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Abstract

Multi-behavioral sequential recommendation has recently attracted increasing

attention. However, existing methods suffer from two major limitations. Firstly,

user preferences and intents can be described in fine-grained detail from mul-

tiple perspectives; yet, these methods fail to capture their multi-aspect nature.

Secondly, user behaviors may contain noises, and most existing methods could

not effectively deal with noises. In this paper, we present an attentive recur-

rent model with multiple projections to capture Multi-Aspect preferences and

INTents (MAINT in short). To extract multi-aspect preferences from target

behaviors, we propose a multi-aspect projection mechanism for generating mul-

tiple preference representations from multiple aspects. To extract multi-aspect

intents from multi-typed behaviors, we propose a behavior-enhanced LSTM

and a multi-aspect refinement attention mechanism. The attention mechanism

can filter out noises and generate multiple intent representations from different

aspects. To adaptively fuse user preferences and intents, we propose a multi-

aspect gated fusion mechanism. Extensive experiments conducted on real-world

datasets have demonstrated the effectiveness of our model.
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Sequential Recommendation

1. Introduction

With the rapid growth of the amount of information, recommender systems

seeking to predict items that a user may have an interest in have become funda-

mental for helping users overcome information overload. Since user preferences

may change over time, sequential recommendation has been studied, which can

model sequence-related patterns (such as sequential patterns, co-occurrence pat-

terns, and distance patterns) in user-item interactions [1].

Recently, various types of user interactions have increasingly been collected [2,

3, 4]. For example, an e-commerce website may collect click, add-to-cart, and

buy behaviors. However, most existing recommender models only consider the

target type of behavior, which directly relates to the KPI and is believed to

be the strongest signal reflecting a user’s preference. As such, support types

of behaviors are often neglected. This is problematic because support types of

behaviors can provide vital clues about a user’s intent. Both user preference

(what users love) and intent (what users currently want) are critical factors that

influence whether or not a user is interested in an item [5].

To leverage multi-typed behaviors, various existing methods have been pro-

posed and they can be divided into two categories. The first category mainly in-

volves extending the Matrix Factorization (MF) algorithm [6], Bayesian Person-

alized Ranking (BPR) algorithm [7], or using Multi-Layer Perceptron (MLP) to

seek novel solutions. However, we argue that this category models multi-typed

behaviors from a static perspective, which neglects sequence-related patterns

in user-item interactions. The second category considers both the multi-typed

and sequential nature of behaviors, and can be further divided into two subcat-

egories. The first subcategory regards all behaviors as one long sequence and

designs methods that aim to handle it [8, 9]. However, this subcategory fails

to capture the intrinsic patterns of each type of behavior. The second subcat-

egory models at least two kinds of sequences to alleviate the limitations of the
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Item:

Category:

Brand:

Potato Chips

Pringles
Potato Chips

Lay’s
Prawn Crackers

Oishi
Potato Chips

Oishi
Onion Rings

Oishi

Preference from 
category-aspect: Potato Chips

Intent from 
brand-aspect: Oishi Next item for purchase

Type of behavior:

User 1

Figure 1: Recommending by integrating multi-aspect preferences and intents.

first subcategory [10, 11, 12]. However, it still fails to consider multiple aspects

of user preferences and intentions. Besides, most methods ignore that support

types of behavior may be very noisy. If noises are not handled properly, they

may harm the performance of models.

Actually, user preferences and intents are multi-aspect. In other words, user

preferences and intents should be described in a fine-grained way. This can

be better understood referring to Figure 1 as an example. User preferences

and intents are described from two main aspects: the category-aspect and the

brand-aspect. The historical buy behaviors of user 1 imply that she loves potato

chips. Additionally, her click records indicate that she is shopping for Oishi

products. By considering both the preferences and intents of user 1, it would

be appropriate to recommend Oishi potato chips to her.

We find three key technical challenges in multi-behavioral sequential recom-

mendation. First, we try to learn user intents from her multi-typed behavioral

sequence. However, different behavioral specifics (e.g., behavior type, time in-

terval) which provide a fine-grained description of one user interaction on one

item indicate different strengths of the intents. For example, add-to-cart could

be a stronger signal compared with click. Besides, the multi-typed behavioral

sequence can be noisy. To support this observation, we calculate the conversion

rates of different behavior types using real-world datasets. The results, shown

in Table 1, reveal extremely small conversion rates of click, collect, and view.

This indicates that noises can be introduced when utilizing support types of
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Table 1: Conversion rates of different behavior types on two datasets.

Dataset Taobao Retailrocket

Conversion Rate

0.09 Click

0.07 Collect

0.26 Cart

0.16 View

0.76 Cart

behaviors to help to predict the next target behavior. Thus, a challenge lies in

how to extract users’ intents from multi-typed behavioral sequences while con-

sidering the behavioral specifics and the noisy nature of the sequences. Second,

user preferences and intents are multi-aspect. Figure 1 provides an example

that illustrates how user preferences and intents are reflected in the category-

aspect and the brand-aspect. While explicit aspects like category and brand

help explain the multi-aspect nature of preferences and intents, these aspects

are implicit in the real world. Leveraging one latent vector to represent a user’s

preferences/intents is not enough to capture the multi-aspect nature. Thus, the

second challenge is on how to capture the multi-aspect nature of users’ prefer-

ences and intents. Third, preferences and intents have different degrees of im-

pact on different users. Considering users who only made few purchases a long

time ago but clicked many items recently, their intents would be more impor-

tant compared with their preferences. Simple fusion methods (e.g., concatena-

tion [10, 11]) may be inappropriate. Thus, how to fuse multi-aspect preferences

and intents adaptively is challenging.

To address the aforementioned challenges, we propose a novel attentive re-

current model with multiple projections for capturing Multi-Aspect preferences

and INTents (MAINT in short). To model user intents from noisy multi-typed

behavioral sequences, we design a behavior-enhanced LSTM and a refinement

attention mechanism. By adding behavioral specifics in the gates of Long Short-

Term Memory (LSTM) [13], LSTM can consider behavioral specifics while mod-

eling an item sequence. The refinement attention mechanism regards the stable

preference as a guider to filter out noises during intent extraction. To capture the
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multi-aspect nature of preferences and intents, we propose a multi-aspect projec-

tion mechanism and leverage parallel attention mechanisms. In detail, we first

project the hidden state of the LSTM modeling the target behavior sequence to

multiple semantic subspaces representing multiple aspects. This results in mul-

tiple representations of hidden user preferences from different aspects. Then, we

regard these preferences as guiders and perform the refinement attention mech-

anisms in parallel, obtaining representations of multi-aspect latent intents. To

adaptively fuse multi-aspect preferences and intents, we develop a multi-aspect

gated fusion mechanism. The mechanism can balance the impacts of preferences

and intents by considering their characteristics in each aspect.

The main contributions of this work are as follows:

• We propose a novel approach for multi-behavioral sequential recommenda-

tion. To the best of our knowledge, it is the first model which can extract

and fuse multi-aspect preferences and intents.

• To model multi-aspect preferences, we design a multi-aspect projection

mechanism that generates multiple preference representations from differ-

ent aspects.

• To model multi-aspect intents, we design a behavior-enhanced LSTM and

a multi-aspect refinement attention mechanism. The LSTM captures spe-

cific while modeling an item sequence. The attention mechanism generates

multiple intent representations from different aspects.

• To fuse multi-aspect preferences and intents, we propose a multi-aspect

gated fusion mechanism. In each aspect, there is a gating mechanism that

integrates the preferences and intents from that aspect.

2. Related Work

We classify related studies into three categories: multi-behavioral non-sequential

recommendation, single-behavioral sequential recommendation, and multi-behavioral

sequential recommendation as Table 2 shows.
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Table 2: Categorization of related studies.

Category Approaches References

Multi-behavioral Non-sequential

Recommendation

Traditional Methods [14, 15]

Deep Learning-based Methods [2, 16, 17, 18, 19, 20, 21]

Single-behavioral Sequential

Recommendation

Traditional Methods [22, 23, 24]

RNN-based Methods [25, 26, 27, 28]

CNN-based Methods [29, 30]

Transformer-based Methods [31, 32, 33, 34]

GNN-based Methods [35, 36, 37]

Other Methods [38]

Multi-behavioral Sequential

Recommendation

Methods Taking One Kind of

Sequence as Input
[9, 8]

Methods Taking At Least Two

Kinds of Sequence as Input
[10, 39, 12, 40, 41]

2.1. Multi-behavioral Non-sequential Recommendation

Multi-behavioral non-sequential recommender methods are designed to cap-

ture the heterogeneity of behaviors. According to whether utilizing deep learn-

ing structures, methods can be divided into traditional methods and deep learning-

based methods.

2.1.1. Traditional Methods

Traditional methods are mainly based on the MF algorithm or the BPR

algorithm. For example, Zhao et al. [14] jointly factorized multiple matrices

of different behavior types with sharing item-side embeddings. Loni et al. [15]

proposed sampling rules considering levels of different behavior types.

2.1.2. Deep Learning-based Methods

Some researchers attempt to leverage deep neural networks. For example,

NMTR [2] combines the advance of NCF [42] with multi-task learning. For

each behavior type, one specific interaction function is learned. Based on multi-

typed behavioral data, a user-item bipartite graph with multiple types of edges
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can be constructed. Then Graph Neural Networks (GNNs) could be utilized

to handle the user-item multi-behavior graph. Jin et al. [16] assigned differ-

ent learnable weights to different kinds of edges with graph attention networks

to model the importance of the behaviors. Similarly, Xia et al. [17] designed

an aggregation mechanism which is based on the attentional neural mechanism

to explicitly model the dependencies between different types. Chen et al. [18]

assigned representations to behavior types (i.e., edge types). Zhang et al. [19]

proposed a graph convolutional network-based method to learn user and item

representations under different behavior types. Moreover, some researchers ex-

plore heterogeneous graph embedding methods [20, 21]. We argue these methods

mainly ignore sequence-related patterns of behaviors.

2.2. Single-behavioral Sequential Recommendation

Most sequential recommendation methods focus on handling single-behavioral

sequences. They strive to model sequential dependencies existing in user interac-

tions [43]. We first review traditional methods. Then, we summarize Recurrent

Neural Network (RNN)-based methods, Convolution Neural Network (CNN)-

based methods, transformer-based methods, GNN-based methods, and other

methods.

2.2.1. Traditional Methods

Traditional methods are mainly based on Markov Chains (MCs). For ex-

ample, Rendle et al. [22] combined the MF with first-order MCs. He et al. [23]

further integrated an item similarity model with high-order MCs.

Hosseini et al. [24] proposed a method to retrieve multi-aspect temporal

similarity maps. The method aims to alleviate the sparseness issue in the user-

location matrix. Additionally, they utilize the Expectation-Maximization tech-

nique to compensate for incomplete data at each temporal scale.

2.2.2. RNN-based Methods

RNNs have been widely adopted to model sequential data (e.g., sequences

of words) and have shown efficient performance. Hidasi et al. [25] introduced
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the Gated Recurrent Unit (GRU) [44] to model click behaviors. Zhu et al. [26]

modified the gate structure of the vanilla LSTM cell. Wang et al. [27] proposed

a neural network to learn multiple purposes of users. Several RNNs were used

to learn different purposes and a purpose router was designed to decide which

RNN should be updated with an interacted item. Check-in behaviors are spatio-

temporal data. Zhao et al. [28] extended the vanilla LSTM cell with additional

spatio-temporal gates, enabling the utilization of time and distance intervals.

These methods cannot ignore the heterogeneity of behaviors.

2.2.3. CNN-based Methods

Besides RNNs, some researchers explore CNNs. CNNs are commonly ap-

plied to handle image data. Tang and Wang [29] regarded the embedding matrix

E ∈ RL×d of L previous items as an “image”. They used a vertical horizontal

convolutional layer and a horizontal convolutional layer to handle the “image”.

Yuan et al. [30] also regard an item embedding sequences as an “image” and

explored holed CNN layers. Since CNNs are suitable to capture local features,

these methods cannot well capture the dependencies between two distant inter-

actions.

2.2.4. Transformer-based Methods

Latterly, transformer [45] has been introduced into recommender systems.

For example, SASRec [31] is based on a self-attention network. Zhang et al. [32]

applied parallel self-attention blocks on both item sequences and feature se-

quences. Luo et al. [33] constructed spatio-temporal relation matrices and uti-

lized a self-attention layer to capture the dependencies between non-adjacent

POIs and non-contiguous visits. Saaki et al. [34] leveraged discrete-time model-

ing to exploit concepts from texts and continuous-time modeling to infer infinite

behavioral patterns of users. These methods model sequential dependencies with

the help of the positional encoding technique. Researchers have developed vari-

ous positional encoding schemes [46]. Choosing an improper positional encoding

scheme will result in incorrect time modeling.
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2.2.5. GNN-based Methods

In addition, some researchers try to transform sequences into graph-structured

data and utilize GNNs for sequential recommendation. For example, Wu et

al. [35] transformed item sequences into item-item directed graphs and lever-

aged a gated graph neural network to handle the graphs. Li et al. [36] con-

structed graph-augmented POI sequences to capture the collaborative signals

from semantically correlated POIs (i.e., POIs before and after the target POI

in different sequences). They proposed a position-aware attention net to model

sequential dependencies. Rao et al. [37] first constructed a spatial-temporal

knowledge graph and leveraged a knowledge graph embedding method to learn

embeddings of entities and relations. Next, they constructed a POI transition

graph based on the embeddings. Then, they incorporated the POI transition

graph into RNN-based models. We argue the transformations are not one-to-one

mappings, thus they may be lossy. Besides, these methods may not effectively

capture long-term dependencies.

2.2.6. Other Methods

Other deep learning structures have also been adopted in the single-behavioral

sequential recommendation. For example, Ma et al. [38] specifically designed a

hierarchical gating network with BPR to capture both long-term and short-term

user preferences. To capture the short-term user preferences, they designed a

feature gating and an instance gating for hierarchically selecting features and

items.

2.3. Multi-behavioral Sequential Recommendation

For capturing the multi-typed and sequential nature of interactions, re-

searchers have developed multi-behavioral sequential recommender models, which

can be further classified into two subcategories.

2.3.1. Methods Taking One Kind of Sequence as Input

The first subcategory regards all behaviors as one long sequence. Liu et al. [9]

combined RNN with log-bilinear model to handle the long sequence. To capture
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properties of multiple types of behaviors, they incorporated behavior-specific

matrices. Zhou et al. [8] leveraged an attention-based RNN to model sequential

information of the long sequence. They learned representations for each behavior

type and concatenated the representations and item representations as input.

We argue that these methods cannot capture the intrinsic patterns of each type

of behavior well.

2.3.2. Methods Taking At Least Two Kinds of Sequence as Input

The second subcategory models at least two kinds of sequence. For exam-

ple, Li et al. [10] proposed an LSTM-based model to learn from the preference

behaviors and the session behaviors. Zhou et al. [39] grouped behaviors by be-

havior type and leveraged a self-attention network to model the influence among

different behavior types. Tanjim et al. [12] learned item similarities based on the

interacted item sequence via a transformer layer and obtained the user’s intent

based on her actions on a particular category via a convolution layer. Xu et

al. [40] utilized multiple GRUs to learn diverse intentions. It designs three tasks

to improve recommendation performance. Wu et al. [41] adopted contrastive

learning among different behavior types. We argue that these studies fail to

consider the multi-aspect nature of both preferences and intents. Furthermore,

most studies ignore that support types of behaviors can be noisy.

3. Preliminaries

3.1. Problem Formulation

The main notations utilized throughout this paper are outlined in Table 3.

While users interact with recommender systems, interactions will be recorded.

Given a user u, interactions of u can be defined as Xu = {x1, x2, · · · , xN}.

The n-th element xn = (in, cn, tn, bn) indicates that u performs a behavior of

type bn on the item in at the timestamp tn. All users constitute a user set

U . All items occurring in all behaviors constitute an item set I. All behavior

types constitute a behavior type set B. cn is the content information (such as

category information and brand information) of item in.
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Table 3: Main notations.

Notation Description

x = (i, c, b, t)
one behavior on item i whose content information is c (The behavior

type is b and it happened at t.)

Xu = {x1, x2, · · · , xN} the behavior sequence belonging to user u

p, q the embedding for item i, item content c

r, s the embedding for behavior type b, time interval ∆t

J the number of implicit aspects

h̃S
j the projected stable preference representation in the j-th aspect

αj,n the attention score assigned to the n-th item in the j-th aspect

h̃D
j the dynamic intent representation in the j-th aspect

βj the gate scores assigned to the latent intent in the j-th aspect

h̃H
j the hybrid user representation in the j-th aspect

hF the final user representation

ŷI the predicted probabilities of items

In recommender systems, there exists a key type of behavior referred to as

target type. On e-commerce websites, the target type is usually buy. For ease of

illustration, we use “buy” or “target” interchangeably throughout this paper.

The other types of behaviors belong to support types.

Problem Formulation. The problem of multi-behavioral sequential recom-

mendation is formulated as follows:

Input: Users U , items I, behavior types B, and all users’ behavioral data

X.

Output: A predictive model aims to predict the item that each user is most

likely to interact with under the target behavior type.

3.2. Framework Overview

Figure 2 illustrates our framework, consisting of two phases: offline and

online, to recommend the top K items that each user is most likely to interact

with under the target behavior type.

• Offline Phase. The Data Preprocessor processes User Logs in accordance
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User Behavioral 
Data

User Logs

Model Parameter
Recommender 

Model

Real-time 
Recommender 

Server

Data 
Preprocessor

Data 
Preprocessor

Candidate Set
Rank List

Offline

Online

Figure 2: Framework.

with the supported input format to generate inputs for the Recommender

Model. The Recommender Model is trained using the training data to

obtain well-trained model parameters.

• Online Phase. The Data Preprocessor processes User Behavioral Data

to generate inputs for the model. The model is deployed on servers and

the trained model parameters are loaded. The Real-time Recommender

Server ranks candidate items based on each user’s historical behavior and

presents the user with a sorted list of the top-ranked items.

4. Proposed Model

We next present the detailed design of our model, whose structure is pre-

sented in Figure 3. Our model has three components: 1) multi-aspect preference

modeling component; 2) multi-aspect intent modeling component; 3) preference

and intent fusing component. We will illustrate our model using the example

from Figure 1.
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Figure 3: The overview of the MAINT structure. Figure best viewed in color.

4.1. Shared Embedding

A shared embedding layer is utilized to map items, item content features,

and behavior types into embedding vectors:

pn = W I in, qn = WCcn, rn = WBbn, (1)

whereW matrices are embedding matrices. in and bn are one-hot vectors. cn can

be a one-hot or multi-hot vector. Since we only use item category information

which is widely used in previous studies [12, 39], cn is a one-hot vector in

this paper. If other item content information was available, it could also be

included. The time interval between xn and xn+1 is calculated as ∆tn = tn+1−

tn. Following previous studies [39], we divide the overall time intervals into

buckets and map each one-hot bucket vector into an embedding vector sn with

W∆:

sn = W∆bucketize(∆tn). (2)

4.2. Multi-aspect Preference Modeling

Stable preferences are with fewer fluctuations and can be reflected by his-

torical target behavior sequences. In the context of a multi-typed behavioral

sequence {x1, x2, · · · , xN} of length N , we pick up target behaviors to form a
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target behavior sequence {x̄1, x̄2, · · · , x̄M} 1, M < N . Reviewing Figure 1, the

multi-typed behavioral sequence of User 1 can be represented as {x1, x2, x3, x4}.

x1 and x2 are target behaviors and the target behavior sequence is represented

as {x̄1, x̄2}. After the embedding layer, the item and item content embeddings

are sent to an LSTM layer:

hS
m = LSTM([pm, qm], hS

m−1), 1 ≤ m ≤ M, (3)

where [, ] represents the concatenation of vectors and hS
m is the hidden state at

the m-th step. pm, qm are calculated with Equation (1).

User preferences are multi-aspect. To model multi-aspect preferences, we

propose a multi-aspect projection mechanism. More specifically, we project the

hidden state hS
M to multiple semantic subspaces, i.e., aspects:

h̃S
j = Pj(h

S
M ), 1 ≤ j ≤ J, (4)

where Pj is the projection function for the j-th implicit aspect and h̃S
j is the pro-

jected preference representation. The rationality of the multi-aspect projection

mechanism is easy to be proved. Many studies [47] have proved that different

filters in a convolutional layer focus on distinct features of an image. Our pro-

jection functions are similar to filters. Each projection function focuses on auto-

matically extracting characteristics of a specific aspect. Reviewing Figure 1, we

should project user preferences to two semantic subspaces: the category-aspect

and the brand-aspect. Then, we obtain user preference representations of User

1: h̃S
1 and h̃S

2 .

The projection functions can either be linear or nonlinear. For simplicity,

we present the linear projection function:

h̃S
j = WP

j hS
M , 1 ≤ j ≤ J, (5)

where WP are the projection matrices.

1We use x̄⋆ to represent a target behavior.
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4.3. Multi-aspect Intent Modeling

Dynamic purchase intents evolve over time and can be reflected by multi-

typed behavioral sequences [12]. A common scenario is that when a user wants

something, she will click some related items and then add some of these items

to her cart.

Behavior type and time interval are behavioral specifics which provide a fine-

grained understanding of one user interaction on one item. Although behavior

specifics cannot provide any information about the item, they reflect the impor-

tance of each interaction. To consider behavioral specifics while modeling an

item sequence, we regard behavioral specifics as strong signals in input, forget,

and output gates. That is to say, behavioral specifics are involved in control-

ling item sequence modeling. This variant of LSTM is called behavior-enhanced

LSTM, which is formulated as follows:

in =σ(Wi[pn, qn, rn, sn, hn−1] + b̂i), (6)

fn =σ(Wf [pn, qn, rn, sn, hn−1] + b̂f ), (7)

ĉn =fn ⊙ ĉn−1 + in ⊙ tanh(Wĉ[pn, qn, hn−1] + b̂ĉ), (8)

on =σ(Wo[pn, qn, rn, sn, hn−1] + b̂o), (9)

hn =on ⊙ tanh(ĉn), (10)

where in, fn and on are gates at the n-th step. ĉn is the cell memory. W

matrices and b̂ terms are trainable parameters. σ is the element-wise sigmoid

function. ⊙ is the element-wise product. pn and qn are item characteristics and

calculated with Equation (1). rn and sn are behavioral specifics and can be

calculated with Equation (1) and Equation (2), respectively.

When modeling multi-typed behavioral sequences, it is important to consider

the presence of noise. For example, click behaviors can be quite noisy due to ac-

cidental touches. To mitigate this issue, we regard stable preferences as guiders.

In detail, we employ a refinement attention mechanism in each aspect. The

attention mechanism utilizes the stable preference as a guider to guide the dy-

namic intent extraction from the sequence by assigning different weights. In this
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Figure 4: Refinement Attention Mechanism.

way, we will learn J intent representations from J aspects. Refinement atten-

tion mechanisms constitute the multi-aspect refinement attention mechanism,

which is inspired by the success of the multi-head self-attention [45]. Refine-

ment attention mechanism is formulated as follows and the detailed structure

is illustrated in Figure 4:

score(h̃S
j , h

D
n ) =v⊤j tanh(WQ

j h̃S
j +WK

j hD
n + b̂Aj ), (11)

αj,n =
exp(score(h̃S

j , h
D
n ))∑N

n′=1 exp(score(h̃
S
j , h

D
n′))

, (12)

h̃D
j =

N∑
n=1

αj,nW
V
j hD

n , (13)

where 1 ≤ j ≤ J , h̃S
j is calculated with Equation (5), hD

n is calculated with

Equation (10), W matrices denote weight matrices, vj is the weight vector,

and b̂Aj is the bias vector. h̃D
j is the intent representation in the j-th aspect.

Reviewing Figure 1, we can obtain user intent representations h̃D
1 and h̃D

2 with

the help of h̃S
1 and h̃S

2 , respectively.

4.4. Preference and Intent Fusing

The significance of preferences/intents is uncertain. We propose a multi-

aspect gated fusion mechanism to balance the influence of preferences and in-

tents. The mechanism considers characteristics of preferences and intents in
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each aspect and constructs the hybrid user representation h̃H
j accordingly:

βj =σ(w⊤
j [h̃

S
j , h̃

D
j ] + b̂Fj ), (14)

h̃H
j =(1− βj)h̃

S
j + βj h̃

D
j , (15)

where 1 ≤ j ≤ J , wj is the weight vector, and b̂Fj is the bias. Reviewing Figure 1,

we can integrate h̃D
1 and h̃S

1 , resulting in the generation of h̃H
1 . Similarly, by

integrating h̃D
2 and h̃S

2 , we can obtain h̃H
2 .

Transformer [45] proposes leveraging a concatenation and a projection to

integrate parallel heads. Similarly, we concatenate hybrid user representations

in different aspects (i.e., semantic subspaces) and utilize a projection again. In

this way, we obtain the final user representation hF as the following equation

shows:

hF = W ρ[h̃H
1 , h̃H

2 , · · · , h̃H
J ], (16)

where the projection is a parameter matrix W ρ. The dimensions of hF and h̃H
⋆

are equal. Reviewing Figure 1, we can derive the final user representation hF

of User 1 based on h̃H
1 and h̃H

2 .

Inspired by studies [48, 36], we predict next item and next category that a

user is interested in with the following equations:

ŷI =softmax(WO,IhF ), (17)

ŷC =softmax(WO,ChF ), (18)

where WO,I and WO,C are the weight matrices. ŷI and ŷC are the predicted

probabilities of items and categories, respectively.

4.5. Model Training

To augment the training data, we predict next item im+1 and category cm+1

at every time step m. Thus, the total loss function is given by the following

equation:

L(Θ) = −
∑
u∈U

M∑
m=1

(
yIm+1 log(ŷ

I
m+1) + γyCm+1 log(ŷ

C
m+1)

)
+ λ ∥Θ∥2 , (19)
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where Θ denotes all trainable parameters, γ is the hyper-parameter which con-

trols the effectiveness of category information, and λ is the hyper-parameter

which controls the strength of the L2 regularization to prevent overfitting. Be-

sides the L2 regularization, we adopt dropout [49] in the fusing component.

We optimize all models with Adam optimizer [50], which is an adaptive

learning rate optimization algorithm.

5. Experiments

Next, we answer the following research questions:

• RQ1: How does MAINT perform compared with various advanced rec-

ommender models?

• RQ2: Are the support types of behaviors helpful for improving the per-

formance of predicting the next target behavior?

• RQ3: How do different designs contribute to the model performance?

• RQ4: How do hyper-parameters affect the performance?

• RQ5: How is the interpretation ability of our model?

5.1. Experimental Settings

5.1.1. Datasets and Preprocessing

We utilize two real-world e-commerce datasets, i.e., Taobao 2 and Retail-

rocket 3, which contain multiple behavior types. Dataset statistics are shown

in Table 4. Similar to previous studies [10, 27], we filter out users who have

fewer than ten interactions and items that appear fewer than twenty times for

Taobao. For Retailrocket, we filter out users and items with fewer than five

and ten records, respectively. In addition, each user should have at least one

2https://tianchi.aliyun.com/dataset/dataDetail?dataId=46
3https://www.kaggle.com/retailrocket/ecommerce-dataset
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Table 4: Dataset statistics.

Dataset Taobao Retailrocket

Users 10,000 1,407,580

Items 2,876,947 417,053

Categories 8,916 1,086

Interactions

11,550,581 Clicks

242,556 Collects

343,564 Carts

120,205 Buys

2,664,312 Views

69,332 Carts

22,457 Buys

# Behavior Types 4 3

buy record. Category information provided by Retailrocket is hierarchical (tree-

like). In our experiments, we only use category information of the lowest level.

The maximum length of sequences is twenty in our experiments.

5.1.2. Evaluation Protocols

Following the leave-one-out strategy applied widely on existing studies [42,

2], we utilize the most recently bought item of each user for testing, the second

recently bought item for validation, and the rest bought items for training. For

efficient evaluation, each positive instance is paired with 100 non-interactive

items [12, 42]. A good recommender system should recommend new items that

a user has not consumed before [2]. So for each user, we delete her training

records with the test item.

To evaluate the performance of each model, we use two metrics: Hit Ra-

tio (HR@K) and Normalized Discounted Cumulative Gain (NDCG@K). K is

the number of recommended items. There are two primary reasons for using

these two metrics. First, these metrics have been widely used by previous re-

searchers [42, 2], and employing the same metrics enables a fair comparison

of models. Second, these metrics focus on different perspectives: NDCG is a

ranking-based measure that focuses on the position of the test item in the Top-

K recommendation list, while HR is a recall-based measure that determines
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whether the test item appears in the Top-K recommendation list. Together,

they provide a comprehensive evaluation of a model from different perspectives.

5.1.3. Methods for Comparison

We compare our proposed method with three groups of recommender models:

Multi-behavioral Non-sequential Recommender Models.

• BF [14]. This method jointly factorizes matrices of different behavior

types with sharing item-side embeddings.

• MC-BPR [15]. This method adopts sampling rules considering levels of

different behavior types.

• NMTR [2]. This method considers the cascading relationship among

different behavior types. It shares user-side and item-side embeddings

and learns a separate interaction function for each behavior type.

Single-behavioral Sequential Recommender Models.

• GRU4Rec [25]. This method uses a GRU to model behaviors.

• MCPRN [27]. This method uses multiple RNNs to learn multiple pur-

poses and proposes a purpose router to decide which RNN should be up-

dated with an interacted item. Vanilla MCPRN does not consider category

information. To ensure a fair comparison, we extend it by concatenating

item embeddings and category embeddings as the input.

• HGN[38]. This method designs a feature gating and an instance gating to

select features and items, respectively. We extend vanilla HGN to consider

category information, too.

Multi-behavioral Sequential Recommender Models.

• ATRank [39]. This method groups behaviors by behavior type and

chooses a self-attention network to model the influence among different

behavior types.

20



• BINN [10]. This method exploits an LSTM-based model to learn from

the preference behaviors and the session behaviors. We extend vanilla

BINN to consider category information.

• ASLI [12]. This method learns item similarities based on the interacted

item sequence via a transformer layer and obtains the user’s intent based

on her actions on a particular category via a convolution layer.

• IARS [40]. This method leverages multiple GRUs to learn diverse inten-

tions. It designs three tasks to improve recommendation performance.

HGN [38] and ASLI [12] have outperformed some sequential models (such

as FPMC [22], Fossil [23], Caser [29], NextItNet [30], SASRec [31]). We omit

comparisons against these models.

5.1.4. Implementation Details

We implement MAINT with TensorFlow. The item embedding size is fixed

to 64 for all models, which is suitable for models to learn a strong representation.

The batch size of samples is 512. The initial learning rate is 0.01. λ is set to

10−5. The number of implicit aspects is 3 (i.e., J = 3). γ is 1. The dropout

rate is 0.2. For all models, we tune their hyper-parameters and report the best

performance.

5.2. Performance Comparison (RQ1)

To answer RQ1, we repeat each experiment 5 times by changing the random

seeds, and average results are reported in Table 5. The two-tailed unpaired t-

test is performed to detect significant differences between MAINT and the best

baseline. We have the following findings:

• In the first group, NMTR outperforms BF and MC-BPR due to its ability

to model complex nonlinear interactions between users and items with

deep learning.
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Table 5: Comparisons on Taobao and Retailrocket. ⋆ means significantly better than the best

baseline (p < 0.05).

Method

Taobao

K=2 K=6 K=10

HR NDCG HR NDCG HR NDCG

BF 0.1142 0.1015 0.2053 0.1399 0.2670 0.1592

MC-BPR 0.1201 0.1009 0.2421 0.1532 0.3264 0.1794

NMTR 0.1224 0.1073 0.2502 0.1613 0.3327 0.1871

GRU4Rec 0.0989 0.0850 0.2113 0.1328 0.2971 0.1600

MCPRN 0.2753 0.2564 0.3968 0.3114 0.4621 0.3328

HGN 0.2552 0.2381 0.3898 0.2958 0.4655 0.3210

ATRank 0.2588 0.2275 0.3753 0.2857 0.4459 0.3111

BINN 0.2871 0.2658 0.3945 0.3272 0.4599 0.3562

ASLI 0.2186 0.2019 0.3626 0.2754 0.4424 0.3027

IARS-S 0.3020 0.2740 0.4095 0.3278 0.4857 0.3568

MAINT 0.3078⋆ 0.2773⋆ 0.4285⋆ 0.3289⋆ 0.5130⋆ 0.3582⋆

Method

Retailrocket

K=2 K=6 K=10

HR NDCG HR NDCG HR NDCG

BF 0.1039 0.1028 0.2174 0.1363 0.3104 0.1654

MC-BPR 0.1953 0.1710 0.3396 0.2337 0.4193 0.2587

NMTR 0.2680 0.2387 0.4166 0.3022 0.5041 0.3295

GRU4Rec 0.1030 0.0965 0.1827 0.1245 0.2323 0.1436

MCPRN 0.3071 0.2944 0.4969 0.3828 0.6106 0.4207

HGN 0.3827 0.3461 0.5574 0.4215 0.6305 0.4443

ATRank 0.3686 0.3573 0.5363 0.4246 0.6413 0.4525

BINN 0.3564 0.3418 0.5228 0.4151 0.6231 0.4370

ASLI 0.4165 0.3862 0.5527 0.4460 0.6423 0.4698

IARS-S 0.4179 0.3875 0.5634 0.4482 0.6444 0.4735

MAINT 0.5187⋆ 0.4802⋆ 0.6525⋆ 0.5450⋆ 0.7175⋆ 0.5693⋆

• In the second group, MCPRN performs better than GRU4Rec. Since

MCPRN divides items into several subsets according to user latent pur-
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poses and models each subset of items with a variant GRU. It could cap-

ture subset-level dependencies besides item-level dependencies. Compared

with NMTR, although it ignores the behavioral diversity, it captures the

sequence-related patterns of the item- and subset-level well and performs

better. HGN also performs better than GRU4Rec and NMTR. HGN in-

corporates a feature gating, an instance gating, and an aggregation layer

to capture feature-level, instance-level, and group-level relations between

past and future interaction items. It also utilizes an item-item product

module to capture item-item relations. It has better performance than

MCPRN on Retailrocket. The reason may be that gating networks are

good at processing sparse data.

• IARS performs best among baselines since it could model multiple coexist-

ing intentions with multiple GRUs and attention layers. Besides, auxiliary

tasks are helpful for solving the main task. BINN could learn users’ histor-

ical preferences and present motivations considering both multi-behavioral

and sequence-related patterns. ASLI could learn users’ intents from their

actions on a particular category. ATRank and ASLI have better perfor-

mance than BINN on Retailrocket. The reason may be that ATRank and

ASLI have attention-based units which are better at handling sparse data.

• MAINT achieves significant improvement over all baselines on all datasets

in both HR and NDCG. Compared with MCPRN and ASLI, MAINT

mainly can capture more aspects of user preferences/intents. Compared

with HGN and BINN, MAINT excels in its ability to adaptively fuse

preferences and intents while learning them from multiple aspects. Com-

pared with ATRank, MAINT effectively models sequence-related patterns

existing in the multi-typed behavioral sequence. Compared with IARS,

MAINT can learn multi-aspect preferences and filter out noises existing

in the multi-typed behavioral sequence.
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Figure 5: Impact study of different support types.

5.3. Impact of support types of behaviors (RQ2)

To answer RQ2, we design variants of our model. These variants are gener-

ated as follows: “-” behavior type means removing behaviors of this type. From

the results in Figure 5, we can see MAINT with all support types of behaviors

achieves the best performance, which means support types of behaviors are help-

ful for improving prediction performance. Among support types, click and view

are the most important behavior types to help MAINT improve performance.

That is probably because behaviors of click and view account for a significant

proportion.

5.4. Ablation Study (RQ3)

To prove the effectiveness of the key designs in MAINT and answer RQ3,

we consider different model variants from four perspectives:

Table 6: Ablation study of key designs in MAINT.

Model
Taobao Retailrocket

HR@10 NDCG@10 HR@10 NDCG@10

MAINT-MP 0.4977 0.3471 0.7144 0.5560

MAINT-BLSTM 0.4977 0.3465 0.7066 0.5600

MAINT-RAtt 0.4876 0.3482 0.7109 0.5550

MAINT-MGFus 0.4925 0.3470 0.6938 0.5302

MAINT 0.5130 0.3582 0.7175 0.5693
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• Effect of the Multi-aspect Projection Mechanism. MAINT-MP. We con-

sider one variant of MAINT without the projection mechanism. In other

words, we utilize one latent vector to represent a user’s preferences/intents

(i.e., J = 1).

• Effect of Behavior-enhanced LSTM. MAINT-BLSTM. We do an ablation

study to test the effectiveness of Behavior-enhanced LSTM by comparing

the performance of the model with vanilla LSTM.

• Effect of Refinement Attention Mechanism. MAINT-RAtt. We replace

Refinement Attention Mechanism with vanilla attention [51].

• Effect of Multi-aspect Gated Fusion Mechanism. MAINT-MGFus. We

replace Multi-aspect Gated Fusion Mechanism with concatenation.

Table 6 reports the results. We can find the full version of MAINT achieves

the best performance in all cases. This proves that the key designs work. The

reasons why our designs work have been introduced in the previous section.

5.5. Impact of Hyper-parameters (RQ4)

For answering RQ4, we select four important hyper-parameters to study:

• Number of implicit aspects J . We adjust the number of aspects and

the results are shown in Figure 6. As the number of aspects increases,
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Figure 6: Study of # aspects.
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Figure 7: Study of embedding dimensionality.
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Figure 8: Study of γ.

the performance grows in NDCG. When the number of aspects is 4, the

performance drops. We think the overfitting problem may occur.

• Embedding dimensionality. We increase embedding dimensionality from 8

to 64, the model achieves better performance as Figure 7 shows. Because

of the overfitting phenomenon, the performance degrades a little in NDCG

with the further increase of embedding dimensionality.

• Coefficient γ. Figure 8 shows the results. Next-category recommendation

task plays an important role in enhancing the performance of next-item

recommendations. In general, the model performs better with larger val-

ues of γ. The reason may be that next-category recommendation task

helps the model learn user preferences/intents from the category-aspect.
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Figure 9: Study of the maximum length of sequences.

• Maximum length of sequences N . We conduct experiments by varying

the sequence length between 5 and 40, and the results are presented in

Figure 9. We observed that as the length increases, the performance

of MAINT initially improves but then declines. When the length is 10,

MAINT achieves the best performance in NDCG on Taobao. When the

length is 30, MAINT achieves the best performance in NDCG on Retail-

rocket. When the length is 20, MAINT achieves the best performance in

HR on both datasets. It indicates that a longer sequence may include too

many irrelevant items for predicting future items. In other words, the pref-

erence/intent drift problem is serious in a longer sequence. A larger length

might lead to heavy computational costs at the same time. Meanwhile,

the average lengths of processed sequences are about 19 and 17 on Taobao

and Retailrocket, respectively. So the maximum length of sequences is 20

in our experiments.

5.6. Case Study of model’s Interpretability (RQ5)

In response to RQ5, we conduct a case study by randomly selecting a user

from the Retailrocket dataset. The attention scores α and gate scores β are

visualized in Figure 10. In this case, our model successfully recommends both

the item and the category. Based on 20 behaviors of the user, our model ini-

tially recommends item i23930, which the user subsequently purchases. Our

observations are as follows:
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Figure 10: A real example from a sampled user on Retailrocket.

• MAINT focuses on different behaviors in different aspects since the dis-

tributions vary a lot in 3 aspects. In the 3rd aspect, the attention scores

of the 17th, 18th, 19th, and 20th behaviors are high, and the categories

of these items align with the predicted item. This suggests that the 3rd

aspect may represent the category-aspect. However, due to insufficient

information, it is not possible to infer the specific meanings represented

by the other aspects.

• MAINT is capable of balancing preferences and intents, as indicated by

the variation in gate scores across 3 aspects. In the 3rd aspect (i.e., the

category-aspect), the gate score is high. This could be because the user

made few purchases a long time ago but clicked many items recently,

indicating that her intents may be more significant.

The experiment demonstrates the effectiveness of both the attention mech-

anism and the gated fusion mechanism in interpreting recommendation results.

6. Discussion

In this section, we discuss the extensibility and efficiency of our model.

6.1. Model Extensibility

We would like to emphasize that our proposed model serves as a general

recommender model, given its ability to model multi-typed behaviors. To show
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Figure 11: Comparisons on Movielens-1M.

the extensibility of our model, we utilize another dataset: Movielens-1M 4.

Movielens-1M is a popular dataset [52, 31]. It consists of 1,000,209 ratings

for approximately 3,900 movies, provided by 6,040 users. The ratings are cat-

egorized into five levels (1, 2, 3, 4, 5), which can be viewed as five types of

behavior. Our goal with this dataset is to predict the next movie that a user

will rate 5 stars. For movies with multiple genre (i.e., category) tags, we only

use the most frequently occurring one in the dataset. We also limit the sequence

length to a maximum of 20.

We found that the model achieved the best results under the existing hyper-

parameter settings. To provide a comparative analysis, we selected the most

competitive baseline (i.e., IARS-S). The results are depicted in Figure 11, clearly

demonstrating that our model continues to perform exceptionally well.

6.2. Model Efficiency

We then analyze the time complexity of our model. The time complexity of

the shared embedding layer is O(N). The time complexity of the multi-aspect

projection mechanism is O(Jd2), where d is the embedding dimensionality. The

time complexity of two LSTMs is O(Md2 + Nd2), where M < N . The time

complexity of the multi-aspect refinement attention mechanism is O(JNd2).

The time complexity of the multi-aspect gated fusion mechanism is O(Jd+Jd2).

4https://grouplens.org/datasets/movielens/1m/
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Figure 12: Time Comparison.

Therefore, the total time complexity of our model is O(N +Jd2+Md2+Nd2+

JNd2 + Jd + Jd2), i.e., O(JNd2). The total time complexity of IARS-S is

O(ΛNd2), where Λ is the number of GRUs. Figure 12 (a) compares the training

time per batch of the best models (IARS-S and MAINT) in seconds. Figure 12

(b) compares the performance of these models in an online recommendation

scenario, where the number of requests varies. We can see that the efficiency of

MAINT is slightly worse than IARS-S. But the recommendation performance

of MAINT is markedly superior. This limitation can be mitigated by utilizing

machines with enhanced computational capabilities. On balance, the benefits

of our model significantly outweigh its limitations.

We also analyze the space complexity of our model. The space complexity

of the shared embedding layer is O(ďd), where ď is the sum of the dimensions

of one-hot vectors. The space complexity of the multi-aspect projection mech-

anism is O(Jd2). The space complexity of two LSTMs is O(d2). The space

complexity of the multi-aspect refinement attention mechanism is O(Jd2). The

space complexity of the multi-aspect gated fusion mechanism is O(Jd + Jd2).

Therefore, the space complexity of our model is O(ďd + Jd2). The total space

complexity of IARS-S is O(ďd+ Λd2).
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7. Conclusion

In this paper, we propose a novel model called MAINT for multi-behavioral

sequential recommendation. The experiments demonstrate that our models con-

sistently outperform state-of-the-art recommender models. In summary, the

key contributions are as follows: we propose an approach to extract multi-

aspect preferences from target behaviors; we design network structures to ex-

tract multi-aspect intents from multi-typed behaviors; and we develop a mech-

anism to adaptively fuse multi-aspect preferences and intents. Pre-training has

proven effective in various fields. Therefore, we aim to design an item embedding

pre-training method (based on graph neural networks) considering multi-typed

behaviors in the future.
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Appendices

Details on the Conversion Rate. The conversion rate of some behavior type

is computed as:

Conversion Rate =
# behaviors of this type on each item before purchase

# behaviors of this type
.

Training Procedure of MAINT. The overall training procedure of MAINT is

illustrated in Algorithm 1. Line 6-9 correspond to the multi-aspect preference

modeling stage. Line 10-14 correspond to the multi-aspect intent modeling

stage. Line 15-19 correspond to the preference and intent fusing stage.
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Algorithm 1 Learning Algorithm for MAINT
Input:

multi-typed behavioral sequence of all users {Xu = {x1, x2, · · · , xN}}, u ∈ U ; item embedding

size; number of implicit aspects J; category prediction loss coefficient γ; L2 regularization

coefficient λ; dropout rate

Output:

MAINT with learned parameters Θ

1: Initialize all trainable parameters Θ;

2: while stopping criteria is not met do

3: Draw a mini-batch from {Xu};

4: for each u do

5: pn, qn, rn, sn = Embedding(in, cn, bn,∆tn), 1 ≤ n ≤ N (see Eq. (1), (2));

6: hS
m = LSTM([pm, qm], hS

m−1), the type of x̄m is target behavior (see Eq. (3));

7: for each j ∈ [1, J] do

8: h̃S
j = WP

j hS
M (see Eq. (5));

9: end for

10: hD
n = Behavior-enhanced LSTM(pn, qn, rn, sn), 1 ≤ n ≤ N (see Eq. (6),(7),(8),(9),(10));

11: for each j ∈ [1, J] do

12: αj,n = Refinement Attention Mechanism(h̃S
j , hD

n ), 1 ≤ n ≤ N (see Eq. (12));

13: h̃D
j =

∑N
n=1 αj,nW

V
j hD

n (see Eq. (13));

14: end for

15: for each j ∈ [1, J] do

16: βj = σ(w⊤
j [h̃S

j , h̃D
j ] + b̂Fj ) (see Eq. (14));

17: h̃H
j = (1 − βj)h̃

S
j + βj h̃

D
j (see Eq. (15));

18: end for

19: hF = Wρ[h̃H
1 , h̃H

2 , · · · , h̃H
J ] (see Eq. (16));

20: ŷI = softmax(WO,IhF ), ŷC = softmax(WO,ChF ) (see Eq. (17), (18));

21: end for

22: Compute loss according to L(Θ) = −
∑

u∈Ubatch

∑M
m=1

(
yI
m+1 log(ŷI

m+1) +

γyC
m+1 log(ŷC

m+1)

)
+ λ ∥Θ∥2;

23: Update Θ according to L and optimizer;

24: end while

25: return Θ
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