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Abstract

Entities involve important concepts with concrete meanings and play important
roles in numerous linguistic tasks. Entities have different forms in different linguis-
tic tasks and researchers treat those different forms as different concepts. In this
paper, we are curious to know whether there are some common characteristics that
connect those different forms of entities. Specifically, we investigate the under-
lying distributions of entities from different types and different languages, trying
to figure out some common characteristics behind those diverse entities. After
analyzing twelve datasets about different types of entities and eighteen datasets
about entities in different languages, we find that while these entities are dramat-
ically diverse from each other in many aspects, their length-frequencies can be
well characterized by a family of Marshall-Olkin power-law (MOPL) distributions.
We conduct experiments on those thirty datasets about entities in different types
and different languages, and experimental results demonstrate that MOPL models
characterize the length-frequencies of entities much better than two state-of-the-art
power-law models and an alternative log-normal model. Experimental results also
demonstrate that MOPL models are scalable to the length-frequency of entities in
large-scale real-world datasets.
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1. Introduction

Estoup (1916) and Zipf (1936, 1949) found a very long time ago that the
rank-frequency of words in natural languages follows a family of power-law dis-
tributions. During his exploration, Zipf also found that the meaning-frequency of
words follows power-law distributions as well. The rank-frequency distribution
of words is later credited as Zipf’s law and provides a direction to understand
the use of languages in our communicative system. Zipf’s law has been observed
in many languages (Zipf, 1949; Corominas-Murtra and Solé, 2010) and has at-
tracted tremendous attention of researchers from diverse areas for more than eighty
years (Piantadosi, 2014). The Zipf distribution has a linear behavior in the log-log
scale and is widely used to model phenomena such as word frequencies, city sizes,
income distribution, and network structures. However, the Zipf distribution may
not fit well the probabilities of the first positive integer numbers, which are often
observed to be higher or lower than expected by the linear model.

Besides the rank-frequency and meaning-frequency of words, Zipf also ana-
lyzed word length, sentence length, and phonemes (Zipf, 1949). Although Zipf
explained the use of these three language units under the same principle of least
effort as he explained word frequency and word meaning in a qualitative way,
unfortunately, extensive studies have demonstrated that the frequencies of these
three language units do not follow a power-law distribution, but follow variants of
Poisson distributions, lognormal distributions, or gamma distributions (Williams,
1940; Fucks, 1955, 1956; Wake, 1957; Miller et al., 1958; Williams, 1975; Grotjahn
and Altmann, 1993; Wimmer et al., 1994; Best, 1996; Sigurd et al., 2004).

In the last two decades, the field of natural language processing and related
areas have constructed numerous datasets for diverse linguistic tasks (Manning
and Schutze, 1999; Jurafsky and Martin, 2008, 2020). Those datasets provide
us opportunities to analyze some other forms of languages, among which entity
is an important one. An entity is a real-world object, such as persons, locations,
and organizations (Chinchor, 1997; Sang and Meulder, 2003). Entities generally
involve important concepts with concrete meanings and usually act as (part of)
the subject or the object or even both in a sentence. For example, in the sentence
“Michael Jordan could be an NBA player, or a professor of University of California,
Berkeley,” the entity “Michael Jordan” acts as the subject while other two entities
“NBA” and “University of California, Berkeley” are parts of the object. Because of
its importance in language, entities have been extensively studied and are involved
in diverse linguistic tasks, such as named entity recognition (Chinchor, 1997;
Sang and Meulder, 2003) and entity linking (Ji and Grishman, 2011; Ling et al.,
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Table 1: Some examples of entities in English and their corresponding entity lengths (l). Symbols
and punctuations in entities are taken into account during the calculation.

Entity Entity Length (l)

NBA 1
Michael Jordan 2
United Arab Emirates 3
University of California , Berkeley 5
10:00 p.m. on August 20 , 1940 7
human cytomegalovirus ( HCMV ) major immediate 7

2015). To the best of our knowledge, however, there is no existing literature that
investigates the underlying distribution(s) of entities which may provide a better
understanding on language use and provide insights into designing effective and
efficient algorithms for entity-related linguistic tasks.

In this paper, we fill in this gap and conduct a thorough investigation on the
length-frequency distributions of entities in different types and different languages.
We aim to fit the length-frequency of entities with a uniform model or a family
of models. Entity length is defined by the number of words in an entity. Entity
length is an important feature of natural language processing that reflects the
complexity and structure of texts. Table 1 presents some examples of entities and
their corresponding lengths. After a careful exploration, we find that the length-
frequency of entities cannot be well characterized by pure power-law models, but
can be well characterized by the Marshall-Olkin power-law (MOPL) models that
are developed by Pérez-Casany and Casellas (2013). MOPL models are a family of
generalized models of power-law models. Compared with pure power-law models,
MOFL models have more flexibility to adjust the probabilities of the first few data
points while keeping the linearity of the remaining probabilities.

Specifically, we collect twelve datasets about different types of entities (e.g.,
named entities and time expressions) and eighteen datasets about entities in differ-
ent languages (e.g., English and French). Those datasets are dramatically diverse
from each other in terms of their sources, domains, text genres, generated time,
corpus sizes, and entity types, and those languages have significant differences in
terms of their phonetic systems and spelling systems (see Section 4.1 for details).
However, we find that the length of these diverse entities demonstrates some similar
characteristics, and the length-frequency distributions of these diverse entities can
be well characterized by a family of MOPL models.
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To evaluate the quality of MOPL models fitting to the length-frequency of di-
verse entities, we use the Kolmogorov-Smirnov (KS) test (Smirnov, 1948; Stephens,
1974) and define an average-error metric to evaluate the goodness-of-fit of the
MOFL models and compare the fitting results with two state-of-the-art power-law
models, namely CSN2009 (Clauset et al., 2009) and LSavg (Zhong et al., 2022b),
and an alternative log-normal model. We conduct experiments on thirty datasets
about entities in different types and different languages, and experimental results
demonstrate that MOPL models well characterize the length-frequency distribu-
tions of diverse entities, and the fitting results of MOPL are much better than the
ones of the three compared models. Specifically, MOPL achieves much better
results in the KS test and average-error metric than the three compared models.
Experimental results also demonstrate that MOPL models fit the length-frequency
of entities in an individual dataset less than one minute, which is comparable with
the most efficient model LSavg and much better than the CSN2009 model. This
indicates that MOPL models are more suitable to characterize the length-frequency
of diverse entities than the three compared models and that MOPL models are
scalable to entities in large-scale real-world datasets.1

To summarize, we mainly make in this paper the following contributions.
• We investigate the underlying distributions of diverse entities, finding that

the length-frequency of entities in different types and languages can be char-
acterized by MOPL models. Our finding adds a piece of stable knowledge to
the filed of language and provides insights for entity-related linguistic tasks.

• We demonstrate the superiority of MOPL models against two state-of-the-
art power-law models and a log-normal model in terms of fitting to the
length-frequency of diverse entities in different types and languages.

• Experiments demonstrate that MOPL is scalable to large-scale real-world
datasets without linearly nor exponentially increasing the runtime when the
number of entities increases.

The remaining of this paper is organized as follows. Section 2 reviews the
literature about power-law distributions in languages. Section 3 introduces the
MOPL models that we use to characterize the length-frequency of divers entities.
Section 4 reports experimental results and computational efficiency of MOPL
models and compared models fitting to the length-frequency distributions of entities
in different types and different languages. Section 5 discusses possible implications
and limitations of this paper while Section 6 draws the conclusion.

1Source codes and datasets are available at https://github.com/xszhong/MOPL.
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2. Related Works

While power-law distributions have been observed to appear in numerous
natural systems and societal systems (Newman, 2005; Clauset et al., 2009), in this
paper, we are concerned with power-law distributions in languages. Following we
review related works about the power-law distributions in languages and about the
length-frequency distributions of words and sentences, and discuss the connection
and differences between these related works and our work.

2.1. Power-Law Distributions in Languages
The most famous power-law distribution in languages is the one in the rank-

frequency of words. This linguistic phenomenon was originally discovered by Jean-
Baptiste Estoup (Estoup, 1916) and then further explored by George K. Zipf (Zipf,
1936, 1949); such linguistic phenomenon is later credited as Zipf’s law. Zipf’s
law reveals that the r-th most frequently occurring word in a corpus has the
frequency defined by f(r) ∝ r−z, where r denotes the frequency rank of a word
in the corpus and f(r) denotes its frequency. The Zipf’s law has been observed
in many languages (Zipf, 1949; Li, 2002; Corominas-Murtra and Solé, 2010;
Piantadosi, 2014), and the scaling exponent z is observed to be close to 1. During
his exploration, Zipf found as well that the meaning-frequency of words in a corpus
also follows a family of power-law distributions.

Besides real languages, researchers have also explored randomly generated texts
and genetic regulatory networks (Pratap et al., 2019; Anbalagan et al., 2021; Pratap
et al., 2022). Miller (1957, 1965) and Li (1992) found that the rank-frequency
of random texts also follows power-law distributions. Malone and Maher (2012)
and Wang et al. (2017) found that the rank-frequency of user passwords from
different websites can be characterized by power-law distributions.

We now discover another form of human languages, namely entities, whose
length-frequency distributions can be characterized by the Marshall-Olkin extended
power-law distributions. There are significant differences between power-law
distributions in the length-frequency of entities and in the rank-frequency of words.
Firstly, the meanings and functions of words and of entities in a sentence are
different. In the rank-frequency of words, those most frequent words are always
auxiliary words without concrete meanings (random texts and user passwords have
no concrete meanings as well), while entities generally involve important concepts
with concrete meanings and play important roles in a sentence, such as the subject
and the object.
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Secondly, the numbers of their data points are different. In the rank-frequency
of words, an r-rank word appears as a data point, while in the length-frequency
of entities, all the l-length entities composite a data point. So the number of data
points in the rank-frequency of words is as large as the size of vocabulary in
a corpus, while the number of data points in the length-frequency of entities is
generally less than 100, and our analysis shows that, in about 93.3% of datasets (28
out of 30), the longest entity contains no more than 100 words (see Table 2 and 3).

Thirdly, the scaling exponents of these two kinds of power-law distributions
are different. The scaling exponents in the rank-frequency of words are observed
to approximate to 1, indicating that these power-law distributions do not have
theoretical means nor finite variances. By contrast, the exponents in the length-
frequency of entities are greater than 2, theoretically indicating well-defined means
in all these power-law distributions; and in real-world datasets, these power-law
distributions have finite means and variances.

2.2. Length-Frequency Distributions of Words and Sentences
A line of researches that is somewhat related to our work is about the length

distributions of words and sentences. According to a review article by Grotjahn
and Altmann (1993), Fucks (1955, 1956) first theoretically and experimentally
demonstrated that the length-frequency of words in a corpus follows a family of
Poisson distributions. This linguistic phenomenon has been observed in more than
32 languages (Best, 1996). On the other hand, Williams (1940) and Wake (1957)
observed that the length-frequency of sentences in different languages can be
characterized by a family of log-normal distributions. Sigurd et al. (2004) observed
that the length-frequencies of words and sentences from English, Swedish, and
German corpora can be characterized by variants of log-normal distributions or
gamma distributions.

Unlike the length-frequency of words and sentences that can be characterized by
variants of Poisson distributions, log-normal distributions, or gamma distributions,
we find from experiments on datasets about entities in different types and different
languages that the length-frequency of entities cannot be characterized by Poisson
distributions nor log-normal distributions but are well characterized by a family
of Marshall-Olkin power-law (MOPL) distributions. Moreover, our extensive
experiments demonstrate that MOPL models characterize the length-frequency of
entities much better than two state-of-the-art power-law models and one alternative
log-normal model and that MOPL models are scalable to the length-frequency of
entities in large-scale real-world datasets.
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3. Methodology

We first briefly introduce the discrete power-law distributions and then detail the
Marshall-Olkin power-law (MOPL) models that we use to characterize the length-
frequency distributions of entities in different types and different languages. After
that we introduce the Kolmogorov-Smirnov (KS) test (Smirnov, 1948; Stephens,
1974) and the average-error metric that are used to evaluate the goodness-of-fit.

3.1. Discrete Power-Law Distribution
The discrete power-law distribution is given a special case of power-law distri-

butions with discrete values. It is defined by Eq. (1):

P (X = x) =
x−α

ζ(α)
(1)

where x ∈ N+, α > 0 is the scaling exponent, and ζ(α) = Σ∞
k=1k

−α is the
Riemann Zeta function.

Eq. (1) can be written as Eq. (2), which demonstrates the linear behavior in the
log-log scale:

logP (X = k) = −α log x− log ζ(α) (2)

The survival function (SF) of the power-law distribution is given by Eq. (3):

F (X) = P (X > x) =
ζ(α, x+ 1)

ζ(α)
(3)

where ζ(α, x) = Σ∞
k=xk

−α is the Hurwitz zeta function.

3.2. Marshall-Olkin Power-Law Distribution
Pérez-Casany and Casellas (2013) explore a new form of power-law distribu-

tions by extending the original power-law function through the Marshall-Olkin
transformation. They extend the original power-law function to a more general
function called Marshall-Olkin power-law distribution. This function have two
parameters, α and β, and its survival function (SF) is given as below:

P (X > x) = G(x;α, β) =
βF (X)

1− βF (X)
=

βζ(α, x+ 1)

ζ(α)− βζ(α + 1)
(4)

where β > 0, α > 1 and β = 1− β.
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The probability mass function (PMF) can be computed through Eq. (5):

P (X = x) = G(x− 1;α, β)−G(x;α, β)

=
x−αβζ(α)

[ζ(α)− βζ(α, x)][ζ(α)− (β)ζ(α, x+ 1)]

(5)

where x ∈ N+ and ζ(α, x) = Σ∞
k=x+1k

−α stands for the Hurwitz Zeta function.
The Marshall-Olkin power-law (MOPL) distributions are a generalization

of power-law distributions and overcome some limitations of pure power-law
distributions by introducing a parameter. Such parameter allows for more flexibility
in adjusting the probabilities of small values while keeping the linearity in tails. The
MOPL models are capable of fitting the concave and convex issues encountered
in realistic situations, and have been applied to characterize various data such as
music compositions and web page visits (Pérez-Casany and Casellas, 2013).

In this paper, we use the MOPL models to characterize the length-frequency
distributions of entities in different types and different languages.

3.3. Kolmogorov-Smirnov Test
Like many previous researches (Clauset et al., 2009; Hanel et al., 2017; Wang

et al., 2017; Gerlach and Altmann, 2019; Artico et al., 2020; Nettasinghe and
Krishnamurthy, 2021; Zhong et al., 2022b), we employ the Kolmogorov-Smirnov
(KS) test (Smirnov, 1948; Stephens, 1974) to examine the goodness-of-fit. The KS
statistic (Dn) quantifies the distance between the cumulative distribution function
(CDF) of a set of data points (Fn(l)) and the CDF of a theoretic distribution (F (l)),
as defined by Eq. (6):

Dn = sup
l

|Fn(l)− F (l)| (6)

where supl is the supremum of the set of distances. The KS statistic Dn ∈ [0, 1] is
the maximal distance between the two CDF curves Fn(l) and F (l). The smaller
the Dn value is, the better the theoretic distribution fits the data points.

The KS test can also be used to examine whether two underlying distributions
are significantly different. In such case, the two-sample KS statistic (Dn,m) is
defined by Eq. (7):

Dn,m = sup
l

|Fn(l)− Fm(l)| (7)

where Fn(l) and Fm(l) are the CDF curves of two sets of data points.
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In the KS test, the null hypothesis (H0) is that the data points are drawn from
a theoretic distribution, where the theoretic distribution can be any parametric
distribution, such as zipf distribution, normal distribution, power law distribution,
and lognormal distribution; the alternative (H1) is that the data points are not
drawn from the theoretic distribution. A larger p-value suggests that it is safer to
draw a conclusion that these data points are not significantly different from the
hypothesized distribution. In two-sample KS test, the null hypothesis (H ′

0) is that
the two sets of data points are drawn from the same underlying distribution, while
the alternative (H ′

1) is that they are not from the same distribution. Similarly, a
larger p-value suggests that it is safer to draw a conclusion that the two sets of data
points are drawn from the same underlying distribution.

3.4. Average Error
Besides the KS test, we also define a metric called average error to examine

the goodness-of-fit. The average error is defined by Eq. (8):

Eavg =
1

N

∑
xi

|pN (xi)− p (xi)|√
pN (xi) · p (xi)

(8)

where pN(x) and p(x) are the probability density functions (PDF) of the raw data
and the hypothesized data. N =| {(xi, pN (xi)} | stands for the number of data
points. Defining the average-error metric by Eq. (8) is to remove the impact of
different sample sizes. For different models fitting to the same dataset, the smaller
the model achieves the Eavg, the better the model fits the dataset.

4. Experiments

We fit Marshall-Olkin power-law (MOPL) models to twelve datasets about
different types of entities and eighteen datasets about entities in different languages
and compare the fitting results of MOPL with two state-of-the-art models, namely
CSN2009 (Clauset et al., 2009) and LSavg (Zhong et al., 2022b), and an alternative
log-normal model.

4.1. Datasets
The datasets we use in this paper mainly involve two kinds: (1) entities in

different types and (2) entities in different languages. Most of these datasets
contain annotated entities while some contain automatically annotated entities. We
collect from both their training and test sets of these datasets for their entities.
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4.1.1. Entities in Different Types
This kind of datasets contains twelve datasets regarding different types of

entities collected from dramatically diverse sources, including general named
entities (Grishman and Sundheim, 1996; Chinchor, 1997; Sang and Meulder,
2003), entity mentions (Ling and Weld, 2012; Pradhan et al., 2013), time expres-
sions (Pustejovsky et al., 2003a,b; Zhong and Cambria, 2023), aspect terms (Liu,
2012; Pontiki et al., 2014), literary entities (Bamman et al., 2019), defense entities,
informal entities (Ritter et al., 2011; Derczynski et al., 2016), and domain-specific
entities (Fukuda et al., 1998; Takeuchi and Collier, 2005) that are well studied in
the field of natural language processing and related areas. In this paper, we use
the term of “entity” to broadly represent these diverse concepts, and these specific
concepts are treated as different types of entities. In a specific type of entities,
researchers may also assign some pre-defined labels (e.g., PERSON, LOCATION,
and ORGANIZATION) to these entities. We use “different types of entities” or
“entity types” to represent the above general named entities, time expressions, as-
pect terms, etc., while use “different categories of entities” or “entity categories” to
represent these pre-defined labels. In our analysis, we are concerned with “different
types of entities” and do not care much about “different categories of entities.”
Because each type of entities may also contain different categories/labels and can
reveal general habits of our humans in using language, while a certain category of
entities reveal only our specific/narrow habit(s). In this paper, we care more about
those general habits and principles than specific/narrow one(s). Since English is
the most studied language in natural language processing and related areas, we
analyze these different types of entities in English.

The twelve datasets are (1) ABSA (Pontiki et al., 2014, 2015), (2) ACE04 (Dod-
dington et al., 2004), (3) BBN (Weischedel and Brunstein, 2005), (4) BioMed (Crich-
ton et al., 2017), (5) CoNLL03 (Sang and Meulder, 2003), (6) COVID19 (Wang
et al., 2020), (7) LitBank (Bamman et al., 2019), (8) OntoNotes5 (Pradhan et al.,
2013), (9) Re3d, (10) TimeExp (Pustejovsky et al., 2003b; Mazur and Dale, 2010;
UzZaman et al., 2013; Zhong et al., 2017; Zhong and Cambria, 2018), (11) Twit-
ter (Strauss et al., 2016; Derczynski et al., 2016), (12) WikiAnchor (Ling and Weld,
2012). They are briefly described below in alphabetical order.

ABSA contains two corpora that are used in SemEval-2014 (Pontiki et al.,
2014) and SemEval-2015 (Pontiki et al., 2015) for aspect-based sentiment analysis.
While the two corpora have several language units for different tasks, we are
concerned with aspect terms and collect these aspect terms for the analysis of their
length-frequency distribution.
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ACE04 is a benchmark dataset used for the 2004 Automatic Content Extraction
(ACE) technology evaluation (Doddington et al., 2004). It consists of various types
of data collected from different sources (e.g., newswire and broadcast news) for the
analysis of entities and relations in three languages: Arabic, Chinese, and English.
We use its English entities for the analysis of different types of entities, while use
its Arabic entities for the analysis of entities in different languages.

BBN consists of Wall Street Journal articles for pronoun co-reference and entity
analysis (Weischedel and Brunstein, 2005). It includes 28 entity categories in total.
We collect all of its entities for analysis, without considering its entity categories.

BioMed contains fourteen corpora that are developed for the analysis of biomed-
ical entities. Crichton et al. (2017) collect the fourteen corpora and we can get
these corpora from their paper for the biomedical entities.

CoNLL03 is a benchmark dataset with 1,393 news articles derived from the
Reuters RCV1 Corpus, which is collected between the period of August 1996
and August 1997 (Sang and Meulder, 2003). We collect its entities without entity
categories for the analysis of the length-frequency distribution.

COVID19 is a newly constructed dataset for the analysis of entities related to
the recent COVID-19 pandemic (Wang et al., 2020). We collect and analyze its
entities for the length-frequency analysis.

LitBank is a dataset collected from 100 different English-language literary
articles across over a long period of time and it is developed for the analysis of
literary entities (Bamman et al., 2019).

OntoNotes5 is a large-scale dataset collected from different sources (e.g., news
articles, newswire and web data) over a long period of time for the comprehensive
analyses of syntax, co-reference, proposition, word sense, and named entities in
three languages (i.e., English, Chinese, and Arabic) (Pradhan et al., 2013). In this
paper we are concerned with its entities in English for analysis.

Re3d 2 is a dataset with various documents relevant to the conflict in Syria and
Iraq. The dataset is constructed for the analysis of entity and relation extraction in
the domain of defense and security. We collect its entities for analysis.

TimeExp consists of three corpora that are developed for the analysis of
time expressions (Zhong et al., 2017; Zhong and Cambria, 2018; Zhong et al.,
2020). These corpora include TempEval-3 (including TimeBank (Pustejovsky
et al., 2003b), TE3-Silver, AQUAINT, and the Platinum corpus) (UzZaman et al.,
2013), WikiWars (Mazur and Dale, 2010), and Tweets (Zhong et al., 2017).

2https://github.com/dstl/re3d
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Table 2: Statistics of datasets about entities in different types. Entity length l is defined by the
number of words in an entity.

Dataset Entity Type Num of Entities Max l Average l StdDev. l

ABSA aspect terms 9,979 21 1.45 0.89
ACE04 named entities 29,949 57 2.43 9.29
BBN named entities 98,427 15 1.26 0.36
BioMed biomedical entities 450,729 86 1.80 4.05
CoNLL03 named entities 35,087 14 1.45 0.48
COVID19 pandemic entities 10,260,797 117 1.27 0.63
LitBank literary entities 13,912 129 2.93 19.66
OntoNotes5 named entities 155,413 28 1.85 1.58
Re3d defense entities 3,394 20 2.32 3.20
TimeExp time expressions 18,484 22 1.80 1.31
Twitter informal entities 20,515 14 1.39 0.71
WikiAnchor anchor text 2,690,849 49 2.10 3.09

Twitter consists of two corpora whose text is collected from Twitter: WNUT16
(Strauss et al., 2016) and Broad Twitter Corpus (Derczynski et al., 2016). These
two corpora are developed for the analysis of entities in informal text.

WikiAnchor treats the anchor text (i.e., the text in the hyperlinks) from
Wikipedia (the 20110513 version) as entity mentions (Ling and Weld, 2012).
We collect these entity mentions (i.e., anchor text) for length-frequency analysis.

For each of these datasets that contain two or more corpora (i.e., ABSA,
BioMed, TimeExp, and Twitter), we simply merge all the entities from the whole
corpora. Note again that we collect from these datasets only their entities for
the analysis of length-frequency distribution; we do not care about their entity
categories (or pre-defined labels).

Table 2 reports the entity types and statistics of the twelve datasets. As men-
tioned in Section 3.2, the entity length l is defined by the number of words in
an entity. Table 2 shows that the numbers of entities in the twelve datasets are
diverse dramatically, ranging from 3,394 (Re3d) to 10,260,797 (COVID19); and
the maximal lengths and standard deviations of these entities are also diverse: the
maximal lengths are varied from 14 to 129 and the standard deviations are varied
from 0.36 to 19.66, respectively. However, the average lengths of these entities are
comparable and range around 2 (only from 1.26 to 2.93). This indicates that the
average length is a common characteristic among these diverse entities.

12



Table 3: Statistics of entities in different languages

Language Entity Type Num of Entities Max l Average l StdDev. l

Afrikaans named entities 13,947 27 1.86 1.87
Arabic named entities 44,284 41 2.15 6.06
Basque named entities 4,748 20 1.47 0.62
Bokmal named entities 13,950 15 1.10 0.19
Croatian named entities 21,105,675 11 1.95 2.37
Czech named entities 62,867 9 1.53 0.79
France named entities 9,836 17 1.41 0.75
German named entities 12,778 34 1.53 0.91
Italian named entities 1,071,045 41 2.35 2.37
Netherland named entities 7,102 9 1.42 0.99
Nynorsk named entities 12,726 10 1.13 0.25
Polish named entities 12,038,419 13 1.86 1.16
Romanian named entities 153,226 30 1.77 1.94
Russian named entities 3,152,930 12 1.70 1.16
Samnorsk named entities 29,407 15 1.11 0.22
Slovak named entities 136435 11 1.72 1.44
Slovene named entities 13,055,756 8 2.07 2.03
Ukrainian named entities 18,347,492 14 2.23 2.31

4.1.2. Entities in Different Languages
This kind of datasets contains named entities in eighteen different languages.

These datasets are collected from 2004 Automatic Content Extraction (ACE)
evaluation (Doddington et al., 2004), European Newspapers3, NCHLT Afrikaans
Named Entity Annotated Corpus4, Basque EIEC (version 1.0)5, BSNLP 20176,
Italian KIND (Paccosi and Aprosio, 2021), Norwegian Navnkjenner (Johansen,
2019), and RONEC (Dumitrescu and Avram, 2019).

The eighteen languages include (1) Afrikaans, (2) Arabic, (3) Basque, (4) Bok-
mal, (5) Croatian, (6) Czech, (7) France, (8) German, (9) Italian, (10) Netherland,
(11) Nynorsk, (12) Polish, (13) Romanian, (14) Russian, (15) Samnorsk, (16)
Slovak, (17) Slovene, and (18) Ukrainian. We do not include English in this kind

3https://github.com/EuropeanaNewspapers/ner-corpora
4https://repo.sadilar.org/handle/20.500.12185/299
5http://www.ixa.eus/node/4486?language=en
6http://bsnlp-2017.cs.helsinki.fi/shared_task.html
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of datasets because different types of entities are analyzed in English. Table 3
summarizes the statistics of entities in the eighteen languages. It shows that the
numbers of these entities are significantly diverse, ranging from 4,748 (Basque)
to 21,105,675 (Croatian). The maximal lengths and standard deviations of these
entities in different languages are somewhat diverse but not that dramatical; while
the average lengths of these entities are comparable, ranging around 2 (specifically,
from 1.10 to 2.35). These statistics are consistent with corresponding ones of
different types of entities reported in Table 2. This indicates that entities across
different types and different languages share some similar characteristics.

4.2. Compared Methods
We evaluate the quality of MOPL models in fitting the length-frequency distri-

butions of entities against two state-of-the-art models, namely CSN2009 (Clauset
et al., 2009) and LSavg (Zhong et al., 2022b), and an alternative log-normal model.

CSN2009: Clauset et al. (2009) propose a maximum-likelihood fitting method,
which is denoted by CSN2009, that combines with goodness-of-fit tests based on
the Kolmogorov-Smirnov statistic to fit power-law distributions to empirical data.
CSN2009 estimates the exponent of a power-law model and the minimal value
from which the power-law distribution starts. Besides data fitting, CSN2009 also
adopts the KS test with likelihood ratios to evaluate the goodness-of-fit of how
well a model fits to data. CSN2009 has been the most popular method in the last
decade in fitting power-law distributions.

LSavg: Zhong et al. (2022b) demonstrate through extensive experiments that
least-squares methods can accurately fit to power-law distributions. They propose
a least-squares method to fit power-law distributions to empirical data and use an
average strategy to reduce the impact of noisy data that deviate from the fitted line.

LogNormal: Log-normal distributions are alternative distributions that re-
searchers usually use to fit data when considering power-law distributions. There-
fore, besides CSN2009 and LSavg, we also compare MOPL models with the
log-normal model in terms of fitting the length-frequency of entities.

4.3. Implementation Details
For the experiments of data fitting, we use the zipfextR package (Pérez-Casany

and Casellas, 2013) in the R programming language to implement our method and
apply the codes of CSN2009 7 and LSavg

8 to the datasets. For the KS test, we use

7https://aaronclauset.github.io/powerlaws/
8https://github.com/xszhong/LSavg
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Table 4: Fitting results of MOPL and compared models fitting to the length-frequency distributions
of entities in different types. C indicates the coverage which is defined by the percentage of data
covered by a model. Mlog denotes logarithmic mean while Vlog denotes logarithmic variance.

Dataset MOPL LSavg CSN2009 LogNormal

α̂ β̂ C(%) α̂ C(%) α̂ x̂min C(%) Mlog Vlog C(%)

ABSA 4.07 5.44 99.82 2.34 99.95 3.68 2 28.79 0.26 0.19 100.00
ACE04 2.69 2.50 99.54 1.61 99.97 2.73 4 15.38 0.55 0.51 100.00
BBN 4.74 5.43 99.97 3.03 100.00 6.77 4 1.23 0.16 0.11 100.00
BioMed 2.84 2.17 99.92 2.02 99.99 3.36 4 8.53 0.36 0.33 100.00
CoNLL03 5.83 29.48 99.97 2.51 100.00 5.09 2 36.78 0.28 0.15 100.00
COVID19 3.68 1.94 99.00 2.42 99.99 4.96 4 2.10 0.15 0.13 100.00
LitBank 3.44 14.98 99.47 2.94 99.68 2.61 2 70.99 0.62 0.41 100.00
OntoNotes5 3.71 3.12 99.90 0.73 99.99 5.31 5 1.28 0.22 0.17 100.00
Re3d 3.26 8.79 98.70 1.12 99.82 4.67 6 5.10 0.69 0.55 100.00
TimeExp 4.19 14.15 99.91 1.46 100.00 5.34 4 8.09 0.45 0.26 100.00
Twitter 4.20 5.21 99.91 2.54 99.99 3.86 2 26.19 0.23 0.16 100.00
WikiAnchor 4.21 23.02 100.00 2.55 100.00 3.81 3 24.69 0.58 0.30 100.00

the dgof 9 (Arnold and Emerson, 2011) and KSgeneral 10 (Dimitrova et al., 2020)
packages in the R programming language for MOPL, LSavg, and the log-normal
model, while use CSN2009’s KS-test module for CSN2009. In experiments, we
find that for the same model on the same dataset, dgof and KSgeneral achieve the
same Dn value (i.e., the KS statistic) but different p-values. This suggests that the
Dn values are accurate while the p-values may not be accurate. In this paper, we
use the dgof package to report the Dn values and make the final Accept/Reject
decisions. All our experiments are conducted on a Dell PowerEdge R740 server
with a 96-CPUs processor, 256GB memory, and the CentOS-7 system.

4.4. Experimental Results
Tables 4 and 5 report the fitting and goodness-of-fit testing results of MOPL

and the three compared models on the length-frequency distributions of entities
in different types. Specifically, Table 4 reports the estimated parameters of the
models and the coverages (i.e., percentages of data that models cover) while Table 5
reports the goodness-of-fit testing results of the models on the datasets, including

9https://cran.r-project.org/web/packages/dgof/index.html
10https://github.com/raymondtsr/ksgeneral
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Figure 1: Plots of MOPL and the three compared models fitting to the length-frequency distributions
of entities in different types in the twelve datasets. The horizontal axis indicates the entity length (l)
while the vertical axis indicates the percentage (p(l)).
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Dn, Eavg, and DEC where DEC indicates the decision to accept or reject the
hypothesis H0. Figure 1 visualizes the results of MOPL and the three compared
models fitting to the length-frequency distributions of entities in different types.
Tables 6 reports the fitting results while Table 7 reports the goodness-of-fit testing
results of MOPL and the three compared models fitting to the length-frequency
of entities in different languages. Figures 2 and 3 visualize those fittings to the
length-frequency of entities in different languages.

What follows are separate discussions on model fitting and testing results on
the length-frequency of entities in different types and different languages.

4.4.1. Results on the length-frequency of entities in different types
Let us first look at the three measures that examine the goodness-of-fit in

Table 5: Dn, Eavg, and DEC. Table 5 shows that MOPL achieves the best results
in all the three measures on all the twelve datasets, in comparison with the three
compared models. Specifically, MOPL achieves the performance of Dn in the range
from 7.88E-05 to 1.22E-02 and the Eavg value from 0.18 to 1.40 as well as all the
“Accept” across the twelve datasets. By contrast, LSavg achieves the performance
of Dn in the range from 2.73E-01 to 8.00E-01 and the Eavg value from 1.12 to 4.57
as well as all the “Reject” across the datasets. The three measures that CSN2009
achieves are 4.46E-03∼6.02E-02 for Dn, 0.25∼0.66 for Eavg, and 5 “Accept” and
7 “Reject” for DEC. The three measures of LogNormal are 1.76E-02∼1.21E-01
for Dn, 0.36∼11.27 for Eavg, and all 12 “Reject” for DEC. This indicates that
MOPL fits the length-frequency distributions of entities in different types much
better than LSavg and CSN2009, which are developed to fit power-law distributions,
and LogNormal, which is often used as an alternative model for power-law models
to fit empirical data. Figure 1 intuitively visualizes the difference between MOPL
and the three compared models in fitting the length-frequency distributions of
entities on the twelve datasets. From Figure 1 we can see that the fittings of MOPL
are much better than the ones of the three compared models. More importantly,
MOPL achieving all the “Accept” on the twelve datasets indicates that MOPL is a
suitable model to characterize the length-frequency of entities in different types.

The fact that MOPL achieves the best goodness-of-fit testing results indicates
that MOPL achieves the best estimated parameters. As shown in Table 4, therefore,
the α̂ of MOPL should be considered as the relatively accurate estimated exponents
fitting to the power-law segments of the length-frequency distributions of entities in
different types. All the α̂ of MOPL fitting to these different types of entities range
from 2.69 to 5.83, and most of these α̂ range from 2.69 to 4.74. This indicates that
the length-frequency of entities in different types have stable scaling property.
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Figure 2: Plots of MOPL and the three compared models fitting to the length-frequency distributions
of entities in different languages in the first nine datasets. The horizontal axis indicates the entity
length (l) while the vertical axis indicates the percentage (p(l)).
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Figure 3: Plots of MOPL and the three compared models fitting to the length-frequency distributions
of entities in different languages in the remaining nine datasets. The horizontal axis indicates the
entity length (l) while the vertical axis indicates the percentage (p(l)).
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Table 6: Results of MOPL and compared models fitting to the length-frequency distributions of
entities in different languages. C indicates the coverage which is defined by the percentage of data
covered by a model. Mlog denotes logarithmic mean while Vlog denotes logarithmic variance.

Dataset MOPL LSavg CSN2009 LogNormal

α̂ β̂ C(%) α̂ C(%) α̂ x̂min C(%) Mlog Vlog C(%)

Afrikaans 3.42 6.01 99.63 1.59 99.99 4.90 5 4.92 0.44 0.31 100.00
Arabic 2.66 3.02 99.57 2.25 99.96 4.72 14 0.80 0.47 0.45 100.00
Basque 4.91 13.74 99.77 4.25 99.96 5.60 3 8.34 0.29 0.17 100.00
Bokmal 4.69 1.66 99.71 1.58 99.99 4.12 1 99.71 0.06 0.05 100.00
Croatian 3.67 8.78 99.40 2.37 100.00 3.12 2 49.58 0.48 0.32 100.00
Czech 5.08 18.68 99.70 1.98 100.00 4.41 2 39.92 0.32 0.18 100.00
France 3.83 3.73 99.69 2.12 99.95 5.30 4 3.29 0.23 0.18 100.00
German 4.74 13.38 99.82 1.09 99.91 4.53 3 9.38 0.31 0.19 100.00
Italian 3.91 23.10 99.95 0.71 100.00 7.35 9 0.60 0.68 0.33 100.00
Netherland 3.06 1.49 99.34 3.89 100.00 2.74 1 98.47 0.22 0.20 100.00
Nynorsk 4.49 1.95 99.94 1.30 100.00 3.77 1 88.37 0.08 0.06 100.00
Polish 4.79 29.87 99.79 1.82 100.00 3.76 2 56.15 0.49 0.23 100.00
Romanian 3.21 3.81 99.80 2.14 100.00 5.94 8 0.85 0.39 0.30 100.00
Russian 5.12 28.91 99.62 4.06 100.00 4.19 2 49.85 0.41 0.21 100.00
Samnorsk 4.53 1.70 99.98 2.25 100.00 3.95 1 99.63 0.07 0.05 100.00
Slovak 4.24 12.01 99.77 1.24 100.00 3.62 2 45.30 0.40 0.25 100.00
Slovene 3.68 11.37 98.77 0.86 100.00 4.38 4 13.11 0.54 0.33 100.00
Ukrainian 3.98 21.16 99.47 1.83 100.00 4.77 5 7.60 0.63 0.32 100.00

Let us now look at the fittings of the two state-of-the-art compared models,
LSavg and CSN2009. The α̂ of LSavg are deviated relatively far away from the α̂
of MOPL. The reason is that LSavg assumes that a power-law starts from the very
beginning of an empirical dataset, but Figure 1 shows that such assumption is not
applicable to the length-frequency of entities. This indicates that a pure power-law
model is unsuitable to characterize the length-frequency of entities in different
types. On the other hand, the α̂ of CSN2009 are deviated slightly from the the α̂ of
MOPL. The reason is that CSN2009 adopts a minimum-KS-statistic strategy to
choose larger lower bound (i.e., x̂min) and fits only the long tails. Consequently,
CSN2009 discards the majority of data and achieves low coverages, which are
only from 1.23% to 70.99%. By contrast, other models cover more than 98.70% of
data. This result that CSN2009 achieves low coverage in fitting to empirical data is
consistent with the observation reported in Zhong et al. (2022b).
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4.4.2. Results on the length-frequency of entities in different languages
Let us first look at the three goodness-of-fit testing measures in Table 7 as

well: Dn, Eavg, and DEC. Table 7 shows that none of the four models (i.e.,
MOPL, LSavg, CSN2009, and LogNormal) can perfectly characterize the length-
frequency distributions of entities in the eighteen languages. The fittings to the
length-frequency of entities in different languages are much worse than the fittings
to the length-frequency of entities in different types. A possible reason is that
some of these datasets in the non-English languages contain a large number of
noises. As we mentioned above, English is the most studied language in the field of
natural language processing and related areas; other languages are also studied, but
their annotated datasets may not be as accurate as the datasets in English. Another
possible reason is that none of our authors are familiar with those languages and
cannot guarantee the accuracy of the annotations for these datasets.

Let us now look at the comparison among the four models fitting to the length-
frequency of entities. While MOPL does not well characterize the length-frequency
distributions of entities in all the eighteen languages, MOPL outperforms the three
compared models. Specifically, MOPL achieves the Dn value in the range from
1.72E-03 to 4.01E-02, achieves the Eavg value in the range from 0.17 to 2.47, and
achieves 8 “Accept” and 10 “Reject” for DEC across all the eighteen languages.
By contrast, LSavg achieves the Dn value from 1.00E-01 to 7.69E-01, achieves the
Eavg value from 0.33 to 23.99, and achieves all 18 “Reject” for DEC across the
eighteen languages. CSN2009 achieves the Dn value from 4.92E-03 to 5.69E-02,
achieves the Eavg value from 0.15 to 3.18, and achieves 6 “Accept” and 12 “Reject”
for DEC. LogNormal achieves the Dn value from 1.70E-02 to 1.24E-01, achieves
the Eavg value from 0.34 to 6.81, and achieves all 18 “Reject” for DEC. The
comparison among the four models fitting to the length-frequency of entities is
intuitively visualized in Figures 2 and 3. The fitting and testing results indicate
that MOPL is more suitable to characterize the length-frequency distributions of
entities in different languages than LSavg, CSN2009, and LogNormal.

Table 6 shows that the α̂ of MOPL fitting to the length-frequency distributions
of entities in different languages range only from 2.66 to 5.12, which is consistent
with the α̂ of MOPL fitting to different types of entities, as shown in Table 4. This
indicates that the length-frequency distributions of entities in different languages
also have stable scaling property. In terms of data coverage, MOPL, LSavg, and
LogNormal cover almost all the data (i.e., from 99.91% to 100%), while CSN2009
achieves relatively low coverages (i.e., lower to 0.60%). Specifically, CSN2009
discards at least 50% of data in 13 out of 18 languages, and discards at least 90%
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of data in 8 out of 18 languages. The low coverage of CSN2009 on the length-
frequency of entities in different languages is consistent with the one of CSN2009
on the length-frequency of entities in different types reported in Table 4 as well as
the observation reported in Zhong et al. (2022b).

4.5. Computational Efficiency
Table 8 reports the runtimes of MOPL, LSavg, CSN2009 and LogNormal fitting

to the length-frequency distributions of entities in different types and different
languages.11 Table 8 shows that while the runtimes of MOPL fitting to length-
frequency of entities in both different types and different languages are less efficient
than ones of LSavg and LogNormal, they are significantly more efficient than the
ones of CSN2009. Moreover, while the number of entities in individual dataset
ranges from 3,394 to 10,260,797 in different types (see Table 2) and from 4,748 to
21,105,675 in different languages (see Table 3), the runtime of MOPL performing
on individual dataset ranges only from 41.71 to 409.67 milliseconds, all of which
are less than one second. That means the runtime of MOPL neither increases
linearly nor exponentially as the number of entities increases. This suggests that
MOPL can be easily applied on large-scale datasets with high efficiency.

5. Discussion

5.1. Some Implications on Entity-related Linguistic Tasks
We here briefly discuss some implications of this linguistic phenomenon (i.e.,

the length-frequency of entities in different types and different languages can be
characterized by Marshall-Olkin power-law distributions) on entity-related linguis-
tic tasks. This linguistic phenomenon may be able to explain why many statistical
models and deep-learning models, such as conditional random fields (Lafferty et al.,
2001), long short-term memory networks (Hochreiter and Schmidhuber, 1997),
and transformer (Devlin et al., 2018), can be applied for recognizing all these
different types of entities from unstructured text (Fukuda et al., 1998; Sang and
Meulder, 2003; Takeuchi and Collier, 2005; Nadeau and Sekine, 2007; Ritter et al.,
2011; Liu, 2012; Pontiki et al., 2014; Krallinger et al., 2015; Derczynski et al.,
2016; Yadav and Bethard, 2018; Zhong, 2020; Zhong et al., 2022a). This linguistic
phenomenon may also be able to provide insights into analyzing those languages
with low-resources. Since entities in different types and different languages share

11Note that the reported runtimes only include the time of the four models fitting to the length-frequency distributions;
they do not include the time of the KS testing.
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Table 8: Runtime of MOPL, LSavg, CSN2009, and LogNormal fitting to the length-frequency
distributions of entities in different types and different languages. The unit of the runtime is
millisecond, denoted by ms.

Dataset MOPL LSavg CSN2009 LogNormal

ABSA 188.93 ms 5.89 ms 29.51 ms 6.20 ms
ACE04 293.97 ms 6.40 ms 308.19 ms 7.14 ms
BBN 69.83 ms 6.81 ms 134.39 ms 6.32 ms
BioMed 360.48 ms 7.03 ms 4368.31 ms 7.43 ms
CoNLL03 360.48 ms 5.71 ms 42.93 ms 6.92 ms
COVID19 261.38 ms 7.52 ms 39544.32 ms 27.45 ms
LitBank 409.67 ms 6.78 ms 474.60 ms 6.57 ms
OntoNotes5 96.58 ms 5.60 ms 183.25 ms 8.53 ms
Re3d 111.97 ms 6.20 ms 19.79 ms 6.90 ms
TimeExp 137.48 ms 6.54 ms 59.12 ms 6.66 ms
Twitter 89.37 ms 152.74 ms 53.19 ms 1371.74 ms
WikiAnchor 357.21 ms 7.05 ms 17060.66 ms 12.55 ms
Total 2737.35 ms 224.27 ms 62278.26 ms 1474.41ms

Afrikaans 312.27 ms 6.34 ms 53.83 ms 6.58 ms
Arabic 224.97 ms 7.13 ms 284.04 ms 6.68 ms
Basque 64.78 ms 6.44 ms 13.29 ms 6.30 ms
Bokmaal 92.05 ms 6.13 ms 22.85 ms 6.03 ms
Croatian 73.45 ms 6.09 ms 31483.92 ms 88.09 ms
Czech 69.13 ms 6.50 ms 80.67 ms 6.09 ms
France 79.26 ms 6.48 ms 23.68 ms 7.02 ms
German 168.32 ms 227.47 ms 88.78 ms 783.02 ms
Italian 295.43 ms 6.26 ms 6335.01 ms 9.42 ms
Netherland 41.71 ms 6.84 ms 11.21 ms 6.37 ms
Nynorsk 69.92 ms 6.28 ms 21.86 ms 6.61 ms
Polish 67.35 ms 5.47 ms 20347.38 ms 99.88 ms
Romanian 132.39 ms 6.20 ms 527.88 ms 6.26 ms
Russian 82.65 ms 6.06 ms 4555.56 ms 12.21 ms
Samnorsk 89.67 ms 5.80 ms 41.98 ms 6.03 ms
Slovak 114.66 ms 6.12 ms 185.98 ms 6.17 ms
Slovene 60.35 ms 6.30 ms 15422.35 ms 39.23 ms
Ukrainian 94.12 ms 7.39 ms 37443.65 ms 50.21 ms
Total 2132.46 ms 335.30 ms 116943.92 ms 1152.21 ms
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many common characteristics (e.g., their length-frequency distributions, average
lengths, and scaling property), we could transfer knowledge and resource available
in those well-studied languages to those low-resource languages. We could also
apply those statistical modes and deep-learning models that have demonstrated to
be effective and efficient in well-studied languages to those low-resource languages.
Distilling this knowledge about the length-frequency distributions of entities can
also drive us to design effective and efficient algorithms for specific linguistic tasks.
For example, Zhong et al. (2017) found that an average time expression contains
only about two words of which one is time token and the other is modifier or
numeral, and then they designed proper rules to recognize time expressions from
unstructured text. To apply this linguistic knowledge and achieve more progress in
linguistic tasks, however, we still need to explore into deeper understanding of this
linguistic phenomenon.

5.2. Limitations
While we find that the length-frequency distributions of entities in different

types can be well characterized by Marshall-Olkin power-law (MOPL) models, and
the ones in different languages can also be roughly characterized by MOPL models,
we should note that our analysis on these datasets about different languages may
be inaccurate because many of these languages are not well studied in the field of
natural language processing and related areas and we authors do not have sufficient
expertise knowledge to cover our analysis on these different languages.

6. Conclusion

In this paper, we discover that the length-frequency distributions of entities in
different types and different languages can be characterized by a family of Marshall-
Olkin power-law (MOPL) models. Our discovery adds a stable knowledge to
the field of language and provides some insights into conducting entity-related
linguistic tasks and may also provide a new perspective for future potential research
in understanding the language use. Experimental results on the length-frequency of
entities in both different types and different languages demonstrate the superiority
of MOPL models against a log-normal model and two state-of-the-art power-law
models, namely LSavg that is developed by Zhong et al. (2022b) and CSN2009
that is developed by Clauset et al. (2009). Experimental results also demonstrate
that MOPL models are scalable to the length-frequency of entities in large-scale
real-world datasets.
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