profiles more accurately. The greatest significant improvement over RMSE is
22.72% on the Anti-Social dataset, and the highest increase on PCC is 0.066
points on the Anti-Racism dataset. On the MFE (Anti-Racism dataset),
DRAGNET performs the best, which can be attributed to customized win-
dowing strategies that reduce forecast error. DRAGNET’s improved per-
formance does not apply to other datasets, where DRAGNET++ readily
outperforms.

6.4. Ablation Study

The prior model PR(·) in DRAGNET++ uses the propagation graph
structure, sentiment information, and fine-tuning operation to improve the
representation of historical discussion threads and establish a link between
historical and future data. To assess the performance of each component,
we remove it one at a time and provide three variants: DRAGNET++ w/o
graph structure, DRAGNET++ w/o sentiment, and DRAGNET++ w/o
fine-tune. Then, using three datasets, we run experiments to see how the
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Model
Anti-Racism Anti-Social Anti-Asian

PCC RMSE MFE PCC RMSE MFE PCC RMSE MFE

LSTM 0.145 0.611 0.500 0.160 0.511 0.315 0.680 0.722 0.692
CNN 0.105 0.644 0.509 0.112 0.542 0.320 0.675 0.731 0.699
DeepAR 0.310 0.484 0.065 0.180 0.490 0.275 0.682 0.748 0.708
TFT 0.469 0.437 0.076 0.376 0.630 0.333 0.562 0.866 0.125
N-Beats 0.380 0.544 0.085 0.340 0.633 0.271 0.712 0.462 0.173
ForGAN 0.240 0.603 0.360 0.172 0.897 0.785 0.563 0.871 0.475
DRAGNET 0.563 0.247 0.010 0.559 0.189 0.156 0.603 0.165 0.134
DRAGNET++ 0.629 0.218 0.008 0.599 0.154 0.131 0.641 0.147 0.116

Table 3: Overall performance of DRAGNET++ and baselines on the three datasets. The
best results are bold.

alternative models perform in the end, and the findings are displayed in Fig
6.
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Figure 6: Ablation study: The Effectiveness of components in prior model PR(·) on three
datasets.

The model’s performance degrades for each of the versions, as seen in Fig
6. It indicates that each component contributes differently to the prediction
of conversation thread labels, resulting in improved hate intensity predic-
tion results. Across all three datasets, DRAGNET++ w/o graph structure
performs the worst among the four variations. The diffusion patterns and in-
formative material are present in the propagation graph structures of conver-
sation threads; therefore, this is reasonable. Capturing earlier responses and
projecting future patterns would help the data. When comparing DRAG-
NET++ w/o sentiment to DRAGNET++, the performance drops slightly,
but not as much as when comparing DRAGNET++ w/o graph structure.
A possible reason could be that the tweet’s sentiment is assessed in rela-
tion to the root tweet. On the other hand, structural graph information
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is a more advanced method of recording hate intensity distribution. Fur-
thermore, DRAGNET++ outperforms DRAGNET++ w/o fine-tuning. It
suggests that using the fine-tune technique, word embedding can precisely
capture hate-intensity information.

6.5. Parameter Analysis

We further analyze the parameters of DRAGNET++ to understand its
superiority and limitations better. Throughout this study, we compare DRAG-
NET++ and DRAGNET.

6.5.1. The impact of different window sizes

The window size utilised in the average rolling process is represented by
the hyperparameter δ. It is possible that the smaller window size would
result in more pronounced hate intensity profiles. We chose the window
size in {5, 10, 15, 20} to analyse the influence of different window sizes, and
the experimental findings are displayed in Fig 7. Across all three datasets,
we observe that increasing the value of δ improves the performance of both
DRAGNET++ and DRAGNET. A bigger window size (δ) smooths the val-
ues in hate intensity sequences, making it easier for the models to learn
the hidden hate intensity pattern. Furthermore, DRAGNET++ consistently
outperforms DRAGNET across all window size settings, demonstrating its
efficacy.
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Figure 7: Performance comparison based on window size (δ) of hate intensity profiles.

6.5.2. The impact of history sizes

The beginning history size th is the data needed to estimate the whole
hate intensity profile for a new conversation thread. The value of the Pearson
correlation coefficient for DRAGNET++ shows relatively little change as th
increases, as seen in Fig 8. We can observe that DRAGNET++ outperforms
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DRAGNET. The model’s capacity to generate early predictions decreases as
the number of initial responses submitted to the model grows. As a result,
in the experiments, we used th=25 to predict hate intensity.

(a) Anti-Racism (b) Anti-Social (c) Anti-Asian

Figure 8: Performance of DRAGNET++ on three datasets based on changes to tweet
history length at input.

6.5.3. The impact of different numbers of clusters

One of the most important hyperparameters of DRAGNET++ in the
fuzzy clustering step is the number of clusters j. As a result, we choose a
number of clusters in the range of {5, 10, 15, 20} to assess the impact of clus-
ter size. The experiment outcomes are shown in Fig 9. We notice that as
the number of clusters grows, the DRAGNET++’s performance improves,
and it is consistently better than DRAGNET. It is difficult to discern be-
tween different types of conversation threads when we use a small number of
clusters. However, the performance begins to deteriorate beyond a certain
number of clusters. One probable explanation is that grouping conversation
threads into too many clusters produces noise, making it harder for the prior
model to detect the correct cluster labels with minimal historical data.

(a) Anti-Racism (b) Anti-Social (c) Anti-Asian

Figure 9: Performance comparison shown by changing the hyperparameter of number of
clusters in fuzzy clustering algorithm.
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Figure 10: Performance comparison depicted by varying the weight (w) which optimizes
the trade-off between hate detection/lexicon.

6.5.4. The impact of different weights in hate intensity score

Our hate intensity score leverages w to simplify the trade-off between
the hate detection model and the hate lexicon component in Section 3. Our
suggested DRAGNET++ model definitely outperforms DRAGNET for all
three values of w (i.e., 0.45, 0.6, 0.75) on all three datasets, as demonstrated
in Fig 10.

6.5.5. The impact of hate speech detection models

During the data preprocessing phase, we utilized a hate speech detection
model to compute hate intensity scores for replies. To examine the effect of
different hate speech detection models, we evaluated three models proposed
by Davidson et al. [79]] (model used in DRAGNET++), Founta et al. [24],
and Waseem and Hovy Waseem and Hovy [6]. As illustrated in Figure 11,
the selected hate speech detection models had a minor impact on the ul-
timate performance. Nonetheless, our proposed model exhibited consistent
superiority over DRAGNET across all three hate detection models.
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Figure 11: The impact of different hate detection algorithms on DRAGNET++ and
DRAGNET

29



7. Conclusion

In this paper, we build on our previous work using two new datasets: Anti-
Social and Anti-Asian. The new datasets gave enough bandwidth to continue
experimenting with the old model DRAGNET to forecast hate intensity pro-
files. By adding the structural graph information critical for any Twitter
reply chain, we suggested a new model, DRAGNET++. GNN-augmented
DRAGNET++ outperformed all baselines, including DRAGNET, by a large
margin. We then used several ablations to compare DRAGNET and DRAG-
NET++ to figure out why our model outperformed the existing architecture.

In the future, we would like to build a meaningful association of hate
intensity profiles at the branch level of the reply chain’s tree structure using
sophisticated structural graph information. We would also like to look into
how user data can be used to predict hate intensity scores. Human-annotated
hate intensity datasets can be included. Our ultimate goal, sooner or later,
would be to stop the spread of hate speech as soon as possible after the first
tweet appears on Twitter.
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[7] B. Gambäck, U. K. Sikdar, Using convolutional neural networks to
classify hate-speech, in: Proceedings of the first workshop on abusive
language online, 2017, pp. 85–90.

[8] A. Schmidt, M. Wiegand, A survey on hate speech detection using
natural language processing, in: Proceedings of the Fifth International
Workshop on Natural Language Processing for Social Media, Association
for Computational Linguistics, Valencia, Spain, 2017, pp. 1–10. URL:
https://aclanthology.org/W17-1101. doi:10.18653/v1/W17-1101.

[9] P. Fortuna, S. Nunes, A survey on automatic detection of hate speech
in text, ACM Computing Surveys (CSUR) 51 (2018) 1–30.

[10] F. Poletto, V. Basile, M. Sanguinetti, C. Bosco, V. Patti, Re-
sources and benchmark corpora for hate speech detection: a system-
atic review, Language Resources and Evaluation 55 (2021) 477–523.
URL: https://doi.org/10.1007/s10579-020-09502-8. doi:10.1007/
s10579-020-09502-8.

[11] P. Liu, J. Guberman, L. Hemphill, A. Culotta, Forecasting the pres-
ence and intensity of hostility on instagram using linguistic and social
features, in: Twelfth international aaai conference on web and social
media, 2018.

[12] K.-Y. Lin, R. K.-W. Lee, W. Gao, W.-C. Peng, Early prediction of hate
speech propagation, in: 2021 International Conference on Data Mining
Workshops (ICDMW), IEEE, 2021, pp. 967–974.

[13] D. Sahnan, S. Dahiya, V. Goel, A. Bandhakavi, T. Chakraborty, Better
prevent than react: Deep stratified learning to predict hate intensity of
twitter reply chains, in: 2021 IEEE International Conference on Data
Mining (ICDM), IEEE, 2021, pp. 549–558.

[14] J. Navarro, The psychology of hatred, The Open Criminology Journal
6 (2013) 10–17. doi:10.2174/1874917801306010010.

[15] J. Suler, The online disinhibition effect, CyberPsychol-
ogy & Behavior 7 (2004) 321–326. URL: https://doi.org/

10.1089/1094931041291295. doi:10.1089/1094931041291295.
arXiv:https://doi.org/10.1089/1094931041291295, pMID:
15257832.

31

https://aclanthology.org/W17-1101
http://dx.doi.org/10.18653/v1/W17-1101
https://doi.org/10.1007/s10579-020-09502-8
http://dx.doi.org/10.1007/s10579-020-09502-8
http://dx.doi.org/10.1007/s10579-020-09502-8
http://dx.doi.org/10.2174/1874917801306010010
https://doi.org/10.1089/1094931041291295
https://doi.org/10.1089/1094931041291295
http://dx.doi.org/10.1089/1094931041291295
http://arxiv.org/abs/https://doi.org/10.1089/1094931041291295


[16] L. Maizland, Hate speech on social media: Global comparisons
— council on foreign relations (2019). URL: https://www.cfr.org/

backgrounder/hate-speech-social-media-global-comparisons.

[17] Y. Kim, Convolutional neural networks for sentence classification, in:
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Association for Computational Linguis-
tics, 2014, pp. 1746–1751.

[18] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with
neural networks, Advances in neural information processing systems 27
(2014).

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, I. Polosukhin, Attention is all you need, Advances in neural
information processing systems 30 (2017).

[20] Y. Mehdad, J. Tetreault, Do characters abuse more than words?, in:
Proceedings of the 17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, 2016, pp. 299–303.

[21] P. Badjatiya, S. Gupta, M. Gupta, V. Varma, Deep learning for hate
speech detection in tweets, in: Proceedings of the 26th international
conference on World Wide Web companion, 2017, pp. 759–760.

[22] Z. Zhang, D. Robinson, J. Tepper, Detecting hate speech on twitter us-
ing a convolution-gru based deep neural network, in: European semantic
web conference, Springer, 2018, pp. 745–760.
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[48] S. Elsworth, S. Güttel, Time series forecasting using lstm networks: A
symbolic approach, arXiv preprint arXiv:2003.05672 (2020).

[49] Z. Mariet, V. Kuznetsov, Foundations of sequence-to-sequence model-
ing for time series, in: The 22nd international conference on artificial
intelligence and statistics, PMLR, 2019, pp. 408–417.

[50] C. Fan, Y. Zhang, Y. Pan, X. Li, C. Zhang, R. Yuan, D. Wu, W. Wang,
J. Pei, H. Huang, Multi-horizon time series forecasting with temporal
attention learning, in: Proceedings of the 25th ACM SIGKDD Inter-
national conference on knowledge discovery & data mining, 2019, pp.
2527–2535.

[51] R. Sen, H.-F. Yu, I. S. Dhillon, Think globally, act locally: A deep neural
network approach to high-dimensional time series forecasting, Advances
in neural information processing systems 32 (2019).

35



[52] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, X. Yan, En-
hancing the locality and breaking the memory bottleneck of transformer
on time series forecasting, Advances in Neural Information Processing
Systems 32 (2019).

[53] B. N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-beats: Neural
basis expansion analysis for interpretable time series forecasting, arXiv
preprint arXiv:1905.10437 (2019).

[54] Y. Yuan, K. Kitani, Diverse trajectory forecasting with determinantal
point processes, arXiv preprint arXiv:1907.04967 (2019).

[55] D. Salinas, V. Flunkert, J. Gasthaus, T. Januschowski, Deepar: Proba-
bilistic forecasting with autoregressive recurrent networks, International
Journal of Forecasting 36 (2020) 1181–1191.

[56] A. Koochali, P. Schichtel, A. Dengel, S. Ahmed, Probabilistic forecast-
ing of sensory data with generative adversarial networks–forgan, IEEE
Access 7 (2019) 63868–63880.

[57] M. Wiegand, J. Ruppenhofer, A. Schmidt, C. Greenberg, Inducing a
lexicon of abusive words–a feature-based approach, in: Proceedings
of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies,
June 1-June 6, 2018, New Orleans, Louisiana, Volume 1 (Long Papers),
Association for Computational Linguistics, 2019, pp. 1046–1056.

[58] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, Q. V. Le,
Xlnet: Generalized autoregressive pretraining for language understand-
ing, Advances in neural information processing systems 32 (2019).

[59] P. Hastings, S. Hughes, D. Blaum, P. Wallace, M. A. Britt, Stratified
learning for reducing training set size, in: International Conference on
Intelligent Tutoring Systems, Springer, 2016, pp. 341–346.

[60] V. Niennattrakul, C. A. Ratanamahatana, On clustering multimedia
time series data using k-means and dynamic time warping, in: 2007
International Conference on Multimedia and Ubiquitous Engineering
(MUE’07), IEEE, 2007, pp. 733–738.

36



[61] J. Sun, Y. Li, H.-S. Fang, C. Lu, Three steps to multimodal trajec-
tory prediction: Modality clustering, classification and synthesis, in:
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 13250–13259.

[62] C. Yang, J. Qiao, H. Han, L. Wang, Design of polynomial echo state
networks for time series prediction, Neurocomputing 290 (2018) 148–
160.

[63] H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt,
J. Weber, G. I. Webb, L. Idoumghar, P.-A. Muller, F. Petitjean, In-
ceptiontime: Finding alexnet for time series classification, Data Mining
and Knowledge Discovery 34 (2020) 1936–1962.

[64] Z. Cui, W. Chen, Y. Chen, Multi-scale convolutional neural networks
for time series classification, arXiv preprint arXiv:1603.06995 (2016).

[65] A. Ziat, E. Delasalles, L. Denoyer, P. Gallinari, Spatio-temporal neural
networks for space-time series forecasting and relations discovery, in:
2017 IEEE International Conference on Data Mining (ICDM), IEEE,
2017, pp. 705–714.

[66] D. A. Reynolds, Gaussian mixture models., Encyclopedia of biometrics
741 (2009).

[67] Q. Cao, H. Shen, J. Gao, B. Wei, X. Cheng, Popularity prediction on
social platforms with coupled graph neural networks, in: Proceedings
of the 13th International Conference on Web Search and Data Mining,
2020, pp. 70–78.

[68] T. Bian, X. Xiao, T. Xu, P. Zhao, W. Huang, Y. Rong, J. Huang, Rumor
detection on social media with bi-directional graph convolutional net-
works, in: Proceedings of the AAAI conference on artificial intelligence,
volume 34, 2020, pp. 549–556.

[69] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, The
graph neural network model, IEEE transactions on neural networks 20
(2008) 61–80.

37



[70] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed
representations of words and phrases and their compositionality, Ad-
vances in neural information processing systems 26 (2013).

[71] M. R. Awal, R. Cao, S. Mitrovic, R. K.-W. Lee, On Analyzing Antisocial
Behaviors Amid COVID-19 Pandemic, arXiv:2007.10712 [cs] (2020).
URL: http://arxiv.org/abs/2007.10712, arXiv: 2007.10712.

[72] B. He, C. Ziems, S. Soni, N. Ramakrishnan, D. Yang, S. Kumar, Racism
is a virus: anti-asian hate and counterspeech in social media during the
COVID-19 crisis, in: Proceedings of the 2021 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, ACM,
Virtual Event Netherlands, 2021, pp. 90–94. URL: https://dl.acm.

org/doi/10.1145/3487351.3488324. doi:10.1145/3487351.3488324.
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