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A B S T R A C T
Alzheimer’s disease (AD) constitutes a complex neurocognitive disease and is the main cause of
dementia. Although many studies have been proposed targeting at diagnosing dementia through
spontaneous speech, there are still limitations. Existing state-of-the-art approaches, which propose
multimodal methods, train separately language and acoustic models, employ majority-vote ap-
proaches, and concatenate the representations of the different modalities either at the input level, i.e.,
early fusion, or during training. Also, some of them employ self-attention layers, which calculate the
dependencies between representations without considering the contextual information. In addition, no
prior work has taken into consideration the model calibration. To address these limitations, we propose
some new methods for detecting AD patients, which capture the intra- and cross-modal interactions.
First, we convert the audio files into log-Mel spectrograms, their delta, and delta-delta and create
in this way an image per audio file consisting of three channels. Next, we pass each transcript and
image through BERT and DeiT models respectively. After that, context-based self-attention layers,
self-attention layers with a gate model, and optimal transport domain adaptation methods are employed
for capturing the intra- and inter-modal interactions. Finally, we exploit two methods for fusing
the self and cross-attention features. For taking into account the model calibration, we apply label
smoothing. We use both performance and calibration metrics. Experiments conducted on the ADReSS
and ADReSSo Challenge datasets indicate the efficacy of our introduced approaches over existing
research initiatives with our best performing model reaching Accuracy and F1-score up to 91.25%
and 91.06% respectively.

1. Introduction
Alzheimer’s disease (AD) is a progressive neurologic

disorder and constitutes the most common cause of demen-
tia. According to the World Health Organization, around
55 million people have dementia worldwide with over 60%
living in low- and middle-income countries [84]. In addition,
dementia affects the ability of a person to communicate.
More specifically, people with dementia may not be capable
of finding the right words or may not be able to find any
word at all. Concurrently, they are not able to stay focused
on a discussion and tend to use words without meaning, thus
being unable to communicate with other people [2]. This
fact entails physical, psychological, social, and economic
impacts not only for people living with dementia, but also
for their carers, families, and society at large. Due to the fact
that dementia becomes worse over time, it is important to
be diagnosed early. For this reason, there have been several
studies proposed, which distinguish AD patients from non-
AD ones using speech and transcripts.

Although many methods have been proposed for fusing
representation vectors from different modalities in many
tasks, the task of multimodal dementia detection using
speech and transcripts has still substantial limitations. More
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specifically, most previous research works exploit early
fusion, late fusion approaches, or add/concatenate the rep-
resentations obtained by the different modalities. For the
early fusion approaches, the authors simply concatenate
features from the different modalities at the input level
[58, 43]. For the late fusion approaches, the authors train
textual and acoustic models separately and perform final
decision voting in a weighted manner [47]. Other approaches
train textual and acoustic models separately and apply a
majority-vote approach for the final prediction [13]. It is
obvious that these approaches do not account for both intra-
and inter-modality interactions. Concurrently, majority-vote
approaches increase the training time, since multiple models
must be trained and tested separately. In addition, early
fusion strategies or the add/concatenation operation give
equal importance to the different modalities and do not
capture the inherent correlations between the two modalities.

Recently, some studies [26, 27] address the limitations of
fusing the different modalities. However, some limitations
still exist. Specifically, the work in [26] concatenates the
representation vectors of the two modalities and exploits a
self-attention layer incorporating a gated model. However, in
terms of the textual modality recent studies have shown that
Self-Attention layers treat the input sequence as a bag-of-
word tokens and each token individually performs attention
over the bag-of-word tokens. Consequently, the contextual
information is not taken into account in the calculation of
dependencies between elements. There have been proposed
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a number of studies enhancing the self-attention layers with
contextual information [76, 90, 81, 80]. In addition, the study
in [27] employs a tensor fusion layer. However, the output
tensor is high dimensional.

In addition, the reliability of a machine learning model’s
confidence in its predictions, denoted as calibration [14, 49],
is critical for high risk applications, such as deciding whether
to trust a medical diagnosis prediction [12, 29, 62]. However,
no prior work has taken into account the calibration of the
models, creating in this way overconfident models. Accord-
ing to [23], modern neural networks are not well-calibrated,
while they are overconfident at the same time.

In order to tackle the aforementioned limitations, we
introduce deep neural networks, which are trained in an end-
to-end trainable manner and capture both the inter- and intra-
modal interactions. First, we convert the audio files into im-
ages consisting of three channels, namely log-Mel spectro-
grams, their delta, and delta-delta. Next, each transcript and
image are passed through BERT [16] and DeiT [74] models
respectively. In order to ensure that the sequence length of
the vectors obtained by BERT and DeiT is the same, we
exploit an Optimal Transport Kernel (OTK) Embedding. We
pass the textual representation through an enhanced self-
attention layer with contextual information. We exploit three
main methods for the contextualization, including the global
context, deep context, and deep-global context [8, 85]. Next,
we pass the image representation through a self-attention
mechanism with a novel gating model proposed by [87] to
model the intra-modal interactions. Motivated by the study
of [59], we use optimal transport based domain adaptation
[79] methods for capturing the inter-modal interactions.
Then, we propose two attention-based methods for fusing
the self and cross-attention features. Finally, for preventing
models becoming too overconfident, we use label smooth-
ing. We use metrics for assessing both the performance and
the calibration of our model. We verify the effectiveness
and robustness of our approaches by conducting experiments
on two publicly available datasets, namely ADReSS and
ADReSSo Challenge datasets, and using both manual and
automatically generated transcripts. We show that our intro-
duced approaches obtain multiple advantages over the state-
of-the-art approaches.

Our main contributions can be summarized as follows:
• To the best of our knowledge, this is the first study

utilizing DeiT, optimal transport kernel, and optimal
transport domain adaptation methods in the task of
dementia detection from spontaneous speech.

• This is the first study in the task of dementia detection
from spontaneous speech exploiting label smoothing
for preventing the models become too overconfident.
We also evaluate our proposed models in terms of both
the performance and the calibration.

• This is the first study in the task of dementia detec-
tion from speech data exploiting context-aware self-
attention mechanisms and comparing two different

approaches for fusing the self- and cross-attention
features.

• We conduct a series of ablation experiments to demon-
strate the effectiveness of the introduced approach.
We evaluate our approaches on the ADReSS and
ADReSSo Challenge datasets and show that they
achieve competitive results to the existing research
initiatives.

2. Related Work
2.1. Dementia Detection
2.1.1. Unimodal Approaches

Bertini et al. [6] introduced a unimodal approach using
only speech data to detect AD patients. First, the authors ap-
plied a data augmentation technique, namely SpecAugment
[56], for increasing the size of the data. Next, the authors
used an autoencoder, called auDeep [21], and passed the
latent vector representation through a multilayer perceptron
for the final prediction. The main limitation of this approach
is pertinent to the representation of the speech signal as a
log-Mel spectrogram. However, appending delta and delta-
delta features to log-Mel spectrogram is proven to be more
beneficial, since delta features add dynamic information
[33].

The research work proposed by [24] employed unimodal
approaches by using only either speech or text to classify
subjects into AD patients or non-AD ones. For the text
modality, the authors extracted embeddings by using fast-
Text, BERT, LIWC, and CLAN. For the acoustic modal-
ity, the authors extracted i-vectors and x-vectors. For both
modalities, they employed dimensionality reduction tech-
niques and trained shallow machine learning classifiers and
neural networks (CNNs and LSTMs). The authors claimed
that the Support Vector Machine and the Random For-
est Classifiers trained on BERT embeddings achieved the
highest accuracy. One limitation of this study is the fact
that the authors used BERT embeddings as features for
training additional algorithms. They did not experiment with
extracting the [CLS] token and passing it to a dense layer for
performing the classification.

Karlekar et al. [30] applied three deep neural networks
based on CNNs, LSTM-RNNs, and their conjunction to
distinguish AD patients from non-AD ones utilizing only
transcripts. Next, they proposed explainability techniques by
applying automatic cluster pattern analysis and first deriva-
tive saliency heat maps, in order to uncover differences in
language between AD patients and healthy control groups.
The main limitation of this paper is the fact that the authors
did not experiment with language models based on trans-
formers, i.e., BERT, RoBERTa, and so on.

The authors in [1] extracted a large number of acoustic
features for detecting people in healthy control, mild cogni-
tive impairement, and AD groups and used a longitudinal
dataset for conducting their experiments. After extracting
the acoustic features, they applied feature selection tech-
niques for finding the optimal set of features. Also, they
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applied sampling techniques, namely the Synthetic Minority
Over-sampling Technique, for dealing with the imbalanced
dataset. The Support Vector Machine and the Stochastic
Gradient Descent were used for the classification purposes.
The limitation of this paper lies on the feature extraction
process, which is a time-consuming and tedious procedure.
Additionally, the optimal feature set may not be found, since
some level of domain expertise is required.

Similarly, the work proposed by [31] extracted seventeen
features from transcripts for detecting AD patients. Specifi-
cally, the authors extracted the rate of pauses in utterances,
filler sounds, number of no answers, part-of-speech tags,
intelligibility of speech, diversity and complexity of the
words, and many more. Next, they trained Support Vec-
tor Machines, Linear Discriminant Analysis, and Decision
Trees. Results indicated that 90% prediction accuracy can
be obtained using only phone entropy, silence rate per ut-
terance, and word entropy with a Decision Tree classifier.
The limitation of this paper lies on the feature extraction
process, which is a time-consuming and tedious procedure.
Additionally, the optimal feature set may not be found, since
some level of domain expertise is required.

An augmented adversarial self - supervised learning
method was proposed by [86]. Specifically, the introduced
approach was based on contrastive predictive encoding. For
dealing with the imbalanced dataset, i.e., limited number of
speech samples corresponding to AD patients, the authors
applied three augmentation schemes, including speed based
augmentation, tempo based augmentation, and tremolo based
augmentation. Findings indicated that the proposed methods
improved the performance for AD detection to a large margin
compared to other models.
2.1.2. Multimodal Approaches

Several approaches have been introduced which fuse the
representation vectors or features of the different modalities
at the input level. This strategy is known as an early fusion
approach and does not capture effectively the inter-modal
interactions. Edwards et al. [18] proposed a multimodal
(audio and text) and multiscale (word and phoneme levels)
approach. For the acoustic modality, the authors extracted
features using the OpenSMILE toolkit, applied feature selec-
tion techniques, and trained shallow machine learning clas-
sifiers, including SVM, latent discriminant analysis (LDA),
and LR. In terms of the language models, the authors trained
a Random Forest Classifier on Word2Vec and GloVe embed-
dings. Also, they trained a FastText classifier from scratch.
In addition, pretrained embeddings obtained by Sent2Vec,
RoBERTa, ELECTRA, and so on were fine-tuned with the
FastText classifier. The authors transcribed the segmented
text into phoneme written pronunciation using CMUDict
and stated that the FastText classifier was the best perform-
ing model trained on the phoneme representation. Results
also showed that the combination of phonemes and audio
yielded to the highest accuracy accounting for 79.17%. Mar-
tinc and Pollak [43] proposed also an early fusion approach.

The authors extracted a large number of features corre-
sponding to the textual and acoustic modality. They fused
the feature sets via an early fusion method. Finally, they
trained four machine learning classifiers, namely XGBoost,
Random Forest, SVM, and Logistic Regression. Findings
showed that the logistic regression and SVMs were proved
to be better than XGBoost and Random Forest. Also, the
authors stated that the readability features led to a surge
in the classification performance. In terms of the audio
features, the duration was the best performing one. Pompili
et al. [58] proposed an early fusion approach for fusing
the modalities of speech and transcript. Specifically, for the
text modality, the authors employed the BERT model first
and then trained three deep neural models on top of the
BERT embeddings, namely (i) a Global Maximum pooling,
(ii) a bidirectional LSTM-RNNs provided with an attention
module, and (iii) the second model augmented with part-
of-speech (POS) embeddings. For the audio modality, the
authors extracted the x-vectors. Finally, the authors merged
the feature sets corresponding to the two different modalities
and trained a Support Vector Machine classifier. Results
showed that the fusion of the two modalities increased the
performance obtained by unimodal approaches exploiting
only speech or text.

Other approaches employ late-fusion strategies. This
means that multiple models, i.e., acoustic and language,
are trained separately and the final result/prediction is often
taken after a majority vote approach. In this way, the inter-
modal interactions are not captured. The authors in [70]
proposed a majority-level approach for classifying AD pa-
tients using the audio and textual modalities. In terms of the
textual modality, the authors extracted handcrafted textual
features and deep textual embeddings of transcripts. For the
extraction of deep textual embeddings, they used BERT,
RoBERTa, and distilled versions of BERT and RoBERTa.
Next, they exploited feature aggregation techniques and clas-
sified the subject as AD or non-AD patient by training either
a Logistic Regression (LR) or a Support Vector Machine
(SVM) classifier. In terms of the audio modality, the authors
extracted handcrafted acoustic features, i.e., ComParE, CO-
VAREP, etc. and deep acoustic embeddings, i.e., YAMNet,
VGGish, etc. Similarly to the textual modality, they used
feature aggregation techniques and trained a LR and SVM
classifier. Results indicated that the majority-level approach
of text models yielded the highest evaluation results, while
the fusion of textual and acoustic modalities led to a de-
gredation in performance. Shah et al. [69] introduced a
weighted majority-vote ensemble meta-algorithm for clas-
sification utilizing the modalities of speech and transcripts.
For the textual modality, the authors extracted language
and fluency features, including the type-token ratio, the
number of verbs per utterance, etc. and n-gram features.
For the acoustic modality, the authors extracted four fea-
ture sets using the OpenSMILE v2.1 toolkit. After that,
the authors applied dimensionality reduction techniques,
i.e., Principal Component Analysis, and feature selection
techniques, i.e., ANOVA F-values. Finally, shallow machine
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learning classifiers were trained. Best results were obtained
by using only the textual modality, while the majority vote
approach by combining textual and acoustic modalities led
to a decrease in the classification performance. Cummins
et al. [13] exploited also a majority level approach for
detecting AD patients. For the acoustic modality, the authors
exploited bag-of-audio-words, siamese networks, and end-
to-end convolutional neural networks, while for the textual
modality, a bidirectional Hierarchical Attention Network
and a BiLSTM with an attention mechanism were used.
Findings indicated that the majority vote approach achieved
the highest accuracy accounting for 85.20%. Sarawgi et al.
[68] trained acoustic and language models separately and
proposed three kinds of ensemble modules for classification.
Specifically, the authors experimented with hard ensemble,
meaning that a majority vote was taken between the predic-
tions of the three individual models. A soft ensemble was
also proposed, where a weighted sum of the class probabili-
ties was computed for final decision, in order to leverage the
confidence of the predictions. Also, a learnt ensemble was
exploited, where a logistic regression classifier was trained
using class probabilities as inputs. Results showed that the
hard ensemble approach yielded the best results. Mittal et
al. [47] proposed a late fusion strategy using the modalities
of speech and transcripts. Firstly, they trained separately
acoustic and language models. For the acoustic modality, the
authors trained a VGGish model with log-mel spectrograms.
For the textual modality, the authors concatenated the repre-
sentation obtained by BERT, Sentence-BERT, and fastText-
CNN. Finally, the probabilities calculated by the audio and
text-based model were combined in a weighted manner, and
a threshold was fixed for classifying the persons into AD and
healthy control.

There are also approaches, which add or concatenate the
representation vectors of different modalities during train-
ing. However, in this way, the inherent correlations between
the different modalities are not captured. On the contrary,
equal importance is assigned to the different modalities.
Mahajan and Baths [42] introduced both unimodal and mul-
timodal approaches for detecting AD patients. In terms
of the multimodal approach, the introduced deep learning
architecture consisted of GRU, Dense, CNN, BiLSTM, and
Attention layers. For fusing the two modalities, the authors
exploited the concatenation operation. Results indicated that
the multimodal architecture achieved equal accuracy with
the unimodal approach utilizing only text. Also, none of
the proposed architectures surpassed the results of the base-
line study [39]. Also, the authors in [91] proposed both
unimodal and multimodal approaches. With regards to the
multimodal approaches, the authors used the add and con-
catenation operation for fusing the modalities of speech and
transcripts. Best results were obtained by concatenating the
representations obtained by BERT and Speech BERT. The
authors in [53] proposed both unimodal and multimodal
approaches. Regarding unimodal approaches using speech
data, the authors extracted acoustic features and trained
four shallow machine learning classifiers. For the language

modality, the authors trained a BERT model. In terms of the
multimodal approach, the authors simply concatenated the
representations obtained by BERT and acoustic modality.
Results on the test set indicated that the fusion approach
achieved lower performance than the unimodal one using the
textual modality.

Pappagari et al. [54] trained acoustic and language mod-
els separately and used the output scores as inputs to a
Logistic Regression classifier for obtaining the final predic-
tion. For the language models, the authors used automatic
speech recognition models for transcribing the recordings
and employed a BERT model. For the acoustic modality,
the authors used x-vectors for classifying subjects into AD
patients and non-AD ones. Also, they extracted eGeMAPS,
VGGish, prosody features, etc. and trained Logistic Regres-
sion and XGBoost classifiers. The authors stated that the
combination of the different models and the BERT model
trained on automatic transcripts achieved equal accuracy on
the test set. Similarly, the authors in [55] trained also acoustic
and language models separately. In terms of the acoustic
models, the authors extracted the x-vectors and trained a
Probabilistic Linear Discriminant Analysis classifier. For
the textual modality, the authors employed a BERT model.
For fusing the two modalities, the authors employed the
scores from the whole training subset to train a final fusion
GBR model that was used to perform the fusion of scores
coming from the acoustic and transcript-based models for
the challenge evaluation. Results showed that the proposed
approach was the best performing one.

A different approach was proposed by [64]. More specif-
ically, the authors extracted textual and acoustic features
and passed them through two different branches of BiLSTM
layers. A gating mechanism consisting of highway networks
was proposed for fusing the two modalities. However, the
authors did not experiment with replacing the proposed
fusion method with a concatenation operation via an ablation
study. Thus, this fusion method cannot guarantee perfor-
mance improvement. Similarly, [65] used BERT instead of
BiLSTM for extracting the text representation and stated that
the BiLSTM performed better than BERT due to the fewer
parameters used.

In [26], the authors introduced three approaches for
fusing the textual and visual modalities. Specifically, the
authors passed the transcripts through BERT model and the
images (log-Mel spectrogram, delta, delta-delta of the audio
files) into a Vision Transformer. In terms of the first method
for fusing the two modalities, the authors used a co-attention
mechanism. Regarding the second method, the authors con-
catenated the representation matrices of the two modalities
and passed the concatenated matrix through a gated-self at-
tention layer. Finally, the authors used a Multimodal Shifting
Gate, where they injected extra information to the BERT
model, instead of capturing cross-modal interactions. Our
work is different from [26], since we exploit context-based
self-attention, optimal transport domain adaptation methods,
Optimal Transport Kernel, DeiT, label smoothing, and one
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different method for fusing the representation matrices of
self and cross-attention features.

The authors in [27] exploited a Tensor Fusion Layer
for explicitly aggregating unimodal, bimodal, and trimodal
interactions. However, a high-dimensional output vector is
generated through this method leading to the problem of
overfitting and utilization of many resources.

Ilias et al. [28] introduced both unimodal and multi-
modal approaches. In terms of the unimodal approaches,
the authors converted the audio files into log-Mel spectro-
grams, delta, and delta-delta and exploited several pretrained
models, including Vision Transformer, ResNet50, VGG16,
EfficientNet-B2, etc. Regarding the multimodal approach,
the authors experimented with three methods for fusing the
two modalities. Firstly, they used the concatenation opera-
tion. Secondly, they employed a Gated Multimodal Unit for
controlling the influence of each modality. Finally, they ex-
ploited the crossmodal attention and stated that crossmodal
models outperform the competitive multimodal ones.
2.2. Other Multimodal Tasks

Villegas et al. [67] introduced multimodal approaches
for inferring the political ideology of an ad sponsor and
identifying whether the sponsor is an official political party
of a third-party organization. The authors employed BERT
and EfficientNet [73] for extracting textual and visual repre-
sentations respectively. They concatenated these two repre-
sentations and passed the resulting vector to an output layer
for binary classification. Results suggested that the combi-
nation of both modalities led to a surge in the classification
performance.

Villegas and Aletras [66] proposed multimodal ap-
proaches for the task of point-of-interest type prediction.
Specifically, the authors exploited BERT and Xception [10]
for extracting text and visual representations respectively.
Next, they introduced three different architectures for fus-
ing the two modalities. First, they exploited the Gated
Multimodal Unit introduced by [3]. Secondly, inspired by
[75], they proposed a model for modeling the cross-modal
interactions. Finally, the authors introduced an architecture,
which includes the gated multimodal mechanism and the
cross-attention layers on the top of the gated multimodal
mechanism. Findings suggested that the proposed archi-
tecture yielded new state-of-the-art results outperforming
significantly the previous text-only models.

Gu et al. [22] presented a deep multimodal network
with both feature attention and modality attention to classify
utterance-level speech data. The authors used the modalities
of audio signal and text data as input to the deep neural
network. In terms of the modality fusion approach proposed,
it consisted of three main parts, namely the modality atten-
tion module, the weighted operation, and the decision mak-
ing module. Findings showed that the multimodal system
achieved state-of-the-art performance and was tolerant to
noisy data indicating in this way its generalizability.

Pan et al. [52] proposed a multimodal architecture for
detecting sarcasm in Twitter. More specifically, the authors

exploited the ResNet-152 model and obtained a visual rep-
resentation. Regarding the textual modality, they used a
pretrained BERT model. After obtaining embeddings for the
input sequence and the hashtags included in the sequence,
the authors passed the corresponding embeddings through
encoders of the transformer. For modeling the cross-modal
interactions, an additional encoder was used, where the
visual representation corresponded to the key and value,
while the sequence representation corresponded to the query.
In addition, an intra-modality attention approach was used,
which gets as input the sequence and the hashtag representa-
tions. The outputs obtained were concatenated and passed to
an output layer for the final prediction. Findings stated that
the proposed architecture achieved state-of-the-art results.

Inspired by the transformer model in machine transla-
tion [78], the authors in [88] presented some multimodal
approaches for the task of visual question answering. More
specifically, the authors employed a self-attention and a
guided-attention unit for capturing the intra- and inter-modal
interactions respectively. Next, they obtained a Modular Co-
Attention layer, which constitutes the modular composition
of the self-attention and guided-attention units. Finally, the
authors proposed a deep Modular Co-Attention Network
consisting of cascaded Modular Co-Attention layers. Results
indicated that the introduced approach surpassed the existing
co-attention models.

Zadeh et al. [89] introduced a novel model, termed
Tensor Fusion Network, for the task of multimodal sentiment
analysis. The authors used visual, language, and acoustic
modalities. For capturing the intra-modal interactions, the
authors proposed three Modality Embedding Subnetworks.
For capturing the inter-modal interactions, the Tensor Fu-
sion layer has been used. Finally, the authors employed the
Sentiment Inference Subnetwork, which is conditioned on
the output of the Tensor Fusion layer and performs senti-
ment inference. Results indicated a surge in performance in
comparison with existing research initiatives.

Cai et al. [7] presented a multimodal approach for sar-
casm detection in Twitter. The authors used the modalities
of text features, image features, and image attributes. After
extracting image features and attributes, the authors lever-
aged attribute features and BiLSTM layers for extracting the
text features. Next, the authors employed a representation
fusion approach for reconstructing the features of the three
modalities. Finally, they proposed a modality fusion ap-
proach motivated by [22]. Results showed the effectiveness
of the proposed architecture and the usefulness of the three
modalities.

A different approach was proposed by [59], where the
authors utilized optimal transport for capturing the cross-
modal interactions and self attention mechanisms for cap-
turing the intra-modal correspondence. Specifically, they ex-
ploited three different modalities, namely visual, language,
and acoustic modalities. After utilizing self-attention and op-
timal transport methods, they used the multimodal attention
fusion method introduced by [22]. Experiments conducted
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towards the sarcasm and humor detection tasks demon-
strated valuable advantages over existing research initiatives.

Yu et al. [87] introduced an approach for capturing both
the inter- and intra-modal interactions for the visual question
answering and the visual grounding tasks using the modali-
ties of text and image. Specifically, after obtaining text and
visual representations, they passed these two representations
through a unified attention block. The authors proposed also
a variation of the self-attention mechanism by introducing
a novel gating model. Findings showed the effectiveness of
the proposed approach on five datasets.
2.3. Related Work Review Findings

From the research works mentioned above, it is obvious
that despite the fusion methods, which have been proposed
for many tasks, little work has been done in terms of the mul-
timodal approaches for the dementia detection task. More
specifically, for the task of dementia detection, existing
research initiatives employ majority-vote approaches or pro-
pose early and late fusion strategies. Applying majority-
vote approaches and late fusion strategies entails significant
increase in the computational time, since multiple models
must be trained separately. For early fusion approaches,
features obtained by different modalities are concatenated at
the input level. All these approaches do not capture either the
inter- or the intra-modal interactions effectively. Recently,
there have been proposed some studies trying to address
the limitations of fusing the different modalities. However,
limitations still exist. Finally, no study has addressed the
problem of creating overconfident models, which is crucial
in health-related tasks.

Therefore, the present study differs from the existing
state-of-the-art approaches, since we (i) exploit DeiT for
extracting a visual representation, (ii) use optimal transport
domain adaptation methods for capturing the inter-modal
interactions and a self-attention mechanism with a gating
model for capturing the intra-modal interactions, (iii) ex-
ploit a context-based self-attention mechanism, where we
enhance the self-attention layer with contextual information
by using three approaches, (iv) employ label smoothing
for calibrating our proposed approaches, and (v) introduce
a new method in the task of dementia recognition from
spontaneous speech for fusing the self and cross-attention
features.

3. Data & Task
3.1. ADReSS Challenge Dataset

We use the ADReSS Challenge Dataset [39] for con-
ducting our experiments. The data corresponds to spoken
picture descriptions elicited from participants through the
Cookie Theft picture from the Boston Diagnostic Aphasia
Exam [5]. We choose the specific dataset, since it minimizes
several kinds of biases, which could influence the validity of
the proposed approaches during the training and evaluation
procedure. Specifically, in contrast to other datasets, the
ADReSS Challenge dataset is matched for gender and age. In
addition, it is balanced, since it includes 78 AD and 78-non

AD patients. What is also worth noting is the fact that the
ADReSS Challenge dataset has been carefully selected so as
to mitigate common biases often overlooked in evaluations
of AD detection methods, including repeated occurrences of
speech from the same participant (common in longitudinal
datasets) and variations in audio quality. To be more precise,
recordings have been acoustically enhanced with stationary
noise removal and audio volume normalization has been
applied across all speech segments to control for variation
caused by recording conditions, such as microphone place-
ment. The ADReSS Challenge dataset has been divided
by the organizers into a train and a test set. The train set
consists of 54 AD and 54 non-AD patients, while the test
set comprises 24 AD patients and 24 non-AD ones.
3.2. ADReSSo Challenge Dataset

To further verify the effectiveness of our proposed ap-
proaches, we use the ADReSSo Challenge Dataset [40].
Similar to the ADReSS Challenge Dataset, this dataset has
been created in a way for eliminating various kinds of
biases. Additionally, each participant is asked to describe the
Cookie Theft picture from the Boston Diagnostic Aphasia
Examination. It is divided into a train and a test set. The
train set consists of 87 AD patients and 79 non-AD ones,
while the test set includes 35 AD and 36 non-AD patients.
Also, this dataset includes only audio files. No transcripts
are provided. Therefore, one should convert the speech into
text automatically via Automatic Speech Recognition (ASR)
methods. Specifically, we use whisper1 [61] and get the
automatically generated transcripts per audio file.
3.3. Task

Let a labeled dataset consist of audio files and their
corresponding transcripts. Each transcript along with its
audio file belongs to an AD patient or non-AD patient. The
task is to identify if a specific transcript along with its audio
file corresponds to an AD patient or to a person belonging
to the healthy control group (binary classification problem).

4. Predictive Models
4.1. Architecture

In this section, we describe our proposed deep learn-
ing architectures for detecting AD patients. The proposed
architectures are illustrated in Fig. 4. Due to the fact that
the manual transcripts have been annotated using the CHAT
coding system [41], we use the PyLangAcq library [34] for
having access to these transcripts. In addition, we use the
Python library, called librosa [44, 45], and convert each
audio file into a log-Mel spectrogram, its delta, and delta-
delta. In this way, we create an image consisting of three
channels. For all the experiments conducted, we use 224 Mel
bands, hop length equal to 1024, and a Hanning window.
Each image is resized to (224 × 224) pixels.

Firstly, we pass each transcript through a BERT [16]
model and the corresponding image through a DeiT [74]

1https://github.com/openai/whisper
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model. Formally, let 𝑋 ∈ ℝ𝑛×𝐷 and 𝑌 ∈ ℝ𝑇×𝐷 be the
outputs of the BERT and DeiT pretrained models respec-
tively. Next, we pass 𝑌 through an Optimal Transport Kernel
introduced by [46], in order to ensure that the sequence
length of 𝑌 is equal to the sequence length of 𝑋, i.e.,
𝑇 = 𝑛. Let 𝑆 ∈ ℝ𝑇×𝐷, where 𝑇 = 𝑛, denote the output
representation of the Optimal Transport Kernel.
Context-Aware Self Attention for the textual modality:
Fig. 2a illustrates the conventional self-attention mechanism,
which individually calculates the attention weight of two
items, i.e., "the" and "tomorrow", ignoring the contextual
information. In this study, we aim to enhance the self-
attention layer by adding contextual information. Therefore,
we exploit the context-based self-attention layer [8], which
is illustrated in Fig. 1. We observe that this layer receives as
input the input sequence denoted by 𝑋 and the contextual
information vector denoted by 𝐶 .

We transform the input sequence𝑋 into a query, key, and
value matrix, as described via the Equation 1:

𝑄 = 𝑋𝑊𝑞 , 𝐾 = 𝑋𝑊𝑘, 𝑉 = 𝑋 (1)
, where 𝑊𝑞 ∈ ℝ𝐷×𝐷𝑞 ,𝑊𝑘 ∈ ℝ𝐷×𝐷𝑘 are learnable weight
matrices.

As described in Equations 2 and 3, the context vector
𝐶 ∈ ℝ𝑛×𝐷𝑐 is transformed to a contextual query matrix
𝑄𝑐 ∈ ℝ𝑛×𝐷𝑞 and a contextual key matrix 𝐾𝑐 ∈ ℝ𝑛×𝐷𝑘 :

𝑄𝑐 = 𝐶𝑊 𝑐
𝑞 (2)

, where 𝑊 𝑐
𝑞 ∈ ℝ𝐷𝑐×𝐷𝑞 is a learnable weight matrix.

𝐾𝑐 = 𝐶𝑊 𝑐
𝑘 (3)

, where 𝑊 𝑐
𝑘 ∈ ℝ𝐷𝑐×𝐷𝑘 is a learnable weight matrix.

Next, we exploit gated sum, as illustrated in Fig. 1b, for
quantifying the contribution of the input sequence 𝑋 and
the contextual vector 𝐶 to the attention weight prediction.
Finally, we get new query and key matrices denoted by
Q ∈ ℝ𝑛×𝐷𝑞 and K ∈ ℝ𝑛×𝐷𝑘 respectively. We describe the
equations governing the gated sum below:

𝑔𝑞 = 𝜎
(

𝑄𝑊 𝑄
𝑔 +𝑄𝑐𝑊

𝑄𝑐
𝑔

)

(4)

, where 𝑊 𝑄
𝑔 ,𝑊 𝑄𝑐

𝑔 ∈ ℝ𝐷𝑞×1 are learnable parameters.
𝑔𝑘 = 𝜎

(

𝐾𝑊 𝐾
𝑔 +𝐾𝑐𝑊

𝐾𝑐
𝑔

)

(5)

where 𝑊 𝐾
𝑔 ,𝑊 𝐾𝑐

𝑔 ∈ ℝ𝐷𝑘×1 are learnable parameters.
𝑞𝑞 and 𝑔𝑘 indicate the weight of the importance of the

contextual information.
Q = (1 − 𝑔𝑞)𝑄 + 𝑔𝑞𝑄𝑐 (6)

K = (1 − 𝑔𝑘)𝐾 + 𝑔𝑘𝐾𝑐 (7)

Therefore, we obtain new query and key matrices. Finally,
we calculate the self-attention via the equation mentioned
below:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

Q ⋅ K
𝑇

√

𝐷𝑘

)

𝑉 (8)

Next, we describe three methods, namely Global Con-
text, Deep Context, and Deep-Global Context, for calculat-
ing the contextual vector 𝐶 . Specifically, we follow [8, 85]
to represent the context vector (𝐶), which is composed of
internal representation.

• Global Context: Fig. 2b illustrates the global con-
text strategy. More specifically, the global context
indicates the mean operation over the input sequence
for summarizing the input representation. Let 𝑋 =
[𝑥1, 𝑥2, ..., 𝑥𝑛] ∈ ℝ𝑛×𝐷. We calculate the context rep-
resentation 𝐶 as defined in Eq. 9. Note that the output
of Eq. 9 is a vector, i.e., 𝐶 ∈ ℝ𝐷, instead of a matrix.
To facilitate subsequent calculation operations, we use
Eq. 10, where we obtain the contextual matrix 𝐂 ∈
ℝ𝑛×𝐷.

𝐶 = X = 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑋) = 1
𝑛

𝑛
∑

1
𝑥𝑖 (9)

𝐂 = 𝑠𝑡𝑎𝑐𝑘 (𝐶,𝐶, ..., 𝐶) (10)

• Deep Context: By deeply stacking self-attention lay-
ers, the model captures only high-level syntactic and
semantic information neglecting the lower-level in-
formation. Therefore, as shown in Fig. 2c, the deep
context strategy enables the layer to fuse different
types of syntactic and semantic information captured
by different layers.
Formally, taking 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑛] ∈ ℝ𝑛×𝐷 as the
initial input sequence 𝑋0, and the output of the 𝐿𝑡ℎ

layer is 𝑋𝑙 = [𝑥𝑙1, 𝑥
𝑙
2, ..., 𝑥

𝑙
𝑛] ∈ ℝ𝑛×𝐷, the deep context

matrix 𝐶 ∈ ℝ𝑛×𝐷 can be represented as follows:
𝐶 = 𝑋̂𝑊 0

𝑐 (11)

𝑋̂ = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑋0, 𝑋1, ..., 𝑋𝑙−1) ∈ ℝ𝑛×𝑙𝐷 (12)
, where 𝑊 0

𝑐 ∈ ℝ𝑙𝐷×𝐷 is a learnable parameter matrix.
concat(.) denotes join operation.

• Deep-Global Context: The deep-global context strat-
egy combines the strategies of global context and deep
context as described before. The deep-global context
strategy is illustrated in Fig. 2d and is described via
the equations below:
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(a) Context-based Self-Attention. This method is different from
the conventional self-attention mechanism, since it exploits a
contextual information vector 𝐶 .

(b) Gated sum. This unit is used for quantifying the contribution
of the original representation 𝑋 and the context vector 𝐶 to the
attention weight prediction.

Figure 1: Context-based Self-Attention

𝐶 = C𝑊 0
C

(13)

C = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐶0, 𝐶1, ..., 𝐶 𝑙−1) (14)
, where 𝐶𝑗 = 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑋𝑗), 𝐶𝑗 ∈ ℝ𝐷. Therefore,
C ∈ ℝ𝑙𝐷. In addition, 𝑊 0

C
∈ ℝ𝑙𝐷×𝐷. Thus, we obtain

𝐶 of Eq. 13, as 𝐶 ∈ ℝ𝐷.
As mentioned before, to facilitate subsequent calcula-
tion operations, matrix 𝐂 ∈ ℝ𝑛×𝐷 is obtained through
the stack operation, as follows:𝐂 = 𝑠𝑡𝑎𝑐𝑘(𝐶,𝐶, ..., 𝐶).

Let 𝐹 be the output of the context-based self-attention
mechanism corresponding to the textual modality denoted
by 𝑋.
Gated Self-Attention for the image modality: Motivated
by the work of [87], we pass𝑆 through a self-attention mech-
anism, which incorporates a novel gating model, for cap-
turing the intra-modal interactions. This gated self-attention
mechanism is illustrated in Fig. 3. The self-attention mech-
anism including the gating model is described via the equa-
tions below:

𝑄 = 𝑆,𝐾 = 𝑆, 𝑉 = 𝑆 (15)

𝑀 = 𝜎
(

𝐹𝐶𝑔
(

𝐹𝐶𝑔
𝑞 (𝑄)⊙ 𝐹𝐶𝑔

𝑘 (𝐾)
))

(16)

where 𝐹𝐶𝑔
𝑞 , 𝐹𝐶𝑔

𝑘 ∈ ℝ𝐷×𝑑𝑔 , 𝐹𝐶𝑔 ∈ ℝ𝑑𝑔×2 are three fully-
connected layers, and 𝑑𝑔 denotes the dimensionality of the
projected space and is equal to 64 units. ⊙ denotes the
element-wise product function and 𝜎 the sigmoid function.
In addition, 𝑀 ∈ ℝ𝑇×2 corresponds to the two masks 𝑀𝑞 ∈
ℝ𝑇 and 𝑀𝑘 ∈ ℝ𝑇 for the features 𝑄 and 𝐾 respectively.

Next, the two masks 𝑀 and 𝐾 are tiled to 𝑀̃𝑞 , 𝑀̃𝑘 ∈
ℝ𝑇×𝐷 and then used for computing the attention map as
following:

𝐴𝑔 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

((

𝑄⊙ 𝑀̃𝑞
) (

𝐾 ⊙ 𝑀̃𝑘
)𝑇

√

𝐷

)

(17)

𝐻 = 𝐴𝑔𝑉 (18)
Let 𝐻 be the output of the self-attention mechanism

corresponding to the visual modality denoted by 𝑆.
Optimal Transport: Next, we use optimal transport-based
domain adaptation methods [79, 11, 19], i.e., Earth Mover’s
Distance (EMD) Transport, for transporting between each
pair of modalities, which can be interpreted as domain
adaptation across two modalities. Formally:

𝑋′ = 𝑂𝑇 (𝑆 → 𝑋) (19)

𝑆′ = 𝑂𝑇 (𝑋 → 𝑆) (20)
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(a) Conventional Self-Attention. This method calculates the at-
tention weight of two items ignoring the contextual information.

(b) Global Context. This method captures the summary repre-
sentation of the input sentence through an average operation.

(c) Deep Context. This method captures both the low- and high-
level syntactic and semantic information.

(d) Deep-Global Context. This method combines the concepts
of global and deep context.

Figure 2: Self-Attention based on different context-vectors

Figure 3: Gated Dot-product. This gating model is incor-
porated in the conventional self-attention mechanism for
improving the quality of the learned attention. This method
is based on low-rank bilinear pooling.

Concatenation: After that, we concatenate transported and
self-attended features as follows:

𝐶 = [𝐹 ,𝑋′] (21)

𝑆 = [𝐻,𝑆′] (22)
Fusion: Next, we describe two methods for fusing 𝐶 and 𝑆:

• (i) Co-Attention Mechanism: We exploit the fu-
sion method proposed by [35] and implemented in
prior work [26]. Specifically, given

(

C ∈ ℝ𝑑′×𝑛
)

and
(

S ∈ ℝ𝑑′×𝑇
)

, where 𝑑′ = 2 ⋅ 𝐷, the affinity matrix
𝐹 ∈ ℝ𝑛×𝑇 is calculated using the equation presented
below:

𝐹 = tanh
(

𝐶𝑇𝑊𝑙𝑆
) (23)

where 𝑊𝑙 ∈ ℝ𝑑′×𝑑′ is a matrix of learnable param-
eters. By treating the affinity matrix as a feature, we
learn to predict the attention maps via the following,

𝐻𝑠 = tanh
(

𝑊𝑠𝑆 +
(

𝑊𝑐𝐶
)

𝐹
) (24)

𝐻𝑐 = tanh
(

𝑊𝑐𝐶 +
(

𝑊𝑠𝑆
)

𝐹 𝑇 ) (25)

where 𝑊𝑠,𝑊𝑐 ∈ ℝ𝑘×𝑑′ are matrices of learnable
parameters. We set 𝑘 equal to 40. Then, we generate
the attention weights through the softmax function as
follows,

𝑎𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑤𝑇
ℎ𝑠𝐻

𝑠) (26)

𝑎𝑐 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑤𝑇
ℎ𝑐𝐻

𝑐) (27)
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where 𝑎𝑠 ∈ ℝ1×𝑇 and 𝑎𝑐 ∈ ℝ1×𝑛. 𝑤ℎ𝑠, 𝑤ℎ𝑐 ∈
ℝ𝑘×1 are the weight parameters. Based on the above
attention weights, the attention vectors are obtained
via the following equations:

𝑠̂ =
𝑇
∑

𝑖=1
𝑎𝑠𝑖 𝑠

𝑖, 𝑐 =
𝑛
∑

𝑗=1
𝑎𝑐𝑗𝑐

𝑗 (28)

where 𝑠̂ ∈ ℝ1×𝑑′ and 𝑐 ∈ ℝ1×𝑑′ .
Finally, these vectors are concatenated 𝑝 = [𝑐, 𝑠̂]. We
apply a dropout layer with a rate of 0.5. Then, this
vector is passed through a Dense Layer consisting of
128 units with a ReLU activation function. We apply
also a dropout layer with a rate of 0.2. Finally, we use
a dense layer consisting of two units, which gives the
final output.
The proposed architecture is illustrated in Fig. 4a.

• (ii) Attention-based fusion: Motivated by the work of
[88], we design an attentional reduction model for 𝐶 ,
as defined in Equation 21 (or 𝑆, as defined in Equation
22), for obtaining its attended feature 𝑐 (or 𝑠̃). To the
best of our knowledge, this is the first study utilizing
this fusion method in the task of dementia detection
from spontaneous speech. Taking 𝐶 as an example,
we describe the attention reduction model used in this
study via the equations presented below:

𝛼𝑐 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 (𝐶)) (29)
, where 𝛼𝑐 refers to the learned attention weights and
MLP is given by the equation below:
𝑀𝐿𝑃 = 𝐹𝐶(128)−𝑅𝑒𝐿𝑈 −𝐷𝑟𝑜𝑝𝑜𝑢𝑡(0.1)−𝐹𝐶(1)

(30)

𝑐 =
𝑛
∑

𝑖=1
𝛼𝑐𝑖 𝑐𝑖 (31)

, where we obtain the attended feature 𝑐 for 𝐶 .
We obtain the attended feature 𝑠̃ using an independent
attention reduction model in the same way. Having
computed 𝑐 and 𝑠̃, we design the linear multimodal
fusion function as follows:

𝑧 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚
(

𝑊 𝑇
𝑐 𝑐 +𝑊 𝑇

𝑠 𝑠̃
) (32)

, where 𝑊𝑐 ,𝑊𝑠 ∈ ℝ𝑑′×𝑑𝑧 are two linear projection
matrices, 𝑑𝑧 is the common dimensionality of the
fused feature and is equal to 128, and LayerNorm [4]
is used for stabilizing the training. Finally, we pass 𝑧
to a dense layer consisting of two units, which gives
the final prediction.
The proposed architecture is illustrated in Fig. 4b.

4.2. Model Calibration
To prevent the model becoming too overconfident, we

use label smoothing [72, 48]. Specifically, label smoothing
calibrates learned models so that the confidences of their
predictions are more aligned with the accuracies of their
predictions.

For a network trained with hard targets, the cross-entropy
loss is minimized between the true targets 𝑦𝑘 and the net-
work’s outputs 𝑝𝑘, as in 𝐻(𝑦, 𝑝) =

∑𝐾
𝑘=1 −𝑦𝑘𝑙𝑜𝑔(𝑝𝑘), where

𝑦𝑘 is "1" for the correct class and "0" for the other. For a
network trained with label smoothing, we modify the true
targets 𝑦𝑘 to 𝑦𝐿𝑆𝑢

𝑘 as shown in Eq. 33:

𝑦𝐿𝑆𝑢
𝑘 = 𝑦𝑘 ⋅ (1 − 𝛼) + 𝛼

𝐾
(33)

, where 𝛼 is the smoothing parameter and 𝐾 is the
number of classes.

Finally, we minimize the cross-entropy between the
modified targets 𝑦𝐿𝑆𝑢

𝑘 and the network’s outputs 𝑝𝑘, as shown
in Eq. 34:

𝐻(𝑦, 𝑝) =
𝐾
∑

𝑘=1
−𝑦𝐿𝑆𝑢

𝑘 ⋅ log
(

𝑝𝑘
) (34)

5. Experiments
5.1. Baselines

We compare our introduced approaches with the fol-
lowing research works reported in Tables 1 and 2, since
these research works have conducted their experiments on
the ADReSS and ADReSSo test set. Specifically, Table 1 de-
scribes the baselines used in terms of the ADReSS Challenge
dataset, while Table 2 reports the baselines used regarding
the ADReSSo Challenge dataset. Regarding Table 1, we
are using existing published results for all the baselines
except for Introduced Approaches without Label Smoothing.
In terms of Table 2, we are using existing published results
for all the baselines except for: (i) BERT, and (ii) Introduced
Approaches without Label Smoothing.
5.2. Experimental Setup

We divide the ADReSS Challenge train set into a train
and a validation set (65%-35%). We use a batch size of 4.
We train the introduced architectures five times and report
the results on the ADReSS Challenge test set via mean
± standard deviation. Similarly, we divide the ADReSSo
Challenge train set into a train and a validation set (65%-
35%). We train the introduced architectures five times and
report the results on the ADReSSo Challenge test set via
mean ± standard deviation. We use EarlyStopping, where
we stop training if the validation loss has stopped decreasing
for eight consecutive epochs. Also, we apply StepLR with
a step_size of 4 and a gamma of 0.1. We set 𝛼 of Eq. 33
equal to 0.001. We set 𝐷 = 𝐷𝑐 = 768. We set 𝐷𝑘 =
𝐷𝑞 = 64. Regarding the global context strategy, we use
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(a) Co-Attention. The shaded box corresponds to the co-attention mechanism. This method attends to the different representations
simultaneously.

(b) Attention-based Fusion. The shaded box shows this fusion method. This method exploits two independent attentional reduction models.
Features are fused through an add operation, while a layer normalization is used for stabilizing training.
Figure 4: Illustration of our Proposed Architectures. For the textual modality, we use BERT, while for the image modality, we
use DeiT and exploit an Optimal Transport Kernel. Next, we use optimal transport domain adaptation methods for transporting
between each pair of modalities. Also, we pass the textual representation through context-based self-attention layers, while the
image representation is passed through a gated self-attention layer. Finally, methods for fusing the self- and cross-attention
features are presented, namely Co-Attention and Attention-based Fusion. Each shaded box shows the fusion method used, namely
Co-Attention and Attention-based Fusion.

one layer of the contextual self-attention mechanism. In
terms of the deep-context strategy, we use three layers of
the contextual self-attention mechanism. With regards to
the deep-global context strategy, we use two layers of the
contextual self-attention mechanism. We use the BERT base
uncased version and the DeiT2 model from the Transformers
library [83]. For the optimal transport methods, we use the
Python library Optimal Transport [20]. All the models have
been created using the PyTorch library [57]. All experiments
are conducted on a single Tesla P100-PCIE-16GB GPU.
5.3. Evaluation Metrics
5.3.1. Performance Metrics

Accuracy (Acc.), Precision (Prec.), Recall (Rec.), F1-
Score, and Specificity (Spec.) have been used for evaluating
the results of the introduced architectures. These metrics
have been computed by regarding the dementia class as the
positive one. We report the average and standard deviation
of these metrics over five runs.

2facebook/deit-base-distilled-patch16-224

5.3.2. Calibration Metrics
We evaluate the calibration of our model using the

metrics proposed by [50, 51, 23]. Specifically, we use the
metrics mentioned below:

• Expected Calibration Error (ECE). The calibration
error is the difference between the fraction of predic-
tions in the bin that are correct (accuracy) and the
mean of the probabilities in the bin (confidence). First,
we divide the predictions into 𝑀 equally spaced bins
(size 1∕𝑀).

𝑎𝑐𝑐(𝐵𝑚) =
1

|𝐵𝑚|

∑

𝑖∈𝐵𝑚

1(𝑦̂𝑖 = 𝑦𝑖) (35)

𝑐𝑜𝑛𝑓 (𝐵𝑚) =
1

|𝐵𝑚|

∑

𝑖∈𝐵𝑚

𝑝̂𝑖 (36)

, where 𝑦𝑖 and 𝑦̂𝑖 are the true and predicted labels
for the sample 𝑖 and 𝑝̂𝑖 is the confidence (predicted
probability value) for sample 𝑖.
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Table 1
Baselines (ADReSS Challenge Dataset).

Reference/Architecture Features/Methodology

Baselines - Unimodal state-of-the-art approaches (only transcripts)
BERT [25] Fine-tune a BERT model
Baselines - Multimodal state-of-the-art approaches
Fusion Maj. (3-best) [13] Majority Vote of the BoAW-MFCC-C125, ZFF, and bi-LSTM-Att
System 3: Phonemes and Audio [18] Acoustic features (emobase, eGeMAPS, ComParE2016) along with feature

selection techniques, transcription of the segmented text into phoneme written
pronunciation using CMUDict

Fusion of System [58] merged the x-vectors features set with the combination of linguistic feature sets
(GMax/LSTM-RNNs/LSTM-RNNs-Pos) and trained a SVM classifier

Bimodal Network (Ensembled Output)
[32]

For the acoustic modality, the authors use VGGish, while for the textual modality,
the authors exploit GloVe, Transformer-XL, POS and HC features. Finally, the
authors combine the results of the models via an ensemble approach.

GFI, NUW, Duration, Character
4-grams, Suffixes, POS tag, UD [43]

feature extraction, early fusion approach, train a Logistic Regression Classifier

Acoustic & Transcript [55] For transcripts, the authors exploited BERT, while for speech, the authors used
x-vector PCA-transformed coefficients.

Dual BERT [91] concatenation of the representations obtained by BERT and Speech BERT
Model C [42] The authors extracted emobase, eGeMAPS, ComParE features. For the text

modality, the used GloVe embeddings and pos-tags. Finally, they trained a Neural
network consisting of CNN, BiLSTM, Attention, GRU, and Dense layers.

Majority vote (NLP + Acoustic) [69] The authors extracted a set of acoustic and linguistic features. After training
shallow machine learning classifiers, they chose the three best-performing acoustic
models along with the best-performing language model, and computed a final
prediction by taking a linear weighted combination of the individual model
predictions.

Audio + Text [70] majority level approach of six models
LSTM with Gating (Acoustic +
Lexical + Dis) [64]

Acoustic, Linguistic Features, Bi-LSTM, feed-forward highway layers with gating
units

Ensemble [68] A majority vote was taken between the predictions of the three individual models.
Specifically, the authors extracted three sets of features, namely disfluency,
acoustic, and interventions, and trained three deep neural networks.

BERT+ViT (log-Mel spectrogram)
[28]

coversion of an audio file into an image of three channels, BERT for the text
representation, Vision Transformer for the image representation, concatenation

BERT+ViT+Gated Multimodal Unit
(log-Mel spectrogram) [28]

Gated Multimodal Unit to control the information flow of the different modalities.

BERT+ViT+Crossmodal Attention
(log-Mel spectrogram) [28]

Similar to [75], the authors exploited a cross-attention mechanism.

BERT+ViT+Co-Attention [26] The authors used a co-attention mechanism to fuse the representation matrices of
the two modalities.

Multimodal BERT - eGeMAPS [26] The authors injected acoustic information (eGeMAPS) into a BERT model.
Multimodal BERT - ViT [26] The authors injected image information (via ViT) into a BERT model.
Multimodal BERT - eGeMAPS+ViT
[26]

The authors injected both acoustic information (eGeMAPS) and image
information (via ViT) into a BERT model.

BERT+ViT+Gated Self-Attention [26] The authors concatenated the outputs of BERT and ViT and passed the resulting
matrix through a self-attention layer incorporating a gate model for capturing the
inter- and intra-modal interactions.

Transcript+Image+Acoustic [27] The authors used a Tensor Fusion Layer for fusing the different modalities.
Introduced Approaches without Label Smoothing

Our proposed approaches described in Section 4 without label smoothing.

𝐸𝐶𝐸 =
𝑀
∑

𝑚=1

|𝐵𝑚|

𝑁
|

|

|

𝑎𝑐𝑐
(

𝐵𝑚
)

− 𝑐𝑜𝑛𝑓
(

𝐵𝑚
)

|

|

|

(37)

, where 𝑁 is the total number of data points and 𝐵𝑚is the group of samples whose predicted probability
values falls into the interval 𝐼𝑚 =

(

𝑚−1
𝑀 , 𝑚

𝑀

]

.
Perfectly calibrated models have an ECE of 0.
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Table 2
Baselines (ADReSSo Challenge Dataset).

Reference/Architecture Features/Methodology

Baselines - Unimodal state-of-the-art approaches (only transcripts)
BERT We exploit a BERT model, get the [CLS] token, and pass it through two dense

layers consisting of 128 and 2 units respectively.
Model C:
LR[Comp]+LR[DisFl]+Ernie+Bert
(stacking) [60]

The authors employed model stacking to combine two logistic regression models
(LR) using complexity and (dis)fluency features respectively, and the two
pretrained language models, i.e. BERT and ERNIE.

Model 5: [53] The authors concatenate the last three states of the BERT sequence classifier with
the confidence score input. The confidence score input is generated by the ASR
system.

Label Fusion selected models [71] The authors extracted a set of handcrafted features, namely syntactic, readability,
and lexical diversity, and a set of deep textual embeddings, including BERT and so
on. Finally, the authors trained Logistic Regression and SVM classifiers.

Mp1 [92] The authors add sentence-level pauses to ASR transcripts and exploit a BERT
model.

Baselines - Multimodal state-of-the-art approaches
LSTM w/ Gating
(Words+Acoustic+Disf+Pse+WP)
[65]

extraction of acoustic and language features, feed-forward highway layers with
gating units

Global Fusion [54] fusion of BERT (ASR) and acoustic models, namely x-vectors, x-vectors with
250ms frame-length, and encoder-decoder ASR embeddings (SB Enc/Dec).

Top-10 Avg. [9] Average fusion of predicted class probabilities of the 10 best performing models
Attempt 1: [82] The authors used acoustic features, linguistic features, and embedding features.

For each type of feature, they exploited a deep neural network consisting of
multihead attention layers, convolutional layers, and dilated convolutional layers.
They used an attention layer for fusing the outputs of the different branches.

Introduced Approaches without Label Smoothing
Our proposed approaches described in Section 4 without label smoothing.

• Adaptive Calibration Error (ACE). Adaptive Cal-
ibration Error uses an adaptive scheme which spaces
the bin intervals so that each contains an equal number
of predictions.

𝐴𝐶𝐸 = 1
𝐾𝑅

𝐾
∑

𝑘=1

𝑅
∑

𝑟=1
|𝑎𝑐𝑐(𝑟, 𝑘)− 𝑐𝑜𝑛𝑓 (𝑟, 𝑘)| (38)

, where 𝑎𝑐𝑐(𝑟, 𝑘) and 𝑐𝑜𝑛𝑓 (𝑟, 𝑘) are the accuracy and
confidence of adaptive calibration range 𝑟 for class
label 𝑘, respectively; and 𝑁 is the total number of data
points. Calibration range 𝑟 defined by the [𝑁∕𝑅]th
index of the sorted and thresholded predictions.

6. Results
The results of our introduced models are reported in

Tables 3 and 4. Specifically, Table 3 reports the results
on the ADReSS Challenge dataset, while Table 4 reports
the results on the ADReSSo Challenge dataset. Also, these
tables present a comparison of our introduced approaches
with existing research initiatives, which have proposed either
unimodal or multimodal approaches. In order to compare
models, we use the Almost Stochastic Order (ASO) test

[15, 17] of statistical significance implemented by [77]. We
use 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑙𝑒𝑣𝑒𝑙 = 0.95 and 𝑛𝑢𝑚_𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 = 50.
Generally, the ASO test determines whether a stochastic or-
der [63] exists between two models or algorithms, i.e., 𝐴 and
𝐵. This method computes a score (𝜖𝑚𝑖𝑛) which represents
how far the first is from being significantly better in respect
to the second. When 𝜖𝑚𝑖𝑛 = 0, then one can claim that 𝐴 is
truly stochastically dominant over 𝐵. When 𝜖𝑚𝑖𝑛 < 0.5, one
can claim that 𝐴 is almost stochastically dominant over 𝐵.
For 𝜖𝑚𝑖𝑛 = 0.5, no order can be determined. (†) means that
Attention-based Fusion (Deep Context) with label smooth-
ing is stochastically dominant over the respective models.
Similarly, in terms of the ADReSSo Challenge dataset, (†)
means that Co-Attention (Deep Context) with label smooth-
ing is stochastically dominant over the respective models.
(⋆) denotes almost stochastic dominance of the Attention-
based Fusion (Deep Context) with label smoothing over the
respective approaches. Similarly, in terms of the ADReSSo
Challenge dataset, (⋆) means that Co-Attention (Deep Con-
text) with label smoothing is almost stochastically dominant
over the respective models. Note that we cannot compare our
approaches with all the existing research initiatives, since
we do not have access to the multiple runs or the other
approaches have not used multiple runs. In terms of the ECE
and ACE calibration metrics, we use ASO for comparing
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Table 3
Performance comparison among proposed models and state-of-the-art approaches on the ADReSS Challenge test set. Reported
values are mean ± standard deviation. Results are averaged across five runs. (†) means that Attention-based Fusion (Deep
Context) with label smoothing is stochastically dominant over the respective models. (⋆) denotes almost stochastic dominance
of the Attention-based Fusion (Deep Context) with label smoothing over the respective approaches.

Architecture Prec. (%) Rec. (%) F1-score (%) Acc. (%) Spec. (%) ECE ACE

Baselines - Unimodal state-of-the-art approaches (only transcripts)
BERT [25] 87.19 81.66 86.73† 87.50† 93.33

±3.25 ±5.00 ±4.53 ±4.37 ±5.65

Baselines - Multimodal state-of-the-art approaches
Fusion Maj. (3-best) [13] - - 85.40 85.20 -
System 3: Phonemes and Audio [18] 81.82 75.00 78.26 79.17 83.33
Fusion of system [58] 94.12 66.67 78.05 81.25 95.83
Bimodal Network (Ensembled Output) [32] 89.47 70.83 79.07 81.25 91.67
GFI, NUW, Duration, Character 4-grams,
Suffixes, POS tag, UD [43] - - - 77.08 -

Acoustic & Transcript [55] 70.00 88.00 78.00 75.00 63.00
Dual BERT [91] 83.04 83.33 82.92 82.92 82.50

±3.97 ±5.89 ±1.86 ±1.56 ±5.53
Model C [42] 78.94 62.50 69.76 72.92 83.33
Majority vote (NLP+Acoustic) [69] - - - 83.00 -
Audio + Text [70] - 87.50 - 89.58 91.67
LSTM with Gating (Acoustic + Lexical + Dis) [64] 81.82 75.00 78.26 79.17 83.33
Ensemble [68] 83.00 83.00 83.00 83.00 -
BERT+ViT [28] 90.73 80.83 85.47† 86.25† 91.67
(log-Mel spectrogram) ±2.74 ±2.04 ±1.70 ±1.67 ±2.64
BERT+ViT+Gated Multimodal Unit [28] 80.92 91.67 85.92† 85.00† 78.33
(log-Mel spectrogram) ±2.30 ±3.73 ±2.37 ±2.43 ±3.12
BERT+ViT+Crossmodal Attention [28] 86.13 91.67 88.69⋆ 88.33⋆ 85.00
(log-Mel spectrogram) ±3.26 ±4.56 ±2.12 ±2.12 ±4.25
BERT+ViT+Co-Attention [26] 92.83 81.67 86.81⋆ 87.50⋆ 93.33

±6.39 ±2.04 ±3.37 ±3.49 ±6.24
Multimodal BERT - eGeMAPS [26] 74.51 87.50 80.35† 78.75† 70.00

±1.01 ±6.45 ±2.77 ±2.04 ±3.12
Multimodal BERT - ViT [26] 73.91 91.67 81.79† 79.58† 67.50

±2.40 ±2.64 ±1.72 ±2.04 ±4.08
Multimodal BERT - eGeMAPS+ViT [26] 76.57 89.17 82.28† 80.83† 72.50

±3.74 ±5.65 ±3.49 ±3.58 ±5.65
BERT+ViT+Gated Self-Attention [26] 90.87 89.17 89.94⋆ 90.00⋆ 90.83

±3.50 ±2.04 ±1.36 ±1.56 ±4.08
Transcript+Image+Acoustic [27] 90.88 80.83 85.48† 86.25† 91.66

±3.60 ±2.04 ±0.76 ±1.02 ±3.73

Baselines - Introduced models (without label smoothing)
Co-Attention 89.62 85.83 87.63† 87.92† 90.00 0.1208 0.1660
(Global Context) ±1.75 ±3.33 ±1.80 ±1.56 ±2.04 ±0.2296 ±0.0335
Co-Attention 88.25 87.50 87.85⋆ 87.92† 88.33 0.1384 0.1532
(Deep Context) ±1.56 ±2.64 ±1.66 ±1.56 ±1.66 ±0.0109 ±0.0110
Co-Attention 90.26 85.00 87.51⋆ 87.92⋆ 90.83 0.1355 0.1648
(Deep-Global Context) ±1.70 ±4.25 ±2.69 ±2.43 ±1.66 ±0.0183 ±0.0119
Attention-based Fusion 89.55 85.83 87.32⋆ 87.50⋆ 89.16 0.1256 0.1279
(Global Context) ±7.31 ±6.24 ±4.35 ±4.37 ±8.58 ±0.0291 ±0.0277
Attention-based Fusion 91.06 89.16 89.95⋆ 90.00⋆ 90.83 0.0975⋆ 0.1046⋆
(Deep Context) ±5.04 ±3.33 ±1.91 ±2.04 ±5.53 ±0.0188 ±0.0173
Attention-based Fusion 90.45 85.83 88.04⋆ 88.33⋆ 90.83 0.1173 0.1065
(Deep-Global Context) ±2.93 ±2.04 ±1.65 ±1.66 ±3.12 ±0.0134 ±0.0153

Introduced models (with label smoothing)
Co-Attention 88.65 88.33 88.39⋆ 88.33⋆ 88.33 0.1075 0.1710
(Global Context) ±4.63 ±1.66 ±1.76 ±2.12 ±5.53 ±0.0198 ±0.0281
Co-Attention 93.57 84.16 88.53⋆ 89.16⋆ 94.16 0.1082 0.1316
(Deep Context) ±2.08 ±4.86 ±2.79 ±2.43 ±2.04 ±0.0184 ±0.0296
Co-Attention 87.88 87.50 87.39⋆ 87.50† 87.50 0.1176 0.1568
(Deep-Global Context) ±3.73 ±6.97 ±2.45 ±1.86 ±4.56 ±0.0167 ±0.0306
Attention-based Fusion 90.51 85.00 87.53† 87.92† 90.83 0.1094 0.1168
(Global Context) ±3.40 ±4.25 ±1.75 ±1.56 ±4.08 ±0.0086 ±0.0099
Attention-based Fusion 93.08 89.17 91.06 91.25 93.33 0.0859 0.0830
(Deep Context) ±2.03 ±2.04 ±1.60 ±1.56 ±2.04 ±0.0130 ±0.0158
Attention-based Fusion 89.87 83.33 86.20† 86.66† 90.00 0.1397 0.1508
(Deep-Global Context) ±5.52 ±4.56 ±0.90 ±1.02 ±5.65 ±0.0102 ±0.0123

our best performing model, namely Attention-based Fusion
(Deep Context) or Co-Attention (Deep Context) with label
smoothing, with the respective model without label smooth-
ing.

6.1. ADReSS Challenge Dataset
Regarding our proposed models, one can observe that

Attention-based Fusion (Deep Context) constitutes our best
performing model outperforming all the other introduced
models in all the evaluation metrics except Precision and
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Specificity. Specifically, Attention-based Fusion (Deep Con-
text) outperforms the other introduced models with label
smoothing in Accuracy by 2.09-4.59%, in Recall by 0.84-
5.84%, and in F1-score by 2.53-4.86%. Despite the fact
that Attention-based Fusion (Deep Context) obtains a lower
Precision score by other introduced models, it surpasses
them in F1-score, which constitutes the weighted average of
Precision and Recall. Although it achieves lower specificity
scores by Co-Attention (Deep Context), it must be noted
that in health related studies, F1-score is more important
than Specificity, since high F1-score means that the model
can detect better the AD patients, while high Specificity
and low F1-score means that AD patients are misdiagnosed
as non-AD ones. In addition, Co-Attention (Deep Con-
text) constitutes our second best performing model attaining
an Accuracy of 89.16%. It achieves the highest precision
and specificity scores accounting for 93.57% and 94.16%
respectively, while it achieves an F1-score of 88.53%. It
outperforms all the introduced models, except Attention-
based Fusion (Deep Context), in Accuracy by 0.83-2.50%
and in F1-score by 0.14-2.33%. It outperforms all the models
in Precision and Specificity by 0.49-5.69% and 0.83-6.66%
respectively.

Next, we compare our introduced approaches with label
smoothing with the ones without applying label smoothing.
As one can easily observe, label smoothing leads to both
performance improvement and better calibration of the pro-
posed approaches. Specifically, we observe that Attention-
based Fusion (Deep Context) with label smoothing obtains
a higher Accuracy score than the one obtained by the respec-
tive model without label smoothing by 1.25%, Attention-
based Fusion (Global Context) with label smoothing sur-
passes Attention-based Fusion (Global Context) without
label smoothing in Accuracy by 0.42%, etc. In terms of the
calibration metrics, namely ECE and ACE, one can observe
that label smoothing leads to better calibrated models. For
instance, Attention-based Fusion (Deep Context) with la-
bel smoothing obtains an ECE of 0.0859 and an ACE of
0.0830, which are significantly better than the ones obtained
by Attention-based Fusion (Deep Context) without label
smoothing by 0.0116 and 0.0216 respectively.

In comparison with the unimodal and multimodal state-
of-the-art approaches, one can observe that our best perform-
ing model, namely Attention-based Fusion (Deep Context)
with label smoothing, outperforms the research works in
Accuracy by 1.25-18.33% and in F1-score by 1.12-21.30%.
These differences in performance are attributable to the fact
that our best performing model captures both the inter- and
intra-modal interactions through the self-attention mecha-
nisms and optimal transport domain adaptation methods,
enhances the self-attention mechanism with contextual in-
formation, and applies label smoothing in contrast to the re-
search initiatives. In addition, Co-Attention (Deep Context)
outperforms the research works, except [26, 70], in Accuracy
by 0.83-16.24%.

6.2. ADReSSo Challenge Dataset
As one can easily observe in Table 4, Co-Attention

(Deep Context) with label smoothing constitutes our best
performing model attaining an Accuracy of 85.35%, a Recall
of 86.29%, and a F1-score of 85.27%. It surpasses the other
introduced models (with label smoothing) in Accuracy by
1.41-4.22%, in Recall by 1.15-4.58%, and in F1-score by
1.92-4.32%. In addition, we observe that Co-Attention (Deep
Context) with label smoothing achieves better performance
than the one obtained by the respective model without label
smoothing. Specifically, the Accuracy is improved by 2.25%,
the Recall is improved by 2.29%, the F1-score presents a
surge of 2.26%, the Precision is increased by 2.21%, and the
Specificity is improved by 2.21%. In terms of the calibration
metrics, we observe that the ECE is improved by 0.0171
(ASO test indicates almost stochastic dominance).

Comparing our introduced models with label smoothing
with the ones without label smoothing, we observe that in
most cases label smoothing contributes to both the perfor-
mance improvement and better calibration. For instance,
Co-Attention (Global Context) with label smoothing im-
proves Accuracy by 1.12% compared with the respective
model without label smoothing, while ECE and ACE are
also improved by 0.0254 and 0.0387 respectively. Sim-
ilarly, Attention-based Fusion (Deep Context) with label
smoothing outperforms the respective model without label
smoothing in F1-score and Accuracy by 2.27% and 2.53%
respectively, while the ECE and ACE also present a decline
of 0.0106 and 0.0077 respectively.

In comparison with the unimodal and multimodal base-
lines, we observe that our best performing model, namely
Co-Attention (Deep Context) with label smoothing, outper-
forms these baselines in Accuracy by 0.84-5.35%. Also, it
outperforms all the research works, except for [9], in F1-
score by 0.34-6.74%. We observe that our best performing
model attains a better performance than BERT (ASO test
indicates stochastic dominance), verifying our initial hy-
pothesis that both modalities, i.e., transcripts and audio files,
contribute to a better performance. In addition, we observe
that our second best performing model, namely Attention-
based Fusion (Deep Context) outperforms some research
works, except for [53, 71, 65, 54], in Accuracy by 0.84-
3.94%.

7. Ablation Study
In this section, we run a series of ablation experiments

using the ADReSS Challenge dataset to explore the ef-
fectiveness and robustness of the introduced architecture
described in Section 4. We report the results of the ablation
study in Tables 5 and 6.

First, we explore the effectiveness of the context-based
self-attention. To do this, we remove the contextual informa-
tion and exploit the conventional self-attention mechanism
introduced by [78]. We observe that the Accuracy score
drops from 91.25% to 87.08%, while the F1-score presents
a decline of 4.60%. Also, we observe that the removal of
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Table 4
Performance comparison among proposed models and state-of-the-art approaches on the ADReSSo Challenge test set. Reported
values are mean ± standard deviation. Results are averaged across five runs. (†) means that Co-Attention (Deep Context) with label
smoothing is stochastically dominant over the respective models. (⋆) denotes almost stochastic dominance of the Co-Attention
(Deep Context) with label smoothing over the respective approaches.

Architecture Prec. (%) Rec. (%) F1-score (%) Acc. (%) Spec. (%) ECE ACE

Baselines - Unimodal state-of-the-art approaches (only transcripts)
BERT 83.35 74.29 78.53† 80.00† 85.55 - -

±0.86 ±2.55 ±1.43 ±1.05 ±1.11 - -
Model C: [60] 85.00 80.00 82.00 83.00 86.00 - -
Model 5: [53] 81.58 88.57 84.93 84.51 80.56 - -
Label Fusion selected models [71] - - - 84.51 - - -
Mp1 [92] 87.10 77.14 81.82 83.10 88.89 - -

Baselines - Multimodal state-of-the-art approaches
LSTM w/ Gating (Words+Acoustic+Disf+Pse+WP) [65] - - - 84.00 - - -
Global Fusion [54] 92.00 74.00 83.00 84.51 94.00 - -
Top-10 Avg. [9] - - 88.89 81.69 80.00 - -
Attempt 1: [82] 75.00 91.67 82.50 80.28 68.57 - -

Baselines - Introduced models (without label smoothing)
Co-Attention 83.77 81.13 81.85⋆ 82.54⋆ 83.88 0.1536 0.2017
(Global Context) ±4.59 ±9.13 ±3.01 ±1.69 ±6.66 ±0.0311 ±0.0214
Co-Attention 82.22 84.00 83.01⋆ 83.10⋆ 82.22 0.1349⋆ 0.1845
(Deep Context) ±1.79 ±4.28 ±1.63 ±1.26 ±2.83 ±0.0135 ±0.0169
Co-Attention 83.03 80.57 81.73⋆ 82.25† 83.88 0.1414 0.1948
(Deep-Global Context) ±2.07 ±2.79 ±1.23 ±1.13 ±2.72 ±0.0091 ±0.0265
Attention-based Fusion 83.44 74.86 78.90† 80.28† 85.56 0.1633 0.1825
(Global Context) ±1.16 ±2.14 ±1.51 ±1.26 ±1.11 ±0.0207 ±0.0140
Attention-based Fusion 81.52 81.14 81.08† 81.41† 81.66 0.1442 0.1737
(Deep Context) ±3.47 ±5.59 ±1.58 ±1.05 ±5.44 ±0.0284 ±0.0089
Attention-based Fusion 79.58 85.71 82.38⋆ 81.97† 78.33 0.1671 0.1820
(Deep-Global Context) ±2.69 ±4.78 ±1.59 ±1.38 ±4.78 ±0.0201 ±0.0193

Introduced models (with label smoothing)
Co-Attention 84.77 81.71 83.12⋆ 83.66⋆ 85.55 0.1282 0.1630
(Global Context) ±2.39 ±3.43 ±0.95 ±0.69 ±3.24 ±0.0053 ±0.0179
Co-Attention 84.43 86.29 85.27 85.35 84.43 0.1178 0.1800
(Deep Context) ±1.59 ±4.19 ±1.78 ±1.44 ±2.19 ±0.0209 ±0.0213
Co-Attention 82.45 82.86 82.55⋆ 82.82⋆ 82.77 0.1443 0.1749
(Deep-Global Context) ±0.99 ±4.78 ±2.03 ±1.38 ±2.08 ±0.0046 ±0.0082
Attention-based Fusion 80.44 81.71 80.95† 81.13† 80.55 0.1540 0.1920
(Global Context) ±1.65 ±4.98 ±2.04 ±1.44 ±3.04 ±0.0195 ±0.0215
Attention-based Fusion 85.10 81.71 83.35⋆ 83.94⋆ 86.11 0.1336 0.1660
(Deep Context) ±0.53 ±3.43 ±2.04 ±1.69 ±0.04 ±0.0190 ±0.0144
Attention-based Fusion 81.45 85.14 83.18⋆ 83.10⋆ 81.11 0.1690 0.1938
(Deep-Global Context) ±1.32 ±4.92 ±2.42 ±1.99 ±2.08 ±0.0245 ±0.0112

contextual information yields to higher standard deviations
of the performance metrics.

Next, we investigate the efficacy of the gate model, which
is incorporated into the self-attention mechanism. To do this,
we remove the gate model and exploit the conventional self-
attention mechanism. We observe that Accuracy and F1-
score present a decline of 2.50% and 2.84% respectively.

Moreover, we explore the effectiveness of the optimal
transport domain adaptation method and the Optimal Trans-
port Kernel. To do this, we remove these components from
the introduced architecture. We observe that the Accuracy
score is equal to 87.50%, which is lower by 3.75% than
the one obtained by our best performing model. Also, this
approach yields an F1-score accounting for 87.47%, which
is lower by 3.59% than the one achieved by Attention-based
Fusion (Deep Context).

Next, we explore the effectiveness of the Optimal Trans-
port Kernel. To do this, we remove this component, exploit
the average operation over the sequence length, and finally
repeat the vector 𝑛 times, so as to ensure that both the textual
and image modalities have the same sequence length. As

one can observe, this method presents a decline in Accuracy
score by 2.92%, while the F1-score is also reduced by 2.33%.

In addition, we explore the effectiveness of the fusion
method. To prove this, we remove the fusion method, apply
the average operation over 𝐶 (Eq. 21) and 𝑆 (Eq. 22) and
concatenate these two representation vectors. We observe
that the concatenation of features yields an Accuracy and
F1-score of 87.50% and 87.65% respectively. This difference
in performance can be justified by the fact that the concate-
nation operation does not capture the inherent correlations
between the modalities.

Finally, we vary the layers of the context-based self-
attention mechanism. The results of this ablation study are
reported in Table 6. As the number of layers increases from
1 to 3, we observe that both the Accuracy and F1-score also
increase. This justifies our initial hypothesis that stacking
attention layers and fusing the outputs of different layers into
one context vector, yields to better evaluation results, since
the model captures both high-level and low-level syntactic
and semantic information. However, we observe that the
performance of our approach starts to present a decline by
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Table 5
Ablation Study. Reported values are mean ± standard deviation. Results are averaged across five runs.

Architecture Prec. (%) Rec. (%) F1-score (%) Acc. (%) Spec. (%)

without contextual vector in self-attention 91.34 83.33 86.46 87.08 90.83
±7.35 ±9.50 ±4.64 ±4.04 ±10.00

self-attention without gate model 92.99 84.16 88.22 88.75 93.33
±4.28 ±3.12 ±0.88 ±1.02 ±4.25

without optimal transport and OTK 87.60 87.50 87.47 87.50 87.50
±2.02 ±3.73 ±1.52 ±1.32 ±2.64

repeat vector instead of OTK 86.08 91.66 88.73 88.33 85.00
±3.37 ±2.64 ±1.97 ±2.12 ±4.25

Concatenation - Without fusion 87.23 88.33 87.65 87.50 86.66
±4.99 ±3.12 ±2.64 ±2.95 ±6.12

Proposed Framework 93.08 89.17 91.06 91.25 93.33
±2.03 ±2.04 ±1.60 ±1.56 ±2.04

Table 6
Ablation Study. Reported values are mean ± standard deviation. Results are averaged across five runs.

Layers Prec. (%) Rec. (%) F1-score (%) Acc. (%) Spec. (%)

1 90.37 83.33 86.52 87.08 90.83
±3.33 ±5.27 ±1.94 ±1.56 ±4.08

2 88.09 91.66 89.77 89.58 87.50
±1.96 ±3.73 ±1.45 ±1.32 ±2.64

3 93.08 89.17 91.06 91.25 93.33
(Our best performing model) ±2.03 ±2.04 ±1.60 ±1.56 ±2.04
4 92.05 76.66 83.55 85.00 93.33

±3.70 ±5.65 ±4.28 ±3.58 ±3.33
5 88.67 83.33 85.84 86.25 89.16

±4.20 ±3.73 ±2.86 ±2.83 ±4.25

stacking four or five layers of context-based self-attention
by applying the deep-context strategy. We assume that this
decline in performance is attributable to the limited dataset
used and consequently to the problem of overfitting.

8. Discussion
From the results obtained in this study, we found that:
• Finding 1: We proposed a context-based self-attention

mechanism and exploited three approaches of adding
contextual information to self-attention layers. Results
on the ADReSS and ADReSSo Challenge datasets
showed that the fusion of the outputs (low-level
syntactic and semantic information) of different layers
as a deep context vector yielded the highest evaluation
results.

• Finding 2: We compared our proposed approaches
with and without label smoothing. Findings suggested
that label smoothing contributes to both the perfor-
mance improvement and improvements in terms of the
calibration metrics.

• Finding 3: We exploited two methods for fusing
the self and cross-attention features. Findings of the
experiments conducted on the ADReSS Challenge
dataset suggested that the usage of two independent
attentional reduction models, the add operation, and
the layer normalization achieved better performance
than the usage of a co-attention mechanism. On the
other hand, results on the ADReSSo Challenge dataset

showed that the co-attention mechanism as a fusion
method achieved the best evaluation results.

• Finding 4: Findings from a series of ablation studies
showed the effectiveness and robustness of the intro-
duced architecture.

• Finding 5: Our proposed models yielded competi-
tive performances to the existing state-of-the-art ap-
proaches. We also used the Almost Stochastic Order
test to test for statistical significance. This test does
not make any assumptions about the distributions of
the scores.

• Finding 6: We observed that in most cases the per-
formance of the multi-modal models (baselines) was
inferior to the transcript only BERT baseline. We
hypothesize that this difference in performance is at-
tributable to the fact that the multimodal approaches
propose early and late fusion strategies or add / con-
catenate the representation vectors of different modal-
ities during training. In this way, the inter-modal inter-
actions cannot be captured effectively. This difference
in performance justifies our initial motivation that
more effective fusion methods must be explored for
capturing the inter-modal interactions.

Our approaches entail some limitations, which are de-
scribed below:

• Hyperparameter Tuning: In this study, we did not per-
form hyperparameter tuning due to the limited access
to GPU resources. Hyperparameter tuning yields to an
increase of the classification performance.
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• Explainability: In this study, we did not apply explain-
ability techniques, namely LIME, Integrated Gradi-
ents, and so on, for explaining the predictions of our
introduced approaches.

• Self-Supervised Learning: Contrary to self-supervised
learning methods, our approach relies heavily on
plenty of training data.

9. Conclusion and Future Work
In this paper, we introduced some new approaches to de-

tect AD patients from speech and transcripts, which capture
the inter- and intra-modal interactions, enhance the conven-
tional self-attention mechanism with contextual information,
and deal with the problem of creating overconfident models
by applying label smoothing. Our proposed architectures
consist of BERT, DeiT, self-attention mechanism incorpo-
rating a gating model, context-based self-attention, optimal
transport domain adaptation methods, and one new method
for fusing the self and cross-attention features in the task
of dementia detection from speech data. Furthermore, we
designed extensive ablation experiments to explore the effec-
tiveness of the components of the proposed architecture. Ex-
tensive experiments conducted on the ADReSS Challenge
dataset demonstrate the efficacy of the proposed architec-
tures reaching Accuracy and F1-score up to 91.25% and
91.06% respectively. Also, findings suggested that the label
smoothing contributes to both the performance improvement
and calibration of our model.

We evaluated our proposed approaches on the ADReSS
Challenge dataset, which consists of a statistically balanced
and acoustically enhanced set of recordings of spontaneous
speech sessions. The proposed models can be embedded into
an application, which will be capable of detecting AD pa-
tients with high accuracy. The creation of such an application
appears to be very important especially in the era of covid-
19, where there are restrictions for access to hospitals and
medical centers.

In the future, we plan to exploit our methods in other
health-related tasks, including the detection of Parkinson’s
disease. This will establish the generalizability of our in-
troduced architectures. In addition, we aim to use auto-
matic transcripts, since there are datasets, which do not
include manual transcripts [40, 38]. Also, we plan to use the
ADReSS-M Challenge dataset [38], where we will train our
proposed approaches using automatic transcripts and audio
files in the english language and test our introduced approach
using automatic transcripts and audio files in the greek lan-
guage. We also plan to employ more methods for measuring
the uncertainty and calibration of our models. Applying self-
supervised learning methods with limited speech data is one
of our plans. In this way, our methods will not rely on labels
and training data. Additionally, inspired by [36], we aim
to exploit AlexNet instead of DeiT. Specifically, similar to
[36], we plan to substitute the last several layers in AlexNet
with extreme learning machine and optimize the extreme

learning machine with a chaotic bat algorithm. Finally, mo-
tivated by [37], we aim to apply some of the modules to
our task, including the image-level representation learning
algorithm, the universal neighboring-aware representation
learning framework, and the graph random vector functional
link.
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