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Abstract: The worm gearbox is a high-speed transmission system that plays a vital role in 

various industries. Therefore it becomes necessary to develop a robust fault diagnosis scheme 

for worm gearbox. Due to advancements in sensor technology, researchers from academia and 

industries prefer deep learning models for fault diagnosis purposes. The optimal selection of 

hyperparameters (HPs) of deep learning models plays a significant role in stable performance. 

Existing methods mainly focused on manual tunning of these parameters, which is a 

troublesome process and sometimes leads to inaccurate results. Thus, exploring more 

sophisticated methods to optimize the HPs automatically is important. In this work, a novel 

optimization, i.e. amended gorilla troop optimization (AGTO), has been proposed to make the 

convolutional neural network (CNN)  adaptive for extracting the features to identify the worm 

gearbox defects. Initially, the vibration and acoustic signals are converted into 2D images by 

the Morlet wavelet function. Then, the initial model of CNN is developed by setting 

hyperparameters. Further, the search space of each Hp is identified and optimized by the 

developed AGTO algorithm. The classification accuracy has been evaluated by AGTO-CNN, 

which is further validated by the confusion matrix. The performance of the developed model 

has also been compared with other models. The AGTO algorithm is examined on twenty-three 

classical benchmark functions and the Wilcoxon test which demonstrates the effectiveness and 

dominance of the developed optimization algorithm. The results obtained suggested that the 

AGTO-CNN has the highest diagnostic accuracy and is stable and robust while diagnosing the 

worm gearbox.   

Keywords: Worm gearbox; amended gorilla troop optimization; quantum gate mutation; 

opposition-based learning; CNN 

1. Introduction  

One of the most challenging engineering tasks is comprehending fracture mechanics and 

recognizing failures. Determining the defective mechanical equipment and the cause of the 

defect is not an easy task as it involves a series of the tasks such as identification of the defect 
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mechanism, monitoring of the faults, its early detection and prediction [1–3]. Condition 

monitoring is one of the techniques that can reduce the said troubles. In condition monitoring, 

the data is gathered and elucidated with the help of the most sophisticated sensors and data 

acquisition systems of recent times without stopping the machine. Based on these 

interpretations, it can be easily determined whether the machine component is defective or not 

so that the necessary action can be taken for accurate maintenance at this time [4–7].  

 The rotating machinery is the key element of any industry. These types of machinery 

are powered through gears, bearings and other parts, which can become faulty during their 

operation and can affect the performance of the machines and even result in the breakdown of 

the machine. The gear system is the most common transmission element that is used in 

industries to transmit power most proficiently [8–10] Based on the requirement of the power 

transmission and the working conditions, the gear system is classified into different categories, 

such as spur gear, bevel gear, helical gear and worm gear etc. The worm gear system uses high 

power and gives a higher speed rate. The worm gear has a special mechanism which consists 

of a worm screw and worm wheel that meshes with each other. During harsh operating 

conditions, worm gears (both worm screw and worm wheel) are subjected to different types of 

failures, such as wear, surface fatigue and tooth breakage [11–13]. This necessitates the need 

for an appropriate fault diagnosis scheme to plan a suitable maintenance task based on the 

information gathered from data collected for the proper functioning of the gearbox.  

Recently, researchers have widely used techniques based on artificial intelligence and 

machine learning due to the increment in the availability of data. Vashishtha and Kumar [14] 

proposed a robust and superior version of the support vector machine (SVM) by optimizing its 

sensitive parameters by using a levy flight mutated genetic algorithm (LFMGA) to diagnose 

the defect in the Pelton turbine. Qian et al. [15] also developed an improved version of SVM 

to diagnose autonomous vehicles. Vashishtha et al. [16] have used the African vulture 

optimization algorithm (AVOA) to optimize the parameters of time-varying filter-based 

empirical mode decomposition (TVF-EMD) which helps in the disintegration of the raw 

vibration signal into different modes for identification of rolling bearing’s defects. Tang et al. 

[17] applied the Bayesian optimization (BO) for tuning hyper-parameters of the convolution 

neural network (CNN) for intelligent diagnosis of a hydraulic piston pump. Even though 

machine learning-based methods can intelligently classify the different faults, the feature 

extraction during the implementation of these techniques requires prior knowledge and 

experience. Therefore these techniques do not provide accurate results in the scenario of highly 



non-representable features. This necessitates the need for such techniques that have the better 

representable ability and requires less prior knowledge. Due to the powerful capacity of 

automated feature extraction, deep learning (DL) techniques can handle these problems easily. 

Kumar et al. [18] modified the objective function of the CNN by incorporating the additional 

sparsity in the existing objective function to diagnose the defects in the rolling bearing. 

Vashishtha and Kumar [19] applied generalized sparse filtering based on Wasserstein distance 

and maximum mean discrepancy (MMD) to diagnose the different faults in the Francis turbine 

and Centrifugal pump. On the basis of deep adaptation networks, a DL model was built for 

bearing fault diagnosis where its generalization ability was enhanced [20]. Zhao et al. [21] 

introduced batch normalization in the existing CNN to eliminate the feature distribution 

difference while diagnosing the rolling bearing under variable conditions. Zhu et al. [22] 

proposed the inception block and regression branch that helped in mapping the output features. 

Further, the positional relationship between the features classifies the bearing fault categories. 

Gai et al. [23] optimized the variational mode decomposition (VMD) by hybrid grey wolf 

optimization to decompose the signal into different modes. The sensitive features are then 

extracted from the prominent modes and fed into the deep belief network (DBN). 

As deep learning-based methods have gained much popularity and have attained good 

results in fault diagnosis, but these techniques still have some limitations. For instance, (a) 

Deep learning-based techniques fail to encode the position and orientation of the faults and 

thus give inaccurate results while classifying the fault categories, and (b) The tuning of the 

hyperparameters of the deep learning-based techniques plays a vital role; thus they should be 

set intelligently [24]. 

 In this study, a worm gearbox is selected as the research test rig whose three health 

conditions have been analysed by the intelligent fault diagnosis scheme. In this scheme, 

initially, gorilla troop optimization (GTO) is enhanced by the opposition-based learning 

concept and quantum gate rotation concept, which is further employed to make the CNN 

adaptive by optimizing its hyperparameters. The continuous wavelet transform (CWT) 

converts the raw signals, both from vibration and acoustic, into time-frequency images by the 

suitable wavelet basis function. The adaptive CNN uses these images to precisely recognize 

the different health conditions of the worm gear system. 

The rest of the manuscript is structured in the following sections. In Section 2, the 

background of the CNN and GTO algorithm has been discussed. In the same section, the 



proposed modifications, which have been incorporated into the basic GTO, are also discussed. 

The defect identification scheme is elaborated in Section 3.  In Section 4, how defect 

identification is applied to the real-time application is discussed.  The comparative experiments 

to check the efficacy of the proposed AGTO and the performance of AGTO-CNN are carried 

out in Section 5. The corresponding results are evaluated and discussed. The conclusions of the 

research work are drawn in Section 6. 

2. Related Work 

In this section, the background to the related work, such as gorilla troop optimization and CNN, 

has been covered. 

2.1. Convolutional Neural Network (CNN) 

CNN is a deep neural network and an example of feed-forward neural networks. It has 

capabilities in data mining and useful feature extraction in a supervised learning environment 

[25,26]. The typical structure of CNN consists of different layers as shown in Fig. 1.  

 

Fig. 1: Basis Structure of CNN 

(a) Convolution layer: The convolution layer has a significant role in CNN for feature 

extraction. The filters used in CNN can cover the entire image through shifting. In this layer, 

the dot product is carried out between the filter and the image and then summed over the filter 

region [25]. The filter is then moved to the next place, covering the entire image in the same 

manner. The same can be expressed through Eq. (1). 

𝑁𝑣
𝑙 = 𝐹 ( ∑ 𝑁𝑢

𝑙−1 ∗ 𝑤𝑣
𝑙

𝑢𝜖𝑀𝑣

+ 𝐵𝑣
𝑙)                                                                                                      (1) 

where 𝑁 is the input of CNN, 𝐹 indicates the sigmoid activation function. 𝐵𝑣
𝑙  is the bias 

corresponding to the 𝑗𝑡ℎ output of the 𝑙𝑡ℎ layer of convolutional neural network. 𝑤𝑣
𝑙  is the 

weight for the 𝑣𝑡ℎ feature map. ∗ represents the convolution operation and 𝑀𝑣 is used to select 

the input feature map. 



(b) Pooling layer: The pooling layer performs the down-sampling operation by extracting the 

more significant information from the features obtained from CNN. It not only minimizes the 

parameters but also maintains the invariance of the image feature. The pooling operation can 

be understood through Eq. (2). 

𝑀𝑣−𝑠
𝑙 = 𝐹(𝑄𝑣

𝑙 𝑑𝑜𝑤𝑛(𝑀𝑣
𝑙−1)) + 𝐵𝑣

𝑙                                                                                                     (2) 

where 𝐹 is an activation function, 𝑄𝑣
𝑙  is the weight. 𝐵𝑣

𝑙  represent the bias and 𝑀𝑣
𝑙−1 is used to 

denote the feature map in the (𝑙 − 1)𝑡ℎ layer. 𝑑𝑜𝑤𝑛 indicates the present pooling operation, 

which is performed by using average or maximum operation. 

(c) Fully connected layer: It imitates the behaviour of ANN by connecting the neurons of one 

layer to other layers and converts obtained features into 2D vectors accordingly.  

(d) SoftMax layer: This layer is part of the fully connected layer which transforms the 

probability distribution of target class over all classes. In this way, it maps the output value in 

the interval (0,1) [26]. The mathematical expression of the probability distribution in the 

SoftMax layer is given by Eq. (3). 

𝑝(𝑦𝑣
𝑙) =

𝑒𝑥𝑝(𝑦𝑣
𝑙)

∑ 𝑒𝑥𝑝(𝑦𝑣
𝑙)𝐾

𝑣=1

                                                                                                                      (3) 

(e) Classification layer: This layer calculates the loss during the training phase by minimizing 

the objective function. This objective function is given as 

𝑓𝑖𝑡𝑓𝑛 = − ∑ 𝑦𝑣
𝑇𝑙𝑛

𝑚

𝑗=1

𝑦𝑣
𝑝 + 𝜑 ∑ 𝜔2                                                                                                 (4) 

where the first term represents the cross-entropy loss function and 𝑦𝑝 is predicted value. 𝜑 is 

𝐿2 regularization.  

2.2. Gorilla troop optimization (GTO) 

Abdollahzadeh et al. [27] proposed the GTO by imitating the social intelligence behaviour of 

gorillas. The mathematical model showing the collective life of the gorillas and how they 

perform the exploration and exploitation is discussed in the following subsections:  

2.2.1. Exploration phase 

The GTO algorithm imitates the behaviour of gorillas where the best gorilla at each stage of 

optimization becomes the candidate solution which is known as silverback. The exploration 

stage of optimization consists of three processes, viz., migration to an unknown location, 

migration towards a known location and moving to other gorillas. In GTO, these processes are 

achieved through the following mathematical Eq. (5). 



𝐺𝑃(𝑡 + 1) = {

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) × 𝑟1 + 𝑋𝑚𝑖𝑛 𝑟4 < 𝑝

(𝑟2 − 𝐶) × 𝑋𝑟𝑎𝑛𝑑(𝑡) + 𝐿 × 𝐻 𝑟4 ≥ 0.5,

𝑋(𝑡) − 𝐿 × (𝐿 × (𝑋(𝑡) − 𝐺𝑃𝑟𝑎𝑛𝑑(𝑡)) + 𝑟3 × (𝑋(𝑡) − 𝐺𝑃𝑟𝑎𝑛𝑑(𝑡))) 𝑟4 < 0.5.

                      (5) 

where 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are the random numbers generated within the range 0 and 1. 𝑋𝑚𝑎𝑥 and 

𝑋𝑚𝑖𝑛 represents the upper and lower bounds of the variables. 𝐺𝑃𝑟𝑎𝑛𝑑 represents the position of 

the gorilla which is chosen randomly, and 𝑋𝑟𝑎𝑛𝑑 is one of the gorillas selected randomly from 

the whole population. 𝑋(𝑡) is the current position of the gorilla. 

𝐶, 𝐹, 𝐿 and 𝐻 are the variables calculated as follows: 

𝐶 = 𝐹 × (1 −
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
)                                                                                                                (6) 

𝐹 = 𝑐𝑜𝑠(2 × 𝑟5) + 1                                                                                                                          (7) 

𝐿 = 𝐶 × 𝑙                                                                                                                                              (8) 

𝐻 = 𝑍 × 𝑋(𝑡)                                                                                                                                      (9) 

where 𝐼𝑡𝑒𝑟 and 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 indicate the current and maximum iterations respectively. 𝑟5 and 𝑙 

are random numbers from [0,1], and [-1,1], respectively. 𝑍 is a random variable from the range 

[−𝐶, 𝐶]. 

2.2.2 Exploitation stage 

In this phase, the best candidate i.e. Silverback leads the whole group by taking all the decisions 

and directing the other gorillas towards the food source. The silverback safes and maintain the 

well-being of the whole group. In case, the silverback may weaken and get old or eventually 

die then the blackback of the group will become the group leader. But, if another male gorilla 

somehow engages the silverback then he will dominate the group. If 𝐶 > 𝑊, then following 

the silverback mechanism is selected, but if 𝐶 < 𝑊, adult females’ competition will be 

preferred. 

2.2.3. Follow the Silverback 

In the group, when silverback is young and healthy. All the other gorillas follow the instructions 

of the silverback to visit various places in search of food. The same can be expressed by the 

following mathematical Eq. (10), Eq. (11) and Eq. (12). 

𝐺𝑃(𝑡 + 1) = 𝐿 × 𝑀 × (𝑋(𝑡) − 𝑋𝑆𝐵) + 𝑋(𝑡)                                                                              (10) 



𝑀 = (|
1

𝑁
 ∑ 𝐺𝑃𝑖(𝑡)

𝑁

𝑖=1

|

𝑔

)

1
𝑔

                                                                                                               (11) 

𝑔 = 2𝐿                                                                                                                                                    (12) 

where 𝑋𝑆𝐵 represent the position of the silverback gorilla. 𝑁 is the total number of gorillas.  

2.2.4. Competition for adult females 

At the time of puberty, young gorillas fight with other male gorillas for female gorillas to 

expand their groups. These fights are violent and can last for days. The same can be expressed 

by the following equations. 

𝐺𝑃(𝑖) = 𝑋𝑆𝐵 − (𝑋𝑆𝐵 × 𝑄 − 𝑋(𝑡) × 𝑄) × 𝐴                                                                                  (13) 

𝑄 = 2 × 𝑟6 − 1                                                                                                                                     (14) 

𝐴 = 𝛽 × 𝐸                                                                                                                                             (15  

𝐸 = {
𝑁1, 𝑟7 ≥ 0.5
𝑁2, 𝑟7 < 0.5

                                                                                                                            (16) 

where 𝑟6 and 𝑟7 are the random numbers within range (0,1). 𝐸 is a random number from the 

normal distribution. 

2.3. Proposed modifications in GTO 

In this section, the proposed modifications which enhance the searchability of the basic GTO 

in the basic GTO have been discussed.  

2.3.1. Opposition-based learning 

Most of the metaheuristics optimization algorithms initiate with random global solutions which 

initializes the individual in the given search space. Further, each individual updates their 

position in the search for appropriate solutions on the basis of their intellect. This process is 

time-consuming which can be addressed by improving the search process and acquire better 

results by simultaneously using the opposite solution of initial guesses. So the optimization 

algorithm has the choice to select either from a random solution or its opposite guess. As a 

result, a decision can be made by the optimization algorithm that can speed up convergence. 

Not only the same procedure can be applied to beginning positions, but it may also be applied 

to each position in the current population [16,28]. The initialization process in the opposition-

based learning concept is shown in Eq. (17). 

𝑋𝑖+𝑁,𝑗
𝑡 = 𝑋𝑚𝑖𝑛𝑗

+ 𝑋𝑚𝑎𝑥𝑗
− 𝑋𝑖,𝑗

𝑡                                                                                                     (17) 

where (𝑖 = 1,2, … , 𝑁; 𝑗 = 1,2, … , 𝐷)                                                          



2.3.2. Concept of the Quantum Gate Rotation (QRG) 

The QRG is a state processing method used in the field of quantum computing. The position 

data produced by the swarm-based method is floating-point data, whereas quantum bits are 

binary. The discrete quantum bit data must be converted into continuous algorithm data to 

process the location information [29]. A quantum rotation gate rotates the data of each 

dimension of the search agent in pairs and updates it. Eqs. (18) and (19) show the updation and 

adjustment procedures for QRG. 

𝜇(𝜃𝑖) = [
𝑐𝑜𝑠(𝜃𝑖) −𝑠𝑖𝑛(𝜃𝑖)

𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖)
]                                                                                                      (18) 

[
𝑎𝑖

′

𝑏𝑖
′] = 𝜇(𝜃𝑖) [

𝑎𝑖

𝑏𝑖
] = [

𝑐𝑜𝑠(𝜃𝑖) −𝑠𝑖𝑛(𝜃𝑖)

𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖)
] [

𝑎𝑖

𝑏𝑖
]                                                                        (19) 

where [𝑎𝑖 𝑏𝑖]𝑇 is the state of the 𝑖𝑡ℎ quantum bit before applying QRG. Whereas [𝑎𝑖
′ 𝑏𝑖

′]𝑇 

indicate the state for the same quantum after QRG. 𝜃𝑖 is  the rotation angle for  𝑖𝑡ℎ quantum bit 

and calculated through Eq. (20) 

𝜃𝑖 = ∆𝜃𝑖 × 𝑟(𝑎𝑖, 𝑏𝑖)                                                                                                                           (20) 

where r(𝑎𝑖, 𝑏𝑖) indicates rotation in the target direction. ∆𝜃𝑖 indicates the rotation angle of the 

𝑖𝑡ℎ rotation. The direction of the target having the highest fitness is chosen to rotate the 

individual for exploring the search field by comparing the fitness value of the current target 

with the optimal target. 

 

Fig. 2 Quantum gate rotation 

The rotation angle of the QRG is chosen to maintain the balance between exploration and 

exploitation. When the current individual is far from the best, the value of 𝜃 should be raised 

during the early exploration stage whereas it should be lowered during the exploitation phase 

[29]. This approach makes it possible for the search process to adapt to various solutions and 

is better suited for searching for the overall best solution. The rotation angle is given as 

∆𝜃 = 𝜃𝑚𝑖𝑛 + 𝛾𝑖(𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛)                                                                                                    (21) 



where 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 are the maximum and minimum values of ∆𝜃 which are 0.035𝜋 and 

0.001𝜋, respectively. 𝛾 is a function that can be calculated as follows: 

𝛾𝑖 = 1 − 𝑒
−4.(

𝑏𝐹−𝑋(𝑖)
𝑏𝐹−𝑤𝐹

)
2

                                                                                                                      (22) 

where 𝑏𝐹 and 𝑤𝐹 are the best and worst fitness functions of the current iteration.  

The pseudo-code of the proposed optimization algorithm is given in Algorithm 1. 

Algorithm 1: Pseudo code of the proposed algorithm 

𝑰𝒏𝒑𝒖𝒕: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 (𝑁), 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, (𝑀𝑎𝑥𝐼𝑡𝑒𝑟), 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑝, 𝛽, 𝑎𝑛𝑑 𝑊   

 𝑶𝒖𝒕𝒑𝒖𝒕: 𝐵𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑋)  

𝐴𝑝𝑝𝑙𝑦 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑏𝑎𝑠𝑒𝑑 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑋) 𝑎𝑛𝑑 𝑜𝑏𝑡𝑎𝑖𝑛 (2𝑁) 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

𝐸𝑣𝑎𝑙𝑎𝑢𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑔𝑜𝑟𝑖𝑙𝑙𝑎 (2𝑁)  

𝑆𝑜𝑟𝑡 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑢𝑙𝑒𝑠 𝑎𝑛𝑑 𝑠𝑎𝑣𝑒 𝑏𝑒𝑠𝑡 (𝑁)𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

𝑭𝒐𝒓 𝑖𝑡𝑒𝑟 = 1: 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟   
𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶 𝑎𝑛𝑑 𝐿 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (6)𝑎𝑛𝑑 (8)  

 𝑭𝒐𝒓 𝑖 = 1: 𝑁  

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑜𝑟𝑖𝑙𝑙𝑎 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (5)  

𝑬𝒏𝒅 𝑭𝒐𝒓  

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑔𝑜𝑟𝑖𝑙𝑙𝑎  

𝑖𝑓 𝐺𝑃 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑋, 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑡ℎ𝑒𝑚  

𝑠𝑎𝑣𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑋𝑆𝐵  

𝑭𝒐𝒓 𝑖 = 1: 𝑁  

𝑰𝒇 |𝐶| ≥ 1  

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑜𝑟𝑖𝑙𝑙𝑎 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (10)  

𝑬𝒍𝒔𝒆  

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑜𝑟𝑖𝑙𝑙𝑎 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (13)  

𝑬𝒏𝒅 𝑰𝒇  

𝑬𝒏𝒅 𝑭𝒐𝒓  

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑔𝑜𝑟𝑖𝑙𝑙𝑎  

𝑖𝑓 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠ℎ𝑜𝑤 𝑖𝑚𝑝𝑟𝑜𝑣𝑚𝑒𝑛𝑡 𝑜𝑣𝑒𝑟 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑡ℎ𝑒𝑚  

𝑠𝑎𝑣𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑋𝑆𝐵  

𝐸𝑣𝑎𝑙𝑎𝑢𝑡𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝛾𝑖  𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (22)  

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 𝜃𝑖  𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (20)  

𝐴𝑝𝑝𝑙𝑦 𝑡ℎ𝑒 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑔𝑎𝑡𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑒𝑎𝑐ℎ 𝑔𝑜𝑟𝑖𝑙𝑙𝑎                                                                                                    
𝐶𝑟𝑒𝑎𝑡𝑒 𝑎 𝑝𝑜𝑜𝑙 𝑜𝑓 𝑔𝑜𝑟𝑖𝑙𝑙𝑎𝑠 𝑎𝑛𝑑  𝑌, 𝑎𝑛𝑑 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑚𝑒𝑚𝑏𝑒𝑟 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑝𝑜𝑜𝑙  
 𝑆𝑜𝑟𝑡 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑁 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑔𝑜𝑟𝑖𝑙𝑙𝑎 

𝑬𝒏𝒅 𝑭𝒐𝒓  

 𝑹𝒆𝒕𝒖𝒓𝒏 𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

 

3. Fault diagnosis scheme 

An amended Gorilla troop optimization (AGTO) algorithm is built to optimize the different 

parameters of CNN, such as learning rate, epoch, batch size, activation and no. of neurons in 

hidden layers, considering the loss(error) as cost function as given in Eq. (4). AGTO minimizes 

the fitness function. The process of optimizing the hyperparameters of CNN by amended GTO 

is shown in Fig. 3. 

 The methodology adapted to diagnose the worm gearbox defects is shown in Fig. 4. 

This methodology can be implemented by following steps: 



(1) Acquisition of data through a uniaxial accelerometer and an acoustic sensor.  

(2) The raw signals are converted into time-frequency images by the CWT. The Morlet wavelet 

function is used to serve this purpose. The 2D images were processed by the transform strategy 

further utilized to feed the CNN. 

(3) Initially, the CNN model was developed with random values of its hyperparameters. 

(4) Then, the CNN model is optimized by the proposed AGTO algorithm. The hyperparameters 

which have been optimized are the number of neurons in hidden layers, learning rate, batch 

size, epoch and activation function. The range for each hyperparameter is selected from the 

literature. The main purpose of the optimization is to choose the set of optimal hyperparameters 

which enhances the performance of the CNN with less computational complexity.  

(5) At the optimal combination of hyperparameters, the CNN with AGTO is used to recognize 

the different faults of the worm gearbox. 

  

Fig. 3 Flow chart showing optimization of HPs of CNN by AGTO 



 

 

Fig. 4 Fault diagnosis of worm gearbox through AGTO-CNN model 

4. Application of fault diagnosis scheme to worm gearbox 

4.1 Test Rig 

The proposed diagnosis scheme is applied on the test rig of the worm gearbox. The worm 

gearbox is driven by the 50 Hz DC motor connected through it by a flexible coupling. The DC 

motor is controlled by the control panel.  A schematic and picture of the test rig is shown in 

Fig. 5. 



 

(a) 

 

(b) 

Fig. 5 Worm gearbox test rig (a) schematic view and (b) pictorial view  

4.2. Data Acquisition   

The vibration and acoustic signals are acquired from the worm gearbox under three different 

health conditions at rated rpm of 910, 1500 and 2520. The three different health conditions 



which are taken into consideration are healthy (no defect), pitting and missing, as shown in 

Fig.6. 

                 

(a)                                                                                   (b) 

    

(c) 

Fig. 6 Health states of worm gearbox (a) Healthy (b) Pitting and (c) Missing 

 

Initially, the worm is defect free and in place; this condition is considered to be healthy. 

But chances of some inherent defects may be there. For each health condition, a total of 900 

signals are acquired at the rated rpm of 910, 1500 and 2520. The data is acquired with the help 

of PCB® Piezotronics make uniaxial accelerometer having a sensitivity of 100 mV/g which 

was mounted on the gearbox. Whereas the sound signals/ acoustic signals were recorded by 

the microphone of ECM 8000 make, having a sensitivity of -60 dB. The DAQ with 24-bit and 

4-channel of National Instrument make is used to acquire vibration signal in LabView 

environment of 2020 version. The analysis has been done on MATLAB R2019a software. The 

configurations of the machine are AMD Ryzen 5 4600 H with radion graphics 3 GHz with 8 

GB of RAM and 64-bit Windows 10 operating system.  

4.3. Data preprocessing 

The raw vibration signal and acoustic signals obtained from the test rig for the different 

health conditions of the worm gearbox are shown in Fig. 7.  



 

Fig. 7 Raw signals (a) vibration signal of healthy, (b) acoustic signal of healthy, (c) vibration signal of pitting 

(d) acoustic signal of pitting (e) vibration signal of missing and (f) acoustic signal of missing 

 

These signals are in 1D time series, which must be transformed into 2D because only 

2D images can be fed to CNN. The acquired signal may be submerged by the background 

noise, or it can be affected by the long transmission lines. Therefore, researchers have used 

various pre-processing techniques such as the short-time Fourier transform, wavelet synchro-

squeezed transform and so on to carry out the time-frequency analysis. The signals obtained 

from the worm wheel test rig are non-stationary ones. And for non-stationary signals, CWT is 

preferred as it not only extracts the time-frequency features from the original signals but can 

map 1D signal into 2D space. Researchers have suggested that non-orthogonal wavelet 

functions are preferred for getting smooth and continuous wavelet amplitudes. Thus, the Morlet 

wavelet function has been selected for converting the vibration signals into images as it not 

only has non-orthogonality but also has a good trade-off between time and frequency. The 

obtained images for different health states are shown in Fig. 8. 

 



      

(a)                                                                               (b) 

    

(b)                                                                                        (d) 

     

           

                                        (e)                                                                                           (f)          

Fig. 8 Time-frequency images from (a) vibration signal of healthy, (b) acoustic signal of healthy, (c) vibration 

signal of pitting (d) acoustic signal of pitting (e) vibration signal of missing and (f) acoustic signal of missing 

It is obvious from Fig. 8 that the time-frequency images have a strong similarity which 

makes it difficult to detect any difference between the images. Thus it becomes very difficult 



to detect any useful information from such similar images. Therefore it is important to develop 

an intelligent and robust technique that can learn prominent features and recognise the types of 

defects simultaneously.  

From three different health conditions of the worm gear, a total of 900 vibration and 

sound signals have been acquired. From these 900 signals, a total of 8400 time-frequency 

images have been extracted, i.e. 2800 for each health condition to make the dataset. Further, 

the dataset has been divided into training and testing datasets in the ratio of 8:2. This means 

the training dataset has 6720 images, whereas the testing dataset has 1680 images which have 

been used to train and test the built CNN model. The training samples (images) have been 

randomized in order to allow more prominent features to be extracted. 

5. Result and Discussion 

4.1. Comparison of AGTO with other algorithms  

The performance of the proposed AGTO algorithm was investigated on classical benchmark 

functions (defined in Table 1) in terms of average (Avg) and standard deviation (Std). The 

results of the AGTO algorithm on classical benchmark functions have been ranked through the 

Friedman test to draw more reasonable conclusions. The benchmark functions consist of 

unimodal, multimodal, and fixed-dimension multimodal functions. The unimodal functions 

(F1-F7) are typically utilized to assess the algorithm's local exploitation potential because they 

have only one local solution and one optimal global solution. Multimodal functions (F8–F13) 

are frequently employed to evaluate the algorithm's capacity for exploration. To assess the 

stability of the approach, F14–F23, which are fixed-dimensional multimodal functions with 

lots of local optimal points and low dimensionality, can be employed. Wilcoxon's rank-sum 

test has also been carried out to evaluate the statistical performance of the proposed AGTO 

algorithm.  

Table 1 

Definition of classical benchmark functions 

 

Function type Function Name of function Search Range Dimension Global optimum 

 

 

Unimodal 

functions 

F1 Sphere [-100,100] 30 0 

F2 Schwefel 2.22 [-10,10] 30 0 

F3 Schwefel 1.2 [-100,100] 30 0 

F4 Schwefel 2.21 [-100,100] 30 0 

F5 Rosenbrock  [-30,30] 30 0 

F6 Step [-100,100] 30 0 

F7 Quartic [-1.28,1.28] 30 0 

 

 

Multimodal 

functions 

F8 Schwefel  [-500,500] 30 -418.9829*D 

F9 Rastrigin [-5.12,5.12] 30 0 

F10 Ackley [-32,32] 30 0 

F11 Griewank [-600,600] 30 0 

F12 Penalized  [-50,50] 30 0 

F13 Penalize 2  [-50,50] 30 0 



 

 

Fixed-

dimensional 

multimodal 

functions 

F14 Foxholes [-65,65] 2 0.998004 

F15 Kowalik [-5,5] 4 0.0003075 

F16 Six-hump Camel-Back [-5,5] 2 -1.03163 

F17 Branin [-5,5] 2 0.398 

F18 Goldstein-Price [-2,2] 2 3 

F19 Hartman3 [-1,2] 3 -3.8628 

F20 Hartman6 [0,1] 6 -3.322 

F21 Shekel 5 [0,10] 4 -10.1532 

F22 Shekel 7 [0,10] 4 -10.4028 

F23 Shekel 10 [0,10] 4 -10.5363 

 

The AGTO has been compared to basic GTO and eight other optimization algorithms such as 

arithmetic optimization algorithm (AOA), dragonfly algorithm (DA), grey wolf optimizer 

(GWO), moth flame optimizer (MFO), multiverse optimizer (MVO), sine cosine algorithm 

(SCA), and salp swarm algorithm (SSA). The parameter setting of each algorithm is tabulated 

in Table 2. For a fair comparison, the population size and maximum number of function 

evaluations are set to 30 and 15,000, respectively. Because of the stochastic nature of the 

metaheuristic algorithm, the outcome may differ each time it is run. Therefore, the algorithm 

is performed 30 times autonomously to acquire the global solution. 

Table 2  

Parametric settings of different algorithms 

 

Algorithm Parameter Value 

 

AGTO 

 

𝛽 3 

𝑊 0.8 

𝑝 0.03 

 

 

AOA 

𝑟1 𝑟𝑎𝑛𝑑𝑜𝑚 

𝑟2 𝑟𝑎𝑛𝑑𝑜𝑚 

𝑟3 𝑟𝑎𝑛𝑑𝑜𝑚 

𝛼 5 

𝜇 0.499 

 

ALO 

𝑎 𝑚𝑖𝑛(𝑎𝑙𝑙 𝑣𝑎𝑟𝑖𝑏𝑙𝑒𝑠 𝑎𝑡 𝑙𝑡ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 

𝑏 𝑚𝑎𝑥(𝑎𝑙𝑙 𝑣𝑎𝑟𝑖𝑏𝑙𝑒𝑠 𝑎𝑡 𝑙𝑡ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 

𝐼 
10𝑤 (

𝑙

𝐿
) 

 

 

 

 

DA 

𝑠 2 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ 𝑚𝑐 

𝑎 2 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚*mc 

𝑐 2 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ 𝑚𝑐 

𝑓 2 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚 

𝑒 𝑚𝑐 

𝑚𝑐 
0.1 − 𝑙 ∗ (

0.1

(𝐿
2⁄ )

) 

GWO 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝑎) 𝐿𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 2 𝑡𝑜 0 

MFO 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑎) [-2-1] 

𝑠𝑝𝑖𝑟𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑏) 1 

 

 

MVO 

𝑟1 𝑟𝑎𝑛𝑑𝑜𝑚 

𝑟2 𝑟𝑎𝑛𝑑𝑜𝑚 

𝑟3 𝑟𝑎𝑛𝑑𝑜𝑚 

𝑝 6 

 𝑐1 
2 ∗ 𝑒−(

4𝑙
𝐿

)
2

 



SSA 𝑐2 𝑟𝑎𝑛𝑑𝑜𝑚 

𝑐3 𝑟𝑎𝑛𝑑𝑜𝑚 

 

 

SCA 

𝑎 2 

𝑟1 𝑎 − 𝑙 (
𝑎

𝐿
) 

𝑟2 2*π*𝑟𝑎𝑛𝑑𝑜𝑚 

𝑟3 2 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚 

𝑟4 𝑟𝑎𝑛𝑑𝑜𝑚 

 

4.1.1. Qualitative results on 23 classical functions 

The qualitative performance of AGTO is examined through the convergence curve and average 

fitness of the population. The convergence curve indicates the fitness value of the silverback 

as the best solution during the optimization process. In contrast, the average fitness curve shows 

how the average fitness of the whole population changes in various optimization stages. It can 

be observed from Fig. 9 that gorillas have initiated the exploitation operation in the close 

proximity to the optimal solution and then continued the exploration operation in the search 

space. It is clear from the convergence curve that AGTO converges rapidly and has a great 

capacity to enhance all gorillas in at least half of the iterations. 

 

 









 



 

 



 

 

Fig. 9 Qualitative results of the proposed AGTO algorithm 

4.1.2. Quantitative results on 23 classical functions 

The quantitative performance of the proposed AGTO is examined on the benchmark functions 

in terms of Avg and Std. The results of the proposed AGTO algorithm have been compared to 

validate the efficacy of the AGTO. The results of the AGTO algorithm on classical benchmark 

functions have been ranked through the Friedman test to draw more reasonable conclusions. 

The obtained results are tabulated in Table 3.  

Table 3  

Results of the proposed algorithm at benchmark functions 

 
  AOA ALO DA GWO MFO MVO SCA SSA GTO AGTO 

F1 Avg 3.73E-64 7.03E-06 1478.518 1.13E-16 1666.667 0.285773 0.333526 1.29E-08 0 0 

Std 2.04E-63 6.22E-06 766.2623 4.96E-17 3790.49 0.095841 1.714933 3.65E-09 0 0 

 Rank 2 5 8 3 9 6 7 4 1 1 

F2 Avg 0 35.34462 13.55902 5.39E-08 40.33356 0.43547 3.96E-05 1.114872 1.68E-192 0 

Std 0 46.88196 5.043681 1.84E-08 24.70265 0.13303 7.20E-05 1.260599 0 0 

 Rank 1 8 7 3 9 5 4 6 2 1 

F3 Avg 0.002365 1151.9 15356.97 443.0136 16766.67 46.24936 4044.797 368.6763 0 0 

Std 0.00881 666.1661 10095.45 188.0379 11242.6 18.8267 3880.241 254.8877 0 0 

 Rank 2 6 8 5 9 3 7 4 1 1 

F4 Avg 0.021292 11.55389 23.06015 1.104124 66.64077 1.086291 18.0148 8.17505 1.16E-192 0 

Std 0.019539 3.317957 6.965639 1.064798 8.528802 0.554548 9.687705 3.482576 0 0 

 Rank 3 7 9 5 10 4 8 6 2 1 

F5 Avg 28.25658 172.1007 147484.5 54.16325 3517.504 170.2001 92095.15 109.1053 3.237979 1.622074 

Std 0.406265 392.8285 142560.8 68.85537 16368.69 200.7955 374414.4 164.4389 8.395855 6.171846 

 Rank 3 7 10 4 8 6 9 5 2 1 

F6 Avg 2.80945 1.06E-05 1120.928 0 1656.709 0.31324 0.363056 9.27E-08 1.76E-07 6.39E-08 

Std 0.233264 9.56E-06 509.9442 0 3767.988 0.070063 0.128503 2.79E-09 2.29E-07 6.87E-08 

 Rank 8 5 9 1 10 6 7 3 4 2 

F7 Avg 4.86E-05 0.09513 0.016716 0.057969 1.63063 0.018222 0.031431 0.096089 7.79E-05 3.35E-05 



Std 4.52E-05 0.035386 0.013431 0.024491 2.99583 0.00738 0.028207 0.032296 9.81E-05 4.14E-05 

 Rank 2 8 4 7 10 5 6 9 3 1 

F8 Avg -3202.86 -2413.53 -5754.17 -1587.84 -3140.14 -3025.94 -2324.05 -2883.38 -12569.5 -12569.5 

Std 240.9948 496.7874 591.5846 300.7621 347.8142 290.339 202.7524 311.6512 0.000145 4.66E-05 

 Rank 4 8 3 10 5 6 9 7 2 1 

F9 Avg 0 80.45882 162.1103 25.37144 161.282 106.9613 17.15178 57.17687 0 0 

Std 0 25.80236 38.31689 5.746865 43.39013 32.2269 22.96072 22.52042 0 0 

 Rank 1 5 8 3 7 6 2 4 1 1 

F10 Avg 8.88E-16 1.973304 9.232492 8.40E-09 14.00294 1.283419 13.96645 2.165787 8.88E-16 8.88E-16 

Std 2.01E-31 0.611315 1.44599 2.20E-09 7.950571 0.728616 8.91743 0.895879 0 0 

 Rank 2 5 7 3 9 4 8 6 1 1 

F11 Avg 0.101451 0.01314 12.75532 9.167486 15.07443 0.550285 0.29508 0.006158 0 0 

Std 0.079528 0.014247 6.049923 5.613008 53.42284 0.110778 0.275885 0.006458 0 0 

 Rank 4 3 8 7 9 6 5 2 1 1 

F12 Avg 0.390268 11.79996 337.437 0.147818 0.842388 1.671162 100.5139 6.031526 4.07E-08 1.27E-08 

Std 0.05154 3.893738 1274.537 0.190267 1.086202 1.03551 528.101 3.243773 6.33E-08 1.43E-08 

 Rank 4 8 10 3 5 6 9 7 2 1 

F13 Avg 2.775434 3.566452 60001.51 0.039062 0.686478 0.057376 107.5754 2.688221 0.004358 0.001465 

Std 0.105293 11.30312 157203.5 0.163974 1.111076 0.033767 475.3857 8.903576 0.010949 0.003799 

 Rank 7 8 10 3 5 4 9 6 2 1 

F14 Avg 9.305394 1.428617 0.998004 3.920338 1.691591 0.998004 1.655152 1.031138 0.998004 0.998004 

Std 3.82843 0.564551 6.39E-08 2.721899 1.165462 6.78E-16 1.87623 0.181484 4.12E-17 0 

 Rank 10 6 4 9 8 3 7 5 2 1 

F15 Avg 0.010175 0.004013 0.00371 0.002483 0.001622 0.003847 0.000862 0.001416 0.000491 0.000407 

Std 0.022732 0.007439 0.005836 0.00146 0.003566 0.007011 0.000335 0.003584 0.000373 0.000278 

 Rank 10 9 7 6 5 8 3 4 2 1 

F16 Avg -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.0316 -1.03163 -1.03163 -1.03163 

Std 9.32E-08 0 3.66E-06 0 0 1.04E-07 3.03E-05 0 6.25E-16 0 

 Rank 3 1 5 1 1 4 6 1 2 1 

F17 Avg 0.405421 0.397887 0.397895 0.397887 0.397887 0.397888 0.399022 0.397887 0.397887 0.397887 

Std 0.005929 1.69E-16 3.56E-05 1.69E-16 1.69E-16 2.06E-07 0.001427 1.69E-16 0 0 

 Rank 6 2 4 2 2 3 5 2 1 1 

F18 Avg 10.0868 3 3.000007 3 3 3.000001 3.000021 3 3 3 

Std 11.95653 0 2.24E-05 0 0 7.04E-07 3.49E-05 0 1.04E-15 0 

 Rank 6 1 5 1 1 3 4 1 2 1 

F19 Avg -3.85342 -3.86278 -3.8627 -3.86278 -3.86252 -3.86278 -3.85498 -3.86278 -3.86278 -3.86278 

Std 0.002905 1.36E-15 0.000138 1.36E-15 0.001439 3.97E-07 0.001994 1.36E-15 2.65E-15 1.36E-15 

 Rank 7 1 3 1 5 4 6 1 2 1 

F20 Avg -3.09355 -3.27839 -3.24973 -3.22521 -3.2341 -3.25042 -2.91013 -3.22916 -3.27444 -3.29822 

Std 0.085726 0.058284 0.077816 0.09226 0.060746 0.059439 0.377887 0.052154 0.05837 0.049241 

 Rank 9 2 5 8 6 4 10 7 3 1 

F21 Avg -3.74402 -6.53424 -7.35707 -5.59336 -6.14456 -7.46314 -2.82024 -8.13991 -10.1532 -10.1532 

Std 0.788914 2.932695 2.673835 3.575389 3.448257 3.023758 1.808205 2.980425 6.08E-15 6.04E-15 

 Rank 9 6 5 8 7 4 10 3 2 1 

F22 Avg -4.0787 -7.66281 -8.67404 -10.27 -8.42414 -9.16675 -3.43843 -10.2271 -10.4029 -10.4029 

Std 1.044784 3.22496 2.679209 0.728055 3.141982 2.278944 2.01902 0.962918 5.71E-16 4.33E-16 

 Rank 9 8 6 3 7 5 10 4 2 1 

F23 Avg -3.96481 -7.02753 -8.36917 -10.4662 -7.89781 -9.40438 -4.84152 -8.96732 -10.5364 -10.5364 

Std 1.469116 3.438882 2.905126 0.384508 3.584177 2.618164 2.075541 3.192975 1.28E-15 1.22E-15 

 Rank 10 7 6 3 8 4 9 5 2 1 

Sum of 

Rank 
122 126 151 99 155 109 160 102 

44 24 

Average 

Rank 
12.2 12.6 15.1 9.9 15.5 10.9 16 10.2 

4.4 2.4 

Final Rank 6 7 8 3 9 5 10 4 2 1 

 

It can be seen from Table 3 that the AGTO algorithm outperforms the other state of art 

algorithms. 

 



4.1.3. Statistical analysis of AGTO algorithm 

The comparison of the algorithms has been over 30 independent runs in terms of Avg and Std. 

But the individual run is not analysed during this comparison. So there can be a possibility of 

getting superiority by chance.  Thus it is necessary to compare each run to validate its 

significance. For this purpose, the Wilcoxon rank sum test is carried out at a 95% confidence 

level. The P values have been calculated as shown in Table 4. In the obtained P-value is less 

than 0.05 then it suggests the null hypothesis which means the best algorithm gives a higher 

value for the objective function that not happened by the accident. The best algorithm based on 

the least value of Std is selected and compared to other algorithms separately for statistical 

analysis. The best algorithm is labelled as N/A as it cannot be compared to itself. 

Table 4  

Results of the Wilcoxon rank-sum test  

 

 AOA ALO DA GWO MFO MVO SCA SSA GTO AGTO 

𝐅𝟏 4.50x10-11 4.50x10-11 3.02x10-11 3.02x10-11 2.98x10-11 3.02x10-11 3.02x10-11 3.02x10-11 NaN NaN 

𝐅𝟐 NaN 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 NaN NaN 

𝐅𝟑 3.34x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 NaN NaN 

𝐅𝟒 3.34x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 0.333711 NaN 

𝐅𝟓 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 NaN 

𝐅𝟔 1.21x10-12 1.21x10-12 1.21x10-12 NaN 1.20x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 

𝐅𝟕 0.032651 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 0.032651 NaN 

𝐅𝟖 3.02x10-11 2.99x10-11 3.02x10-11 3.02x10-11 2.99x10-11 3.02x10-11 3.02x10-11 3.02x10-11 0.032651 NaN 

𝐅𝟗 NaN 1.21x10-12 1.21x10-12 1.20x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 NaN NaN 

𝐅𝟏𝟎 NaN 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.20x10-12 NaN NaN 

𝐅𝟏𝟏 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 1.21x10-12 NaN NaN 

𝐅𝟏𝟐 3.02x10-11 3.02x10-11 3.02x10-11 0.379036 3.02x10-11 3.02x10-11 3.02x10-11 3.02x10-11 5.57x10-10 NaN 

𝐅𝟏𝟑 3.02x10-11 4.98x10-11 3.02x10-11 0.185253 3.02x10-11 3.02x10-11 3.02x10-11 0.662682 0.662572 NaN 

𝐅𝟏𝟒 8.41x10-13 0.000132 0.333711 4.57x10-12 0.00031 8.41x10-12 4.50x10-12 0.333711 0.021561 NaN 

𝐅𝟏𝟓 7.20x10-05 6.52x10-09 3.69x10-11 3.02x10-11 7.32x10-11 1.09x10-10 1.33x10-10 6.07x10-11 2.67x10-09 NaN 

𝐅𝟏𝟔 2.39x10-12 NaN 1.24x10-07 NaN NaN 3.71x10-13 1.21x10-12 NaN 1.21x10-12 NaN 

𝐅𝟏𝟕 1.21x10-12 1.21x10-12 1.27x10-05 1.21x10-12 1.21x10-12 4.48x10-12 1.21x10-12 1.21x10-12 NaN NaN 

𝐅𝟏𝟖 0.002787 NaN 1.27x10-05 NaN NaN 5.70x10-11 1.21x10-12 NaN 1.21x10-12 NaN 

𝐅𝟏𝟗 1.21x10-12 NaN 4.57x10-12 NaN 0.333711 1.67x10-08 1.21x10-12 NaN 1.21x10-12 NaN 

𝐅𝟐𝟎 1.21x10-12 0.000313 4.57x10-12 1.21x10-12 2.92x10-08 1.21x10-12 1.21x10-12 5.85x10-09 4.79x10-08 NaN 

𝐅𝟐𝟏 3.02x10-11 0.075837 2.87x10-06 0.074498 0.183369 0.147367 3.02x10-11 0.024255 0.001489 NaN 

𝐅𝟐𝟐 3.02x10-11 0.372965 0.001679 4.56x10-11 0.006661 0.003938 3.02x10-11 4.56x10-11 0.003562 NaN 

𝐅𝟐𝟑 3.02x10-11 0.660515 8.19x10-07 4.56x10-11 0.072549 0.000168 3.02x10-11 3.81x10-05 0.06675 NaN 

 

4.2. Need to optimize the hyperparameters of CNN. 

The accuracy of the CNN mainly depends on the optimal selection of its hyperparameters. The 

improper selection of these hyperparameters of the built CNN model leads to suboptimal results 

because it fails to minimize the loss function. Some of the hyperparameters of the CNN are set 

in advance to reduce the search space and computational time of AGTO. The size of the input 

image is 656x875. The input image is down-sampled to 2X2 by the max pooling layer. Contrary 



to the AlexNet model, the constructed CNN does not employ a dropout approach between the 

fully connected layers because there aren't many deeper layers.  

There are other hyperparameters also which influence the performance of the CNN. 

The optimal selection of these hyperparameters becomes very important as these parameters 

maximize the performance of the model and, at the same time, minimize the loss function to 

produce good results with fewer errors. The hyperparameters which have been considered in 

the present research are the number of neurons in the hidden layer, learning rate, batch size, 

epoch, and activation function. As the learning rate controls the step size, which is required to 

achieve the minimum loss function. With a higher learning rate, the model learns more quickly, 

but it may not achieve the minimum loss function resulting in merely reaching its surroundings. 

The minimum loss functions can be easily achieved with a lower learning rate.  Thus it becomes 

necessary to choose the learning rate wisely to make the model capable enough to learn at a 

faster rate with a minimum loss function. If the training dataset is very large, the time required 

to build the CNN model will be higher. Thus, assigning the batch size to the training datasets 

prevents the built model from receiving the data at once, which speeds up the learning process. 

With reduced batch size, the learning process becomes faster, but the accuracy of the model 

decreases while checking with validation data. Thus the optimal batch should be chosen to 

balance between learning rate and accuracy. Epochs represent the number of times a complete 

dataset is run in the CNN model. If fewer numbers of epochs have been selected, then it will 

result in underfitting of the data, while a higher number of epochs results in overfitting of the 

data. Therefore, to get the best outcome of the built CNN model, it is necessary to select the 

optimum number of epochs.  

The range of hyperparameters which have been considered for optimization is tabulated 

in Table 5. 

Table 5  
Range of Hyperparameters in AGTO 

 

S.No. Hyperparameters Range 

1 No. neurons in the hidden layers [10,100] 

2 Learning rate [0.01, 1] 

3 Batch size [200, 1000] 

4 Epoch [2, 100] 

5 Activation function [0,9] 

 

The range of activation function is [0,9], where 0 to 9 represents different activation functions 

such as relu, sigmoid, softplus, softsign, tanh, selu, elu, exponential, leakyrelu and prelu. 

 



4.3. Analyzing the diagnosis results 

The basic GTO has been modified by incorporating the opposition-based learning concept and 

quantum gate rotation mutation strategy. Further, the amended GTO algorithm has been used 

to construct the CNN model by optimizing its hyperparameters. The Gaussian Process has been 

utilized to update the posterior distribution of the objective function, whereas the expected 

improvement is selected as the acquisition function for effective sampling. The classification 

accuracy of the built CNN model, along with its loss function, is shown in Fig. 10. 

 

(a) 

 

(b) 

Fig. 10 Performance of AGTO-CNN model (a) accuracy (b) loss 

The performance of the built CNN model has been verified by repeated trials. During 

repeated trials, very small fluctuations have been observed, which means the built AGTO-CNN 

converges well and presents good stability. The average test accuracy of the repeated trials of 

the proposed methodology has been compared with other models. The result of the comparison 

is shown in Fig. 11 and tabulated in Table 6. The standard deviation has also been computed 

and presented in Table 6. It can be seen that the AGTO-CNN have the lowest value of standard 

deviation when compared to other models.  It is observed from the results of the comparison 

that AGTO-CNN not only gives a higher degree of accuracy but also gives the least standard 

deviation.  



 

Fig. 11 Comparison of AGTO-CNN model with existing model 

Table 6 

Comparison of accuracy and Std with different models 

 

Model Accuracy (%) Standard deviation (Std) 

LeNet 88.58 0.9658 

Improved LeNet 5 95.63 0.3521 

VGG 90.56 0.4062 

GoogLeNet 92.38 0.3714 

Proposed AGTO-CNN 98.95 0.2145 

 

The confusion matrix has also been generated for one trial to examine the recognition 

accuracy of each health state as shown in Fig. 12. The recognition accuracy for each health 

condition is tabulated in Table 7. It can easily be seen from Table 7 that the built model 

correctly identified each health state of the worm wheel. 

 



 

Fig. 12 Confusion matrix 

Table 7  

Recognition of different worm gearbox defects by different methods 

 
Different Health States LeNet Improved LeNet VGG GoogLeNet AGTO-CNN 

Healthy 90.12 96.78 89.45 85.72 98.32 

Pitting 89.62 90.23 86.62 88.85 98.12 

Missing 85.72 93.89 84.15 90.56 99.59 

 

It is also necessary to analyse the computational complexity of the proposed AGTO-

CNN to validate its efficacy. Computational complexity consists of both time complexity and 

spatial complexity. The time complexity generally determines the training and prediction time 

of the built model of AGTO-CNN. At the same time, spatial complexity is used to tell the 

number of parameters of the built model. The more parameters a model has, the more data it 

may need to train because of the limitation of the "curse of dimensionality." If 𝐿 represents the 

side length of the feature graph obtained from the convolution kernel, 𝐾 is the length of each 

convolution kernel, 𝑍𝑖𝑛 and 𝑍𝑜𝑢𝑡 are input and output channels respectively and 𝑊 is the input 

size. Then the computational complexity of AGTO-CNN is tabulated in Table 8.  

 

 

 



Table 8  

Computational complexity of AGTO-CNN 

 
Layer 𝑳 𝑲 𝒁𝒊𝒏 𝒁𝒐𝒖𝒕 Time complexity Spatial complexity 

Conv1 70 6 4 9 2430000 33075 

Conv2 25 5 9 15 2028000 16875 

FC1 1 12 15 380 1091258 1091258 

FC2 1 1 380 150 57000 57000 

Output layer 1 1 150 5 750 750 

Total     5607008 1198958 

 

It has been confirmed from the above analysis AGTO-CNN is a robust model that gives 

a higher degree of accuracy and presents good stability. 

6. Conclusions 

In this research, an amended gorilla troop optimization (AGTO) has been proposed by 

integrating the opposition-based learning concept and quantum gate rotation mutation strategy 

to address the problems of strucking the solution in local optima and slow convergence. The 

proposed AGTO has been tested against the different optimization algorithms on twenty-three 

basic benchmark functions in terms of Avg and Std. AGTO gave improved results for different 

benchmark functions when compared to other optimization algorithms. The statistical analysis 

of the proposed optimization algorithm has been carried out through the Wilcoxon test, which 

indicated that the proposed algorithm is significant at most of the benchmark functions. 

The developed AGTO algorithm is utilized to make the CNN adaptive by optimizing its 

key HPs. The developed AGTO-CNN model is further used to detect the different defects of 

the worm gearbox. First, the vibration and acoustic signals acquired from the worm gearbox 

test rig are transformed into time-frequency images through the Morlet wavelet function. The 

built AGTO-CNN model learns the prominent features from the time-frequency images and 

classifies the different defects of the worm gearbox. The developed AGTO-CNN model has 

fast convergence, stability and strong robustness as it replaced the traditional method of manual 

adjustment of key HPs of CNN by automatic optimization. The diagnostic accuracy of AGTO-

CNN is 98.95%, which is more than that of traditional methods. A confusion matrix has also 

been constructed for the different health conditions. The results obtained revealed that AGTO-

CNN is able enough to learn the hidden characteristics embedded in the time-frequency images.  
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