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Abstract

In this work, we devote ourselves to the challenging task of Unsupervised
Multi-view Representation Learning (UMRL), which requires learning a uni-
fied feature representation from multiple views in an unsupervised manner.
Existing UMRL methods mainly concentrate on the learning process in the
feature space while ignoring the valuable semantic information hidden in
different views. To address this issue, we propose a novel Semantically Con-
sistent Multi-view Representation Learning (SCMRL), which makes efforts
to excavate underlying multi-view semantic consensus information and utilize
the information to guide the unified feature representation learning. Specif-
ically, SCMRL consists of a within-view reconstruction module and a uni-
fied feature representation learning module, which are elegantly integrated
by the contrastive learning strategy to simultaneously align semantic labels
of both view-specific feature representations and the learned unified feature
representation. In this way, the consensus information in the semantic space
can be effectively exploited to constrain the learning process of unified fea-
ture representation. Compared with several state-of-the-art algorithms, ex-
tensive experiments demonstrate its superiority. Our code is released on
https://github.com/YiyangZhou/SCMRL.
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1. Introduction

Multi-view data are prevalent in real-world applications, and different
views can be collected from diverse sensors or various feature extractors.
However, numerous classic and effective algorithms [1, 2, 3] are designed
for single-view data and can not be leveraged to multi-view data directly.
Compared with traditional single-view data, multi-view data are informa-
tive and can provide a more comprehensive description[4, 5, 6, 7]. Thanks
to these appealing properties, the research of multi-view learning attracts
increasing attention, and one of the challenging branches is Unsupervised
Multi-view Representation Learning (UMRL). The purpose of UMRL is to
learn a unified representation containing consistent information and com-
plementary information, which is usually obtained by mapping data from
different views into a shared low-dimensional space[8, 9, 10]. Therefore,
the unified representation learned from multiple views could be easily ex-
ploited by on-shelf classic single-view algorithms for various downstream
tasks effectively[6]. Obviously, a naive way to achieve the goal of UMRL
is feature concatenation, which concatenates different views directly to get a
joint feature representation. However, since the specific statistical properties
among different views are diverse, the feature concatenation strategy usually
leads to negative performance[8, 11, 12].

In recent years, many methods are proposed to address the problem of
UMRL. For example, CCA[13] and CCA-based methods[14, 15, 16, 17] map
different views into a low-dimensional space based on the canonical corre-
lation analysis. FMRL[18] learns the unified representation by utilizing the
Hilbert-Schmidt independence criterion [19] to capture the non-linear corre-
lations of multiple views. AE2-Nets[6] introduces the nested autoencoder net-
works to learn the unified feature representation. DUA-Nets[4] investigates
the information of multiple views by employing uncertainty modeling and
learns the noise-free feature representation. Although gratifying progress is
made and the promising unified multi-view representation can be learned by
these aforementioned methods, they are all focused on fusing the multi-view
information in the feature space while neglecting the important information
in the semantic space. Since different views describe the same object, it is
more likely and reasonable to exploit the consensus in the semantic space
rather than simply in the feature space during the fusion process[20, 21].
Compared to pursuing consensus in the feature space, exploring consensus in
the semantic space can effectively preserve the diversity information of views
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Figure 1: Overview of SCMRL, which explores and exploits the consensus in the semantic
space to boost the learning performance of the unified feature representation of multi-view
data. More specifically, given multi-view data {X(i)}mi=1 with m views, the within-view
reconstruction modules of different views are used to obtain the view-specific feature rep-
resentation {Z(i)}mi=1, and the unified feature representation learning module dynamically
learns the unified feature representation H. Meanwhile, the shared classification network
and the contrastive learning are introduced to bridge these two modules so that semantic
consistency information is captured by H. On the right side, t-SNE is used to visualize
the learned H during the learning process (visualization results are based on the BDGP
dataset).

during the learning process of UMRL.
As we discussed above, it is promising to seek the multi-view consensus

information in the semantic space to guide the learning process of UMRL. To
this end, we propose a novel method, named Semantically Consistent Multi-
view Representation Learning (SCMRL), and the framework of SCMRL is
depicted in Figure 1. Specifically, SCMRL has two basic modules, namely
within-view reconstruction and unified feature representation learning, they
are novelty integrated by the exploration of multi-view consensus information
in the semantic space.

Different from most existing methods, such as AE2-Nets [6] and CUMRL
[22], which mainly consider multi-view information in the feature space, the
proposed method employs the multi-view consensus information in the se-
mantic space. As shown in Figure 1, we introduce the shared classification
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network to obtain the pseudo labels of both view-specific feature representa-
tions {Z(i)}mi=1 and the desired unified feature representation H. The shared
classification network acts as an intermediary between within-view recon-
struction and unified feature representation learning, which excavates valu-
able semantic information in the semantic space. Since different views and
the learned unified representation describe the same object, their pseudo-
labels tend to be consistent. To achieve this goal, we introduce contrastive
learning to explore the multi-view consensus information in the semantic
space and align the semantic labels of both view-specific feature representa-
tions and the learned unified feature representation simultaneously. Based
on the aforementioned learning process, the unified representation H can ef-
fectively integrate the information of multiple views in both feature space
and semantic space.

The main contributions of the proposed method can be summarized as
follows:
• We introduce a novel Semantically Consistent Multi-view Represen-

tation Learning (SCMRL), which learns the unified feature representation
under the guidance of the consensus semantic information from multi-view
data.
• The contrastive learning strategy is specially designed to bridge the

within-view reconstruction and unified feature representation learning in
SCMRL. The consensus information in the semantic space can be fully ex-
ploited to constrain the learning process of the unified feature representation.
• Extensive experiments are conducted, and experimental results verify

the effectiveness of the proposed SCMRL compared with several state-of-the-
art UMRL methods.

2. Related Work

In this section, we will review recent works of UMRL. Since contrastive
learning is also leveraged in our method, we will briefly introduce related
multi-view learning works based on contrastive learning as well.

2.1. UMRL

The goal of UMRL is to learn a promising representation of multi-view
data without supervision. The learned unified feature representation from
multiple views can be straightforwardly leveraged by off-the-shelf classic and
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effective algorithms for downstream tasks, such as classification tasks, clus-
tering tasks, and recognition tasks [6, 17, 4, 23]. Based on the advantage and
the effectiveness of multi-view data, UMRL has attracted increasing atten-
tion, and many methods have been proposed in recent years [21, 24, 25].

The representative methods are CCA-based[14, 15, 16, 17] methods, which
aim to maximize the canonical correlation among views in the low-dimensional
space. Taking a multi-view dataset with two views for example here, CCA-
based methods have the following basic formula:

min
β1,β2
−I(f1(X

(1); β1),f2(X
(2); β2)) + λg(β1, β2), (1)

where f1(·; β1) and f2(·; β2) are two embedding strategies with parameters
β1 and β2. I(·) and g(·) indicate the canonical correlation function and
the regularization term respectively. For example, DCCA [15] utilizes deep
neural networks for the reconstruction processes of different views. To make
the learning process more reliable, DCCAE [17] considers the bottleneck
representations by employing autoencoders to minimize the reconstruction
loss.

In addition to these CCA-based methods, there are some other UMRL
methods that have been proposed in recent years. For example, CMRL[23]
fuses the low-dimensional embedding representations and imposes the low-
rank tensor constraints on the subspace representations of different views to
learn a unified feature representation with comprehensive information. AE2-
Nets[6] is a learning framework consisting of nested autoencoders, which is
designed to achieve the compact unified multi-view feature representation
by balancing the complementarity and consistency properties among views.
MvLNet [25] can learn the unified multi-view spectral representation, and
uses the Cholesky decomposition during the learning process by introducing
the orthogonal constraint and reformulation strategy. DCP[26] is based on
information theory, which maximizes mutual information of different views
based on contrastive learning to achieve the goal of UMRL.

2.2. Contrastive Learning

Contrastive learning[27, 28] is an effective representation learning method,
which maximizes the similarity of positive pairs and minimizes the similarity
of negative pairs in latent space. This learning paradigm performs well in
computer vision[29, 30]. It is also widely used in multi-view clustering in
recent years[21, 31, 32, 33]. SURE[34] has designed a contrastive learning
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loss specially used for incomplete multi-view clustering, which uses the avail-
able pairs as positive pairs and randomly selects some cross-view samples as
negative pairs. It effectively and robustly solves the partial view-unaligned
problem (PVP) and partial sample-missing problem (PSP) in multi-view
clustering. MFLVC[20] optimizes different goals in different feature spaces
through contrastive learning and solves the conflict between view reconstruc-
tion and consistency goals, which effectively learns common semantics and
avoids the influence of meaningless view-specific information.

3. Proposed Approach

Given a multi-view dataset {X(i)}mi=1 with m view, the i-th view in the
original feature space is denoted by X(i) ∈ RN×Di , where N denotes the
number of samples and Di represents the dimension of the feature space. To
learn the promising unified multi-view feature representation H ∈ RN×DH ,
we propose a novel semantically consistent multi-view representation learning
(SCMRL), the framework of which is shown in Figure 1.

3.1. SCMRL

Overall, the loss function of SCMRL can be formulated as follows:

L = LRec + λ1LDeg + λ2LSem, (2)

where LRec is the loss of within-view reconstruction, LDeg indicates the loss of
the degradation learning employed in unified feature representation learning,
and LSem denotes the loss of semantic consistency. Regarding λ1 and λ2,
they are two trade-off parameters.

3.1.1. Within-view Reconstruction

Generally, the original multi-view data contains a lot of redundant and
noisy information, which will have a negative impact on downstream tasks.
To simultaneously deal with multi-view data conveniently and learn a re-
liable representation of each view, we utilize deep autoencoders to obtain
the view-specific feature representation of each view. Specifically, Ei(·; θi)
and Di(·;φi) represent the encoder and decoder of the i-th view respectively,
where θi and φi denote the corresponding parameters.

Subsequently, each view can be encoded into a low-dimensional feature
as follows:

Z
(i)
j = Ei(X

(i)
j ; θi), (3)
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where X
(i)
j is the j-th sample of X(i), Z

(i)
j ∈ RDZ denotes the embed-

ded feature in the DZ-dimensional feature space. Then we input this low-
dimensional feature into the decoder for reconstruction:

X̂
(i)
j = Di(Z

(i)
j ;φi), (4)

where X̂
(i)
j is the reconstructed representation. Therefore, we can get the

following reconstruction loss LRec:

LRec =
m∑
i=1

N∑
j=1

||X(i)
j −Di(Ei(X

(i)
j ; θi);φi)||22. (5)

By minimizing the reconstruction loss LRec, we can transform the input X(i)

into the representation Z(i).

3.1.2. Unified Feature Representation Learning

Based on the within-view reconstruction, we can obtain the low-dimensional
view-specific representations {Z(i)}mi=1 of different views. Since the desired
unified feature representation should contain comprehensive information of
multi-views, it is reasonable that different views require to be reconstructed
into a unified feature representation. Considering the way of directly adding
the low-dimensional view-specific representation of multiple views, it neglects
the different importance and the diverse specific statistical properties of mul-
tiple views, and usually leads to poor performance. To effectively learn the
unified feature representation H, the degradation learning strategy is adopted
in the proposed method. Specifically, we introduce the degradation learning
process of the i-th view:

LDeg =
m∑
i=1

N∑
j=1

||Z(i)
j −Gi(Hj; δi)||22, (6)

where Gi(·; δi) is the fully connected degradation neural network with param-
eter δi and H can be updated during the learning process. Based on Eq. (6),
the unified feature representation learning can dynamically balance the im-
portance of multiple views and integrate the low-dimensional view-specific
representation.

To initialize the unified feature representation, the following strategy is
employed:

Hj =
1

m

m∑
i=1

(Z
(i)
j ), (7)
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which can ensure that H contains comprehensive information of multi-views.

3.1.3. Contrastive learning of semantic consistency

As we discussed above, we can observe that both the learning process of
within-view reconstruction and unified feature representation learning exploit
the multi-view information in the feature space. To effectively excavate the
variable semantic consensus information in semantic space, the contrastive
learning of semantic consistency is introduced here. According to the fact
that multiple views and the unified representation describe the same objec-
tive, we introduce a shared classification network, termed Classifer(·;ϕ)
with the parameter ϕ. Naturally, we constrain that {Z(i)}mi=1 and H should
have similar pseudo labels. By utilizing Classifer(·;ϕ), we map the repre-
sentations, including {Z(i)}mi=1 and H, to the semantic space with dimension
size of k, where k is the number of categories of the multi-view dataset.

In other words, we have the following formula:

{Q(i)
j ,Q

H
j } = Classifer({Z(i)

j ,Hj};ϕ), (8)

in which Q
(i)
j and QH

j denote the pseudo labels of the Z
(i)
j and the unified

feature representation Hj, respectively. For convenience, we denote Q
(m+1)
j =

QH
j . Besides, Q

(i)
j is formulated as:

Q
(i)
j = [q

(i)
j1 , q

(i)
j2 ...q

(i)
jk ], (9)

where q
(i)
jk is the probability of the j-th sample in the i-th view belonging to

the k-th class.
Due to the diverse specific statistic information of multiple views, different

views may have confused semantic information in semantic space, which leads
to various and confusing results of Q

(i)
j and QH

j . Therefore, we introduce
contrastive learning [27] to mine the consistent semantic information in the
semantic space and obtain consistent categories simultaneously.

Specifically, the sematic column vector q
(i)
·w have ((m + 1)k − 1) vector

pairs {q(i)·w , q(j)·c }j=1,...,m+1
c=1,...,k , which contain m positive pairs {q(i)·w , q(j)·w }j 6=i and

the rest (k − 1)(m + 1) negative pairs. The cosine similarity is utilized to
measure the similarity between two semantic column vectors:

cos(q(i)·c , q
(j)
·w ) =

q
(i)
·c · q(j)·w

||q(i)·c ||||q(j)·w ||
. (10)
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Algorithm 1: Optimization algorithm of SCMRL

Input: Multi-view dataset {X(i)}mi=1; Parameter τ ; The number of
categories k.

Output: Unified Feature Representation H.

1 Initialize {θi, φi}mi=1 by minimizing Eq. (5);
2 Initialize H by Eq. (7);
3 while not converged do
4 Obtain the view-specific representation {Z(i)}mi=1 through Eq. (3);
5 Obtain the label distribution of each view and the unified feature

representation by Eq. (8);
6 Update {θi, φi, δi}mi=1, H and ϕ with Eq. (2);

7 end

Then, contrastive loss ltwo(i, j) between semantic column vectors q
(i)
·c and

q
(j)
·c is defined as:

ltwo(i, j) = −
k∑
c=1

log(f(i, j, c)), (11)

where

f(i, j, c) =
ecos(q

(i)
·c ,q

(j)
·c )/τ

(
∑k

w=1(e
cos(q

(i)
·c ,q

(i)
·w )/τ + ecos(q

(i)
·c ,q

(j)
·w )/τ )− e 1

τ

(12)

and τ denotes the temperature parameter. Further, it is convenient to define
the complete comparative learning loss of semantic consistency LSem as:

LSem = lSum + lReg, (13)

where lSum denotes the contrastive loss for the whole dataset and lReg indi-
cates the regularization phase. Specifically, the item lSum is defined as:

lSum =
1

2

m+1∑
i=1

m+1∑
j=1,j 6=i

ltwo(i, j)

k
. (14)

And the item lReg is formulated as:

lReg =
m+1∑
i=1

k∑
c=1

(
1

N

N∑
j=1

q
(i)
jc log

1

N

N∑
j=1

q
(i)
jc ), (15)
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Table 1: Details of the used datasets.

Dataset #Sample #Cluster #View #Dimensionality of features

MNIST-USPS 5000 10 2 {1*28*28, 1*28*28}
BDGP 2500 5 2 {1750, 79}
Fashion 10000 10 3 {1*28*28, 1*28*28, 1*28*28}

CCV 6773 20 3 {5000, 5000, 4000}
Caltech-2V 1400 7 2 {40, 254}
Caltech-3V 1400 7 3 {40, 254, 928}
Caltech-4V 1400 7 4 {40, 254, 928, 512}
Caltech-5V 1400 7 5 {40, 254, 928, 512, 1984}

which can avoid grouping all samples into the same cluster.
For clarification, the optimization procedure of SCMRL is summarized in

Algorithm 1.

4. Experiments

To verify the effectiveness of our method, extensive experiments are con-
ducted in this section. Specifically, two basic tasks, namely clustering and
classification, are used to evaluate the performance of the learned unified
multi-view feature representation. Furthermore, detailed discussions of our
method are provided as well.

4.1. Experiments Setup

4.1.1. Datasets

We use the following benchmark datasets, the detail of these datasets are
shown in Table 1:

1) MNIST-USPS[35]: It is a two-view dataset that contains 5000 hand-
written digital image samples from numbers 0 to 9.

2) BDGP[36]: It is a two-view dataset containing 2500 images of drosophila
embryos belonging to 5 categories.

3) Fashion[37]: It has 10000 images collected from 10 categories about
fashion products and has three views.

4) CCV[38]: It contains 6773 internet videos samples belonging to 20
classes. It has three views, such as STIP, SIFT, and MFCC.
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5) Caltech[39]: It is collected from 1400 images, which belong to 7 cat-
egories and have five views. Four sub-datasets, namely Caltech-2V, Caltech-
3V, Caltech-4V, and Caltech-5V, with different numbers of views are built
for evaluation here. Specifically, Caltech-2V uses WM and CENTRISTT;
Caltech-3V uses WM, CENTRIST, and LBP; Caltech-4V uses WM, CEN-
TRIST, LBP, and GIST; Caltech-5V uses WM, CENTRIST, LBP, GIST,
and HOG.

4.1.2. Comparison methods

The following state-of-the-arts are used for comparison:
1) DCCA[15]: It is a classic CCA-based method, which uses depth neural

networks to obtain the nonlinear mapping with the maximum view linear
correlation.

2) DCCAE[17]: It is also a CCA-based method. Different from DCCA,
it uses autoencoders to obtain the low dimensional projection of the original
data and maximizes the view correlation between the learned representations.

3) LMSC[40]: It learns the latent data representation by mapping dif-
ferent views into the common space and employing the low-rank subspace
constraint.

4) AE2-Nets[6]: Nested autoencoders are used to learn the compact uni-
fied representation by balancing the complementarity and consistency among
multi-views.

5) DUA-Nets[4]: It presents the dynamic uncertainty-aware networks
for UMRL. By estimating and leveraging the uncertainty of data, it achieves
the noise-free multi-view feature representation.

6) CUMRL[22]: It considers the low-rank tensor constraint to excavate
the high-order view correlations of multi-view data in the feature space, and
introduces the collaborative learning strategy for UMRL.

7) DCP[26]: It learns the unified multi-view representation by maximiz-
ing the mutual information of different views via contrastive learning in the
feature space.

8) CMRL[23]: It achieves the unified multi-view representation with
comprehensive information by introducing the orthogonal mapping strategy
and imposing the low-rank tensor constraint on the subspace representations.

4.1.3. Evaluation metrics

Two basic tasks, i.e., clustering and classification, are employed in this
section. Since k-means and k-nearest neighbor (kNN) are simple and can
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(a) Epoch 10 (b) Epoch 20

(c) Epoch 30 (d) Epoch 40 (e) Epoch 50

Figure 2: The t-SNE visualization results of the learned unified feature representation
in Epoch 10, 20, 30, 40, and 50 of the learning process. Experimental results on the
MNIST-USPS dataset are shown here.

effectively measure the quality of the learned unified representation, we adopt
the classic k-means algorithm for the clustering task and kNN algorithm for
the classification task here[6, 12, 4].

1) Clustering task: Three metrics are utilized to evaluate the clustering
quality, namely ACC, Normalized Mutual Information (NMI), and Fscore.
For each dataset, 10 trials are conducted for all experiments to eliminate the
randomness and make the experimental results more reliable.

2) Classification task: We utilize ACC as the metric to evaluate the
classification performance. Specifically, we set k=5 for kNN in all experi-
ments and 30 trials are conducted for each experiment. We divide samples
of the learned representation into training and testing sets with different
proportions, and the ratios (#Train/#Test) are set to 8/2 (80%/20%), 5/5
(50%/50%), 2/8 (20%/80%).

12



Table 2: Clustering results of the learned unified multi-view representation on BDGP,
MNIST-USPS, Fashion and CCV.

Datasets BDGP MNIST-USPS Fashion CCV
Metrics ACC NMI Fscore ACC NMI Fscore ACC NMI Fscore ACC NMI Fscore

DCCA 67.72 56.45 63.05 41.55 35.13 31.52 67.38 77.51 72.66 21.09 19.14 13.26
DCCAE 69.03 58.12 63.31 67.94 53.62 51.60 67.74 77.26 72.32 20.42 18.56 13.00

LMSC 52.39 43.15 55.63 37.25 43.33 40.42 43.90 41.68 36.71 13.49 8.660 11.76
AE2-Nets 55.24 40.57 50.13 62.59 62.31 56.71 72.94 76.27 71.57 9.430 2.810 7.590

DUA-Nets 60.28 40.61 53.91 75.10 68.94 66.01 77.21 76.08 72.72 16.11 11.80 11.64
CUMRL 62.93 48.80 57.44 58.64 56.93 50.96 67.00 66.77 61.26 10.41 5.190 7.480

DCP 43.77 38.50 53.49 89.10 94.13 92.87 75.68 86.19 82.23 14.23 11.48 10.69
CMRL 78.92 67.20 71.68 91.61 85.60 85.98 76.81 80.29 74.77 24.31 18.11 13.64

Ours 98.00 94.69 96.18 99.56 98.72 99.12 98.90 97.32 97.84 26.82 27.55 21.39

Table 3: Clustering results of the learned unified multi-view representation on Caltech-nV,
n is selected from {2, 3, 4, 5}.

Datasets Caltech-2V Caltech-3V Caltech-4V Caltech-5V
Metrics ACC NMI Fscore ACC NMI Fscore ACC NMI Fscore ACC NMI Fscore

DCCA 39.36 30.69 37.02 46.71 35.29 37.78 54.97 33.44 38.53 62.73 42.97 48.13
DCCAE 43.87 31.17 36.23 59.49 44.53 47.15 50.29 32.01 37.78 63.70 45.58 49.62

LMSC 42.64 32.35 35.47 26.44 7.580 20.32 38.08 28.82 34.43 66.15 53.38 56.83
AE2-Nets 46.14 32.01 35.60 51.48 41.08 42.89 48.01 38.89 41.93 67.67 58.13 57.96

DUA-Nets 39.45 22.12 30.88 43.63 29.37 36.96 46.31 34.54 41.03 56.89 44.37 48.46
CUMRL 48.74 41.32 42.36 56.59 48.86 49.29 67.76 57.66 57.81 88.55 79.02 81.12

DCP 42.64 32.35 35.47 51.60 48.35 52.16 53.37 53.55 55.54 54.04 54.05 56.16
CMRL 55.03 40.33 42.95 59.27 44.67 46.72 69.30 56.24 57.75 68.76 56.37 57.61

Ours 61.29 48.29 48.75 78.21 70.18 70.30 87.00 79.83 79.22 89.00 80.23 81.22

4.1.4. Implementation details

For all datasets, the ReLU[41] activation function is used to implement
autoencoders in SCMRL. Adam optimizer[42] is employed for optimization.
Our method is implemented by PyTorch[43] on one NVIDIA Geforce GTX
2080ti GPU with 11GB memory. For comparison methods, we leverage the
codes released by their corresponding authors and use the recommended
settings in their original works.

4.2. Visualization results

To vividly reveal the structure of the learned unified representation, we
visualize H achieved in the Epoch 10, 20, 30, 40, and 50 of the SCMRL
learning process based on the t-SNE [44]. Taking the MNIST-USPS dataset
for example here, the visualization results are shown in Figure 2. It can be
observed that the unified feature representation with a promising structure
can be achieved by our method.
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Table 4: Classification results of the learned unified multi-view representation on BDGP,
MNIST-USPS, Fashion and CCV.

Datasets BDGP MNIST-USPS Fashion CCV
#Train/#Test 8/2 5/5 2/8 8/2 5/5 2/8 8/2 5/5 2/8 8/2 5/5 2/8

DCCA 96.52 96.44 95.25 78.48 76.46 72.07 86.93 86.47 85.56 28.49 26.64 24.01
DCCAE 97.73 97.40 96.62 83.45 81.74 79.44 86.63 86.11 85.24 29.71 27.97 24.87

LMSC 98.16 97.60 96.22 94.66 93.34 89.55 86.12 84.80 81.27 33.77 31.17 26.02
AE2-Nets 91.65 91.19 87.56 96.43 95.62 93.30 91.83 90.95 89.10 6.380 6.280 6.070

DUA-Nets 93.01 91.52 85.42 91.79 90.18 85.64 87.60 86.53 81.47 30.43 31.04 24.86
CUMRL 94.73 93.57 90.91 94.69 93.99 91.16 81.49 80.61 79.26 6.75 6.67 6.49

DCP 96.38 96.04 93.94 98.49 98.33 97.95 93.60 93.40 92.44 20.25 18.45 15.64
CMRL 98.82 98.57 98.24 97.86 97.45 96.28 93.85 93.48 92.36 36.03 34.18 30.63

Ours 98.92 98.74 98.54 99.63 99.57 99.57 99.11 99.08 99.04 39.41 37.85 35.09

4.3. Experimental Results

We discuss the experimental results of the clustering task and the clas-
sification task. Overall speaking, the proposed method can achieve the best
performance in most cases.

4.3.1. Experimental results of the clustering task

The k-means clustering results on all datasets are shown in Table 2 and 3.
We can observe that SCMRL achieves the best performance on all datasets in
all metrics and considerable progress can be made for all metrics. For exam-
ple, on the BDGP dataset, our method respectively achieves an improvement
of around 19.08%, 27.49%, and 24.50% compared with the second-best re-
sults in metrics of ACC, NMI, and Fscore. Compared with the second-best
results, 17.70%, 22.17%, and 21.41% improvements can be obtained on the
Caltech-4V in metrics of ACC, NMI, and Fscore, respectively. The main
reason is that the proposed SCMRL explores the underlying consistent in-
formation of both the learned unified representation and multiple views in
semantic space. Compared with other methods, our method can explore the
consistent information in semantic space. Consequently, the multi-view di-
versity information in the feature space can be preserved and utilized during
the learning process of the unified feature representation. In Table 3, we can
find that the performance of SCMRL steadily increases with the increase of
views on Caltech-nV, which indicates that the rich information contained in
multiple views can be effectively excavated and integrated into the learned
unified representation by our method.
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Table 5: Classification results of the learned unified multi-view representation on Caltech-
nV, n is selected from {2, 3, 4, 5}.

Datasets Caltech-2V Caltech-3V Caltech-4V Caltech-5V
#Train/#Test 8/2 5/5 2/8 8/2 5/5 2/8 8/2 5/5 2/8 8/2 5/5 2/8

DCCA 68.24 65.41 60.61 72.81 71.14 66.81 65.80 64.26 61.04 62.73 42.97 48.13
DCCAE 69.82 67.12 62.92 74.46 73.01 68.23 66.80 64.75 60.19 63.70 45.58 49.62

LMSC 72.11 70.22 63.29 72.25 69.44 60.55 76.71 73.81 67.01 90.89 89.87 86.31
AE2-Nets 69.80 66.78 61.09 82.93 80.89 76.27 84.83 84.19 79.34 91.32 90.58 88.04

DUA-Nets 62.73 59.40 54.37 69.58 69.28 63.05 75.88 74.29 66.69 81.04 80.29 77.51
CUMRL 80.21 77.64 71.89 87.18 85.83 81.62 90.31 89.70 86.59 93.48 93.29 91.83

DCP 71.36 70.68 67.23 80.75 79.41 77.15 82.74 81.33 78.04 87.81 86.21 83.46
CMRL 80.81 79.05 74.10 84.74 82.99 79.46 90.27 89.21 86.23 91.01 89.90 86.71

Ours 73.80 71.90 68.27 84.82 83.30 81.65 91.07 90.46 88.78 94.15 93.95 91.93

4.3.2. Experimental results of the classification task

The classification results are shown in Table 4 and Table 5. In gen-
eral, the proposed method can obtain promising results for all datasets and
achieve the best results for most cases. For example, on the Fashion dataset,
our method can achieve an improvement of around 7% with respect to the
metric of ACC, compared with the second-best results. Although CMRL
and CUMRL achieve slightly better classification results on Caltech-2V and
Caltech-3V, the results of our method are also competitive. Furthermore,
with the increase of view on Caltech-nV, the performance of SCMRL can
improve more significantly than CMRL and CUMRL. With the decrease of
#Train/#Test, it can be observed that our method has the slowest perfor-
mance decline, which also indicates the effectiveness of the semantic consis-
tent information exploration in our method.

Table 6: Ablation study on Fashion dataset. ”X” indicates the used component, Clu and
Cla denote the Clustering task and the Classification task respectively.

Dataset LSem LRec
Clu Cla

NMI Fscore ACC

X X 98.72 99.12 99.63
Fashion X 81.69 76.19 93.57

X 96.74 97.34 98.49
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(a) ACC in classification task (b) NMI in clustering task

(c) Sensitivity of model to parameter τ in
classification task

(d) Sensitivity of model to parameter τ in
clustering task

Figure 3: Parameter sensitivity analysis on MNIST-USPS dataset.

4.4. Model Analysis

4.4.1. Ablation Studies

We conduct ablation studies here. It is clear that the module of unified
feature representation learning is essential since UMRL aims to learn the uni-
fied multi-view representation. Consequently, we discuss the learning process
of our method with and without LSem and LRec. We take the experiments
on the Fashion dataset for example. The clustering results (in metrics of
NMI and Fscore) and the classification results (in the metric of ACC with
#Train/#Test = 80%/20%) are reported in Table 6. According to the ex-
perimental results, we conclude: 1) Both the employment of LSem and LRec
effectively improve the learned unified representation; 2) Compared with the
employment of LRec, the employment of LSem can significantly boost the
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Table 7: Performance comparison between single view and multi-view.

Dataset MNIST-USPS BDGP
Metrics ACC NMI ACC NMI

k-means (view 1) 76.78 72.33 45.00 26.49
k-means (view 2) 58.10 52.13 57.04 45.96

DEC (view 1) 73.10 71.49 46.28 29.96
DEC (view 2) 56.12 61.08 94.78 86.62

SCMRL concat 82.36 76.98 71.00 62.03
SCMRL average 89.48 91.62 81.72 67.22

SCMRL 99.56 98.72 98.00 94.69

performance of the learned unified representation.
In addition, we further discussed how much performance improvement of

multi-view data compared with single-view data on downstream tasks and
how different ways of integrating multi-view information affect the perfor-
mance of downstream tasks. Taking the clustering task as an example, we
compare SCMRL and its different variants with the classical single-view clus-
tering algorithm [3] on BDGP and MNIST-USPS, and the results are shown
in Table 7. In which, we use SCMRL concat to directly splice the low-
dimensional representations {Z(i)}mi=1 of different views for clustering, while
SCMRL average is to average {Z(i)}mi=1 of different views for clustering.

Convincingly, these aforementioned observations of ablation studies in-
dicate that introducing excavation of multi-view semantic consistent infor-
mation in the semantic space plays a vital role in our method for the learn-
ing process of multi-view unified feature representation. Multi-view data
has more descriptive information than single-view data, which is helpful for
downstream tasks. At the same time, in order to better integrate the data of
multiple views, SCMRL’s unique fusion method is more effective than simple
splicing and averaging.

4.4.2. Parameter sensitivity analysis

To explore the sensitivity of SCMRL to hyper-parameters, we take differ-
ent values of λ1 and λ2 in Eq. (2) on MNIST-USPS dataset and explore their
influence of the clustering task (in the metric of NMI) and the classification
task (in the metric of ACC). In order to make the results more reliable, we
run the clustering task and the classification task 10 times and 30 times re-
spectively to average. The results are shown in Figure 3(a) and Figure 3(b),
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which indicates that our model is insensitive to λ1 and λ2. Actually, λ1 and
λ2 are set to 1 for all datasets in Table 2-5.

As for the hyper-parameter τ in Eq. (11), results of the MNIST-USPS
datasets are shown in Figure 3(c) and Figure 3(d). It can also be found
that SCMRL is also robust to τ . Actually, we fix parameter τ = 0.5 for all
datasets in Table 2-5.

Figure 4: Convergence curve on MNIST-USPS dataset.

4.4.3. Convergence analysis

To show the convergence properties of SCMRL, we take the experiment
on MNIST-USPS dataset for example and display the convergence curve in
Figure 4. It can be observed that the loss value drops rapidly in the first
20 epochs and has promising convergence properties. For other datasets, the
similar convergence properties can be achieved as well.

5. Conclusion

In this paper, we introduce a novel Semantically Consistent Multi-view
Representation Learning (SCMRL), which effectively excavates and exploits
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the consistent information of multiple views in the semantic space to learn
unified multi-view feature representation with promising structure. By in-
troducing the contrastive learning of semantic consistency, SCMRL incorpo-
rates the within-view reconstruction with the unified feature representation
learning and explores the valuable consensus information in semantic space to
guide the learning process. Experimental results conducted on several bench-
mark datasets verify the effectiveness of SCMRL over other state-of-the-art
methods.
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